वायरल प्रमेय: Difference between revisions
(Created page with "{{Short description|Theorem of statistical mechanics}} यांत्रिकी में, विषाणु प्रमेय एक सामान्य समी...") |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Theorem of statistical mechanics}} | {{Short description|Theorem of statistical mechanics}} | ||
[[यांत्रिकी]] में, | [[यांत्रिकी]] में, वायरल प्रमेय सामान्य समीकरण प्रदान करता है, जो समय के साथ विखंडित कणों की एक स्थिर प्रणाली की कुल [[गतिज ऊर्जा]] के औसत से संबंधित होता है, जो संभावित बलों (विशेष रूप से संभावित अंतर की विशेषता वाले बल) से बंधे होते हैं।{{dubious|reason=you can't use the technical phrase "potential forces" this early in the lead (which is a mathematical bucket concerning their final nature); I tried to crib a parenthetical from the potential energy article, but I'm an armchair physicist at best, and I surely screwed this up in some recondite way|date=January 2023}} सिस्टम की कुल [[संभावित ऊर्जा]] के साथ। गणितीय रूप से, [[प्रमेय]] बताता है। | ||
<math display="block">\left\langle T \right\rangle = -\frac12\,\sum_{k=1}^N \bigl\langle \mathbf{F}_k \cdot \mathbf{r}_k \bigr\rangle</math> | <math display="block">\left\langle T \right\rangle = -\frac12\,\sum_{k=1}^N \bigl\langle \mathbf{F}_k \cdot \mathbf{r}_k \bigr\rangle</math> | ||
कहाँ {{math|''T''}} की कुल गतिज ऊर्जा है {{mvar|N}} कण, {{math|'''F'''<sub>''k''</sub>}} पर बल का प्रतिनिधित्व करता है {{mvar|k}}वें कण, जो स्थिति पर स्थित है {{math|'''r'''<sub>''k''</sub>}}, और [[कोण कोष्ठक]] संलग्न मात्रा के समय के औसत का प्रतिनिधित्व करते हैं। समीकरण के दायीं ओर के लिए वायरल शब्द ''विज़'' से निकला है, जो बल या ऊर्जा के लिए [[लैटिन]] शब्द है, और 1870 में [[रुडोल्फ क्लॉसियस]] द्वारा इसकी तकनीकी परिभाषा दी गई थी।<ref>{{cite journal | last = Clausius | first = RJE | year = 1870 | title = On a Mechanical Theorem Applicable to Heat | journal = Philosophical Magazine |series=Series 4 | volume = 40 | issue = 265 | pages = 122–127|doi=10.1080/14786447008640370}}</ref> | कहाँ {{math|''T''}} की कुल गतिज ऊर्जा है {{mvar|N}} कण, {{math|'''F'''<sub>''k''</sub>}} पर बल का प्रतिनिधित्व करता है {{mvar|k}}वें कण, जो स्थिति पर स्थित है {{math|'''r'''<sub>''k''</sub>}}, और [[कोण कोष्ठक]] संलग्न मात्रा के समय के औसत का प्रतिनिधित्व करते हैं। समीकरण के दायीं ओर के लिए वायरल शब्द ''विज़'' से निकला है, जो बल या ऊर्जा के लिए [[लैटिन]] शब्द है, और 1870 में [[रुडोल्फ क्लॉसियस]] द्वारा इसकी तकनीकी परिभाषा दी गई थी।<ref>{{cite journal | last = Clausius | first = RJE | year = 1870 | title = On a Mechanical Theorem Applicable to Heat | journal = Philosophical Magazine |series=Series 4 | volume = 40 | issue = 265 | pages = 122–127|doi=10.1080/14786447008640370}}</ref> | ||
