समानुपात (गणित): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 13: Line 13:


==प्रत्यक्ष आनुपातिकता ==
==प्रत्यक्ष आनुपातिकता ==
{{See also|Equals sign}}
{{See also|बराबर का चिन्ह}}
दो [[ चर (गणित) ]] s x और y दिया गया है, y x . के लिए 'सीधे आनुपातिक' है<ref>Weisstein, Eric W. [http://mathworld.wolfram.com/DirectlyProportional.html "Directly Proportional"]. ''MathWorld'' – A Wolfram Web Resource.</ref> यदि कोई शून्येतर स्थिरांक k ऐसा हो कि
दो [[ चर (गणित) | चर (गणित)]] x और y दिये गये हैं और  चर y, चर x के लिए 'सीधे आनुपातिक' है<ref>Weisstein, Eric W. [http://mathworld.wolfram.com/DirectlyProportional.html "Directly Proportional"]. ''MathWorld'' – A Wolfram Web Resource.</ref> यदि कोई शून्येतर स्थिरांक k इस प्रका है कि


: <math>y = kx.</math>
: <math>y = kx.</math>
संबंध को अधिकांशतः प्रतीकों ∝ (ग्रीक अक्षर [[ अल्फा ]] के साथ भ्रमित नहीं होने के लिए) या ~ का उपयोग करके दर्शाया जाता है:
संबंध को अधिकांशतः प्रतीकों ∝ (ग्रीक अक्षर [[ अल्फा |अल्फा]] के साथ भ्रमित नहीं होने के लिए) या ~ का उपयोग करके प्रदर्शित किया जाता है।
: <math>y \propto x,</math> या <math>y \sim  x.</math>
: <math>y \propto x,</math> या <math>y \sim  x.</math>
के लिये <math>x \ne 0</math> आनुपातिकता स्थिरांक को अनुपात के रूप में व्यक्त किया जा सकता है
के लिये <math>x \ne 0</math> आनुपातिकता स्थिरांक को अनुपात के रूप में व्यक्त किया जा सकता है।


: <math> k = \frac{y}{x}.</math>
: <math> k = \frac{y}{x}.</math>
इसे भिन्नता का स्थिरांक या आनुपातिकता का स्थिरांक भी कहा जाता है।
इसे भिन्नता का स्थिरांक या आनुपातिकता का स्थिरांक भी कहते है।


एक प्रत्यक्ष आनुपातिकता को एक y-अवरोधन के साथ दो चरों में एक रैखिक समीकरण के रूप में भी देखा जा सकता है|''y''-प्रतिच्छेद {{math|0}} और k का ढाल है। यह रैखिक विकास से मेल खाती है।
एक प्रत्यक्ष आनुपातिकता को एक y-अवरोधन के साथ दो चरों में एक रैखिक समीकरण के रूप में भी देखा जा सकता है|''y''-प्रतिच्छेद {{math|0}} और k का ढाल है। यह रैखिक विकास से मेल खाती है।

Revision as of 20:01, 27 March 2023

चर y, चर x के समानुपाती स्थिरांक ~0.6 के साथ सीधे आनुपातिक है।
चर y, चर x के व्युत्क्रमानुपाती होता है जिसमें आनुपातिकता स्थिरांक 1 होता है।

गणित में संख्याओं के दो अनुक्रम, अधिकांशतः प्रयोगात्मक डेटा , आनुपातिक या सीधे आनुपातिक होते हैं। यदि उनके संगत तत्वों में एक स्थिर (गणित) अनुपात होता है। जिसे आनुपातिकता या आनुपातिकता स्थिरांक का गुणांक कहा जाता है। दो अनुक्रम व्युत्क्रमानुपाती होते हैं। यदि संबंधित तत्वों का एक स्थिर उत्पाद होता है। जिसे आनुपातिकता का गुणांक भी कहा जाता है।

यह परिभाषा सामान्यतः संबंधित भिन्न मात्राओं तक विस्तारित होती है। जिन्हें अधिकांशतः चर कहा जाता है। चर का यह अर्थ गणित में इस शब्द का सामान्य अर्थ नहीं है (देखें चर (गणित) )। ये दो अलग-अलग अवधारणाएं ऐतिहासिक कारणों से एक ही नाम साझा करती हैं।

दो फलन (गणित) तथा आनुपातिक हैं। यदि उनका अनुपात एक निरंतर कार्य है।

यदि चर के कई जोड़े समान प्रत्यक्ष आनुपातिकता स्थिरांक साझा करते हैं, तो इन अनुपातों की समानता को व्यक्त करने वाले समीकरण को अनुपात कहा जाता है, उदाहरण के लिए, a/b = x/y = ⋯ = k (विवरण के लिए अनुपात देखें)। आनुपातिकता रैखिकता से निकटता से संबंधित है।

प्रत्यक्ष आनुपातिकता

दो चर (गणित) x और y दिये गये हैं और चर y, चर x के लिए 'सीधे आनुपातिक' है[1] यदि कोई शून्येतर स्थिरांक k इस प्रका है कि

संबंध को अधिकांशतः प्रतीकों ∝ (ग्रीक अक्षर अल्फा के साथ भ्रमित नहीं होने के लिए) या ~ का उपयोग करके प्रदर्शित किया जाता है।

या

के लिये आनुपातिकता स्थिरांक को अनुपात के रूप में व्यक्त किया जा सकता है।

इसे भिन्नता का स्थिरांक या आनुपातिकता का स्थिरांक भी कहते है।

एक प्रत्यक्ष आनुपातिकता को एक y-अवरोधन के साथ दो चरों में एक रैखिक समीकरण के रूप में भी देखा जा सकता है|y-प्रतिच्छेद 0 और k का ढाल है। यह रैखिक विकास से मेल खाती है।

उदाहरण

  • यदि कोई वस्तु स्थिर गति से यात्रा करती है, तो तय की गई दूरी यात्रा में व्यतीत समय के सीधे आनुपातिक होती है, जिसमें गति आनुपातिकता की स्थिर होती है।
  • एक वृत्त की परिधि उसके व्यास के समानुपाती होती है, जिसमें समानुपाती नियतांक pi| . के बराबर होता हैπ.
  • एक पर्याप्त रूप से छोटे भौगोलिक क्षेत्र के मानचित्र पर, पैमाने (मानचित्र) दूरी के लिए तैयार, मानचित्र पर किन्हीं दो बिंदुओं के बीच की दूरी उन बिंदुओं द्वारा दर्शाए गए दो स्थानों के बीच की दूरी के सीधे आनुपातिक है; आनुपातिकता का स्थिरांक मानचित्र का पैमाना है।
  • गुरुत्वाकर्षण के कारण पास के बड़े विस्तारित द्रव्यमान द्वारा छोटे द्रव्यमान वाली छोटी वस्तु पर कार्य करने वाला बल (भौतिकी) , वस्तु के द्रव्यमान के सीधे आनुपातिक होता है; बल और द्रव्यमान के बीच आनुपातिकता के स्थिरांक को गुरुत्वाकर्षण त्वरण के रूप में जाना जाता है।
  • किसी वस्तु पर कार्य करने वाला शुद्ध बल संदर्भ के जड़त्वीय फ्रेम के संबंध में उस वस्तु के त्वरण के समानुपाती होता है। इसमें आनुपातिकता का स्थिरांक, न्यूटन का दूसरा नियम, वस्तु का शास्त्रीय द्रव्यमान है।

कंप्यूटर एन्कोडिंग

Unicode characters
  • U+221D PROPORTIONAL TO (&prop;, &Proportional;, &propto;, &varpropto;, &vprop;)
  • U+007E ~ TILDE
  • U+223C TILDE OPERATOR (&sim;, &thicksim;, &thksim;, &Tilde;)
  • U+223A GEOMETRIC PROPORTION (&mDDot;)


व्युत्क्रम आनुपातिकता

के फलन के साथ व्युत्क्रमानुपाती y = 1/x

व्युत्क्रम आनुपातिकता की अवधारणा को प्रत्यक्ष आनुपातिकता के साथ विपरीत किया जा सकता है। एक दूसरे के व्युत्क्रमानुपाती कहे जाने वाले दो चरों पर विचार करें। Ceteris paribus , एक व्युत्क्रमानुपाती चर का परिमाण या निरपेक्ष मान घट जाता है यदि दूसरा चर बढ़ता है, जबकि उनका उत्पाद (आनुपातिकता k का स्थिरांक) हमेशा समान होता है। एक उदाहरण के रूप में, यात्रा के लिए लिया गया समय यात्रा की गति के व्युत्क्रमानुपाती होता है।

औपचारिक रूप से, दो चर 'व्युत्क्रमानुपाती' होते हैं (जिन्हें 'व्युत्क्रमानुपाती' भी कहा जाता है, 'प्रतिलोम भिन्नता' में, 'प्रतिलोम अनुपात' में)[2] यदि प्रत्येक चर दूसरे के गुणनात्मक व्युत्क्रम (पारस्परिक) के सीधे आनुपातिक है, या समकक्ष रूप से यदि उनका उत्पाद (गणित) एक स्थिर है।[3] यह इस प्रकार है कि चर y चर x के व्युत्क्रमानुपाती होता है यदि कोई गैर-शून्य स्थिरांक k मौजूद हो जैसे कि

या समकक्ष, अत: अचर k x और y का गुणनफल है।

कार्तीय निर्देशांक तल पर दो चरों का व्युत्क्रमानुपाती ग्राफ़ एक आयताकार अतिपरवलय है। वक्र पर प्रत्येक बिंदु के x और y मानों का गुणनफल आनुपातिकता (k) के स्थिरांक के बराबर होता है। चूँकि न तो x और न ही y शून्य के बराबर हो सकते हैं (क्योंकि k गैर-शून्य है), ग्राफ कभी भी अक्ष को पार नहीं करता है।

अतिशयोक्तिपूर्ण निर्देशांक

प्रत्यक्ष और प्रतिलोम अनुपात की अवधारणा अतिपरवलयिक निर्देशांक ों द्वारा कार्तीय तल में बिंदुओं के स्थान की ओर ले जाती है; दो निर्देशांक प्रत्यक्ष आनुपातिकता के स्थिरांक के अनुरूप होते हैं जो एक बिंदु को एक विशेष रेखा (गणित) # रे पर होने के रूप में निर्दिष्ट करता है और प्रतिलोम आनुपातिकता का स्थिरांक जो एक बिंदु को एक विशेष अतिपरवलय पर होने के रूप में निर्दिष्ट करता है।

यह भी देखें

विकास

टिप्पणियाँ

  1. Weisstein, Eric W. "Directly Proportional". MathWorld – A Wolfram Web Resource.
  2. "Inverse variation". math.net. Retrieved October 31, 2021.
  3. Weisstein, Eric W. "Inversely Proportional". MathWorld – A Wolfram Web Resource.


संदर्भ


==