सौर कोर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Central region of the Sun}}
{{short description|Central region of the Sun}}
{{about|the core of the Sun|the core of stars in general|Stellar core}}
{{about|सूर्य का कोर|सामान्यतः सितारों का मूल|तारकीय कोर}}
{{Structure of the Sun}}
{{Structure of the Sun}}
सूर्य के कोर को केंद्र से लगभग 0.2 से 0.25 [[सौर त्रिज्या]] ({{convert|140,000|-|170,000|km|mi}}) तक विस्तारित माना जाता है।<ref>{{cite journal|doi=10.1126/science.1140598|date=Jun 2007|author=García, Ra|display-authors=4|author2=Turck-Chièze, S|author3=Jiménez-Reyes, Sj|author4=Ballot, J|author5=Pallé, Pl|author6=Eff-Darwich, A|author7=Mathur, S|author8=Provost, J|title=Tracking solar gravity modes: the dynamics of the solar core.|volume=316|issue=5831|pages=1591–3|issn=0036-8075|pmid=17478682|journal=Science|bibcode=2007Sci...316.1591G|s2cid=35285705}}</ref> यह सूर्य और सौरमंडल का सबसे गर्म भाग है। केंद्र में इसका घनत्व 150 ग्राम/सेमी<sup>3</sup> है, और तापमान 15 मिलियन केल्विन (15 मिलियन डिग्री सेल्सियस, 27 मिलियन डिग्री फ़ारेनहाइट) है।<ref>{{Cite web| url=http://solarscience.msfc.nasa.gov/interior.shtml | title=NASA/Marshall Solar Physics}}</ref>
सूर्य के कोर को केंद्र से लगभग 0.2 से 0.25 [[सौर त्रिज्या]]({{convert|140,000|-|170,000|km|mi}}) तक विस्तारित माना जाता है।<ref>{{cite journal|doi=10.1126/science.1140598|date=Jun 2007|author=García, Ra|display-authors=4|author2=Turck-Chièze, S|author3=Jiménez-Reyes, Sj|author4=Ballot, J|author5=Pallé, Pl|author6=Eff-Darwich, A|author7=Mathur, S|author8=Provost, J|title=Tracking solar gravity modes: the dynamics of the solar core.|volume=316|issue=5831|pages=1591–3|issn=0036-8075|pmid=17478682|journal=Science|bibcode=2007Sci...316.1591G|s2cid=35285705}}</ref> यह सूर्य और सौरमंडल का सबसे गर्म भाग है। केंद्र में इसका घनत्व 150 ग्राम/सेमी<sup>3</sup> है, और तापमान 15 मिलियन केल्विन(15 मिलियन डिग्री सेल्सियस, 27 मिलियन डिग्री फ़ारेनहाइट) है।<ref>{{Cite web| url=http://solarscience.msfc.nasa.gov/interior.shtml | title=NASA/Marshall Solar Physics}}</ref>


केंद्र में 265 बिलियन [[बार (इकाई)]] (3.84 ट्रिलियन पाउंड प्रति वर्ग इंच या 26.5 [[पेटा-]][[पास्कल (यूनिट)]] (पीपीए)) के अनुमानित दबाव पर कोर प्लाज्मा (भौतिकी) गर्म, घने प्लाज्मा (आयन और इलेक्ट्रॉन) से बना है।<ref>{{Cite web | url=https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html | title=NASA Space Science Data Coordinated Archive Sun Fact Sheet}}</ref> संलयन के कारण, सौर प्लाज्मा की संरचना बाहरी कोर पर द्रव्यमान द्वारा 68 से 70% हाइड्रोजन से गिरकर कोर/सूर्य केंद्र पर 34% हाइड्रोजन हो जाती है।<ref>{{Cite web | url=https://web.njit.edu/~gary/320/Lecture22.html | title=New Jersey Institute of Technology Solar System Astronomy Lecture 22}}</ref>
केंद्र में 265 बिलियन [[बार (इकाई)|बार(इकाई)]](3.84 ट्रिलियन पाउंड प्रति वर्ग इंच या 26.5 [[पेटा-]][[पास्कल (यूनिट)|पास्कल(यूनिट)]](पीपीए)) के अनुमानित दबाव पर कोर प्लाज्मा(भौतिकी) गर्म, घने प्लाज्मा(आयन और इलेक्ट्रॉन) से बना है।<ref>{{Cite web | url=https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html | title=NASA Space Science Data Coordinated Archive Sun Fact Sheet}}</ref> संलयन के कारण, सौर प्लाज्मा की संरचना बाहरी कोर पर द्रव्यमान द्वारा 68 से 70% हाइड्रोजन से गिरकर कोर/सूर्य केंद्र पर 34% हाइड्रोजन हो जाती है।<ref>{{Cite web | url=https://web.njit.edu/~gary/320/Lecture22.html | title=New Jersey Institute of Technology Solar System Astronomy Lecture 22}}</ref>


सौर त्रिज्या के 20% के अंदर के कोर में सूर्य के द्रव्यमान का 34% है, परन्तु सूर्य के आयतन का मात्र 0.8% है। सौर त्रिज्या के 24% के अंदर कोर है जो सूर्य की 99% [[संलयन शक्ति]] उत्पन्न करता है। दो अलग-अलग अभिक्रियाएं हैं जिनमें चार [[हाइड्रोजन]] नाभिक अंततः एक [[हीलियम]] नाभिक में परिणत हो सकते हैं: प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया - जो सूर्य की अधिकांश जारी ऊर्जा के लिए उत्तरदायी है - और [[सीएनओ चक्र|CNO चक्र]]।
सौर त्रिज्या के 20% के अंदर के कोर में सूर्य के द्रव्यमान का 34% है, परन्तु सूर्य के आयतन का मात्र 0.8% है। सौर त्रिज्या के 24% के अंदर कोर है जो सूर्य की 99% [[संलयन शक्ति]] उत्पन्न करता है। दो अलग-अलग अभिक्रियाएं हैं जिनमें चार [[हाइड्रोजन]] नाभिक अंततः एक [[हीलियम]] नाभिक में परिणत हो सकते हैं: प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया - जो सूर्य की अधिकांश जारी ऊर्जा के लिए उत्तरदायी है - और [[सीएनओ चक्र|CNO चक्र]]।
Line 10: Line 10:
== रचना ==
== रचना ==


प्रकाश मंडल में सूर्य द्रव्यमान हाइड्रोजन द्वारा लगभग 73-74% है, जो कि [[बृहस्पति]] के वातावरण के समान संरचना है, और [[महा विस्फोट]] के बाद जल्द से जल्द सितारों के गठन में हाइड्रोजन {{clarify span |date=May 2022 |reason=No helium percentages have been mentioned yet in this section. |और हीलियम}} की प्रारंभिक संरचना है। यद्यपि, जैसे-जैसे सूर्य में गहराई बढ़ती है, संलयन हाइड्रोजन के अंश को कम करता है। अंदर की ओर यात्रा करते हुए, कोर त्रिज्या तक पहुँचने के बाद हाइड्रोजन द्रव्यमान अंश तेजी से घटने लगता है (यह अभी भी लगभग 70% सूर्य की त्रिज्या के 25% के बराबर त्रिज्या पर है) और इसके अंदर, हाइड्रोजन अंश तेजी से गिरता है क्योंकि कोर का पता चलता है , जब तक यह सूर्य के केंद्र (त्रिज्या शून्य) पर लगभग 33% हाइड्रोजन के निम्न स्तर तक नहीं पहुँच जाता। शेष प्लाज्मा द्रव्यमान का 2% (अर्थात, 65%) हीलियम है।<ref>[http://solar-center.stanford.edu/helio-ed-mirror/english/engmod-res.html composition]</ref>
प्रकाश मंडल में सूर्य द्रव्यमान हाइड्रोजन द्वारा लगभग 73-74% है, जो कि [[बृहस्पति]] के वातावरण के समान संरचना है, और [[महा विस्फोट]] के बाद जल्द से जल्द सितारों के गठन में हाइड्रोजन {{clarify span |date=May 2022 |reason=No helium percentages have been mentioned yet in this section. |और हीलियम}} की प्रारंभिक संरचना है। यद्यपि, जैसे-जैसे सूर्य में गहराई बढ़ती है, संलयन हाइड्रोजन के अंश को कम करता है। अंदर की ओर यात्रा करते हुए, कोर त्रिज्या तक पहुँचने के बाद हाइड्रोजन द्रव्यमान अंश तेजी से घटने लगता है(यह अभी भी लगभग 70% सूर्य की त्रिज्या के 25% के बराबर त्रिज्या पर है) और इसके अंदर, हाइड्रोजन अंश तेजी से गिरता है क्योंकि कोर का पता चलता है, जब तक यह सूर्य के केंद्र(त्रिज्या शून्य) पर लगभग 33% हाइड्रोजन के निम्न स्तर तक नहीं पहुँच जाता। शेष प्लाज्मा द्रव्यमान का 2%(अर्थात, 65%) हीलियम है।<ref>[http://solar-center.stanford.edu/helio-ed-mirror/english/engmod-res.html composition]</ref>




== ऊर्जा रूपांतरण ==
== ऊर्जा रूपांतरण ==


लगभग 3.7{{e|38}} [[प्रोटॉन]] ([[हाइड्रोजन नाभिक]]), या साधारणतया 600 मिलियन टन हाइड्रोजन, [[हीलियम नाभिक]] में परिवर्तित हो जाते हैं और 3.86{{e|26}} जूल प्रति सेकंड की दर से ऊर्जा जारी करते हैं।<ref name=australia>{{cite web|last1=McDonald|first1=Andrew|last2=Kennewell|first2=John|title=The Source of Solar Energy|website=Bureau of Meteorology|publisher=Commonwealth of Australia|date=2014|url=https://www.sws.bom.gov.au/Educational/2/1/11}}</ref>
लगभग 3.7{{e|38}} [[प्रोटॉन]]([[हाइड्रोजन नाभिक]]), या साधारणतया 600 मिलियन टन हाइड्रोजन, [[हीलियम नाभिक]] में परिवर्तित हो जाते हैं और 3.86{{e|26}} जूल प्रति सेकंड की दर से ऊर्जा जारी करते हैं।<ref name=australia>{{cite web|last1=McDonald|first1=Andrew|last2=Kennewell|first2=John|title=The Source of Solar Energy|website=Bureau of Meteorology|publisher=Commonwealth of Australia|date=2014|url=https://www.sws.bom.gov.au/Educational/2/1/11}}</ref>


कोर [[परमाणु संलयन|संलयन]] के माध्यम से लगभग सभी सूर्य की [[गर्मी]] का उत्पादन करता है: बाकी का तारा कोर से गर्मी के बाहरी हस्तांतरण से गर्म होता है। कोर में संलयन द्वारा उत्पादित ऊर्जा, [[सौर न्यूट्रिनो]] द्वारा किए गए एक छोटे भाग को छोड़कर, सूर्य के प्रकाश के रूप में अंतरिक्ष में निकलने से पूर्व, या फिर [[गतिज ऊर्जा]] या बड़े पैमाने पर कणों की तापीय ऊर्जा के रूप में कई क्रमिक परतों के माध्यम से [[सौर प्रकाशमंडल]] तक यात्रा करनी चाहिए। कोर में संलयन के प्रति यूनिट समय (शक्ति) में ऊर्जा रूपांतरण सौर केंद्र से दूरी के साथ बदलता रहता है। सूर्य के केंद्र में, मॉडल द्वारा संलयन शक्ति का अनुमान लगभग 276.5 वाट / मी<sup>3 है।<sup>3   <ref>[http://webarchive.loc.gov/all/20011129122524/http%3A/fusedweb.llnl.gov/cpep/chart_pages/5.plasmas/sunlayers.html Table of temperatures, power densities, luminosities by radius in the sun, archived by Wayback Machine]</ref>  
कोर [[परमाणु संलयन|संलयन]] के माध्यम से लगभग सभी सूर्य की [[गर्मी]] का उत्पादन करता है: बाकी का तारा कोर से गर्मी के बाहरी स्थानांतरण से गर्म होता है। कोर में संलयन द्वारा उत्पादित ऊर्जा, [[सौर न्यूट्रिनो]] द्वारा किए गए छोटे भाग को छोड़कर, सूर्य के प्रकाश के रूप में अंतरिक्ष में निकलने से पूर्व, या फिर [[गतिज ऊर्जा]] या बड़े पैमाने पर कणों की तापीय ऊर्जा के रूप में कई क्रमिक परतों के माध्यम से [[सौर प्रकाशमंडल]] तक यात्रा करनी चाहिए। कोर में संलयन के प्रति यूनिट समय(शक्ति) में ऊर्जा रूपांतरण सौर केंद्र से दूरी के साथ बदलता रहता है। सूर्य के केंद्र में, मॉडल द्वारा संलयन शक्ति का अनुमान लगभग 276.5 वाट / मी<sup>3 है।<sup>3 <ref>[http://webarchive.loc.gov/all/20011129122524/http%3A/fusedweb.llnl.gov/cpep/chart_pages/5.plasmas/sunlayers.html Table of temperatures, power densities, luminosities by radius in the sun, archived by Wayback Machine]</ref>  


<sup><sup>इसके तीव्र तापमान के अतिरिक्त, समग्र रूप से कोर का शिखर शक्ति उत्पादन घनत्व एक सक्रिय [[खाद]] के समान है, और एक वयस्क मानव के चयापचय द्वारा उत्पादित शक्ति घनत्व से कम है। सूर्य की विशाल मात्रा और सीमित तापीय चालकता के कारण सूर्य खाद के ढेर से कहीं अधिक गर्म है।<ref>{{cite news |title=Dr Karl's Great Moments In Science: Lazy Sun is less energetic than compost |url=http://www.abc.net.au/science/articles/2012/04/17/3478276.htm |access-date=25 February 2014 |newspaper=[[Australian Broadcasting Corporation]] |date=17 April 2012 |author=Karl S. Kruszelnicki}}</ref>
<sup><sup>इसके तीव्र तापमान के अतिरिक्त, समग्र रूप से कोर का शिखर शक्ति उत्पादन घनत्व सक्रिय [[खाद]] के समान है, और एक वयस्क मानव के चयापचय द्वारा उत्पादित शक्ति घनत्व से कम है। सूर्य की विशाल मात्रा और सीमित तापीय चालकता के कारण सूर्य खाद के ढेर से कहीं अधिक गर्म है।<ref>{{cite news |title=Dr Karl's Great Moments In Science: Lazy Sun is less energetic than compost |url=http://www.abc.net.au/science/articles/2012/04/17/3478276.htm |access-date=25 February 2014 |newspaper=[[Australian Broadcasting Corporation]] |date=17 April 2012 |author=Karl S. Kruszelnicki}}</ref>


<sup><sup>10 से 15 मिलियन केल्विन के तापमान के लिए स्टीफन-बोल्ट्जमैन सिद्धांत के साधारण अनुप्रयोग द्वारा भविष्यवाणी की जा सकने वाली बड़ी शक्ति को देखते हुए, सूर्य के संलयन कोर के अंदर होने वाली कम विद्युत् उत्पादन भी आश्चर्यजनक हो सकता है। यद्यपि , सूर्य की परतें बाहरी परतों में मात्र तापमान में थोड़ी कम विकिरण कर रही हैं, और परतों के बीच विकिरण शक्तियों में यह अंतर है जो शुद्ध विद्युत् उत्पादन और सौर कोर में स्थानांतरण को निर्धारित करता है।
<sup><sup>10 से 15 मिलियन केल्विन के तापमान के लिए स्टीफन-बोल्ट्जमैन सिद्धांत के साधारण अनुप्रयोग द्वारा भविष्यवाणी की जा सकने वाली बड़ी शक्ति को देखते हुए, सूर्य के संलयन कोर के अंदर होने वाली कम विद्युत् उत्पादन भी आश्चर्यजनक हो सकता है। यद्यपि, सूर्य की परतें बाहरी परतों में मात्र तापमान में थोड़ी कम विकिरण कर रही हैं, और परतों के बीच विकिरण शक्तियों में यह अंतर है जो शुद्ध विद्युत् उत्पादन और सौर कोर में स्थानांतरण को निर्धारित करता है।


सौर त्रिज्या के 19% पर, कोर के किनारे के समीप , तापमान लगभग 10 मिलियन केल्विन है और संलयन शक्ति घनत्व 6.9 W/m <sup>3</sup> है, जो सौर केंद्र पर अधिकतम मान का लगभग 2.5% है। यहां का घनत्व लगभग 40 ग्राम/सेमी<sup>3</sup> है, या केंद्र में इसका लगभग 27% है।<ref>[http://www.iiap.res.in/kodsch/Lectures/SBasu/kodaikanal.pdf see p 54 and 55]</ref> लगभग 91% सौर ऊर्जा त्रिज्या के भीतर उत्पन्न होती है। 24% त्रिज्या (कुछ परिभाषाओं के अनुसार बाहरी कोर) के भीतर, सूर्य की शक्ति का 99% उत्पादन होता है। सौर त्रिज्या के 30% से अधिक, जहां तापमान 7 मिलियन K है और घनत्व 10 g/cm <sup>3</sup> तक गिर गया है संलयन की दर लगभग शून्य है।<ref>[http://fusedweb.llnl.gov/CPEP/Chart_Pages/5.Plasmas/Sunlayers.html See] {{webarchive|url=http://webarchive.loc.gov/all/20011129122524/http%3A//fusedweb%2Ellnl%2Egov/cpep/chart_pages/5%2Eplasmas/sunlayers%2Ehtml |date=2001-11-29 }}</ref>
सौर त्रिज्या के 19% पर, कोर के किनारे के समीप, तापमान लगभग 10 मिलियन केल्विन है और संलयन शक्ति घनत्व 6.9 W/m <sup>3</sup> है, जो सौर केंद्र पर अधिकतम मान का लगभग 2.5% है। यहां का घनत्व लगभग 40 ग्राम/सेमी<sup>3</sup> है, या केंद्र में इसका लगभग 27% है।<ref>[http://www.iiap.res.in/kodsch/Lectures/SBasu/kodaikanal.pdf see p 54 and 55]</ref> लगभग 91% सौर ऊर्जा त्रिज्या के भीतर उत्पन्न होती है। 24% त्रिज्या(कुछ परिभाषाओं के अनुसार बाहरी कोर) के भीतर, सूर्य की शक्ति का 99% उत्पादन होता है। सौर त्रिज्या के 30% से अधिक, जहां तापमान 7 मिलियन K है और घनत्व 10 g/cm <sup>3</sup> तक गिर गया है संलयन की दर लगभग शून्य है।<ref>[http://fusedweb.llnl.gov/CPEP/Chart_Pages/5.Plasmas/Sunlayers.html See] {{webarchive|url=http://webarchive.loc.gov/all/20011129122524/http%3A//fusedweb%2Ellnl%2Egov/cpep/chart_pages/5%2Eplasmas/sunlayers%2Ehtml |date=2001-11-29 }}</ref>


दो अलग-अलग अभिक्रियाएँ हैं जिनमें 4 H नाभिक अंततः एक He नाभिक में परिणत हो सकते हैं: प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया और सीएनओ चक्र (नीचे देखें)।
दो अलग-अलग अभिक्रियाएँ हैं जिनमें 4 H नाभिक अंततः एक He नाभिक में परिणत हो सकते हैं: प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया और सीएनओ चक्र(नीचे देखें)।


[[File:Fusion in the Sun.svg|thumb|upright|प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया]]
[[File:Fusion in the Sun.svg|thumb|upright|प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया]]
Line 32: Line 32:
{{Main|प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया}}
{{Main|प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया}}


प्रथम अभिक्रिया जिसमें 4 H नाभिक अंततः एक He नाभिक में परिणत हो सकते हैं, जिसे प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया के रूप में जाना जाता है:<ref name="australia" /><ref>{{cite book |editor=Pascale Ehrenfreund |display-editors=etal |title=Astrobiology: future perspectives|date=2004|publisher=Kluwer Academic|location=Dordrecht [u.a.]|isbn=978-1-4020-2304-0|url=https://books.google.com/books?id=UdnJoHeUP0YC|access-date=28 August 2014}}</ref>
प्रथम अभिक्रिया जिसमें 4 H नाभिक अंततः एक He नाभिक में परिणत हो सकते हैं, जिसे प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया के रूप में जाना जाता है:<ref name="australia" /><ref>{{cite book |editor=Pascale Ehrenfreund |display-editors=etal |title=Astrobiology: future perspectives|date=2004|publisher=Kluwer Academic|location=Dordrecht [u.a.]|isbn=978-1-4020-2304-0|url=https://books.google.com/books?id=UdnJoHeUP0YC|access-date=28 August 2014}}</ref>


<math>\left\{\begin{align}
<math>\left\{\begin{align}
Line 40: Line 40:
\end{align}\right.</math>
\end{align}\right.</math>


यह अभिक्रिया क्रम सौर कोर में सबसे महत्वपूर्ण माना जाता है। प्रथम अभिक्रिया के लिए विशिष्ट समय कोर के उच्च घनत्व और तापमान पर भी लगभग एक अरब वर्ष है, [[कमजोर बल]] की आवश्यकता के कारण न्यूक्लियॉन का पालन करने से पूर्व बीटा क्षय हो सकता है (जो संभवतः ही कभी उस समय होता है जब वे सुरंग बनाते हैं ऐसा करने के लिए एक दूसरे के अत्यधिक समीप चाहिए)। अगली अभिक्रिया में ड्यूटेरियम और हीलियम -3 का समय, इसके विपरीत, मात्र 4 सेकंड और 400 वर्ष है। ये बाद की अभिक्रियाएं [[परमाणु बल]] के माध्यम से आगे बढ़ती हैं और इस प्रकार बहुत तेज होती हैं।<ref>These times come from: Byrne, J. ''Neutrons, Nuclei, and Matter'', Dover Publications, Mineola, New York, 2011, {{ISBN|0486482383}}, p 8.</ref> 4 हाइड्रोजन परमाणुओं को 1 हीलियम परमाणु में बदलने में इन अभिक्रियाओं द्वारा जारी कुल ऊर्जा 26.7 MeV है।
यह अभिक्रिया क्रम सौर कोर में सबसे महत्वपूर्ण माना जाता है। प्रथम अभिक्रिया के लिए विशिष्ट समय कोर के उच्च घनत्व और तापमान पर भी लगभग एक अरब वर्ष है, [[कमजोर बल]] की आवश्यकता के कारण न्यूक्लियॉन का पालन करने से पूर्व बीटा क्षय हो सकता है(जो संभवतः ही कभी उस समय होता है जब वे सुरंग बनाते हैं ऐसा करने के लिए एक दूसरे के अत्यधिक समीप चाहिए)। अगली अभिक्रिया में ड्यूटेरियम और हीलियम -3 का समय, इसके विपरीत, मात्र 4 सेकंड और 400 वर्ष है। ये बाद की अभिक्रियाएं [[परमाणु बल]] के माध्यम से आगे बढ़ती हैं और इस प्रकार बहुत तेज होती हैं।<ref>These times come from: Byrne, J. ''Neutrons, Nuclei, and Matter'', Dover Publications, Mineola, New York, 2011, {{ISBN|0486482383}}, p 8.</ref> 4 हाइड्रोजन परमाणुओं को 1 हीलियम परमाणु में बदलने में इन अभिक्रियाओं द्वारा जारी कुल ऊर्जा 26.7 MeV है।


=== सीएनओ चक्र ===
=== सीएनओ चक्र ===
{{Main|सीएनओ चक्र}}
{{Main|सीएनओ चक्र}}
[[File:CNO Cycle.svg|thumb|right|200 पीएक्स]]दूसरा अभिक्रिया अनुक्रम, जिसमें 4 H नाभिक अंततः एक He नाभिक में परिणत हो सकते हैं, सीएनओ चक्र कहलाता है और कुल [[सौर ऊर्जा]] का 10% से कम उत्पन्न करता है। इसमें कार्बन परमाणु सम्मिलित हैं जो समग्र प्रक्रिया में खपत नहीं होते हैं। इस सीएनओ चक्र का विवरण इस प्रकार है:
[[File:CNO Cycle.svg|thumb|right|200 पीएक्स]]दूसरा अभिक्रिया अनुक्रम, जिसमें 4 H नाभिक अंततः एक He नाभिक में परिणत हो सकते हैं, सीएनओ चक्र कहलाता है और कुल [[सौर ऊर्जा]] का 10% से कम उत्पन्न करता है। इसमें कार्बन परमाणु सम्मिलित हैं जो समग्र प्रक्रिया में खपत नहीं होते हैं। इस सीएनओ चक्र का विवरण इस प्रकार है:


<math>\left\{\begin{align}
<math>\left\{\begin{align}
Line 54: Line 54:
\text{then} &&{}^{15}\!\mathrm{N} + {}^1\!\mathrm{H} &\rightarrow {}^{12}\!\mathrm{C} + {}^4\!\mathrm{He} + \gamma \\
\text{then} &&{}^{15}\!\mathrm{N} + {}^1\!\mathrm{H} &\rightarrow {}^{12}\!\mathrm{C} + {}^4\!\mathrm{He} + \gamma \\
\end{align}\right.</math>
\end{align}\right.</math>
इस प्रक्रिया को ऊपर से दक्षिणावर्त दिशा में शुरू करते हुए दाईं ओर दिए गए चित्र से और समझा जा सकता है।
 
इस प्रक्रिया को ऊपर से दक्षिणावर्त दिशा में प्रारम्भ करते हुए दाईं ओर दिए गए चित्र से और समझा जा सकता है।


== संतुलन ==
== संतुलन ==


नाभिकीय संलयन की दर दृढ़ता से घनत्व पर निर्भर करती है।{{citation needed|date=November 2015}} इसलिए, कोर में संलयन दर एक स्व-सुधार संतुलन में है: संलयन की थोड़ी अधिक दर कोर को अधिक गर्म करने और बाहरी परतों के वजन के खिलाफ थोड़ा [[थर्मल विस्तार]] का कारण बनेगी।{{citation needed|date=November 2015}} यह संलयन दर को कम करेगा और विक्षनरी को सही करेगा: गड़बड़ी; और थोड़ी कम दर से कोर ठंडा हो जाएगा और थोड़ा सिकुड़ जाएगा, संलयन दर बढ़ जाएगी और फिर से अपने वर्तमान स्तर पर वापस आ जाएगी।{{citation needed|date=November 2015}}
नाभिकीय संलयन की दर दृढ़ता से घनत्व पर निर्भर करती है।{{citation needed|date=November 2015}} इसलिए, कोर में संलयन दर एक स्व-सुधार संतुलन में है: संलयन की थोड़ी अधिक दर कोर को अधिक गर्म करने और बाहरी परतों के वजन के विरुद्ध थोड़ा [[थर्मल विस्तार]] का कारण बनेगी।{{citation needed|date=November 2015}} यह संलयन दर को कम करेगा और विक्षनरी को सही करेगा: गड़बड़ी; और थोड़ी कम दर से कोर ठंडा हो जाएगा और थोड़ा सिकुड़ जाएगा, संलयन दर बढ़ जाएगी और फिर से अपने वर्तमान स्तर पर वापस आ जाएगी।{{citation needed|date=November 2015}}
यद्यपि   मुख्य अनुक्रम पर अपने समय के दौरान सूर्य धीरे-धीरे गर्म हो जाता है, क्योंकि कोर में हीलियम परमाणु उन हाइड्रोजन परमाणुओं की तुलना में सघन होते हैं जिनसे वे जुड़े हुए थे। यह कोर पर गुरुत्वाकर्षण के दबाव को बढ़ाता है जो संलयन होने की दर में धीरे-धीरे वृद्धि का विरोध करता है। यह प्रक्रिया समय के साथ तेज हो जाती है क्योंकि कोर धीरे-धीरे सघन हो जाता है। अनुमान है कि पिछले साढ़े चार अरब वर्षों में सूर्य 30% अधिक चमकीला हो गया है<ref>[http://faculty.wcas.northwestern.edu/~infocom/The%20Website/evolution.html The Sun's evolution]</ref> और प्रत्येक 100 मिलियन वर्षों में चमक में 1% की वृद्धि जारी रहेगी।<ref>[https://www.science.org/content/article/earth-wont-die-soon-thought Earth Won't Die as Soon as Thought]</ref>
 
यद्यपि मुख्य अनुक्रम पर अपने समय के मध्य सूर्य धीरे-धीरे गर्म हो जाता है, क्योंकि कोर में हीलियम परमाणु उन हाइड्रोजन परमाणुओं की तुलना में सघन होते हैं जिनसे वे जुड़े हुए थे। यह कोर पर गुरुत्वाकर्षण के दबाव को बढ़ाता है जो संलयन होने की दर में धीरे-धीरे वृद्धि का विरोध करता है। यह प्रक्रिया समय के साथ तेज हो जाती है क्योंकि कोर धीरे-धीरे सघन हो जाता है। अनुमान है कि पिछले साढ़े चार अरब वर्षों में सूर्य 30% अधिक चमकीला हो गया है<ref>[http://faculty.wcas.northwestern.edu/~infocom/The%20Website/evolution.html The Sun's evolution]</ref> और प्रत्येक 100 मिलियन वर्षों में चमक में 1% की वृद्धि जारी रहेगी।<ref>[https://www.science.org/content/article/earth-wont-die-soon-thought Earth Won't Die as Soon as Thought]</ref>
 
 


== ऊर्जा स्थानांतरण ==


== ऊर्जा हस्तांतरण ==
संलयन अभिक्रियाओं में जारी उच्च-ऊर्जा फोटॉन([[गामा किरण]]) सूर्य की सतह पर अप्रत्यक्ष पथ लेती हैं। वर्तमान मॉडलों के अनुसार, सौर विकिरण क्षेत्र(सौर त्रिज्या के 75% के भीतर का क्षेत्र, जहां विकिरण द्वारा गर्मी स्थानांतरण होता है) में मुक्त इलेक्ट्रॉनों से यादृच्छिक बिखराव कोर से फोटॉन प्रसार समय पैमाने(या फोटॉन यात्रा समय) को लगभग 170,000 वर्षों में विकिरण क्षेत्र का बाहरी किनारा निश्चित करता है। वहां से वे संवहन क्षेत्र(सूर्य के केंद्र से शेष 25% दूरी) में पार करते हैं, जहां प्रमुख स्थानांतरण प्रक्रिया संवहन में बदल जाती है, और जिस गति से गर्मी बाहर निकलती है वह अत्यधिक तेज हो जाती है।<ref>Mitalas, R. & Sills, K. R. "On the photon diffusion time scale for the sun" {{bibcode|1992ApJ...401..759M}}</ref>


संलयन अभिक्रियाओं में जारी उच्च-ऊर्जा फोटॉन ([[गामा किरण]]ें) सूर्य की सतह पर अप्रत्यक्ष पथ लेती हैं। वर्तमान मॉडलों के अनुसार, सौर विकिरण क्षेत्र (सौर त्रिज्या के 75% के भीतर का क्षेत्र, जहां विकिरण द्वारा गर्मी हस्तांतरण होता है) में मुक्त इलेक्ट्रॉनों से यादृच्छिक बिखराव कोर से फोटॉन प्रसार समय पैमाने (या फोटॉन यात्रा समय) को सेट करता है। लगभग 170,000 वर्षों में विकिरण क्षेत्र का बाहरी किनारा। वहां से वे संवहन क्षेत्र (सूर्य के केंद्र से शेष 25% दूरी) में पार करते हैं, जहां प्रमुख स्थानांतरण प्रक्रिया संवहन में बदल जाती है, और जिस गति से गर्मी बाहर निकलती है वह काफी तेज हो जाती है।<ref>Mitalas, R. & Sills, K. R. "On the photon diffusion time scale for the sun" {{bibcode|1992ApJ...401..759M}}</ref>
कोर से प्रकाश मंडल में गर्मी स्थानांतरण की प्रक्रिया में, अंतरिक्ष में निकलने से पूर्व सूर्य के कोर में प्रत्येक गामा फोटॉन बिखरने के समय कई मिलियन दृश्य प्रकाश फोटॉन में परिवर्तित हो जाता है। कोर में संलयन अभिक्रियाओं द्वारा न्यूट्रीनो भी जारी किए जाते हैं, परन्तु फोटॉन के विपरीत वे बहुत कम ही पदार्थ के साथ अंतः क्रिया करते हैं, इसलिए लगभग सभी तुरंत सूर्य से बचने में सक्षम होते हैं। कई वर्षों तक सूर्य में उत्पादित [[न्युट्रीनो]] की संख्या का मापन [[सौर न्यूट्रिनो समस्या]] थी, एक ऐसी समस्या जिसे हाल ही में [[न्यूट्रिनो दोलन]] की ठीक समझ के माध्यम से हल किया गया था।
कोर से प्रकाश मंडल में गर्मी हस्तांतरण की प्रक्रिया में, अंतरिक्ष में भागने से पूर्व सूर्य के कोर में प्रत्येक गामा फोटॉन बिखरने के दौरान कई मिलियन दृश्य प्रकाश फोटॉन में परिवर्तित हो जाता है। कोर में संलयन अभिक्रियाओं द्वारा न्यूट्रीनो भी जारी किए जाते हैं, परन्तु फोटॉन के विपरीत वे बहुत कम ही पदार्थ के साथ बातचीत करते हैं, इसलिए लगभग सभी तुरंत सूर्य से बचने में सक्षम होते हैं। कई वर्षों तक सूर्य में उत्पादित [[न्युट्रीनो]] की संख्या का मापन [[सौर न्यूट्रिनो समस्या]] थी, एक ऐसी समस्या जिसे हाल ही में [[न्यूट्रिनो दोलन]] की बेहतर समझ के माध्यम से हल किया गया था।


== यह भी देखें ==
== यह भी देखें ==
Line 76: Line 80:


== बाहरी संबंध ==
== बाहरी संबंध ==
* [http://alienworlds.southwales.ac.uk/sunStructure.html#/core Animated explanation of the core of the Sun] (University of South Wales).
* [http://alienworlds.southwales.ac.uk/sunStructure.html#/core Animated explanation of the core of the Sun](University of South Wales).
* [https://www.crunchyroll.com/user/Factsaboutthesun core of the sun] (University of South Wales).
* [https://www.crunchyroll.com/user/Factsaboutthesun core of the sun](University of South Wales).
* [http://alienworlds.southwales.ac.uk/sunStructure.html#/coretempden Animated explanation of the temperature and density of the core of the Sun] (University of South Wales).
* [http://alienworlds.southwales.ac.uk/sunStructure.html#/coretempden Animated explanation of the temperature and density of the core of the Sun](University of South Wales).


{{The Sun|state=uncollapsed}}
{{The Sun|state=uncollapsed}}

Revision as of 00:01, 20 February 2023

Template:Structure of the Sun सूर्य के कोर को केंद्र से लगभग 0.2 से 0.25 सौर त्रिज्या(140,000–170,000 kilometres (87,000–106,000 mi)) तक विस्तारित माना जाता है।[1] यह सूर्य और सौरमंडल का सबसे गर्म भाग है। केंद्र में इसका घनत्व 150 ग्राम/सेमी3 है, और तापमान 15 मिलियन केल्विन(15 मिलियन डिग्री सेल्सियस, 27 मिलियन डिग्री फ़ारेनहाइट) है।[2]

केंद्र में 265 बिलियन बार(इकाई)(3.84 ट्रिलियन पाउंड प्रति वर्ग इंच या 26.5 पेटा-पास्कल(यूनिट)(पीपीए)) के अनुमानित दबाव पर कोर प्लाज्मा(भौतिकी) गर्म, घने प्लाज्मा(आयन और इलेक्ट्रॉन) से बना है।[3] संलयन के कारण, सौर प्लाज्मा की संरचना बाहरी कोर पर द्रव्यमान द्वारा 68 से 70% हाइड्रोजन से गिरकर कोर/सूर्य केंद्र पर 34% हाइड्रोजन हो जाती है।[4]

सौर त्रिज्या के 20% के अंदर के कोर में सूर्य के द्रव्यमान का 34% है, परन्तु सूर्य के आयतन का मात्र 0.8% है। सौर त्रिज्या के 24% के अंदर कोर है जो सूर्य की 99% संलयन शक्ति उत्पन्न करता है। दो अलग-अलग अभिक्रियाएं हैं जिनमें चार हाइड्रोजन नाभिक अंततः एक हीलियम नाभिक में परिणत हो सकते हैं: प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया - जो सूर्य की अधिकांश जारी ऊर्जा के लिए उत्तरदायी है - और CNO चक्र

रचना

प्रकाश मंडल में सूर्य द्रव्यमान हाइड्रोजन द्वारा लगभग 73-74% है, जो कि बृहस्पति के वातावरण के समान संरचना है, और महा विस्फोट के बाद जल्द से जल्द सितारों के गठन में हाइड्रोजन और हीलियम[clarify] की प्रारंभिक संरचना है। यद्यपि, जैसे-जैसे सूर्य में गहराई बढ़ती है, संलयन हाइड्रोजन के अंश को कम करता है। अंदर की ओर यात्रा करते हुए, कोर त्रिज्या तक पहुँचने के बाद हाइड्रोजन द्रव्यमान अंश तेजी से घटने लगता है(यह अभी भी लगभग 70% सूर्य की त्रिज्या के 25% के बराबर त्रिज्या पर है) और इसके अंदर, हाइड्रोजन अंश तेजी से गिरता है क्योंकि कोर का पता चलता है, जब तक यह सूर्य के केंद्र(त्रिज्या शून्य) पर लगभग 33% हाइड्रोजन के निम्न स्तर तक नहीं पहुँच जाता। शेष प्लाज्मा द्रव्यमान का 2%(अर्थात, 65%) हीलियम है।[5]


ऊर्जा रूपांतरण

लगभग 3.7×1038 प्रोटॉन(हाइड्रोजन नाभिक), या साधारणतया 600 मिलियन टन हाइड्रोजन, हीलियम नाभिक में परिवर्तित हो जाते हैं और 3.86×1026 जूल प्रति सेकंड की दर से ऊर्जा जारी करते हैं।[6]

कोर संलयन के माध्यम से लगभग सभी सूर्य की गर्मी का उत्पादन करता है: बाकी का तारा कोर से गर्मी के बाहरी स्थानांतरण से गर्म होता है। कोर में संलयन द्वारा उत्पादित ऊर्जा, सौर न्यूट्रिनो द्वारा किए गए छोटे भाग को छोड़कर, सूर्य के प्रकाश के रूप में अंतरिक्ष में निकलने से पूर्व, या फिर गतिज ऊर्जा या बड़े पैमाने पर कणों की तापीय ऊर्जा के रूप में कई क्रमिक परतों के माध्यम से सौर प्रकाशमंडल तक यात्रा करनी चाहिए। कोर में संलयन के प्रति यूनिट समय(शक्ति) में ऊर्जा रूपांतरण सौर केंद्र से दूरी के साथ बदलता रहता है। सूर्य के केंद्र में, मॉडल द्वारा संलयन शक्ति का अनुमान लगभग 276.5 वाट / मी3 है।3 [7]

इसके तीव्र तापमान के अतिरिक्त, समग्र रूप से कोर का शिखर शक्ति उत्पादन घनत्व सक्रिय खाद के समान है, और एक वयस्क मानव के चयापचय द्वारा उत्पादित शक्ति घनत्व से कम है। सूर्य की विशाल मात्रा और सीमित तापीय चालकता के कारण सूर्य खाद के ढेर से कहीं अधिक गर्म है।[8]

10 से 15 मिलियन केल्विन के तापमान के लिए स्टीफन-बोल्ट्जमैन सिद्धांत के साधारण अनुप्रयोग द्वारा भविष्यवाणी की जा सकने वाली बड़ी शक्ति को देखते हुए, सूर्य के संलयन कोर के अंदर होने वाली कम विद्युत् उत्पादन भी आश्चर्यजनक हो सकता है। यद्यपि, सूर्य की परतें बाहरी परतों में मात्र तापमान में थोड़ी कम विकिरण कर रही हैं, और परतों के बीच विकिरण शक्तियों में यह अंतर है जो शुद्ध विद्युत् उत्पादन और सौर कोर में स्थानांतरण को निर्धारित करता है।

सौर त्रिज्या के 19% पर, कोर के किनारे के समीप, तापमान लगभग 10 मिलियन केल्विन है और संलयन शक्ति घनत्व 6.9 W/m 3 है, जो सौर केंद्र पर अधिकतम मान का लगभग 2.5% है। यहां का घनत्व लगभग 40 ग्राम/सेमी3 है, या केंद्र में इसका लगभग 27% है।[9] लगभग 91% सौर ऊर्जा त्रिज्या के भीतर उत्पन्न होती है। 24% त्रिज्या(कुछ परिभाषाओं के अनुसार बाहरी कोर) के भीतर, सूर्य की शक्ति का 99% उत्पादन होता है। सौर त्रिज्या के 30% से अधिक, जहां तापमान 7 मिलियन K है और घनत्व 10 g/cm 3 तक गिर गया है संलयन की दर लगभग शून्य है।[10]

दो अलग-अलग अभिक्रियाएँ हैं जिनमें 4 H नाभिक अंततः एक He नाभिक में परिणत हो सकते हैं: प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया और सीएनओ चक्र(नीचे देखें)।

प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया

प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया

प्रथम अभिक्रिया जिसमें 4 H नाभिक अंततः एक He नाभिक में परिणत हो सकते हैं, जिसे प्रोटॉन-प्रोटॉन श्रृंखला अभिक्रिया के रूप में जाना जाता है:[6][11]

यह अभिक्रिया क्रम सौर कोर में सबसे महत्वपूर्ण माना जाता है। प्रथम अभिक्रिया के लिए विशिष्ट समय कोर के उच्च घनत्व और तापमान पर भी लगभग एक अरब वर्ष है, कमजोर बल की आवश्यकता के कारण न्यूक्लियॉन का पालन करने से पूर्व बीटा क्षय हो सकता है(जो संभवतः ही कभी उस समय होता है जब वे सुरंग बनाते हैं ऐसा करने के लिए एक दूसरे के अत्यधिक समीप चाहिए)। अगली अभिक्रिया में ड्यूटेरियम और हीलियम -3 का समय, इसके विपरीत, मात्र 4 सेकंड और 400 वर्ष है। ये बाद की अभिक्रियाएं परमाणु बल के माध्यम से आगे बढ़ती हैं और इस प्रकार बहुत तेज होती हैं।[12] 4 हाइड्रोजन परमाणुओं को 1 हीलियम परमाणु में बदलने में इन अभिक्रियाओं द्वारा जारी कुल ऊर्जा 26.7 MeV है।