Revision as of 18:20, 13 February 2023
यांत्रिकी में, वायरल प्रमेय सामान्य समीकरण प्रदान करता है, जो समय के साथ विखंडित कणों की एक स्थिर प्रणाली की कुल गतिज ऊर्जा के औसत से संबंधित होता है, जो संभावित बलों (विशेष रूप से संभावित अंतर की विशेषता वाले बल) से बंधे होते हैं।[dubious ] सिस्टम की कुल संभावित ऊर्जा के साथ। गणितीय रूप से, प्रमेय बताता है।
यदि सिस्टम के किन्हीं दो कणों के बीच बल एक संभावित ऊर्जा से उत्पन्न होता है V(r) = αrn यह किसी शक्ति के समानुपाती होता है n औसत अंतर-कण दूरी r, वायरल प्रमेय सरल रूप लेता है
इतिहास
1870 में, रुडोल्फ क्लॉज़ियस ने थर्मोडायनामिक्स के 20 साल के अध्ययन के बाद एसोसिएशन फॉर नेचुरल एंड मेडिकल साइंसेज ऑफ़ द लोअर राइन को गर्मी के लिए लागू यांत्रिक प्रमेय पर व्याख्यान दिया। व्याख्यान में कहा गया है कि प्रणाली का माध्य विवा इसके वायरल के बराबर है, या औसत गतिज ऊर्जा बराबर है 1/2 औसत संभावित ऊर्जा। विषाणु प्रमेय को लैग्रेंज की पहचान से सीधे प्राप्त किया जा सकता है जैसा कि शास्त्रीय गुरुत्वाकर्षण गतिकी में लागू किया गया था, जिसका मूल रूप 1772 में प्रकाशित लैग्रेंज के निबंध ऑन द प्रॉब्लम ऑफ थ्री बॉडीज में शामिल था। कार्ल गुस्ताव जैकब जैकोबी | कार्ल जैकोबी का एन के लिए पहचान का सामान्यीकरण निकायों और लाप्लास की पहचान के वर्तमान रूप में शास्त्रीय वायरल प्रमेय के समान है। हालांकि, समीकरणों के विकास की ओर ले जाने वाली व्याख्याएं बहुत अलग थीं, क्योंकि विकास के समय, सांख्यिकीय गतिकी ने ऊष्मप्रवैगिकी और शास्त्रीय गतिकी के अलग-अलग अध्ययनों को अभी तक एकीकृत नहीं किया था।[2] प्रमेय को बाद में जेम्स क्लर्क मैक्सवेल, जॉन स्ट्रट, तीसरे बैरन रेले, हेनरी पोंकारे, सुब्रह्मण्यन चंद्रशेखर, एनरिको फर्मी, पॉल लेडौक्स, रिचर्ड बैडर और यूजीन पार्कर द्वारा उपयोग, लोकप्रिय, सामान्यीकृत और आगे विकसित किया गया था। फ़्रिट्ज़ ज़्विकी पहले व्यक्ति थे जिन्होंने अदृश्य पदार्थ के अस्तित्व को कम करने के लिए वायरल प्रमेय का उपयोग किया था, जिसे अब गहरे द्रव्य कहा जाता है। रिचर्ड बेडर ने दिखाया कि कुल प्रणाली के चार्ज वितरण को इसकी गतिज और संभावित ऊर्जाओं में विभाजित किया जा सकता है जो वायरल प्रमेय का पालन करते हैं।[3] इसके कई अनुप्रयोगों के एक अन्य उदाहरण के रूप में, सफेद बौने सितारों की स्थिरता के लिए चंद्रशेखर लिमिट को प्राप्त करने के लिए वायरल प्रमेय का उपयोग किया गया है।
निदर्शी विशेष मामला
विचार करना N = 2 समान द्रव्यमान वाले कण m, पारस्परिक रूप से आकर्षक बलों द्वारा कार्य किया। मान लीजिए कि कण त्रिज्या के साथ एक गोलाकार कक्षा के बिल्कुल विपरीत बिंदुओं पर हैं r. वेग हैं v1(t) और v2(t) = −v1(t), जो बलों के लिए सामान्य हैं F1(t) और F2(t) = −F1(t). संबंधित परिमाण पर तय किए गए हैं v और F. सिस्टम की औसत गतिज ऊर्जा है
कथन और व्युत्पत्ति
हालांकि वायरल प्रमेय कुल गतिज और संभावित ऊर्जाओं के औसत पर निर्भर करता है, यहां प्रस्तुति औसत को अंतिम चरण तक स्थगित कर देती है।
के संग्रह के लिए N बिंदु कण, अदिश (भौतिकी) जड़ता का क्षण I मूल (गणित) के बारे में समीकरण द्वारा परिभाषित किया गया है
कणों के बीच संभावित ऊर्जा के साथ संबंध
कुल बल Fk कण पर k अन्य कणों से सभी बलों का योग है j प्रणाली में
अक्सर ऐसा होता है कि बलों को संभावित ऊर्जा से प्राप्त किया जा सकता है Vjk यह केवल दूरी का कार्य है rjk बिंदु कणों के बीच j और k. चूँकि बल स्थितिज ऊर्जा का ऋणात्मक प्रवणता है, इस मामले में हमारे पास है
शक्ति-कानून बलों का विशेष मामला
एक सामान्य विशेष मामले में, संभावित ऊर्जा V दो कणों के बीच एक शक्ति के समानुपाती होता है n उनकी दूरी का rij
औसत समय
समय की अवधि में इस व्युत्पन्न का औसत, τ, परिभाषित किया जाता है
एक प्रतिपादक के साथ शक्ति-कानून बलों के लिए n, सामान्य समीकरण धारण करता है:
वायरल प्रमेय का एक सरल अनुप्रयोग आकाशगंगा समूहों से संबंधित है। यदि अंतरिक्ष का एक क्षेत्र असामान्य रूप से आकाशगंगाओं से भरा है, तो यह मान लेना सुरक्षित है कि वे लंबे समय से एक साथ हैं, और वायरल प्रमेय लागू किया जा सकता है। डॉपलर प्रभाव माप उनके सापेक्ष वेगों के लिए कम सीमा देते हैं, और वायरल प्रमेय किसी भी डार्क मैटर सहित क्लस्टर के कुल द्रव्यमान के लिए एक निचली सीमा देता है।
यदि एर्गोडिसिटी विचाराधीन प्रणाली के लिए है, तो समय के साथ औसत लेने की आवश्यकता नहीं है; समतुल्य परिणामों के साथ एक पहनावा औसत भी लिया जा सकता है।
क्वांटम यांत्रिकी में
हालांकि मूल रूप से शास्त्रीय यांत्रिकी के लिए व्युत्पन्न, वायरल प्रमेय क्वांटम यांत्रिकी के लिए भी मान्य है, जैसा कि पहले फॉक द्वारा दिखाया गया था[5] एरेनफेस्ट प्रमेय का उपयोग करना।
हैमिल्टनियन (क्वांटम यांत्रिकी) के कम्यूटेटर का मूल्यांकन करें
समान पहचान
This section does not cite any sources. (April 2020) (Learn how and when to remove this template message) |
क्वांटम यांत्रिकी के क्षेत्र में, वायरल प्रमेय का एक और रूप मौजूद है, जो स्थिर नॉनलाइनियर श्रोडिंगर समीकरण या क्लेन-गॉर्डन समीकरण के स्थानीय समाधानों पर लागू होता है, पोखोज़ाहेव की पहचान है, जिसे डेरिक के प्रमेय के रूप में भी जाना जाता है।
होने देना निरंतर और वास्तविक-मूल्यवान बनें, साथ .
