पुनर्योजित: Difference between revisions

From Vigyanwiki
(Created page with "{{About|the heat exchanger|the artillery term|Glossary of British ordnance terms#Recuperator}} {{More footnotes|date=March 2016}} File:Heat exchanger.svg|thumb|400px|पु...")
 
No edit summary
Line 1: Line 1:
{{About|the heat exchanger|the artillery term|Glossary of British ordnance terms#Recuperator}}
'''यह लेख ऊष्मा एक्सचेंजर के बारे में है। आर्टिलरी टर्म के लिए, ब्रिटिश आयुध शर्तों की शब्दावली देखें § रिक्यूपरेटर।'''{{More footnotes|date=मार्च 2016}}
{{More footnotes|date=March 2016}}
[[File:Heat exchanger.svg|thumb|400px|पुनरावर्तक के प्रकार, या क्रॉस प्लेट [[उष्मा का आदान प्रदान करने वाला]]]]एक पुनर्योजित्र (रिक्यूपरेटर) एक विशेष उद्देश्य वाला [[प्रतिधारा विनिमय|प्रतिधारा विनिमय है|]]काउंटर-फ्लो [[ऊर्जा पुनःप्राप्ति]] ऊष्मा का आदान प्रदान करने वाला  है जो एक एयर हैंडलिंग प्रणाली की आपूर्ति और निकास वायु धाराओं के भीतर, या एक औद्योगिक प्रक्रिया की [[निकास गैस]]ों में, अपशिष्ट ऊष्मा को पुनर्प्राप्त करने के लिए तैनात किया जाता है। साधारणतः  वे निकास से ऊष्मा निकालने के लिए उपयोग किए जाते हैं और इसका उपयोग दहन प्रणाली में प्रवेश करने वाली हवा को पहले से गरम करने के लिए करते हैं। इस तरह वे हवा को गर्म करने के लिए अपशिष्ट ऊर्जा का उपयोग करते हैं, कुछ ईंधन की पूर्ति करते हैं, और इस तरह पूरे प्रणाली के [[परिवहन में ऊर्जा दक्षता]] में सुधार करते हैं।
[[File:Heat exchanger.svg|thumb|400px|पुनरावर्तक के प्रकार, या क्रॉस प्लेट [[उष्मा का आदान प्रदान करने वाला]]]]एक रिक्यूपरेटर एक विशेष उद्देश्य वाला [[प्रतिधारा विनिमय]]|काउंटर-फ्लो [[ऊर्जा पुनःप्राप्ति]] हीट एक्सचेंजर है जो एक एयर हैंडलिंग सिस्टम की आपूर्ति और निकास वायु धाराओं के भीतर, या एक औद्योगिक प्रक्रिया की [[निकास गैस]]ों में, अपशिष्ट गर्मी को पुनर्प्राप्त करने के लिए तैनात किया जाता है। आम तौर पर, वे निकास से गर्मी निकालने के लिए उपयोग किए जाते हैं और इसका उपयोग दहन प्रणाली में प्रवेश करने वाली हवा को पहले से गरम करने के लिए करते हैं। इस तरह वे हवा को गर्म करने के लिए अपशिष्ट ऊर्जा का उपयोग करते हैं, कुछ ईंधन की भरपाई करते हैं, और इस तरह पूरे सिस्टम के [[परिवहन में ऊर्जा दक्षता]] में सुधार करते हैं।


== विवरण ==
== विवरण ==
कई प्रकार की प्रक्रियाओं में, [[दहन]] का उपयोग गर्मी उत्पन्न करने के लिए किया जाता है, और पुन: उपयोग करने या पुन: उपयोग करने के लिए पुन: उपयोग करने वाला, या इस गर्मी को पुनः प्राप्त करने के लिए पुन: उपयोग करने का कार्य करता है। रिक्यूपरेटर शब्द तरल-तरल काउंटरफ्लो हीट एक्सचेंजर्स को भी संदर्भित करता है जिसका उपयोग रासायनिक और रिफाइनरी उद्योगों में हीट रिकवरी के लिए और अमोनिया-पानी या LiBr-जल अवशोषण प्रशीतन चक्र जैसी बंद प्रक्रियाओं में किया जाता है।
कई प्रकार की प्रक्रियाओं में, [[दहन]] का उपयोग ऊष्मा उत्पन्न करने के लिए किया जाता है, और पुन: उपयोग करने या पुन: उपयोग करने के लिए पुन: उपयोग करने वाला, या इस ऊष्मा को पुनः प्राप्त करने के लिए पुन: उपयोग करने का कार्य करता है। पुनर्योजित्र शब्द तरल-तरल काउंटरफ्लो ऊष्मा का आदान प्रदान करने वाले को भी संदर्भित करता है जिसका उपयोग रासायनिक और रिफाइनरी उद्योगों में ऊष्मा पुनः प्राप्ति के लिए और अमोनिया-पानी या LiBr-जल अवशोषण प्रशीतन चक्र जैसी बंद प्रक्रियाओं में किया जाता है।


समग्र दक्षता बढ़ाने के लिए, रिक्यूपरेटर्स का उपयोग अक्सर ऊष्मा इंजन के बर्नर हिस्से के साथ मिलकर किया जाता है। उदाहरण के लिए, [[गैस टर्बाइन]] इंजन में, हवा को संपीड़ित किया जाता है, ईंधन के साथ मिलाया जाता है, जिसे तब जलाया जाता है और टर्बाइन चलाने के लिए उपयोग किया जाता है। रिक्यूपरेटर निकास में से कुछ अपशिष्ट गर्मी को संपीड़ित हवा में स्थानांतरित करता है, इस प्रकार ईंधन बर्नर चरण में प्रवेश करने से पहले इसे पहले से गरम करता है। चूँकि गैसों को पहले से गरम किया गया है, टरबाइन इनलेट तापमान तक गैसों को गर्म करने के लिए कम ईंधन की आवश्यकता होती है। आमतौर पर अपशिष्ट गर्मी के रूप में खो जाने वाली कुछ ऊर्जा को पुनर्प्राप्त करके, पुनरावर्तक एक ताप इंजन या गैस टरबाइन को काफी अधिक कुशल बना सकता है।
समग्र दक्षता बढ़ाने के लिए, पुनर्योजित्र का उपयोग प्रायः ऊष्मा इंजन के दाहक हिस्से के साथ मिलकर किया जाता है। उदाहरण के लिए, [[गैस टर्बाइन]] इंजन में, हवा को संपीड़ित किया जाता है, ईंधन के साथ मिलाया जाता है, जिसे तब जलाया जाता है और टर्बाइन चलाने के लिए उपयोग किया जाता है। पुनर्योजित्र निकास में से कुछ अपशिष्ट ऊष्मा को संपीड़ित हवा में स्थानांतरित करता है, इस प्रकार ईंधन दाहक चरण में प्रवेश करने से पहले इसे पहले से गरम करता है। चूँकि गैसों को पहले से गरम किया गया है, टरबाइन इनलेट तापमान तक गैसों को गर्म करने के लिए कम ईंधन की आवश्यकता होती है। साधारणतः  अपशिष्ट ऊष्मा के रूप में खो जाने वाली कुछ ऊर्जा को पुनर्प्राप्त करके, पुनरावर्तक एक ताप इंजन या गैस टरबाइन को काफी अधिक कुशल बना सकता है।


== ऊर्जा हस्तांतरण प्रक्रिया ==
== ऊर्जा हस्तांतरण प्रक्रिया ==
आम तौर पर डिवाइस द्वारा प्रदान की जाने वाली वायुधाराओं के बीच गर्मी हस्तांतरण को [[समझदार गर्मी]] कहा जाता है, जो ऊर्जा का आदान-प्रदान होता है, या [[तापीय धारिता]], जिसके परिणामस्वरूप माध्यम के तापमान में परिवर्तन होता है (इस मामले में हवा), लेकिन [[नमी]] की मात्रा में कोई बदलाव नहीं होता है। हालांकि, अगर वापसी हवा की धारा में नमी या सापेक्ष आर्द्रता का स्तर डिवाइस में संघनन की अनुमति देने के लिए पर्याप्त उच्च है, तो इससे गुप्त गर्मी निकल जाएगी और गर्मी हस्तांतरण सामग्री पानी की एक फिल्म से ढकी होगी। [[अव्यक्त गर्मी]] के एक समान अवशोषण के बावजूद, चूंकि पानी की कुछ फिल्म विपरीत हवा की धारा में वाष्पित हो जाती है, पानी हीट एक्सचेंजर सामग्री की [[सीमा परत]] के थर्मल प्रतिरोध को कम कर देगा और इस प्रकार डिवाइस के [[गर्मी हस्तांतरण गुणांक]] में सुधार करेगा, और इसलिए कुशलता वृद्धि। ऐसे उपकरणों के ऊर्जा विनिमय में अब समझदार और अव्यक्त ताप अंतरण दोनों शामिल हैं; तापमान में बदलाव के अलावा, निकास हवा की धारा की नमी की मात्रा में भी बदलाव होता है।
साधारणतः उपकरण द्वारा प्रदान की जाने वाली वायुधाराओं के बीच ऊष्मा हस्तांतरण को [[समझदार गर्मी|संवेदी]] ऊष्मा कहा जाता है, जो ऊर्जा का आदान-प्रदान होता है, या [[तापीय धारिता]], जिसके परिणामस्वरूप माध्यम के तापमान में परिवर्तन होता है (इस मामले में हवा), लेकिन [[नमी]] की मात्रा में कोई बदलाव नहीं होता है। हालांकि, अगर वापसी हवा की धारा में नमी या सापेक्ष आर्द्रता का स्तर उपकरण में संघनन की अनुमति देने के लिए पर्याप्त उच्च है, तो इससे गुप्त ऊष्मा निकल जाएगी और ऊष्मा हस्तांतरण सामग्री पानी की एक परत से ढकी होगी। [[अव्यक्त गर्मी|अव्यक्त]] ऊष्मा के एक समान अवशोषण के अतिरिक्त , चूंकि पानी की कुछ परत विपरीत हवा की धारा में वाष्पित हो जाती है, पानी ऊष्मा एक्सचेंजर सामग्री की [[सीमा परत]] के ऊष्मीय प्रतिरोध को कम कर देगा और इस प्रकार उपकरण के [[गर्मी हस्तांतरण गुणांक|ऊष्मा हस्तांतरण गुणांक]] में सुधार करेगा, और इसलिए कुशलता वृद्धि। ऐसे उपकरणों के ऊर्जा विनिमय में अब संवेदी और अव्यक्त ताप अंतरण दोनों शामिल हैं; तापमान में बदलाव के अलावा, निकास हवा की धारा की नमी की मात्रा में भी बदलाव होता है।


हालांकि, संक्षेपण की फिल्म भी डिवाइस के माध्यम से दबाव ड्रॉप को थोड़ा बढ़ा देगी, और मैट्रिक्स सामग्री के अंतर के आधार पर, यह प्रतिरोध को 30% तक बढ़ा सकती है। यदि इकाई को गिरने के लिए नहीं रखा गया है, और घनीभूत को ठीक से निकालने की अनुमति नहीं है, तो इससे पंखे की ऊर्जा की खपत में वृद्धि होगी और डिवाइस की मौसमी दक्षता कम हो जाएगी।
हालांकि, संक्षेपण की परत भी उपकरण के माध्यम से दबाव बूँद को थोड़ा बढ़ा देगी, और मैट्रिक्स सामग्री के अंतर के आधार पर, यह प्रतिरोध को 30% तक बढ़ा सकती है। यदि इकाई को गिरने के लिए नहीं रखा गया है, और घनीभूत को ठीक से निकालने की अनुमति नहीं है, तो इससे पंखे की ऊर्जा की खपत में वृद्धि होगी और उपकरण की मौसमी दक्षता कम हो जाएगी।


== वेंटिलेशन सिस्टम में प्रयोग करें ==
== वायु-संचालन प्रणाली में प्रयोग करें ==
हीटिंग, वेंटिलेशन और एयर-कंडीशनिंग सिस्टम में, [[एचवीएसी]], रिक्यूपरेटर आमतौर पर निकास हवा से अपशिष्ट गर्मी का पुन: उपयोग करने के लिए उपयोग किया जाता है जो सामान्य रूप से [[वायुमंडल]] से निष्कासित होता है। उपकरणों में आम तौर पर [[अल्युमीनियम]], [[प्लास्टिक]], [[स्टेनलेस स्टील]], या [[सिंथेटिक रेशा]] की समानांतर प्लेटों की एक श्रृंखला शामिल होती है, जिनमें से तांबे के वैकल्पिक जोड़े दो तरफ संलग्न होते हैं, जो एक दूसरे से समकोण पर नलिकाओं के जुड़वां सेट बनाते हैं, और जिसमें आपूर्ति और अर्क होता है। वायु धाराएँ। इस तरह निकास वायु प्रवाह से गर्मी को अलग करने वाली प्लेटों के माध्यम से और आपूर्ति वायु धारा में स्थानांतरित किया जाता है। यूनिट के विनिर्देश के आधार पर निर्माता 95% तक की सकल दक्षता का दावा करते हैं।
हीटिंग, वायु-संचालन और एयर-कंडीशनिंग प्रणाली में, [[एचवीएसी]], पुनर्योजित्र साधारणतः  निकास हवा से अपशिष्ट ऊष्मा का पुन: उपयोग करने के लिए उपयोग किया जाता है जो सामान्य रूप से [[वायुमंडल]] से निष्कासित होता है। उपकरणों में साधारणतः [[अल्युमीनियम]], [[प्लास्टिक]], [[स्टेनलेस स्टील]], या [[सिंथेटिक रेशा]] की समानांतर प्लेटों की एक श्रृंखला शामिल होती है, जिनमें से तांबे के वैकल्पिक जोड़े दो तरफ संलग्न होते हैं, जो एक दूसरे से समकोण पर नलिकाओं के जुड़वां सेट बनाते हैं, और जिसमें आपूर्ति और अर्क होता है। वायु धाराएँ। इस तरह निकास वायु प्रवाह से ऊष्मा को अलग करने वाली प्लेटों के माध्यम से और आपूर्ति वायु धारा में स्थानांतरित किया जाता है। यूनिट के विनिर्देश के आधार पर निर्माता 95% तक की सकल दक्षता का दावा करते हैं।


इस उपकरण की विशेषताएं इकाई के भौतिक आकार, विशेष रूप से वायु पथ की दूरी और प्लेटों की दूरी के बीच संबंध के कारण हैं। डिवाइस के माध्यम से एक समान वायु दबाव ड्रॉप के लिए, एक छोटी इकाई में एक बड़ी इकाई की तुलना में एक संकीर्ण प्लेट रिक्ति और कम वायु वेग होगा, लेकिन दोनों इकाइयां समान रूप से कुशल हो सकती हैं। इकाई के क्रॉस-फ्लो डिज़ाइन के कारण, इसका भौतिक आकार वायु पथ की लंबाई को निर्धारित करेगा, और जैसे-जैसे यह बढ़ता है, गर्मी हस्तांतरण में वृद्धि होगी लेकिन दबाव में गिरावट भी बढ़ेगी, और इसलिए दबाव में कमी को कम करने के लिए प्लेट रिक्ति को बढ़ाया जाता है, लेकिन यह बदले में गर्मी हस्तांतरण को कम करेगा।
इस उपकरण की विशेषताएं इकाई के भौतिक आकार, विशेष रूप से वायु पथ की दूरी और प्लेटों की दूरी के बीच संबंध के कारण हैं। उपकरण के माध्यम से एक समान वायु दबाव बूँद के लिए, एक छोटी इकाई में एक बड़ी इकाई की तुलना में एक संकीर्ण प्लेट रिक्ति और कम वायु वेग होगा, लेकिन दोनों इकाइयां समान रूप से कुशल हो सकती हैं। इकाई के क्रॉस-फ्लो डिज़ाइन के कारण, इसका भौतिक आकार वायु पथ की लंबाई को निर्धारित करेगा, और जैसे-जैसे यह बढ़ता है, ऊष्मा हस्तांतरण में वृद्धि होगी लेकिन दबाव में गिरावट भी बढ़ेगी, और इसलिए दबाव में कमी को कम करने के लिए प्लेट रिक्ति को बढ़ाया जाता है, लेकिन यह बदले में ऊष्मा हस्तांतरण को कम करेगा।


एक सामान्य नियम के रूप में एक रिक्यूपरेटर को बीच के दबाव में गिरावट के लिए चुना जाता है {{convert|150|-|250|Pa}} एक अच्छी दक्षता होगी, जबकि पंखे की बिजली की खपत पर एक छोटा प्रभाव पड़ेगा, लेकिन शारीरिक रूप से छोटे, लेकिन उच्च दबाव ड्रॉप रिक्यूपरेटर की तुलना में उच्च मौसमी दक्षता होगी।
एक सामान्य नियम के रूप में एक पुनर्योजित्र को बीच के दबाव में गिरावट के लिए चुना जाता है {{convert|150|-|250|Pa}} एक अच्छी दक्षता होगी, जबकि पंखे की बिजली की खपत पर एक छोटा प्रभाव पड़ेगा, लेकिन शारीरिक रूप से छोटे, लेकिन उच्च दबाव बूँद पुनर्योजित्र की तुलना में उच्च मौसमी दक्षता होगी।


जब गर्मी वसूली की आवश्यकता नहीं होती है, तो वेंटिलेशन वितरण प्रणाली के भीतर व्यवस्थित डैम्पर्स के उपयोग से उपकरण को बायपास करना विशिष्ट होता है। यह मानते हुए कि पंखे इन्वर्टर गति नियंत्रण से सुसज्जित हैं, वेंटिलेशन सिस्टम में एक निरंतर दबाव बनाए रखने के लिए सेट हैं, तो कम दबाव की गिरावट से पंखे की मोटर धीमी हो जाती है और इस प्रकार बिजली की खपत कम हो जाती है, और बदले में सिस्टम की मौसमी दक्षता में सुधार होता है। .
जब ऊष्मा वसूली की आवश्यकता नहीं होती है, तो वायु-संचालन वितरण प्रणाली के भीतर व्यवस्थित डैम्पर्स के उपयोग से उपकरण को बायपास करना विशिष्ट होता है। यह मानते हुए कि पंखे इन्वर्टर गति नियंत्रण से सुसज्जित हैं, वायु-संचालन प्रणाली में एक निरंतर दबाव बनाए रखने के लिए निर्धारित हैं, तो कम दबाव की गिरावट से पंखे की मोटर धीमी हो जाती है और इस प्रकार बिजली की खपत कम हो जाती है, और बदले में प्रणाली की मौसमी दक्षता में सुधार होता है। .


== धातुकर्म भट्टियों में प्रयोग करें ==
== धातुकर्म भट्टियों में प्रयोग करें ==
ऊर्जा की लागत और ऑपरेशन के [[कार्बन पदचिह्न]] को कम करने के लिए मेटल रिक्यूपरेटर द्वारा कई वर्षों तक दहन हवा और ईंधन को पहले से गरम करने के लिए अपशिष्ट गैसों से गर्मी को पुनर्प्राप्त करने के लिए पुनर्संयोजकों का उपयोग किया गया है। पुनर्योजी भट्टियों जैसे विकल्पों की तुलना में, प्रारंभिक लागत कम होती है, आगे और पीछे स्विच करने के लिए कोई वाल्व नहीं होता है, कोई प्रेरित-ड्राफ्ट पंखे नहीं होते हैं और इसके लिए भट्टी में फैले गैस नलिकाओं के जाल की आवश्यकता नहीं होती है।
ऊर्जा की लागत और ऑपरेशन के [[कार्बन पदचिह्न]] को कम करने के लिए मेटल पुनर्योजित्र द्वारा कई वर्षों तक दहन हवा और ईंधन को पहले से गरम करने के लिए अपशिष्ट गैसों से ऊष्मा को पुनर्प्राप्त करने के लिए पुनर्संयोजकों का उपयोग किया गया है। पुनर्योजी भट्टियों जैसे विकल्पों की तुलना में, प्रारंभिक लागत कम होती है, आगे और पीछे स्विच करने के लिए कोई वाल्व नहीं होता है, कोई प्रेरित-ड्राफ्ट पंखे नहीं होते हैं और इसके लिए भट्टी में फैले गैस नलिकाओं के जाल की आवश्यकता नहीं होती है।


[[पुनर्योजी बर्नर]] की तुलना में ऐतिहासिक रूप से रिक्यूपरेटर्स का रिकवरी अनुपात कम था। हालांकि, प्रौद्योगिकी में हाल के सुधारों ने रिक्यूपरेटर्स को 70-80% अपशिष्ट गर्मी और पूर्व-गर्म हवा को पुनर्प्राप्त करने की अनुमति दी है। {{convert|850|-|900|°C}} अब संभव है।
[[पुनर्योजी बर्नर|पुनर्योजी]] दाहक की तुलना में ऐतिहासिक रूप से पुनर्योजित्र का पुनः प्राप्ति अनुपात कम था। हालांकि, प्रौद्योगिकी में हाल के सुधारों ने पुनर्योजित्र को 70-80% अपशिष्ट ऊष्मा और पूर्व-गर्म हवा को पुनर्प्राप्त करने की अनुमति दी है। {{convert|850|-|900|°C}} अब संभव है।


== गैस टर्बाइन ==
== गैस टर्बाइन ==
[[Image:GasTurbine.svg|thumb|एक ठीक हो चुके माइक्रोटर्बाइन का कटअवे]]बिजली उत्पादन के लिए [[गैस टरबाइन]] की दक्षता बढ़ाने के लिए रिक्यूपरेटर्स का उपयोग किया जा सकता है, बशर्ते निकास गैस कंप्रेसर आउटलेट तापमान से अधिक गर्म हो। टर्बाइन से निकलने वाली गर्मी का उपयोग कंबस्टर में आगे गर्म करने से पहले कंप्रेसर से हवा को प्री-हीट करने के लिए किया जाता है, जिससे आवश्यक ईंधन इनपुट कम हो जाता है। टर्बाइन आउट और कंप्रेसर आउट के बीच तापमान का अंतर जितना बड़ा होगा, रिक्यूपरेटर से उतना ही अधिक लाभ होगा। <ref>Çengel, Yunus A.; Boles, Michael (1994). Thermodynamics: An Engineering Approach</ref> इसलिए, [[माइक्रो टर्बाइन]] (<1 मेगावाट), जिसमें आमतौर पर कम दबाव अनुपात होता है, को रिक्यूपरेटर के उपयोग से सबसे अधिक लाभ होता है। व्यवहार में, एक पुनरावर्तक के उपयोग के माध्यम से दक्षता को दोगुना करना संभव है।<ref>{{cite web |url= http://hiflux.co.uk/applications/microturbine-recuperators/ |title= माइक्रोटर्बाइन रिक्यूपरेटर्स|publisher= Hiflux Limited }}</ref> माइक्रोटर्बाइन अनुप्रयोगों में एक रिक्यूपरेटर के लिए प्रमुख व्यावहारिक चुनौती निकास गैस तापमान से मुकाबला करना है, जो अधिक हो सकता है {{convert|750|°C}}.
[[Image:GasTurbine.svg|thumb|एक ठीक हो चुके माइक्रोटर्बाइन का कटअवे]]बिजली उत्पादन के लिए [[गैस टरबाइन]] की दक्षता बढ़ाने के लिए पुनर्योजित्र का उपयोग किया जा सकता है, बशर्ते निकास गैस कंप्रेसर निर्गम मार्ग तापमान से अधिक गर्म हो। टर्बाइन से निकलने वाली ऊष्मा का उपयोग कंबस्टर में आगे गर्म करने से पहले कंप्रेसर से हवा को प्री-ऊष्मा करने के लिए किया जाता है, जिससे आवश्यक ईंधन इनपुट कम हो जाता है। टर्बाइन आउट और कंप्रेसर आउट के बीच तापमान का अंतर जितना बड़ा होगा, पुनर्योजित्र से उतना ही अधिक लाभ होगा। <ref>Çengel, Yunus A.; Boles, Michael (1994). Thermodynamics: An Engineering Approach</ref> इसलिए, [[माइक्रो टर्बाइन]] (<1 मेगावाट), जिसमें साधारणतः  कम दबाव अनुपात होता है, को पुनर्योजित्र के उपयोग से सबसे अधिक लाभ होता है। व्यवहार में, एक पुनरावर्तक के उपयोग के माध्यम से दक्षता को दोगुना करना संभव है।<ref>{{cite web |url= http://hiflux.co.uk/applications/microturbine-recuperators/ |title= माइक्रोटर्बाइन रिक्यूपरेटर्स|publisher= Hiflux Limited }}</ref> माइक्रोटर्बाइन अनुप्रयोगों में एक पुनर्योजित्र के लिए प्रमुख व्यावहारिक चुनौती निकास गैस तापमान {{convert|750|°C}}.से प्रतिस्पर्धा करना है, जो अधिक हो सकता है|


== अन्य प्रकार के गैस-टू-गैस हीट एक्सचेंजर्स ==
== अन्य प्रकार के गैस-टू-गैस ऊष्मा विनिमयक  ==
*[[गरम पाइप]]
*[[गरम पाइप]]
* [[रन-अराउंड कॉइल]]
* [[रन-अराउंड कॉइल]]
*[[थर्मल व्हील]], या रोटरी हीट एक्सचेंजर (एन्थैल्पी व्हील और डेसिकेंट व्हील सहित)
*[[थर्मल व्हील|ऊष्मीय व्हील]], या रोटरी ऊष्मा एक्सचेंजर (एन्थैल्पी व्हील और डेसिकेंट व्हील सहित)
* संवहन आरोग्यलाभ करनेवाला
* संवहन आरोग्यलाभ करनेवाला
*[[पुनरोद्धार विकिरण]]
*[[पुनरोद्धार विकिरण]]
Line 58: Line 57:
*वयर्थ ऊष्मा
*वयर्थ ऊष्मा
*इंजन गर्म करें
*इंजन गर्म करें
*थर्मल रेज़िज़टेंस
*ऊष्मीय रेज़िज़टेंस
*ताँबा
*ताँबा
*पुनरावर्ती संवहन
*पुनरावर्ती संवहन
Line 69: Line 68:
[[श्रेणी: इंजीनियरिंग ऊष्मप्रवैगिकी]]
[[श्रेणी: इंजीनियरिंग ऊष्मप्रवैगिकी]]
[[श्रेणी: ताप विनिमायक]]
[[श्रेणी: ताप विनिमायक]]
[[श्रेणी:गर्मी हस्तांतरण]]
[[श्रेणी:गर्मी हस्तांतरण|श्रेणी:ऊष्मा हस्तांतरण]]
[[श्रेणी: हीटिंग, वेंटिलेशन और एयर कंडीशनिंग]]
[[श्रेणी: हीटिंग, वेंटिलेशन और एयर कंडीशनिंग|श्रेणी: हीटिंग, वायु-संचालन और एयर कंडीशनिंग]]
[[श्रेणी:हीटिंग]]
[[श्रेणी:हीटिंग]]
[[श्रेणी:औद्योगिक उपकरण]]
[[श्रेणी:औद्योगिक उपकरण]]

Revision as of 00:19, 4 January 2023

यह लेख ऊष्मा एक्सचेंजर के बारे में है। आर्टिलरी टर्म के लिए, ब्रिटिश आयुध शर्तों की शब्दावली देखें § रिक्यूपरेटर।

पुनरावर्तक के प्रकार, या क्रॉस प्लेट उष्मा का आदान प्रदान करने वाला

एक पुनर्योजित्र (रिक्यूपरेटर) एक विशेष उद्देश्य वाला प्रतिधारा विनिमय है|काउंटर-फ्लो ऊर्जा पुनःप्राप्ति ऊष्मा का आदान प्रदान करने वाला है जो एक एयर हैंडलिंग प्रणाली की आपूर्ति और निकास वायु धाराओं के भीतर, या एक औद्योगिक प्रक्रिया की निकास गैसों में, अपशिष्ट ऊष्मा को पुनर्प्राप्त करने के लिए तैनात किया जाता है। साधारणतः वे निकास से ऊष्मा निकालने के लिए उपयोग किए जाते हैं और इसका उपयोग दहन प्रणाली में प्रवेश करने वाली हवा को पहले से गरम करने के लिए करते हैं। इस तरह वे हवा को गर्म करने के लिए अपशिष्ट ऊर्जा का उपयोग करते हैं, कुछ ईंधन की पूर्ति करते हैं, और इस तरह पूरे प्रणाली के परिवहन में ऊर्जा दक्षता में सुधार करते हैं।

विवरण

कई प्रकार की प्रक्रियाओं में, दहन का उपयोग ऊष्मा उत्पन्न करने के लिए किया जाता है, और पुन: उपयोग करने या पुन: उपयोग करने के लिए पुन: उपयोग करने वाला, या इस ऊष्मा को पुनः प्राप्त करने के लिए पुन: उपयोग करने का कार्य करता है। पुनर्योजित्र शब्द तरल-तरल काउंटरफ्लो ऊष्मा का आदान प्रदान करने वाले को भी संदर्भित करता है जिसका उपयोग रासायनिक और रिफाइनरी उद्योगों में ऊष्मा पुनः प्राप्ति के लिए और अमोनिया-पानी या LiBr-जल अवशोषण प्रशीतन चक्र जैसी बंद प्रक्रियाओं में किया जाता है।

समग्र दक्षता बढ़ाने के लिए, पुनर्योजित्र का उपयोग प्रायः ऊष्मा इंजन के दाहक हिस्से के साथ मिलकर किया जाता है। उदाहरण के लिए, गैस टर्बाइन इंजन में, हवा को संपीड़ित किया जाता है, ईंधन के साथ मिलाया जाता है, जिसे तब जलाया जाता है और टर्बाइन चलाने के लिए उपयोग किया जाता है। पुनर्योजित्र निकास में से कुछ अपशिष्ट ऊष्मा को संपीड़ित हवा में स्थानांतरित करता है, इस प्रकार ईंधन दाहक चरण में प्रवेश करने से पहले इसे पहले से गरम करता है। चूँकि गैसों को पहले से गरम किया गया है, टरबाइन इनलेट तापमान तक गैसों को गर्म करने के लिए कम ईंधन की आवश्यकता होती है। साधारणतः अपशिष्ट ऊष्मा के रूप में खो जाने वाली कुछ ऊर्जा को पुनर्प्राप्त करके, पुनरावर्तक एक ताप इंजन या गैस टरबाइन को काफी अधिक कुशल बना सकता है।

ऊर्जा हस्तांतरण प्रक्रिया

साधारणतः उपकरण द्वारा प्रदान की जाने वाली वायुधाराओं के बीच ऊष्मा हस्तांतरण को संवेदी ऊष्मा कहा जाता है, जो ऊर्जा का आदान-प्रदान होता है, या तापीय धारिता, जिसके परिणामस्वरूप माध्यम के तापमान में परिवर्तन होता है (इस मामले में हवा), लेकिन नमी की मात्रा में कोई बदलाव नहीं होता है। हालांकि, अगर वापसी हवा की धारा में नमी या सापेक्ष आर्द्रता का स्तर उपकरण में संघनन की अनुमति देने के लिए पर्याप्त उच्च है, तो इससे गुप्त ऊष्मा निकल जाएगी और ऊष्मा हस्तांतरण सामग्री पानी की एक परत से ढकी होगी। अव्यक्त ऊष्मा के एक समान अवशोषण के अतिरिक्त , चूंकि पानी की कुछ परत विपरीत हवा की धारा में वाष्पित हो जाती है, पानी ऊष्मा एक्सचेंजर सामग्री की सीमा परत के ऊष्मीय प्रतिरोध को कम कर देगा और इस प्रकार उपकरण के ऊष्मा हस्तांतरण गुणांक में सुधार करेगा, और इसलिए कुशलता वृद्धि। ऐसे उपकरणों के ऊर्जा विनिमय में अब संवेदी और अव्यक्त ताप अंतरण दोनों शामिल हैं; तापमान में बदलाव के अलावा, निकास हवा की धारा की नमी की मात्रा में भी बदलाव होता है।

हालांकि, संक्षेपण की परत भी उपकरण के माध्यम से दबाव बूँद को थोड़ा बढ़ा देगी, और मैट्रिक्स सामग्री के अंतर के आधार पर, यह प्रतिरोध को 30% तक बढ़ा सकती है। यदि इकाई को गिरने के लिए नहीं रखा गया है, और घनीभूत को ठीक से निकालने की अनुमति नहीं है, तो इससे पंखे की ऊर्जा की खपत में वृद्धि होगी और उपकरण की मौसमी दक्षता कम हो जाएगी।

वायु-संचालन प्रणाली में प्रयोग करें

हीटिंग, वायु-संचालन और एयर-कंडीशनिंग प्रणाली में, एचवीएसी, पुनर्योजित्र साधारणतः निकास हवा से अपशिष्ट ऊष्मा का पुन: उपयोग करने के लिए उपयोग किया जाता है जो सामान्य रूप से वायुमंडल से निष्कासित होता है। उपकरणों में साधारणतः अल्युमीनियम, प्लास्टिक, स्टेनलेस स्टील, या सिंथेटिक रेशा की समानांतर प्लेटों की एक श्रृंखला शामिल होती है, जिनमें से तांबे के वैकल्पिक जोड़े दो तरफ संलग्न होते हैं, जो एक दूसरे से समकोण पर नलिकाओं के जुड़वां सेट बनाते हैं, और जिसमें आपूर्ति और अर्क होता है। वायु धाराएँ। इस तरह निकास वायु प्रवाह से ऊष्मा को अलग करने वाली प्लेटों के माध्यम से और आपूर्ति वायु धारा में स्थानांतरित किया जाता है। यूनिट के विनिर्देश के आधार पर निर्माता 95% तक की सकल दक्षता का दावा करते हैं।

इस उपकरण की विशेषताएं इकाई के भौतिक आकार, विशेष रूप से वायु पथ की दूरी और प्लेटों की दूरी के बीच संबंध के कारण हैं। उपकरण के माध्यम से एक समान वायु दबाव बूँद के लिए, एक छोटी इकाई में एक बड़ी इकाई की तुलना में एक संकीर्ण प्लेट रिक्ति और कम वायु वेग होगा, लेकिन दोनों इकाइयां समान रूप से कुशल हो सकती हैं। इकाई के क्रॉस-फ्लो डिज़ाइन के कारण, इसका भौतिक आकार वायु पथ की लंबाई को निर्धारित करेगा, और जैसे-जैसे यह बढ़ता है, ऊष्मा हस्तांतरण में वृद्धि होगी लेकिन दबाव में गिरावट भी बढ़ेगी, और इसलिए दबाव में कमी को कम करने के लिए प्लेट रिक्ति को बढ़ाया जाता है, लेकिन यह बदले में ऊष्मा हस्तांतरण को कम करेगा।

एक सामान्य नियम के रूप में एक पुनर्योजित्र को बीच के दबाव में गिरावट के लिए चुना जाता है 150–250 pascals (0.022–0.036 psi) एक अच्छी दक्षता होगी, जबकि पंखे की बिजली की खपत पर एक छोटा प्रभाव पड़ेगा, लेकिन शारीरिक रूप से छोटे, लेकिन उच्च दबाव बूँद पुनर्योजित्र की तुलना में उच्च मौसमी दक्षता होगी।

जब ऊष्मा वसूली की आवश्यकता नहीं होती है, तो वायु-संचालन वितरण प्रणाली के भीतर व्यवस्थित डैम्पर्स के उपयोग से उपकरण को बायपास करना विशिष्ट होता है। यह मानते हुए कि पंखे इन्वर्टर गति नियंत्रण से सुसज्जित हैं, वायु-संचालन प्रणाली में एक निरंतर दबाव बनाए रखने के लिए निर्धारित हैं, तो कम दबाव की गिरावट से पंखे की मोटर धीमी हो जाती है और इस प्रकार बिजली की खपत कम हो जाती है, और बदले में प्रणाली की मौसमी दक्षता में सुधार होता है। .

धातुकर्म भट्टियों में प्रयोग करें

ऊर्जा की लागत और ऑपरेशन के कार्बन पदचिह्न को कम करने के लिए मेटल पुनर्योजित्र द्वारा कई वर्षों तक दहन हवा और ईंधन को पहले से गरम करने के लिए अपशिष्ट गैसों से ऊष्मा को पुनर्प्राप्त करने के लिए पुनर्संयोजकों का उपयोग किया गया है। पुनर्योजी भट्टियों जैसे विकल्पों की तुलना में, प्रारंभिक लागत कम होती है, आगे और पीछे स्विच करने के लिए कोई वाल्व नहीं होता है, कोई प्रेरित-ड्राफ्ट पंखे नहीं होते हैं और इसके लिए भट्टी में फैले गैस नलिकाओं के जाल की आवश्यकता नहीं होती है।

पुनर्योजी दाहक की तुलना में ऐतिहासिक रूप से पुनर्योजित्र का पुनः प्राप्ति अनुपात कम था। हालांकि, प्रौद्योगिकी में हाल के सुधारों ने पुनर्योजित्र को 70-80% अपशिष्ट ऊष्मा और पूर्व-गर्म हवा को पुनर्प्राप्त करने की अनुमति दी है। 850–900 °C (1,560–1,650 °F) अब संभव है।

गैस टर्बाइन

एक ठीक हो चुके माइक्रोटर्बाइन का कटअवे

बिजली उत्पादन के लिए गैस टरबाइन की दक्षता बढ़ाने के लिए पुनर्योजित्र का उपयोग किया जा सकता है, बशर्ते निकास गैस कंप्रेसर निर्गम मार्ग तापमान से अधिक गर्म हो। टर्बाइन से निकलने वाली ऊष्मा का उपयोग कंबस्टर में आगे गर्म करने से पहले कंप्रेसर से हवा को प्री-ऊष्मा करने के लिए किया जाता है, जिससे आवश्यक ईंधन इनपुट कम हो जाता है। टर्बाइन आउट और कंप्रेसर आउट के बीच तापमान का अंतर जितना बड़ा होगा, पुनर्योजित्र से उतना ही अधिक लाभ होगा। [1] इसलिए, माइक्रो टर्बाइन (<1 मेगावाट), जिसमें साधारणतः कम दबाव अनुपात होता है, को पुनर्योजित्र के उपयोग से सबसे अधिक लाभ होता है। व्यवहार में, एक पुनरावर्तक के उपयोग के माध्यम से दक्षता को दोगुना करना संभव है।[2] माइक्रोटर्बाइन अनुप्रयोगों में एक पुनर्योजित्र के लिए प्रमुख व्यावहारिक चुनौती निकास गैस तापमान 750 °C (1,380 °F).से प्रतिस्पर्धा करना है, जो अधिक हो सकता है|

अन्य प्रकार के गैस-टू-गैस ऊष्मा विनिमयक

यह भी देखें


संदर्भ

  1. Çengel, Yunus A.; Boles, Michael (1994). Thermodynamics: An Engineering Approach
  2. "माइक्रोटर्बाइन रिक्यूपरेटर्स". Hiflux Limited.


इस पेज में लापता आंतरिक लिंक की सूची

  • वयर्थ ऊष्मा
  • इंजन गर्म करें
  • ऊष्मीय रेज़िज़टेंस
  • ताँबा
  • पुनरावर्ती संवहन

बाहरी कड़ियाँ

श्रेणी: ऊर्जा संरक्षण

श्रेणी: एनर्जी रिकवरी श्रेणी: इंजीनियरिंग ऊष्मप्रवैगिकी श्रेणी: ताप विनिमायक श्रेणी:ऊष्मा हस्तांतरण श्रेणी: हीटिंग, वायु-संचालन और एयर कंडीशनिंग श्रेणी:हीटिंग श्रेणी:औद्योगिक उपकरण श्रेणी: कम ऊर्जा वाली इमारत श्रेणी:यांत्रिक अभियांत्रिकी श्रेणी:सतत इमारत