भंगुरता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:


[[Image:Glass fracture.jpg|thumb|200px|कांच में भंगुर फ्रैक्चर]]
[[Image:Glass fracture.jpg|thumb|200px|कांच में भंगुर फ्रैक्चर]]
[[Image:Cast iron tensile test.JPG|thumb|200px|[[कच्चा लोहा]] टेन्साइल टेस्टपीस में भंगुर फ्रैक्चर]]सामग्री [[भंग|भंगुर]] होती है, जब [[तनाव (भौतिकी)]] के अधीन होती है, तो यह थोड़ा कोमल और महत्वपूर्ण प्लास्टिक विरूपण के बिना भंग हो जाती है। भंगुर सामग्री फ्रैक्चर से पूर्व अपेक्षाकृत अल्प [[ऊर्जा]] को अवशोषित करती है, यहां तक ​​कि सामग्री की उच्च शक्ति भी अवशोषित करती है। ब्रेकिंग प्रायः तीव्र ध्वनि के साथ होती है।{{Citation needed|date=March 2021|reason=This claim indicates any time a brittle material breaks, the break will be accompanied by a sharp snapping sound, but remains unverified and without a reliable source to back it up.}}
[[Image:Cast iron tensile test.JPG|thumb|200px|[[कच्चा लोहा]] टेन्साइल टेस्टपीस में भंगुर फ्रैक्चर]]सामग्री [[भंग|भंगुर]] के कारण [[तनाव (भौतिकी)]] के अधीन होती है, तो यह थोड़ा कोमल और महत्वपूर्ण प्लास्टिक विरूपण के बिना भंग हो जाती है। भंगुर सामग्री फ्रैक्चर से पूर्व अपेक्षाकृत अल्प [[ऊर्जा]] को अवशोषित करती है, यहां तक ​​कि सामग्री की उच्च शक्ति भी अवशोषित करती है। ब्रेकिंग प्रायः तीव्र ध्वनि के साथ होती है।{{Citation needed|date=March 2021|reason=This claim indicates any time a brittle material breaks, the break will be accompanied by a sharp snapping sound, but remains unverified and without a reliable source to back it up.}}


जब सामग्री विज्ञान में उपयोग किया जाता है, तो यह सामान्यतः उन सामग्रियों पर प्रस्तावित होता है जो विफल होने से पूर्व अधिक अल्प या कोई [[प्लास्टिसिटी (भौतिकी)|प्लास्टिक विरूपण]] नहीं होने पर विफल हो जाते हैं। प्रमाण खंडित हुए भागों का संयुग्मन करना है, जो उचित फिट होना चाहिए क्योंकि कोई प्लास्टिक विरूपण नहीं हुआ है।
जब सामग्री विज्ञान में उपयोग किया जाता है, तो यह सामान्यतः उन सामग्रियों पर प्रस्तावित होता है जो विफल होने से पूर्व अधिक अल्प या कोई [[प्लास्टिसिटी (भौतिकी)|प्लास्टिक विरूपण]] नहीं होने पर विफल हो जाते हैं। प्रमाण खंडित हुए भागों का संयुग्मन करता है, जो उचित फिट होना चाहिए क्योंकि कोई प्लास्टिक विरूपण नहीं हुआ है।


== विभिन्न सामग्रियों में भंगुरता ==
== विभिन्न सामग्रियों में भंगुरता ==


=== [[ पॉलीमर ]] ===
=== [[ पॉलीमर ]] ===
पॉलिमर की यांत्रिक विशेषताएं कक्ष के तापमान के निकट प्रति संवेदनशील हो सकती हैं। उदाहरण के लिए, पॉली ([[पॉलिमिथाइल मेथाक्रायलेट)|मिथाइल मेथैक्रिलेट]]) तापमान 4˚C पर अत्यधिक भंगुर होता है,<ref>{{cite book |last1=Callister Jr. |first1=William D. |last2=Rethwisch |first2=David G. |title=सामग्री विज्ञान और इंजीनियरिंग की बुनियादी बातों|date=2015 |publisher=Wiley |isbn=978-1-119-17548-3 |edition=5}}</ref> किन्तु बढ़े हुए तापमान के साथ बढ़ी हुई तन्यता का अनुभव करता है।
पॉलिमर की यांत्रिक विशेषताएं कक्ष के तापमान के निकट प्रति संवेदनशील हो सकती हैं। उदाहरण के लिए, पॉली ([[पॉलिमिथाइल मेथाक्रायलेट)|मिथाइल मेथैक्रिलेट]]) तापमान 4˚C पर अत्यधिक भंगुर हो जाता है,<ref>{{cite book |last1=Callister Jr. |first1=William D. |last2=Rethwisch |first2=David G. |title=सामग्री विज्ञान और इंजीनियरिंग की बुनियादी बातों|date=2015 |publisher=Wiley |isbn=978-1-119-17548-3 |edition=5}}</ref> किन्तु बढ़े हुए तापमान के साथ बढ़ी हुई तन्यता का अनुभव किया जाता है।


अक्रिस्टलीय बहुलक वे बहुलक होते हैं जो विभिन्न तापमानों पर भिन्न-भिन्न व्यवहार कर सकते हैं। वे अल्प तापमान (ग्लासी क्षेत्र) पर कांच के प्रकार व्यवहार कर सकते हैं, मध्यवर्ती तापमान (चमड़े या कांच संक्रमण क्षेत्र) पर रबड़ के प्रकार ठोस, और उच्च तापमान पर चिपचिपा तरल (रबड़ जैसा प्रवाह और चिपचिपा प्रवाह क्षेत्र) होता है। इस व्यवहार को [[viscoelasticity|विस्कोलेस्टिक व्यवहार]] के रूप में जाना जाता है। ग्लासी क्षेत्र में, अक्रिस्टलीय बहुलक कठोर और भंगुर होगा। बढ़ते तापमान के साथ, बहुलक अल्प भंगुर हो जाएगा।
अक्रिस्टलीय बहुलक होते हैं जो विभिन्न तापमानों पर भिन्न-भिन्न व्यवहार कर सकते हैं। वे अल्प तापमान (ग्लासी क्षेत्र) पर कांच के प्रकार व्यवहार कर सकते हैं, मध्यवर्ती तापमान (चमड़े या कांच संक्रमण क्षेत्र) पर रबड़ के प्रकार ठोस, और उच्च तापमान पर चिपचिपा तरल (रबड़ जैसा प्रवाह और चिपचिपा प्रवाह क्षेत्र) होता है। इस व्यवहार को [[viscoelasticity|विस्कोलेस्टिक व्यवहार]] के रूप में जाना जाता है। ग्लासी क्षेत्र में, अक्रिस्टलीय बहुलक कठोर और भंगुर होता है। बढ़ते तापमान के साथ, बहुलक अल्प भंगुर हो जाता है।


=== [[धातु]] ===
=== [[धातु]] ===

Revision as of 10:35, 5 April 2023

Error creating thumbnail:
कांच में भंगुर फ्रैक्चर
Error creating thumbnail:
कच्चा लोहा टेन्साइल टेस्टपीस में भंगुर फ्रैक्चर

सामग्री भंगुर के कारण तनाव (भौतिकी) के अधीन होती है, तो यह थोड़ा कोमल और महत्वपूर्ण प्लास्टिक विरूपण के बिना भंग हो जाती है। भंगुर सामग्री फ्रैक्चर से पूर्व अपेक्षाकृत अल्प ऊर्जा को अवशोषित करती है, यहां तक ​​कि सामग्री की उच्च शक्ति भी अवशोषित करती है। ब्रेकिंग प्रायः तीव्र ध्वनि के साथ होती है।[citation needed]

जब सामग्री विज्ञान में उपयोग किया जाता है, तो यह सामान्यतः उन सामग्रियों पर प्रस्तावित होता है जो विफल होने से पूर्व अधिक अल्प या कोई प्लास्टिक विरूपण नहीं होने पर विफल हो जाते हैं। प्रमाण खंडित हुए भागों का संयुग्मन करता है, जो उचित फिट होना चाहिए क्योंकि कोई प्लास्टिक विरूपण नहीं हुआ है।

विभिन्न सामग्रियों में भंगुरता

पॉलीमर

पॉलिमर की यांत्रिक विशेषताएं कक्ष के तापमान के निकट प्रति संवेदनशील हो सकती हैं। उदाहरण के लिए, पॉली (मिथाइल मेथैक्रिलेट) तापमान 4˚C पर अत्यधिक भंगुर हो जाता है,[1] किन्तु बढ़े हुए तापमान के साथ बढ़ी हुई तन्यता का अनुभव किया जाता है।

अक्रिस्टलीय बहुलक होते हैं जो विभिन्न तापमानों पर भिन्न-भिन्न व्यवहार कर सकते हैं। वे अल्प तापमान (ग्लासी क्षेत्र) पर कांच के प्रकार व्यवहार कर सकते हैं, मध्यवर्ती तापमान (चमड़े या कांच संक्रमण क्षेत्र) पर रबड़ के प्रकार ठोस, और उच्च तापमान पर चिपचिपा तरल (रबड़ जैसा प्रवाह और चिपचिपा प्रवाह क्षेत्र) होता है। इस व्यवहार को विस्कोलेस्टिक व्यवहार के रूप में जाना जाता है। ग्लासी क्षेत्र में, अक्रिस्टलीय बहुलक कठोर और भंगुर होता है। बढ़ते तापमान के साथ, बहुलक अल्प भंगुर हो जाता है।

धातु

कुछ धातुएं अपने स्लिप (पदार्थ विज्ञान) प्रणालियों के कारण भंगुर गुण प्रदर्शित करती हैं। किसी धातु में जितनी अधिक स्लिप प्रणालियाँ होती हैं, वह उतनी ही अल्प भंगुर होती है, क्योंकि इनमें से अनेक स्लिप प्रणालियों के साथ प्लास्टिक विरूपण हो सकता है। इसके विपरीत, अल्प स्लिप प्रणाली के साथ, अल्प प्लास्टिक विरूपण हो सकता है, और धातु अधिक भंगुर होगी। उदाहरण के लिए, एचसीपी (हेक्सागोनल क्लोज पैक्ड) धातुओं में कुछ सक्रिय स्लिप प्रणाली होती हैं, और जो सामान्यतः भंगुर होते हैं।

चीनी मिट्टी

अव्यवस्था गति की कठिनाई के कारण सिरेमिक सामान्यतः भंगुर होते हैं। क्रिस्टलीय सिरेमिक में कुछ प्रणालियां ऐसी होती हैं जो अव्यवस्था के साथ आगे बढ़ने में सक्षम होती हैं, जिससे विरूपण कठिन हो जाता है और सिरेमिक अधिक भंगुर हो जाता है।

सिरेमिक सामग्री सामान्यतः आयनिक बंधन प्रदर्शित करती है। आयनों के विद्युत आवेश और उनके समान आवेशित आयनों के प्रतिकर्षण के कारण, स्लिप आगे प्रतिबंधित होती हैं।

भंगुर सामग्री परिवर्तित करना

सामग्री को अधिक भंगुर या अल्प भंगुर बनने के लिए परिवर्तित किया जा सकता है।

कठोर

File:Brittle v ductile stress-strain behaviour.png
भंगुर और नमनीय सामग्री के लिए तनाव घटता की तुलना करने वाला आरेख

जब कोई सामग्री अपनी शक्ति की सीमा तक पहुंच जाती है, तो उसके निकट सामान्यतः विरूपण या फ्रैक्चर का विकल्प होता है। स्वाभाविक रूप से निंदनीय धातु को प्लास्टिक विरूपण (अनाज के आकार को अल्प करना, वर्षा को कठोर करना, जटिल परिक्षण करना, आदि) के तंत्र को बाधित करके दृढ़ बनाया जा सकता है, किन्तु यदि इसे शिखर पर ले जाया जाता है, तो फ्रैक्चर अधिक संभावित परिणाम बन जाता है, और सामग्री भंगुर हो सकती है। इसलिए भौतिक दृढ़ता में सुधार करना संतुलित कार्य होता है।

स्वाभाविक रूप से भंगुर सामग्री, जैसे कांच, को प्रभावी रूप से करना कठिन नहीं है। इस प्रकार की अधिकांश प्रौद्योगिकी में दो तंत्र सम्मिलित होता है: विस्तारित होने वाली दरार की नोक को विक्षेपित करना या अवशोषित करना या सावधानीपूर्वक नियंत्रित अवशिष्ट तनाव उत्पन्न करना जिससे कि कुछ अनुमानित स्रोतों से दरारें बंद हो जाएं। पूर्व सिद्धांत का उपयोग लैमिनेटेड ग्लास में किया जाता है जहां ग्लास की दो शीट्स को पॉलीविनाइल ब्यूटिरल की इंटरलेयर द्वारा पृथक किया जाता है। पॉलीविनाइल ब्यूटिरल, विस्कोलेस्टिक पॉलीमर के रूप में, बढ़ती दरार को अवशोषित करता है। दूसरी विधि का उपयोग कठोर कांच और पूर्व-प्रतिबलित कंक्रीट में किया जाता है। प्रिंस रूपर्ट ड्रॉप द्वारा कांच के कठोर होने का प्रदर्शन प्रदान किया गया है। भंगुर पॉलिमर को धातु के कणों का उपयोग करके कठोर किया जा सकता है, जब प्रारूप पर बल दिया जाता है, तो उत्तम उदाहरण उच्च प्रभाव पॉलीस्टाइनिन या एचआईपीएस होता है। सबसे अल्प भंगुर संरचनात्मक सिरेमिक सिलिकन कार्बाइड (मुख्य रूप से इसकी उच्च शक्ति के आधार पर) और परिवर्तन-कठोर ज़िरकोनिया हैं।

समग्र सामग्री में भिन्न दर्शन का उपयोग किया जाता है, जहां भंगुर ग्लास फाइबर, उदाहरण के लिए, पॉलिएस्टर राल जैसे नमनीय मैट्रिक्स में एम्बेडेड होते हैं। तनाव देने पर, ग्लास-मैट्रिक्स इंटरफ़ेस में दरारें बन जाती हैं, किन्तु इतनी अधिक दरारें बन जाती हैं कि अत्यधिक ऊर्जा अवशोषित हो जाती है और सामग्री कठोर हो जाती है। धातु मैट्रिक्स समग्र बनाने में उसी सिद्धांत का उपयोग किया जाता है।

दबाव का प्रभाव

सामान्यतः, किसी सामग्री की भंगुर शक्ति को दबाव से बढ़ाया जा सकता है। यह पृथ्वी की भूपर्पटी में 10 kilometres (6.2 mi) की अनुमानित गहराई पर भंगुर-तन्य संक्रमण क्षेत्र में उदाहरण के रूप में होता है, जिस पर चट्टान के विभक्त होने की संभावना अल्प हो जाती है, और नमनीय रूप से विकृत होने की संभावना अधिक हो जाती है (रीड देखें)।

क्रैक ग्रोथ

सुपरसोनिक फ्रैक्चर भंगुर सामग्री में ध्वनि की गति से तीव्र दरार गति है। यह घटना का शोध[citation needed] स्टटगर्ट में मैक्स प्लैंक इंस्टीट्यूट फॉर मेटल्स रिसर्च (मार्कस जे. ब्यूहलर और हू ए जियांग एओ) और सैन जोस, कैलिफोर्निया में आईबीएम अल्माडेन रिसर्च सेंटर (फरीद एफ. अब्राहम) के वैज्ञानिकों द्वारा किया गया था।

File:Brittleness diagrams.jpg
विरूपण शीर्षक भंगुरता आरेख (Russian: деформация)

यह भी देखें

संदर्भ

  1. Callister Jr., William D.; Rethwisch, David G. (2015). सामग्री विज्ञान और इंजीनियरिंग की बुनियादी बातों (5 ed.). Wiley. ISBN 978-1-119-17548-3.