निरूपित . होने देना
विशेष सापेक्षता में
This section does not cite any sources. (April 2020) (Learn how and when to remove this template message) |
विशेष सापेक्षता में एक कण के लिए, ऐसा नहीं है T = 1/2p · v. इसके बजाय यह सच है T = (γ − 1) mc2, कहाँ γ लोरेंत्ज़ कारक है
इस प्रकार, पिछले खंडों में वर्णित शर्तों के तहत (न्यूटन के गति के तीसरे नियम सहित, Fjk = −Fkj, सापेक्षता के बावजूद), के लिए औसत समय N एक शक्ति कानून क्षमता वाले कण हैं
सामान्यीकरण
लॉर्ड रेले ने 1903 में वायरल प्रमेय का एक सामान्यीकरण प्रकाशित किया।[6] हेनरी पोंकारे ने 1911 में एक प्रोटो-स्टेलर क्लाउड (तब कॉस्मोगोनी के रूप में जाना जाता है) से सौर प्रणाली के गठन की समस्या के लिए वायरल प्रमेय के एक रूप को साबित किया और लागू किया।[7] 1945 में लेडौक्स द्वारा वायरल प्रमेय का एक परिवर्तनशील रूप विकसित किया गया था।[8] वायरल प्रमेय का एक टेन्सर रूप पार्कर द्वारा विकसित किया गया था,[9] चंद्रशेखर[10] और फर्मी।[11] व्युत्क्रम वर्ग कानून के मामले में 1964 में पोलार्ड द्वारा वायरल प्रमेय का निम्नलिखित सामान्यीकरण स्थापित किया गया है:[12][13]
विद्युत चुम्बकीय क्षेत्रों का समावेश
वायरल प्रमेय को विद्युत और चुंबकीय क्षेत्रों को शामिल करने के लिए बढ़ाया जा सकता है। परिणाम है[15]
सापेक्षवादी वर्दी प्रणाली
यदि भौतिक प्रणाली में दबाव क्षेत्र, विद्युत चुम्बकीय और गुरुत्वाकर्षण क्षेत्र, साथ ही कणों के त्वरण के क्षेत्र को ध्यान में रखा जाता है, तो वायरल प्रमेय को सापेक्ष रूप में निम्नानुसार लिखा जाता है:[16]
सामान्यीकृत वायरल के अभिन्न प्रमेय का विश्लेषण, क्षेत्र सिद्धांत के आधार पर, तापमान की धारणा का उपयोग किए बिना एक प्रणाली के विशिष्ट कणों की जड़-माध्य-वर्ग गति के लिए एक सूत्र को खोजना संभव बनाता है:[17]
कणों के वायरल प्रमेय के विपरीत, विद्युत चुम्बकीय क्षेत्र के लिए वायरल प्रमेय निम्नानुसार लिखा गया है:[18]
खगोल भौतिकी में
विषाणु प्रमेय अक्सर खगोल भौतिकी में लागू होता है, विशेष रूप से एक प्रणाली की गुरुत्वाकर्षण ऊर्जा को इसकी गतिज ऊर्जा या तापीय ऊर्जा से संबंधित करता है। कुछ सामान्य वायरल संबंध हैं[citation needed]
आकाशगंगा और ब्रह्मांड विज्ञान (वायरल द्रव्यमान और त्रिज्या)
खगोल विज्ञान में, एक आकाशगंगा (या सामान्य अति घनत्व) का द्रव्यमान और आकार क्रमशः वायरल द्रव्यमान और वायरल त्रिज्या के संदर्भ में परिभाषित किया जाता है। क्योंकि निरंतर तरल पदार्थों में आकाशगंगाओं और अति घनत्व को अत्यधिक विस्तारित किया जा सकता है (यहां तक कि कुछ मॉडलों में अनंत तक, जैसे कि एक विलक्षण इज़ोटेर्मल क्षेत्र), उनके द्रव्यमान और आकार के विशिष्ट, परिमित उपायों को परिभाषित करना कठिन हो सकता है। वायरल प्रमेय, और संबंधित अवधारणाएं, इन गुणों को मापने के लिए अक्सर सुविधाजनक साधन प्रदान करती हैं।
आकाशगंगा की गतिकी में, एक आकाशगंगा के द्रव्यमान का अनुमान अक्सर उसकी गैस और तारों के घूर्णन वेग को मापने के द्वारा लगाया जाता है, एक वृत्ताकार कक्षा मानकर। वायरल प्रमेय का प्रयोग, वेग फैलाव σ इसी तरह इस्तेमाल किया जा सकता है। निकाय की गतिज ऊर्जा (प्रति कण) को इस रूप में लेना T = 1/2v2 ~ 3/2σ2, और संभावित ऊर्जा (प्रति कण) के रूप में U ~ 3/5 GM/R हम लिख सकते हैं
विषाणुजनित द्रव्यमान और त्रिज्या की एक वैकल्पिक परिभाषा का प्रयोग अक्सर ब्रह्माण्ड विज्ञान में किया जाता है, जहाँ इसका उपयोग आकाशगंगा या आकाशगंगा समूह पर केन्द्रित एक गोले की त्रिज्या को संदर्भित करने के लिए किया जाता है, जिसके भीतर वायरल संतुलन होता है। चूंकि इस त्रिज्या को प्रेक्षणात्मक रूप से निर्धारित करना मुश्किल है, इसलिए इसे अक्सर उस त्रिज्या के रूप में अनुमानित किया जाता है जिसके भीतर औसत घनत्व महत्वपूर्ण घनत्व (ब्रह्माण्ड विज्ञान) की तुलना में एक निर्दिष्ट कारक से अधिक होता है।
सितारे
गुरुत्वाकर्षण संभावित ऊर्जा और तापीय गतिज ऊर्जा (यानी तापमान) के बीच संबंध स्थापित करके, वायरल प्रमेय सितारों के कोर पर लागू होता है। जैसे ही मुख्य अनुक्रम के सितारे अपने कोर में हाइड्रोजन को हीलियम में परिवर्तित करते हैं, कोर का औसत आणविक भार बढ़ता है और इसे अपने स्वयं के वजन का समर्थन करने के लिए पर्याप्त दबाव बनाए रखने के लिए अनुबंध करना चाहिए। यह संकुचन इसकी संभावित ऊर्जा को कम करता है और वायरल प्रमेय कहता है, इसकी तापीय ऊर्जा बढ़ जाती है। कोर तापमान बढ़ता है भले ही ऊर्जा खो जाती है, प्रभावी रूप से एक नकारात्मक विशिष्ट गर्मी।[19] यह मुख्य अनुक्रम से परे जारी रहता है, जब तक कि कोर पतित न हो जाए क्योंकि इससे दबाव तापमान से स्वतंत्र हो जाता है और वायरल संबंध n बराबर -1 अब मान्य नहीं है।[20]
यह भी देखें
- वायरल गुणांक
- वायरल तनाव
- वायरल मास
- चंद्रशेखर संभावित ऊर्जा टेंसर
- चंद्रशेखर वायरल समीकरण
- डेरिक की प्रमेय
- समविभाजन प्रमेय
- एहरेनफेस्ट की प्रमेय
- पोखोझाएव की पहचान
संदर्भ
- ↑ Clausius, RJE (1870). "On a Mechanical Theorem Applicable to Heat". Philosophical Magazine. Series 4. 40 (265): 122–127. doi:10.1080/14786447008640370.
- ↑ Collins, G. W. (1978). "Introduction". The Virial Theorem in Stellar Astrophysics. Pachart Press. Bibcode:1978vtsa.book.....C. ISBN 978-0-912918-13-6.
- ↑ Bader, R. F. W.; Beddall, P. M. (1972). "Virial Field Relationship for Molecular Charge Distributions and the Spatial Partitioning of Molecular Properties". The Journal of Chemical Physics. 56 (7): 3320–3329. Bibcode:1972JChPh..56.3320B. doi:10.1063/1.1677699.
- ↑ Goldstein, Herbert, 1922-2005. (1980). Classical mechanics (2d ed.). Reading, Mass.: Addison-Wesley Pub. Co. ISBN 0-201-02918-9. OCLC 5675073.
{{cite book}}: CS1 maint: multiple names: authors list (link) - ↑ Fock, V. (1930). "Bemerkung zum Virialsatz". Zeitschrift für Physik A. 63 (11): 855–858. Bibcode:1930ZPhy...63..855F. doi:10.1007/BF01339281. S2CID 122502103.
- ↑ Lord Rayleigh (1903). "Unknown".
{{cite journal}}: Cite journal requires|journal=(help) - ↑ Poincaré, Henri (1911). Leçons sur les hypothèses cosmogoniques [Lectures on Theories of Cosmogony]. Paris: Hermann. pp. 90-91 et seq.
- ↑ Ledoux, P. (1945). "On the Radial Pulsation of Gaseous Stars". The Astrophysical Journal. 102: 143–153. Bibcode:1945ApJ...102..143L. doi:10.1086/144747.
- ↑ Parker, E.N. (1954). "Tensor Virial Equations". Physical Review. 96 (6): 1686–1689. Bibcode:1954PhRv...96.1686P. doi:10.1103/PhysRev.96.1686.
- ↑ Chandrasekhar, S; Lebovitz NR (1962). "The Potentials and the Superpotentials of Homogeneous Ellipsoids". Astrophys. J. 136: 1037–1047. Bibcode:1962ApJ...136.1037C. doi:10.1086/147456.
- ↑ Chandrasekhar, S; Fermi E (1953). "Problems of Gravitational Stability in the Presence of a Magnetic Field". Astrophys. J. 118: 116. Bibcode:1953ApJ...118..116C. doi:10.1086/145732.
- ↑ Pollard, H. (1964). "A sharp form of the virial theorem". Bull. Amer. Math. Soc. LXX (5): 703–705. doi:10.1090/S0002-9904-1964-11175-7.
- ↑ Pollard, Harry (1966). Mathematical Introduction to Celestial Mechanics. Englewood Cliffs, NJ: Prentice–Hall, Inc. ISBN 978-0-13-561068-8.
- ↑ Kolár, M.; O'Shea, S. F. (July 1996). "A high-temperature approximation for the path-integral quantum Monte Carlo method". Journal of Physics A: Mathematical and General. 29 (13): 3471–3494. Bibcode:1996JPhA...29.3471K. doi:10.1088/0305-4470/29/13/018.
- ↑ Schmidt, George (1979). Physics of High Temperature Plasmas (Second ed.). Academic Press. p. 72.
- ↑ Fedosin, S. G. (2016). "The virial theorem and the kinetic energy of particles of a macroscopic system in the general field concept". Continuum Mechanics and Thermodynamics. 29 (2): 361–371. arXiv:1801.06453. Bibcode:2017CMT....29..361F. doi:10.1007/s00161-016-0536-8. S2CID 53692146.
- ↑ Fedosin, Sergey G. (2018-09-24). "The integral theorem of generalized virial in the relativistic uniform model". Continuum Mechanics and Thermodynamics (in English). 31 (3): 627–638. arXiv:1912.08683. Bibcode:2019CMT....31..627F. doi:10.1007/s00161-018-0715-x. ISSN 1432-0959. S2CID 125180719 – via Springer Nature SharedIt.
{{cite journal}}: External link in(help)|via= - ↑ Fedosin S.G. The Integral Theorem of the Field Energy. Gazi University Journal of Science. Vol. 32, No. 2, pp. 686-703 (2019). doi:10.5281/zenodo.3252783.
- ↑ BAIDYANATH BASU; TANUKA CHATTOPADHYAY; SUDHINDRA NATH BISWAS (1 January 2010). AN INTRODUCTION TO ASTROPHYSICS. PHI Learning Pvt. Ltd. pp. 365–. ISBN 978-81-203-4071-8.
- ↑ William K. Rose (16 April 1998). Advanced Stellar Astrophysics. Cambridge University Press. pp. 242–. ISBN 978-0-521-58833-1.
अग्रिम पठन
- Goldstein, H. (1980). Classical Mechanics (2nd ed.). Addison–Wesley. ISBN 978-0-201-02918-5.
- Collins, G. W. (1978). The Virial Theorem in Stellar Astrophysics. Pachart Press. Bibcode:1978vtsa.book.....C. ISBN 978-0-912918-13-6.
बाहरी संबंध
- The Virial Theorem at MathPages
- Gravitational Contraction and Star Formation, Georgia State University