सीएनओ चक्र

200 पीएक्स

दूसरा अभिक्रिया अनुक्रम, जिसमें 4 H नाभिक अंततः एक He नाभिक में परिणत हो सकते हैं, सीएनओ चक्र कहलाता है और कुल सौर ऊर्जा का 10% से कम उत्पन्न करता है। इसमें कार्बन परमाणु सम्मिलित हैं जो समग्र प्रक्रिया में खपत नहीं होते हैं। इस सीएनओ चक्र का विवरण इस प्रकार है:

इस प्रक्रिया को ऊपर से दक्षिणावर्त दिशा में प्रारम्भ करते हुए दाईं ओर दिए गए चित्र से और समझा जा सकता है।

संतुलन

नाभिकीय संलयन की दर दृढ़ता से घनत्व पर निर्भर करती है।[citation needed] इसलिए, कोर में संलयन दर एक स्व-सुधार संतुलन में है: संलयन की थोड़ी अधिक दर कोर को अधिक गर्म करने और बाहरी परतों के वजन के विरुद्ध थोड़ा थर्मल विस्तार का कारण बनेगी।[citation needed] यह संलयन दर को कम करेगा और विक्षनरी को सही करेगा: गड़बड़ी; और थोड़ी कम दर से कोर ठंडा हो जाएगा और थोड़ा सिकुड़ जाएगा, संलयन दर बढ़ जाएगी और फिर से अपने वर्तमान स्तर पर वापस आ जाएगी।[citation needed]

यद्यपि मुख्य अनुक्रम पर अपने समय के मध्य सूर्य धीरे-धीरे गर्म हो जाता है, क्योंकि कोर में हीलियम परमाणु उन हाइड्रोजन परमाणुओं की तुलना में सघन होते हैं जिनसे वे जुड़े हुए थे। यह कोर पर गुरुत्वाकर्षण के दबाव को बढ़ाता है जो संलयन होने की दर में धीरे-धीरे वृद्धि का विरोध करता है। यह प्रक्रिया समय के साथ तेज हो जाती है क्योंकि कोर धीरे-धीरे सघन हो जाता है। अनुमान है कि पिछले साढ़े चार अरब वर्षों में सूर्य 30% अधिक चमकीला हो गया है[13] और प्रत्येक 100 मिलियन वर्षों में चमक में 1% की वृद्धि जारी रहेगी।[14]


ऊर्जा स्थानांतरण

संलयन अभिक्रियाओं में जारी उच्च-ऊर्जा फोटॉन(गामा किरण) सूर्य की सतह पर अप्रत्यक्ष पथ लेती हैं। वर्तमान मॉडलों के अनुसार, सौर विकिरण क्षेत्र(सौर त्रिज्या के 75% के भीतर का क्षेत्र, जहां विकिरण द्वारा गर्मी स्थानांतरण होता है) में मुक्त इलेक्ट्रॉनों से यादृच्छिक बिखराव कोर से फोटॉन प्रसार समय पैमाने(या फोटॉन यात्रा समय) को लगभग 170,000 वर्षों में विकिरण क्षेत्र का बाहरी किनारा निश्चित करता है। वहां से वे संवहन क्षेत्र(सूर्य के केंद्र से शेष 25% दूरी) में पार करते हैं, जहां प्रमुख स्थानांतरण प्रक्रिया संवहन में बदल जाती है, और जिस गति से गर्मी बाहर निकलती है वह अत्यधिक तेज हो जाती है।[15]

कोर से प्रकाश मंडल में गर्मी स्थानांतरण की प्रक्रिया में, अंतरिक्ष में निकलने से पूर्व सूर्य के कोर में प्रत्येक गामा फोटॉन बिखरने के समय कई मिलियन दृश्य प्रकाश फोटॉन में परिवर्तित हो जाता है। कोर में संलयन अभिक्रियाओं द्वारा न्यूट्रीनो भी जारी किए जाते हैं, परन्तु फोटॉन के विपरीत वे बहुत कम ही पदार्थ के साथ अंतः क्रिया करते हैं, इसलिए लगभग सभी तुरंत सूर्य से बचने में सक्षम होते हैं। कई वर्षों तक सूर्य में उत्पादित न्युट्रीनो की संख्या का मापन सौर न्यूट्रिनो समस्या थी, एक ऐसी समस्या जिसे हाल ही में न्यूट्रिनो दोलन की ठीक समझ के माध्यम से हल किया गया था।

यह भी देखें

संदर्भ

  1. García, Ra; Turck-Chièze, S; Jiménez-Reyes, Sj; Ballot, J; et al. (Jun 2007). "Tracking solar gravity modes: the dynamics of the solar core". Science. 316 (5831): 1591–3. Bibcode:2007Sci...316.1591G. doi:10.1126/science.1140598. ISSN 0036-8075. PMID 17478682. S2CID 35285705.
  2. "NASA/Marshall Solar Physics".
  3. "NASA Space Science Data Coordinated Archive Sun Fact Sheet".
  4. "New Jersey Institute of Technology Solar System Astronomy Lecture 22".
  5. composition
  6. 6.0 6.1 McDonald, Andrew; Kennewell, John (2014). "The Source of Solar Energy". Bureau of Meteorology. Commonwealth of Australia.
  7. Table of temperatures, power densities, luminosities by radius in the sun, archived by Wayback Machine
  8. Karl S. Kruszelnicki (17 April 2012). "Dr Karl's Great Moments In Science: Lazy Sun is less energetic than compost". Australian Broadcasting Corporation. Retrieved 25 February 2014.
  9. see p 54 and 55
  10. See Archived 2001-11-29 at the Library of Congress Web Archives
  11. Pascale Ehrenfreund; et al., eds. (2004). Astrobiology: future perspectives. Dordrecht [u.a.]: Kluwer Academic. ISBN 978-1-4020-2304-0. Retrieved 28 August 2014.
  12. These times come from: Byrne, J. Neutrons, Nuclei, and Matter, Dover Publications, Mineola, New York, 2011, ISBN 0486482383, p 8.
  13. The Sun's evolution
  14. Earth Won't Die as Soon as Thought
  15. Mitalas, R. & Sills, K. R. "On the photon diffusion time scale for the sun" Bibcode:1992ApJ...401..759M


बाहरी संबंध