राका बहुपद: Difference between revisions

From Vigyanwiki
No edit summary
Line 63: Line 63:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 03/03/2023]]
[[Category:Created On 03/03/2023]]
[[Category:Vigyan Ready]]

Revision as of 16:57, 23 March 2023

गणित में, राकाह बहुपद ऑर्थोगोनल बहुपद के रूप में होते है, जिनका नाम गिउलिओ राकाह के नाम पर रखा गया है क्योंकि उनके ऑर्थोगोनलिटी संबंध राका गुणांकों के लिए उनके ऑर्थोगोनलिटी संबंधों के बराबर होता है।

राका बहुपदों को सबसे पहली बार विल्सन द्वारा 1978 में परिभाषित किया गया था और इसको इस प्रकार दिखाया गया है।


ऑर्थोगोनलिटी

[1]
जब ,
जहाँ राचा बहुपद के रूप में होते है।
क्रोनकर डेल्टा फलन के रूप में होते है और वेट फलन के रूप में होते है,
और
पोचममेर सिंबल के रूप में होते है,

रोड्रिग्स-टाइप फॉर्मूला

[2]
जहाँ, पश्चगामी अंतर ऑपरेटर के रूप में होते है।


फलनो का निर्माण

के लिए तीन जनरेटिंग फलन के रूप में होते है।

जब या
जब या
जब या

विल्सन बहुपद के लिए कनेक्शन सूत्र

जब,

जहाँ, विल्सन बहुपद के रूप में होता है।

क्यू-एनालॉग

आस्की एंड & विल्सन (1979) ने मौलिक हाइपरज्यामितीय फलनो के संदर्भ में परिभाषित क्यू राकाह बहुपदों की शुरुआत की थी

उन्हें कभी-कभी चर के परिवर्तन के साथ बदल दिया जाता था


संदर्भ

  1. Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Wilson Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  2. Koekoek, Roelof; Swarttouw, René F. (1998), The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue