सेंटर ऑफ मास: Difference between revisions

From Vigyanwiki
(व्यवस्था)
Line 12: Line 12:
प्राचीन गणितज्ञ जिन्होंने द्रव्यमान के केंद्र के सिद्धांत में योगदान दिया, उनमें अलेक्जेंड्रिया के नायक और अलेक्जेंड्रिया के पप्पस शामिल हैं। पुनर्जागरण और शुरुआती आधुनिक अवधियों में, गुइडो उबाल्डी, फ्रांसेस्को मौरोलिको द्वारा काम करते हैं,{{sfn|Baron|2004|pp=91–94}} फेडेरिको कमांडिनो,{{sfn|Baron|2004|pp=94–96}} इंजीलवादी टोरिसेली, साइमन स्टीविन,{{sfn|Baron|2004|pp=96–101}} लुका वेलेरियो,{{sfn|Baron|2004|pp=101–106}} जीन-चार्ल्स डे ला फेल, पॉल गुल्डिन,{{sfn|Mancosu|1999|pp=56–61}} जॉन वालिस, क्रिस्टियान ह्यूजेंस,<ref>{{Cite journal | last=Erlichson|first=H.|date=1996|title=Christiaan Huygens' discovery of the center of oscillation formula| url=https://aapt.scitation.org/doi/10.1119/1.18156|journal=American Journal of Physics|volume=64|issue=5| pages=571–574 |doi=10.1119/1.18156|bibcode=1996AmJPh..64..571E|issn=0002-9505}}</ref> लुई कार्रे (गणितज्ञ) | लुइस कैर्रे, पियरे वरिग्नन, और एलेक्सिस क्लेयरट ने इस अवधारणा को और विस्तारित किया।{{sfn|Walton|1855|p=2}}
प्राचीन गणितज्ञ जिन्होंने द्रव्यमान के केंद्र के सिद्धांत में योगदान दिया, उनमें अलेक्जेंड्रिया के नायक और अलेक्जेंड्रिया के पप्पस शामिल हैं। पुनर्जागरण और शुरुआती आधुनिक अवधियों में, गुइडो उबाल्डी, फ्रांसेस्को मौरोलिको द्वारा काम करते हैं,{{sfn|Baron|2004|pp=91–94}} फेडेरिको कमांडिनो,{{sfn|Baron|2004|pp=94–96}} इंजीलवादी टोरिसेली, साइमन स्टीविन,{{sfn|Baron|2004|pp=96–101}} लुका वेलेरियो,{{sfn|Baron|2004|pp=101–106}} जीन-चार्ल्स डे ला फेल, पॉल गुल्डिन,{{sfn|Mancosu|1999|pp=56–61}} जॉन वालिस, क्रिस्टियान ह्यूजेंस,<ref>{{Cite journal | last=Erlichson|first=H.|date=1996|title=Christiaan Huygens' discovery of the center of oscillation formula| url=https://aapt.scitation.org/doi/10.1119/1.18156|journal=American Journal of Physics|volume=64|issue=5| pages=571–574 |doi=10.1119/1.18156|bibcode=1996AmJPh..64..571E|issn=0002-9505}}</ref> लुई कार्रे (गणितज्ञ) | लुइस कैर्रे, पियरे वरिग्नन, और एलेक्सिस क्लेयरट ने इस अवधारणा को और विस्तारित किया।{{sfn|Walton|1855|p=2}}
यूलर के पहले नियम में द्रव्यमान के केंद्र के संबंध में न्यूटन के दूसरे नियम में सुधार किया गया है।।{{sfn|Beatty|2006|p=29}}
यूलर के पहले नियम में द्रव्यमान के केंद्र के संबंध में न्यूटन के दूसरे नियम में सुधार किया गया है।।{{sfn|Beatty|2006|p=29}}
==परिभाषा ==
==परिभाषा ==
द्रव्यमान का केंद्र  के स्थान में द्रव्यमान के वितरण के केंद्र में एक अनूठा बिंदु है जिसमें संपत्ति है कि इस बिंदु के सापेक्ष भारित स्थिति वैक्टर शून्य से शून्य है।आंकड़ों के सादृश्य में, द्रव्यमान का केंद्र स्थान में द्रव्यमान के वितरण का औसत स्थान है।
द्रव्यमान का केंद्र  के स्थान में द्रव्यमान के वितरण के केंद्र में एक अनूठा बिंदु है जिसमें संपत्ति है कि इस बिंदु के सापेक्ष भारित स्थिति वैक्टर शून्य से शून्य है।आंकड़ों के सादृश्य में, द्रव्यमान का केंद्र स्थान में द्रव्यमान के वितरण का औसत स्थान है।


=== कणों की एक प्रणाली ===
=== कणों की एक प्रणाली ===
कणों की एक प्रणाली के मामले में {{math|1=''P<sub>i</sub>'', ''i'' = 1, ..., ''n'' }}, प्रत्येक द्रव्यमान के साथ {{mvar|m<sub>i</sub>}} जो निर्देशांक के साथ स्थानमें स्थित हैं {{math|1='''r'''<sub>''i''</sub>, ''i'' = 1, ..., ''n'' }}, द्रव्यमान के केंद्र के निर्देशांक आर स्थिति को संतुष्ट करते हैं
कणों की एक प्रणाली के मामले में {{math|1=''P<sub>i</sub>'', ''i'' = 1, ..., ''n'' }}, प्रत्येक द्रव्यमान के साथ {{mvar|m<sub>i</sub>}} जो निर्देशांक के साथ स्थानमें स्थित हैं {{math|1='''r'''<sub>''i''</sub>, ''i'' = 1, ..., ''n'' }}, द्रव्यमान के केंद्र के निर्देशांक आर स्थिति को संतुष्ट करते हैं<math display="block" qid=Q2945123> \sum_{i=1}^n m_i(\mathbf{r}_i - \mathbf{R}) = \mathbf{0}.</math>R के लिए इस समीकरण को हल करना सूत्र पैदा करता है
<math display="block" qid=Q2945123> \sum_{i=1}^n m_i(\mathbf{r}_i - \mathbf{R}) = \mathbf{0}.</math>
आर के लिए इस समीकरण को हल करना सूत्र पैदा करता है
<math display="block" qid=Q2945123>\mathbf{R} = \frac 1M \sum_{i=1}^n m_i \mathbf{r}_i,</math>
<math display="block" qid=Q2945123>\mathbf{R} = \frac 1M \sum_{i=1}^n m_i \mathbf{r}_i,</math>
कहाँ पे <math> M = \sum_{i = 1}^n m_i </math> सभी कणों का कुल द्रव्यमान है।
कहाँ पे <math> M = \sum_{i = 1}^n m_i </math> सभी कणों का कुल द्रव्यमान है।
Line 28: Line 24:
<math display="block">\iiint_{Q} \rho(\mathbf{r}) \left(\mathbf{r} - \mathbf{R}\right) dV = 0.</math>
<math display="block">\iiint_{Q} \rho(\mathbf{r}) \left(\mathbf{r} - \mathbf{R}\right) dV = 0.</math>
प्राप्त करने के लिए निर्देशांक r के लिए इस समीकरण को हल करें
प्राप्त करने के लिए निर्देशांक r के लिए इस समीकरण को हल करें
<math display="block">\mathbf R = \frac 1 M \iiint_{Q}\rho(\mathbf{r}) \mathbf{r} \, dV,</math>
<math display="block">\mathbf R = \frac 1 M \iiint_{Q}\rho(\mathbf{r}) \mathbf{r} \, dV,</math>जहां एम मात्रा में कुल द्रव्यमान है।
जहां एम मात्रा में कुल द्रव्यमान है।
 
यदि एक निरंतर द्रव्यमान वितरण में समान घनत्व होता है, जिसका अर्थ है कि ρ स्थिर है, तो द्रव्यमान का केंद्र मात्रा के केंद्र के समान है।{{sfn|Levi|2009|p=85}}
यदि एक निरंतर द्रव्यमान वितरण में समान घनत्व होता है, जिसका अर्थ है कि ρ स्थिर है, तो द्रव्यमान का केंद्र मात्रा के केंद्र के समान है।{{sfn|Levi|2009|p=85}}


=== बैरीसेंट्रिक निर्देशांक ===
=== बैरीसेंट्रिक निर्देशांक ===
एक दो-कण प्रणाली के द्रव्यमान के केंद्र के निर्देशांक, '' पी ''<sub>1</sub> और पी<sub>2</sub>,  के साथ मी<sub>1</sub> और एम<sub>2</sub> द्वारा दिया गया है
एक दो-कण प्रणाली के द्रव्यमान के केंद्र के निर्देशांक, '' P''<sub>1</sub> और P<sub>2</sub>,  के साथ m<sub>1</sub> और m<sub>2</sub> द्वारा दिया गया है
<math display="block"> \mathbf{R} = \frac{1}{m_1 + m_2}(m_1 \mathbf{r}_1 + m_2\mathbf{r}_2).</math>
<math display="block"> \mathbf{R} = \frac{1}{m_1 + m_2}(m_1 \mathbf{r}_1 + m_2\mathbf{r}_2).</math>
मान लीजिए इन दोनों कणों के बीच विभाजित कुल द्रव्यमान का प्रतिशत 100% पी से भिन्न होता है<sub>1</sub> और 0% पी<sub>2</sub> 50% पी के माध्यम से<sub>1</sub> और 50% पी<sub>2</sub> से 0% पी<sub>1</sub> और 100% पी<sub>2</sub>, फिर द्रव्यमान आर का केंद्र '' पी '' से लाइन के साथ चलता है<sub>1</sub> ऊपर<sub>2</sub>। प्रत्येक बिंदु पर द्रव्यमान के प्रतिशत को इस रेखा पर बिंदु आर के अनुमानित निर्देशांक के रूप में देखा जा सकता है, और उन्हें बैरीसेंट्रिक निर्देशांक कहा जाता है। यहां प्रक्रिया की व्याख्या करने का एक और तरीका एक मनमाना बिंदु के बारे में क्षणों का यांत्रिक संतुलन है। अंश कुल क्षण देता है जो तब द्रव्यमान के केंद्र में एक समकक्ष कुल बल द्वारा संतुलित होता है।यह विमान में, और अंतरिक्ष में क्रमशः प्रोजेक्टिव निर्देशांक को परिभाषित करने के लिए तीन बिंदुओं और चार बिंदुओं के लिए सामान्यीकृत किया जा सकता है।
मान लीजिए इन दोनों कणों के बीच विभाजित कुल द्रव्यमान का प्रतिशत 100% P से भिन्न होता है<sub>1</sub> और 0% P<sub>2</sub> 50% P के माध्यम से<sub>1</sub> और 50% P<sub>2</sub> से 0% P<sub>1</sub> और 100% P<sub>2</sub>, फिर द्रव्यमान आर का केंद्र '' P '' से लाइन के साथ चलता है<sub>1</sub> ऊपर<sub>2</sub>। प्रत्येक बिंदु पर द्रव्यमान के प्रतिशत को इस रेखा पर बिंदु आर के अनुमानित निर्देशांक के रूप में देखा जा सकता है, और उन्हें बैरीसेंट्रिक निर्देशांक कहा जाता है। यहां प्रक्रिया की व्याख्या करने का एक और तरीका एक मनमाना बिंदु के बारे में क्षणों का यांत्रिक संतुलन है। अंश कुल क्षण देता है जो तब द्रव्यमान के केंद्र में एक समकक्ष कुल बल द्वारा संतुलित होता है।यह विमान में, और अंतरिक्ष में क्रमशः प्रोजेक्टिव निर्देशांक को परिभाषित करने के लिए तीन बिंदुओं और चार बिंदुओं के लिए सामान्यीकृत किया जा सकता है।


===आवधिक सीमा स्थितियों के साथ प्रणाली (सिस्टम) ===
===आवधिक सीमा स्थितियों के साथ प्रणाली (सिस्टम) ===
Line 64: Line 57:


== गुरुत्वाकर्षण का केंद्र ==
== गुरुत्वाकर्षण का केंद्र ==
[[File:CoG stable.svg|thumb|एक शैक्षिक खिलौना का आरेख जो एक बिंदु पर संतुलित होता है: द्रव्यमान का केंद्र (सी) इसके समर्थन (पी) के नीचे बसता है]]
[[File:CoG stable.svg|thumb|एक शैक्षिक खिलौना का आरेख जो एक बिंदु पर संतुलित होता है: द्रव्यमान का केंद्र (सी) इसके समर्थन (P) के नीचे बसता है]]
एक पिंड का गुरुत्वाकर्षण केंद्र वह बिंदु है जिसके चारों ओर गुरुत्वाकर्षण बलों के कारण परिणामी घूर्णनबल गायब हो जाता है। जहां एक गुरुत्वाकर्षण क्षेत्र को समान माना जा सकता है, वहां द्रव्यमान-केंद्र और केंद्र-का-गुरुत्वाकर्षण समान होगा। हालांकि, एक ग्रह के चारों ओर कक्षा में उपग्रहों के लिए, एक उपग्रह पर लागू किए जा रहे अन्य टॉर्क की अनुपस्थिति में, करीब से (मजबूत) और आगे (कमजोर) के बीच गुरुत्वाकर्षण क्षेत्र में मामूली भिन्नता (ढाल) ग्रह को जन्म दे सकता है एक टोक़ जो उपग्रह को इस तरह से संरेखित करेगा कि इसकी लंबी धुरी ऊर्ध्वाधर है। ऐसे मामले में, केंद्र-की-गुरुत्वाकर्षण और द्रव्यमान-केंद्र के बीच अंतर करना महत्वपूर्ण है। दोनों के बीच किसी भी क्षैतिज समायोजन (ऑफसेट) के परिणामस्वरूप एक टोक़ लागू होगा।
एक पिंड का गुरुत्वाकर्षण केंद्र वह बिंदु है जिसके चारों ओर गुरुत्वाकर्षण बलों के कारण परिणामी घूर्णनबल गायब हो जाता है। जहां एक गुरुत्वाकर्षण क्षेत्र को समान माना जा सकता है, वहां द्रव्यमान-केंद्र और केंद्र-का-गुरुत्वाकर्षण समान होगा। हालांकि, एक ग्रह के चारों ओर कक्षा में उपग्रहों के लिए, एक उपग्रह पर लागू किए जा रहे अन्य टॉर्क की अनुपस्थिति में, करीब से (मजबूत) और आगे (कमजोर) के बीच गुरुत्वाकर्षण क्षेत्र में मामूली भिन्नता (ढाल) ग्रह को जन्म दे सकता है एक टोक़ जो उपग्रह को इस तरह से संरेखित करेगा कि इसकी लंबी धुरी ऊर्ध्वाधर है। ऐसे मामले में, केंद्र-की-गुरुत्वाकर्षण और द्रव्यमान-केंद्र के बीच अंतर करना महत्वपूर्ण है। दोनों के बीच किसी भी क्षैतिज समायोजन (ऑफसेट) के परिणामस्वरूप एक टोक़ लागू होगा।


Line 72: Line 65:


भौतिकी में द्रव्यमान के केंद्र का उपयोग करने के लाभ एक द्रव्यमान वितरण को एक निरंतर पिंड पर गुरुत्वाकर्षण बलों के परिणाम पर विचार करके देखा जा सकता है। आयतन  में प्रत्येक बिंदु r पर घनत्व ρ (r) के साथ आयतन  v के एक पिंड Q पर विचार करें। एक समानांतर गुरुत्व क्षेत्र में प्रत्येक बिंदु r पर बल f द्वारा दिया जाता है,
भौतिकी में द्रव्यमान के केंद्र का उपयोग करने के लाभ एक द्रव्यमान वितरण को एक निरंतर पिंड पर गुरुत्वाकर्षण बलों के परिणाम पर विचार करके देखा जा सकता है। आयतन  में प्रत्येक बिंदु r पर घनत्व ρ (r) के साथ आयतन  v के एक पिंड Q पर विचार करें। एक समानांतर गुरुत्व क्षेत्र में प्रत्येक बिंदु r पर बल f द्वारा दिया जाता है,
<math display="block"> \mathbf{f}(\mathbf{r}) = -dm\, g\mathbf{\hat{k}} = -\rho(\mathbf{r}) \, dV\,g\mathbf{\hat{k}},</math>
<math display="block"> \mathbf{f}(\mathbf{r}) = -dm\, g\mathbf{\hat{k}} = -\rho(\mathbf{r}) \, dV\,g\mathbf{\hat{k}},</math>जहां डीएम (DM) बिंदु आर पर द्रव्यमान है, जी गुरुत्वाकर्षण का त्वरण है, और <math display="inline">\mathbf{\hat{k}}</math> ऊर्ध्वाधर दिशा को परिभाषित करने वाला एक इकाई वेक्टर है।
जहां डीएम बिंदु आर पर द्रव्यमान है, जी गुरुत्वाकर्षण का त्वरण है, और <math display="inline">\mathbf{\hat{k}}</math> ऊर्ध्वाधर दिशा को परिभाषित करने वाला एक इकाई वेक्टर है।
 
आयतन में एक संदर्भ बिंदु आर चुनें और इस बिंदु पर परिणामी बल और टोक़ की गणना करें,<math display="block" qid="Q11402"> \mathbf{F} = \iiint_{Q} \mathbf{f}(\mathbf{r}) \, dV = \iiint_{Q}\rho(\mathbf{r}) \, dV \left( -g \mathbf{\hat{k}}\right) = -Mg\mathbf{\hat{k}},</math>तथा<math display="block" qid="Q48103"> \mathbf{T} =  \iiint_{Q} (\mathbf{r} - \mathbf{R}) \times \mathbf{f}(\mathbf{r}) \, dV = \iiint_{Q} (\mathbf{r} - \mathbf{R}) \times \left(-g\rho(\mathbf{r}) \, dV \, \mathbf{\hat{k}}\right) = \left(\iiint_{Q} \rho(\mathbf{r}) \left(\mathbf{r} - \mathbf{R}\right) dV \right) \times \left(-g\mathbf{\hat{k}}\right) .</math>यदि संदर्भ बिंदु r को चुना जाता है ताकि यह द्रव्यमान का केंद्र हो, तो<math display="block"> \iiint_{Q} \rho(\mathbf{r}) \left(\mathbf{r} - \mathbf{R}\right) dV = 0, </math>जिसका अर्थ है परिणामी टोक़ t = 0. क्योंकि परिणामी टोक़ शून्य है पिंड  को आगे बढ़ेगा, हालांकि यह द्रव्यमान के केंद्र में केंद्रित द्रव्यमान के साथ एक कण है।


आयतन में एक संदर्भ बिंदु आर चुनें और इस बिंदु पर परिणामी बल और टोक़ की गणना करें,
<math display="block" qid="Q11402"> \mathbf{F} = \iiint_{Q} \mathbf{f}(\mathbf{r}) \, dV = \iiint_{Q}\rho(\mathbf{r}) \, dV \left( -g \mathbf{\hat{k}}\right) = -Mg\mathbf{\hat{k}},</math>
तथा
<math display="block" qid="Q48103"> \mathbf{T} =  \iiint_{Q} (\mathbf{r} - \mathbf{R}) \times \mathbf{f}(\mathbf{r}) \, dV = \iiint_{Q} (\mathbf{r} - \mathbf{R}) \times \left(-g\rho(\mathbf{r}) \, dV \, \mathbf{\hat{k}}\right) = \left(\iiint_{Q} \rho(\mathbf{r}) \left(\mathbf{r} - \mathbf{R}\right) dV \right) \times \left(-g\mathbf{\hat{k}}\right) .</math>
यदि संदर्भ बिंदु r को चुना जाता है ताकि यह द्रव्यमान का केंद्र हो, तो
<math display="block"> \iiint_{Q} \rho(\mathbf{r}) \left(\mathbf{r} - \mathbf{R}\right) dV = 0, </math>
जिसका अर्थ है परिणामी टोक़ t = 0. क्योंकि परिणामी टोक़ शून्य है पिंड  को आगे बढ़ेगा, हालांकि यह द्रव्यमान के केंद्र में केंद्रित द्रव्यमान के साथ एक कण है।


कठोर शरीर के लिए संदर्भ बिंदु के रूप में गुरुत्वाकर्षण के केंद्र का चयन करके, गुरुत्वाकर्षण बल शरीर को घुमाने का कारण नहीं होगा, जिसका अर्थ है कि पिंड  के वजन को द्रव्यमान के केंद्र में केंद्रित माना जा सकता है।
कठोर शरीर के लिए संदर्भ बिंदु के रूप में गुरुत्वाकर्षण के केंद्र का चयन करके, गुरुत्वाकर्षण बल शरीर को घुमाने का कारण नहीं होगा, जिसका अर्थ है कि पिंड  के वजन को द्रव्यमान के केंद्र में केंद्रित माना जा सकता है।


== रैखिक और कोणीय गति ==
== रैखिक और कोणीय गति ==
द्रव्यमान के केंद्र के सापेक्ष कणों की स्थिति और वेग को मापकर सरल किया जा सकता है।कणों की प्रणाली को पी<sub>i</sub>, i = 1, ..., n जनता m<sub>i</sub>निर्देशांक 'आर' पर स्थित हो<sub>''i''</sub> वेग के साथ वी<sub>''i''</sub>।एक संदर्भ बिंदु r का चयन करें और सापेक्ष स्थिति और वेग वैक्टर की गणना करें,
द्रव्यमान के केंद्र के सापेक्ष कणों की स्थिति और वेग को मापकर सरल किया जा सकता है।कणों की प्रणाली को P<sub>i</sub>, i = 1, ..., n जनता m<sub>i</sub>निर्देशांक 'आर' पर स्थित हो<sub>''i''</sub> वेग के साथ वी<sub>''i''</sub>।एक संदर्भ बिंदु r का चयन करें और सापेक्ष स्थिति और वेग वैक्टर की गणना करें,<math display="block"> \mathbf{r}_i = (\mathbf{r}_i - \mathbf{R}) + \mathbf{R}, \quad \mathbf{v}_i = \frac{d}{dt}(\mathbf{r}_i - \mathbf{R}) + \mathbf{v}.</math>प्रणाली की कुल रैखिक गति और कोणीय गति हैं<math display="block" qid=Q41273> \mathbf{p} = \frac{d}{dt}\left(\sum_{i=1}^n m_i (\mathbf{r}_i - \mathbf{R})\right) + \left(\sum_{i=1}^n m_i\right) \mathbf{v},</math>तथा<math display="block" qid=Q161254> \mathbf{L} = \sum_{i=1}^n m_i (\mathbf{r}_i - \mathbf{R}) \times \frac{d}{dt}(\mathbf{r}_i - \mathbf{R}) + \left(\sum_{i=1}^n m_i \right) \left[\mathbf{R} \times \frac{d}{dt}(\mathbf{r}_i - \mathbf{R}) + (\mathbf{r}_i - \mathbf{R}) \times \mathbf{v} \right] + \left(\sum_{i=1}^n m_i \right)\mathbf{R} \times \mathbf{v}</math>यदि आर को द्रव्यमान के केंद्र के रूप में चुना जाता है, तो इन समीकरणों को सरल बनाता है<math display="block"> \mathbf{p} = m\mathbf{v},\quad \mathbf{L} = \sum_{i=1}^n m_i (\mathbf{r}_i - \mathbf{R}) \times \frac{d}{dt}(\mathbf{r}_i - \mathbf{R}) + \sum_{i=1}^n m_i \mathbf{R} \times \mathbf{v}</math>जहां एम सभी कणों का कुल द्रव्यमान है, 'P' रैखिक गति है, और 'एल' कोणीय गति है।
<math display="block"> \mathbf{r}_i = (\mathbf{r}_i - \mathbf{R}) + \mathbf{R}, \quad \mathbf{v}_i = \frac{d}{dt}(\mathbf{r}_i - \mathbf{R}) + \mathbf{v}.</math>
प्रणाली की कुल रैखिक गति और कोणीय गति हैं
<math display="block" qid=Q41273> \mathbf{p} = \frac{d}{dt}\left(\sum_{i=1}^n m_i (\mathbf{r}_i - \mathbf{R})\right) + \left(\sum_{i=1}^n m_i\right) \mathbf{v},</math>
तथा
<math display="block" qid=Q161254> \mathbf{L} = \sum_{i=1}^n m_i (\mathbf{r}_i - \mathbf{R}) \times \frac{d}{dt}(\mathbf{r}_i - \mathbf{R}) + \left(\sum_{i=1}^n m_i \right) \left[\mathbf{R} \times \frac{d}{dt}(\mathbf{r}_i - \mathbf{R}) + (\mathbf{r}_i - \mathbf{R}) \times \mathbf{v} \right] + \left(\sum_{i=1}^n m_i \right)\mathbf{R} \times \mathbf{v}</math>
यदि आर को द्रव्यमान के केंद्र के रूप में चुना जाता है, तो इन समीकरणों को सरल बनाता है
<math display="block"> \mathbf{p} = m\mathbf{v},\quad \mathbf{L} = \sum_{i=1}^n m_i (\mathbf{r}_i - \mathbf{R}) \times \frac{d}{dt}(\mathbf{r}_i - \mathbf{R}) + \sum_{i=1}^n m_i \mathbf{R} \times \mathbf{v}</math>
जहां एम सभी कणों का कुल द्रव्यमान है, 'पी' रैखिक गति है, और 'एल' कोणीय गति है।
 
गति के संरक्षण का नियम भविष्यवाणी करता है कि बाहरी बलों के अधीन नहीं होने वाली किसी भी प्रणाली के लिए where ''m'' is the total mass of all the particles, '''p''' is the linear momentum, and '''L''' is the angular momentum.
 
The law of conservation of momentum predicts that for any system not subjected to external forces the momentum of the system will remain constant, which means the center of mass will move with constant velocity. This applies for all systems with classical internal forces, including magnetic fields, electric fields, chemical reactions, and so on. More formally, this is true for any internal forces that cancel in accordance with Newton's Third Law. की गति स्थिर रहेगी, जिसका अर्थ है कि द्रव्यमान का केंद्र निरंतर वेग के साथ आगे बढ़ेगा।यह शास्त्रीय आंतरिक बलों के साथ सभी प्रणालियों के लिए लागू होता है, जिसमें चुंबकीय क्षेत्र, विद्युत क्षेत्र, रासायनिक प्रतिक्रियाएं, और इसी तरह शामिल हैं।औपचारिक रूप से, यह किसी भी आंतरिक बलों के लिए सच है जो न्यूटन के तीसरे कानून के अनुसार रद्द करते हैं।{{sfn|Kleppner|Kolenkow|1973|p=117}}




गति के संरक्षण का नियम भविष्यवाणी करता है कि बाहरी बलों के अधीन नहीं होने वाली किसी भी प्रणाली के लिए की गति स्थिर रहेगी, जिसका अर्थ है कि द्रव्यमान का केंद्र निरंतर वेग के साथ आगे बढ़ेगा।यह शास्त्रीय आंतरिक बलों के साथ सभी प्रणालियों के लिए लागू होता है, जिसमें चुंबकीय क्षेत्र, विद्युत क्षेत्र, रासायनिक प्रतिक्रियाएं, और इसी तरह शामिल हैं।औपचारिक रूप से, यह किसी भी आंतरिक बलों के लिए सच है जो न्यूटन के तीसरे कानून के अनुसार रद्द करते हैं।{{sfn|Kleppner|Kolenkow|1973|p=117}}
== द्रव्यमान के केंद्र का पता लगाना ==
== द्रव्यमान के केंद्र का पता लगाना ==
[[File:Center gravity 2.svg|thumb|साहुल रेखा पद्धति]]
[[File:Center gravity 2.svg|thumb|साहुल रेखा पद्धति]]
Line 106: Line 82:


समरूपता और निरंतर घनत्व की धुरी के साथ एक पिंड के द्रव्यमान का केंद्र इस अक्ष पर होना चाहिए। इस प्रकार, निरंतर घनत्व के एक गोलाकार अचर घनत्व वाले एक वृत्ताकार बेलन के द्रव्यमान केन्द्र का द्रव्यमान केन्द्र बेलन के अक्ष पर होता है। इसी प्रकार, स्थिर घनत्व वाले गोलाकार सममित पिंड के द्रव्यमान का केंद्र गोले के केंद्र में होता है। सामान्य तौर पर, किसी पिंड की किसी भी समरूपता के लिए, उसका द्रव्यमान केंद्र उस समरूपता का एक निश्चित बिंदु होगा।
समरूपता और निरंतर घनत्व की धुरी के साथ एक पिंड के द्रव्यमान का केंद्र इस अक्ष पर होना चाहिए। इस प्रकार, निरंतर घनत्व के एक गोलाकार अचर घनत्व वाले एक वृत्ताकार बेलन के द्रव्यमान केन्द्र का द्रव्यमान केन्द्र बेलन के अक्ष पर होता है। इसी प्रकार, स्थिर घनत्व वाले गोलाकार सममित पिंड के द्रव्यमान का केंद्र गोले के केंद्र में होता है। सामान्य तौर पर, किसी पिंड की किसी भी समरूपता के लिए, उसका द्रव्यमान केंद्र उस समरूपता का एक निश्चित बिंदु होगा।
=== दो आयामों में ===
=== दो आयामों में ===
द्रव्यमान के केंद्र का पता लगाने के लिए एक प्रायोगिक विधि दो स्थानों से वस्तु को निलंबित करना और निलंबन बिंदुओं से  साहुल रेखाओं को छोड़ना है। रेखाओं का प्रतिच्छेदन द्रव्यमान का केंद्र है।{{sfn|Kleppner|Kolenkow|1973|pp=119–120}}
द्रव्यमान के केंद्र का पता लगाने के लिए एक प्रायोगिक विधि दो स्थानों से वस्तु को निलंबित करना और निलंबन बिंदुओं से  साहुल रेखाओं को छोड़ना है। रेखाओं का प्रतिच्छेदन द्रव्यमान का केंद्र है।{{sfn|Kleppner|Kolenkow|1973|pp=119–120}}
किसी वस्तु का आकार पहले से ही गणितीय रूप से निर्धारित किया जा सकता है, लेकिन यह एक ज्ञात सूत्र का उपयोग करने के लिए बहुत जटिल हो सकता है। इस मामले में, कोई भी जटिल आकार को सरल, अधिक प्राथमिक आकृतियों में विभाजित कर सकता है, जिनके द्रव्यमान के केंद्रों को ढूंढना आसान है। यदि प्रत्येक क्षेत्र के लिए द्रव्यमान का कुल द्रव्यमान और केंद्र निर्धारित किया जा सकता है, तो पूरे के द्रव्यमान का केंद्र केंद्रों का भारित औसत है।{{sfn|Feynman|Leighton|Sands|1963|pp=19.1–19.2}} यह विधि छिद्रों वाली वस्तुओं के लिए भी काम कर सकती है, जिसे ऋणात्मक  द्रव्यमान के रूप में देखा जा सकता है।{{sfn|Hamill|2009|pp=20–21}}
किसी वस्तु का आकार पहले से ही गणितीय रूप से निर्धारित किया जा सकता है, लेकिन यह एक ज्ञात सूत्र का उपयोग करने के लिए बहुत जटिल हो सकता है। इस मामले में, कोई भी जटिल आकार को सरल, अधिक प्राथमिक आकृतियों में विभाजित कर सकता है, जिनके द्रव्यमान के केंद्रों को ढूंढना आसान है। यदि प्रत्येक क्षेत्र के लिए द्रव्यमान का कुल द्रव्यमान और केंद्र निर्धारित किया जा सकता है, तो पूरे के द्रव्यमान का केंद्र केंद्रों का भारित औसत है।{{sfn|Feynman|Leighton|Sands|1963|pp=19.1–19.2}} यह विधि छिद्रों वाली वस्तुओं के लिए भी काम कर सकती है, जिसे ऋणात्मक  द्रव्यमान के रूप में देखा जा सकता है।{{sfn|Hamill|2009|pp=20–21}}
एक पूर्णांक, या पूर्णांकमापी के रूप में जाना जाने वाला प्लैनीमीटर का एक प्रत्यक्ष विकास, एक अनियमित दो-आयामी आकार के द्रव्यमान के केंद्र या केंद्र की स्थिति को स्थापित करने के लिए उपयोग किया जा सकता है। इस विधि को एक अनियमित, चिकनी या जटिल सीमा के साथ एक आकार पर लागू किया जा सकता है जहां अन्य तरीके बहुत मुश्किल हैं। यह नियमित रूप से जहाज निर्माताओं द्वारा एक जहाज के उछाल के आवश्यक विस्थापन और केंद्र के साथ तुलना करने के लिए उपयोग किया गया था, और यह सुनिश्चित करता था कि यह पलट न जाए।।<ref>{{cite web|title=The theory and design of British shipbuilding |page=3 |url=http://www.ebooksread.com/authors-eng/amos-lowrey-ayre/the-theory-and-design-of-british-shipbuilding-hci/page-3-the-theory-and-design-of-british-shipbuilding-hci.shtml|work=Amos Lowrey Ayre|access-date=20 August 2012}}</ref>{{sfn|Sangwin|2006|p=7}}
एक पूर्णांक, या पूर्णांकमाP के रूप में जाना जाने वाला प्लैनीमीटर का एक प्रत्यक्ष विकास, एक अनियमित दो-आयामी आकार के द्रव्यमान के केंद्र या केंद्र की स्थिति को स्थापित करने के लिए उपयोग किया जा सकता है। इस विधि को एक अनियमित, चिकनी या जटिल सीमा के साथ एक आकार पर लागू किया जा सकता है जहां अन्य तरीके बहुत मुश्किल हैं। यह नियमित रूप से जहाज निर्माताओं द्वारा एक जहाज के उछाल के आवश्यक विस्थापन और केंद्र के साथ तुलना करने के लिए उपयोग किया गया था, और यह सुनिश्चित करता था कि यह पलट न जाए।।<ref>{{cite web|title=The theory and design of British shipbuilding |page=3 |url=http://www.ebooksread.com/authors-eng/amos-lowrey-ayre/the-theory-and-design-of-british-shipbuilding-hci/page-3-the-theory-and-design-of-british-shipbuilding-hci.shtml|work=Amos Lowrey Ayre|access-date=20 August 2012}}</ref>{{sfn|Sangwin|2006|p=7}}
 
 
=== तीन आयामों में ===
=== तीन आयामों में ===
द्रव्यमान के केंद्र के तीन-आयामी निर्देशांक का पता लगाने के लिए एक प्रयोगात्मक विधि तीन बिंदुओं पर वस्तु का समर्थन करके और बलों को मापने से शुरू होती है, एफ<sub>1</sub>, एफ<sub>2</sub>, और एफ<sub>3</sub> यह वस्तु के वजन का विरोध करता है, <math>\mathbf{W} = -W\mathbf{\hat{k}}</math> (<math>\mathbf{\hat{k}}</math> ऊर्ध्वाधर दिशा में इकाई वेक्टर है)।आर<sub>1</sub>, आर<sub>2</sub>, और आर<sub>3</sub> समर्थन बिंदुओं की स्थिति निर्देशांक बनें, फिर द्रव्यमान के केंद्र के निर्देशांक r इस स्थिति को संतुष्ट करते हैं कि परिणामी टोक़ शून्य है,
द्रव्यमान के केंद्र के तीन-आयामी निर्देशांक का पता लगाने के लिए एक प्रयोगात्मक विधि तीन बिंदुओं पर वस्तु का समर्थन करके और बलों को मापने से शुरू होती है, F<sub>1</sub>, F<sub>2</sub>, और एफ<sub>3</sub> यह वस्तु के वजन का विरोध करता है, <math>\mathbf{W} = -W\mathbf{\hat{k}}</math> (<math>\mathbf{\hat{k}}</math> ऊर्ध्वाधर दिशा में इकाई वेक्टर है)। R<sub>1</sub>, R<sub>2</sub>, और R<sub>3</sub> समर्थन बिंदुओं की स्थिति निर्देशांक बनें, फिर द्रव्यमान के केंद्र के निर्देशांक r इस स्थिति को संतुष्ट करते हैं कि परिणामी टोक़ शून्य है,
<math display="block">\mathbf{T} = (\mathbf{r}_1 - \mathbf{R}) \times \mathbf{F}_1 + (\mathbf{r}_2 - \mathbf{R}) \times \mathbf{F}_2 + (\mathbf{r}_3 - \mathbf{R}) \times \mathbf{F}_3 = 0,</math>
<math display="block">\mathbf{T} = (\mathbf{r}_1 - \mathbf{R}) \times \mathbf{F}_1 + (\mathbf{r}_2 - \mathbf{R}) \times \mathbf{F}_2 + (\mathbf{r}_3 - \mathbf{R}) \times \mathbf{F}_3 = 0,</math>या<math display="block">\mathbf{R} \times \left(-W\mathbf{\hat{k}}\right) = \mathbf{r}_1 \times \mathbf{F}_1 + \mathbf{r}_2 \times \mathbf{F}_2 + \mathbf{r}_3 \times \mathbf{F}_3. </math>
या
यह समीकरण क्षैतिज विमान में द्रव्यमान r* के केंद्र के निर्देशांक देता है,<math display="block"> \mathbf{R}^* = -\frac{1}{W} \mathbf{\hat{k}} \times (\mathbf{r}_1 \times \mathbf{F}_1 + \mathbf{r}_2 \times\mathbf{F}_2 + \mathbf{r}_3 \times \mathbf{F}_3).</math>द्रव्यमान का केंद्र ऊर्ध्वाधर रेखा एल पर स्थित द्वारा दिया गया है,<math display="block"> \mathbf{L}(t) = \mathbf{R}^* + t\mathbf{\hat{k}}.</math>द्रव्यमान के केंद्र के तीन-आयामी निर्देशांक इस प्रयोग को दो बार वस्तु के साथ निर्धारित किए जाते हैं ताकि इन बलों को वस्तु के माध्यम से दो अलग-अलग क्षैतिज विमानों के लिए मापा जाए। द्रव्यमान का केंद्र दो दो रेखाओं L1 और L2 का प्रतिच्छेदन होगा।
<math display="block">\mathbf{R} \times \left(-W\mathbf{\hat{k}}\right) = \mathbf{r}_1 \times \mathbf{F}_1 + \mathbf{r}_2 \times \mathbf{F}_2 + \mathbf{r}_3 \times \mathbf{F}_3. </math>
यह समीकरण क्षैतिज विमान में द्रव्यमान r* के केंद्र के निर्देशांक देता है,
<math display="block"> \mathbf{R}^* = -\frac{1}{W} \mathbf{\hat{k}} \times (\mathbf{r}_1 \times \mathbf{F}_1 + \mathbf{r}_2 \times\mathbf{F}_2 + \mathbf{r}_3 \times \mathbf{F}_3).</math>
द्रव्यमान का केंद्र ऊर्ध्वाधर रेखा एल पर स्थित द्वारा दिया गया है,  
<math display="block"> \mathbf{L}(t) = \mathbf{R}^* + t\mathbf{\hat{k}}.</math>
द्रव्यमान के केंद्र के तीन-आयामी निर्देशांक इस प्रयोग को दो बार वस्तु के साथ निर्धारित किए जाते हैं ताकि इन बलों को वस्तु के माध्यम से दो अलग-अलग क्षैतिज विमानों के लिए मापा जाए। द्रव्यमान का केंद्र दो दो रेखाओं L1 और L2 का प्रतिच्छेदन होगा।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 136: Line 101:


==== विमान-विज्ञान (एरोनॉटिक्स) ====
==== विमान-विज्ञान (एरोनॉटिक्स) ====
द्रव्यमान का केंद्र एक विमान पर एक महत्वपूर्ण बिंदु है, जो विमान की स्थिरता को महत्वपूर्ण रूप से प्रभावित करता है।यह सुनिश्चित करने के लिए कि विमान उड़ान भरने के लिए सुरक्षित होने के लिए पर्याप्त स्थिर है, द्रव्यमान का केंद्र निर्दिष्ट सीमाओं के भीतर गिरना चाहिए। यदि द्रव्यमान का केंद्र आगे की सीमा से आगे है, तो विमान कम गतिमान होगा, संभवतः उड़ान भरना (टेकऑफ़) के लिए अवतरण (लैंडिंग) या घूमने में असमर्थ होने के बिंदु तक।{{sfn|Federal Aviation Administration|2007|p=1.4}} यदि द्रव्यमान का केंद्र पिछाड़ी सीमा के पीछे है, तो विमान अधिक गतिशील होगा, लेकिन कम स्थिर भी होगा, और संभवतः इतना अस्थिर होगा ताकि उड़ना असंभव हो। लिफ्ट का पल-पल की भुजा भी कम हो जाएगा, जिससे एक रुकी हुई स्थिति से उबरना अधिक कठिन हो जाता है।{{sfn|Federal Aviation Administration|2007|p=1.3}}
द्रव्यमान का केंद्र एक विमान पर एक महत्वपूर्ण बिंदु है, जो विमान की स्थिरता को महत्वपूर्ण रूप से प्रभावित करता है।यह सुनिश्चित करने के लिए कि विमान उड़ान भरने के लिए सुरक्षित होने के लिए पर्याप्त स्थिर है, द्रव्यमान का केंद्र निर्दिष्ट सीमाओं के भीतर गिरना चाहिए। यदि द्रव्यमान का केंद्र आगे की सीमा से आगे है, तो विमान कम गतिमान होगा, संभवतः उड़ान भरना (टेकऑफ़) के लिए अवतरण (लैंडिंग) या घूमने में असमर्थ होने के बिंदु तक।{{sfn|Federal Aviation Administration|2007|p=1.4}} यदि द्रव्यमान का केंद्र पिछाड़ी सीमा के Pछे है, तो विमान अधिक गतिशील होगा, लेकिन कम स्थिर भी होगा, और संभवतः इतना अस्थिर होगा ताकि उड़ना असंभव हो। लिफ्ट का पल-पल की भुजा भी कम हो जाएगा, जिससे एक रुकी हुई स्थिति से उबरना अधिक कठिन हो जाता है।{{sfn|Federal Aviation Administration|2007|p=1.3}}
होवर में हेलीकॉप्टरों के लिए, द्रव्यमान का केंद्र हमेशा रोटोरहेड के नीचे होता है। आगे की उड़ान में, द्रव्यमान का केंद्र हेलीकॉप्टर को आगे बढ़ाने के लिए चक्रीय नियंत्रण को लागू करके उत्पादित नकारात्मक पिच टॉर्क को संतुलित करने के लिए आगे बढ़ेगा;नतीजतन एक क्रूज़िंग हेलीकॉप्टर स्तर की उड़ान में नाक-नीचे उड़ता है।<ref name="Helicopter Centre Of Mass">{{cite web | url=http://www.ultraligero.net/Cursos/helicoptero/Introduccion_a_la_aerodinamica_del%20_helicoptero.pdf | title=Helicopter Aerodynamics | access-date=23 November 2013 | pages=82 | url-status=dead | archive-url=https://web.archive.org/web/20120324063720/http://www.ultraligero.net/Cursos/helicoptero/Introduccion_a_la_aerodinamica_del%20_helicoptero.pdf | archive-date=24 March 2012 }}</ref>
होवर में हेलीकॉप्टरों के लिए, द्रव्यमान का केंद्र हमेशा रोटोरहेड के नीचे होता है। आगे की उड़ान में, द्रव्यमान का केंद्र हेलीकॉप्टर को आगे बढ़ाने के लिए चक्रीय नियंत्रण को लागू करके उत्पादित नकारात्मक पिच टॉर्क को संतुलित करने के लिए आगे बढ़ेगा;नतीजतन एक क्रूज़िंग हेलीकॉप्टर स्तर की उड़ान में नाक-नीचे उड़ता है।<ref name="Helicopter Centre Of Mass">{{cite web | url=http://www.ultraligero.net/Cursos/helicoptero/Introduccion_a_la_aerodinamica_del%20_helicoptero.pdf | title=Helicopter Aerodynamics | access-date=23 November 2013 | pages=82 | url-status=dead | archive-url=https://web.archive.org/web/20120324063720/http://www.ultraligero.net/Cursos/helicoptero/Introduccion_a_la_aerodinamica_del%20_helicoptero.pdf | archive-date=24 March 2012 }}</ref>
=== खगोल विज्ञान ===
=== खगोल विज्ञान ===
[[File:orbit3.gif|thumb|180px|दो निकायों ने अपने barcenter (रेड क्रॉस) की परिक्रमा की]]
[[File:orbit3.gif|thumb|180px|दो निकायों ने अपने barcenter (रेड क्रॉस) की परिक्रमा की]]
Line 146: Line 109:
=== धांधली और सुरक्षा ===
=== धांधली और सुरक्षा ===
गुरुत्वाकर्षण के केंद्र के स्थान को जानना महत्वपूर्ण होता है, संभवतः गंभीर चोट या मृत्यु हो सकती है यदि गलत तरीके से मान लिया जाए। गुरुत्वाकर्षण का एक केंद्र जो उद्वाहक बिंदु पर या उससे ऊपर है, सबसे अधिक संभावनाएक टिप-ओवर घटना में होगी। सामान्य तौर पर, चुनें बिन्दु के नीचे गुरुत्वाकर्षण का केंद्र जितना अधिक होता है, उतना ही सुरक्षित होता है। विचार करने के लिए अन्य चीजें हैं, जैसे कि स्थानांतरण भार, भार और द्रव्यमान की ताकत , चुनें बिन्दु के बीच की दूरी, और चुनें बिन्दु की संख्या।विशेष रूप से, उद्वाहक बिंदुओं का चयन करते समय, केंद्र में गुरुत्वाकर्षण के केंद्र को और उद्वाहक बिंदुओं के नीचे अच्छी तरह से रखना बहुत महत्वपूर्ण है।<ref>{{Cite web |url=https://www.fema.gov/pdf/emergency/usr/module4.pdf |title=Structural Collapse Technician: Module 4 - Lifting and Rigging |access-date=27 November 2019 |website=FEMA.gov }}</ref>
गुरुत्वाकर्षण के केंद्र के स्थान को जानना महत्वपूर्ण होता है, संभवतः गंभीर चोट या मृत्यु हो सकती है यदि गलत तरीके से मान लिया जाए। गुरुत्वाकर्षण का एक केंद्र जो उद्वाहक बिंदु पर या उससे ऊपर है, सबसे अधिक संभावनाएक टिप-ओवर घटना में होगी। सामान्य तौर पर, चुनें बिन्दु के नीचे गुरुत्वाकर्षण का केंद्र जितना अधिक होता है, उतना ही सुरक्षित होता है। विचार करने के लिए अन्य चीजें हैं, जैसे कि स्थानांतरण भार, भार और द्रव्यमान की ताकत , चुनें बिन्दु के बीच की दूरी, और चुनें बिन्दु की संख्या।विशेष रूप से, उद्वाहक बिंदुओं का चयन करते समय, केंद्र में गुरुत्वाकर्षण के केंद्र को और उद्वाहक बिंदुओं के नीचे अच्छी तरह से रखना बहुत महत्वपूर्ण है।<ref>{{Cite web |url=https://www.fema.gov/pdf/emergency/usr/module4.pdf |title=Structural Collapse Technician: Module 4 - Lifting and Rigging |access-date=27 November 2019 |website=FEMA.gov }}</ref>
=== शारीरिक गति (बॉडी मोशन) ===
=== शारीरिक गति (बॉडी मोशन) ===
काइन्सियोलॉजी और बायोमैकेनिक्स में, द्रव्यमान का केंद्र एक महत्वपूर्ण पैरामीटर है जो लोगों को उनके मानव गति को समझने में सहायता करता है। आमतौर पर, एक मानव के द्रव्यमान का केंद्र दो तरीकों में से एक के साथ पाया जाता है: प्रतिक्रिया बोर्ड विधि एक स्थिर विश्लेषण है जिसमें उस उपकरण पर झूठ बोलने वाला व्यक्ति शामिल होता है, और द्रव्यमान  के केंद्र को खोजने के लिए उनके स्थिर संतुलन समीकरण का उपयोग होता है; विभाजन विधि भौतिक सिद्धांत के आधार पर एक गणितीय समाधान पर निर्भर करती है कि एक निर्दिष्ट अक्ष के सापेक्ष व्यक्तिगत शरीर वर्गों के टॉर्क्स का योग, शरीर का गठन करने वाले पूरे व्यवस्था के टोक़ के बराबर होना चाहिए, एक ही अक्ष के सापेक्ष मापा जाता है।{{sfn|Vint|2003|pp=1–11}}
काइन्सियोलॉजी और बायोमैकेनिक्स में, द्रव्यमान का केंद्र एक महत्वपूर्ण पैरामीटर है जो लोगों को उनके मानव गति को समझने में सहायता करता है। आमतौर पर, एक मानव के द्रव्यमान का केंद्र दो तरीकों में से एक के साथ पाया जाता है: प्रतिक्रिया बोर्ड विधि एक स्थिर विश्लेषण है जिसमें उस उपकरण पर झूठ बोलने वाला व्यक्ति शामिल होता है, और द्रव्यमान  के केंद्र को खोजने के लिए उनके स्थिर संतुलन समीकरण का उपयोग होता है; विभाजन विधि भौतिक सिद्धांत के आधार पर एक गणितीय समाधान पर निर्भर करती है कि एक निर्दिष्ट अक्ष के सापेक्ष व्यक्तिगत शरीर वर्गों के टॉर्क्स का योग, शरीर का गठन करने वाले पूरे व्यवस्था के टोक़ के बराबर होना चाहिए, एक ही अक्ष के सापेक्ष मापा जाता है।{{sfn|Vint|2003|pp=1–11}}


== यह भी देखें ==
== यह भी देखें ==
{{Portal|Physics}}
{{Portal|Physics}}
{{div col|colwidth=20em}}
{{div col|colwidth=20em}}
* Barycenter
* बैरी सेंटर
* उछाल
* उछाल
* द्रव्यमान का केंद्र (सापेक्ष)
* द्रव्यमान का केंद्र (सापेक्ष)
Line 173: Line 133:
==टिप्पणियाँ==
==टिप्पणियाँ==
{{Reflist|24em}}
{{Reflist|24em}}


==संदर्भ==
==संदर्भ==
Line 211: Line 170:


==बाहरी संबंध==
==बाहरी संबंध==
{{Wiktionary|barycenter}}
* [https://web.archive.org/web/20050212113330/http://www.kettering.edu/~drussell/Demos/COM/com-a.html Motion of the Center of Mass] shows that the motion of the center of mass of an object in free fall is the same as the motion of a point object.
* [https://web.archive.org/web/20050212113330/http://www.kettering.edu/~drussell/Demos/COM/com-a.html Motion of the Center of Mass] shows that the motion of the center of mass of an object in free fall is the same as the motion of a point object.
* [http://orbitsimulator.com/gravity/articles/ssbarycenter.html The Solar System's barycenter], simulations showing the effect each planet contributes to the Solar System's barycenter.
* [http://orbitsimulator.com/gravity/articles/ssbarycenter.html The Solar System's barycenter], simulations showing the effect each planet contributes to the Solar System's barycenter.
{{Automotive handling}}
{{Authority control}}


{{DEFAULTSORT:Center Of Mass}}[[Category: शास्त्रीय यांत्रिकी]]
{{DEFAULTSORT:Center Of Mass}}[[Category: शास्त्रीय यांत्रिकी]]

Revision as of 13:17, 10 August 2022

यह खिलौना उंगली पर बैठने पर संतुलन रखने के लिए द्रव्यमान के केंद्र के सिद्धांतों का उपयोग करता है।

भौतिकी में, द्रव्यमान के वितरण का केंद्र (कभी -कभी संतुलन बिंदु के रूप में संदर्भित ) अद्वितीय बिंदु है जहां वितरित द्रव्यमान की भारित सापेक्ष स्थिति शून्य तक होती है। यह वह बिंदु है जिसके लिए एक बल को कोणीय त्वरण के बिना एक रैखिक त्वरण का कारण बन सकता है। द्रव्यमान के केंद्र के संबंध में तैयार होने पर यांत्रिकी में गणना को अक्सर सरल बनाया जाता है। यह एक काल्पनिक बिंदु है जहां किसी वस्तु के पूरे द्रव्यमान को इसकी गति की कल्पना करने के लिए केंद्रित माना जा सकता है। दूसरे शब्दों में, द्रव्यमान का केंद्र न्यूटन गति के नियमों के आवेदन के लिए किसी दिए गए वस्तु (ऑब्जेक्ट) के बराबर कण है।

एक कठोर पिंड के मामले में, पिंड के संबंध में द्रव्यमान का केंद्र तय किया जाता है, और यदि पिंड में समान घनत्व होता है, तो यह केंद्रक (सेंट्रोइड) पर स्थित होगा। द्रव्यमान का केंद्र भौतिक पिंड के बाहर स्थित हो सकता है, जैसा कि कभी-कभी खोखले या खुले आकार की वस्तुओं के मामले में होता है, जैसे कि एक घोड़े की नाल। सौर मंडल के ग्रहों जैसे अलग -अलग निकायों के वितरण के मामले में, द्रव्यमान का केंद्र पद्धति (सिस्टम) के किसी भी व्यक्तिगत सदस्य की स्थिति के अनुरूप नहीं हो सकता है।

द्रव्यमान का केंद्र यांत्रिकी में गणना के लिए एक उपयोगी संदर्भ बिंदु है जिसमें जगह में वितरित द्रव्यमान शामिल होते हैं, जैसे कि ग्रहों के पिंड के रैखिक और कोणीय गति और कठोर पिंड की गतिशीलता । कक्षीय यांत्रिकी में, ग्रहों की गति के समीकरणों को द्रव्यमान के केंद्रों में स्थित बिंदु द्रव्यमान के रूप में तैयार किया जाता है। द्रव्यमान ढांचा का केंद्र एक जड़त्वीय ढांचा (फ्रेम) है जिसमें एक प्रणाली के द्रव्यमान का केंद्र समन्वय प्रणाली की उत्पत्ति के संबंध में आराम करता है।

इतिहास

गुरुत्वाकर्षण या भार के केंद्र की अवधारणा को प्राचीन ग्रीक गणितज्ञ, भौतिक विज्ञानी और सिरैक्यूज़ के इंजीनियर आर्किमिडीज द्वारा बड़े पैमाने पर अध्ययन किया गया था। उन्होंने गुरुत्वाकर्षण के बारे में सरलीकृत धारणाओं के साथ काम किया, जो एक समान क्षेत्र की मात्रा है, इस प्रकार अब हम उसके गणितीय गुणों पर पहुंचे जिसे अब हम द्रव्यमान का केंद्र कहते हैं। आर्किमिडीज ने दिखाया कि उत्तोलक के साथ विभिन्न बिंदुओं पर आराम करने वाले भारों द्वारा एक उत्तोलक पर पर लगाया गया घूर्णबल वैसा ही होता है जैसा कि यदि सभी भारों को एक ही बिंदु पर ले जाया जाता है - उनके द्रव्यमान के केंद्र पर। फ्लोटिंग निकायों पर अपने काम में, आर्किमिडीज ने प्रदर्शित किया कि एक अस्थायी वस्तु का उन्मुखीकरण वह है जो अपने द्रव्यमान के केंद्र को यथासंभव कम बनाता है।उन्होंने विभिन्न अच्छी तरह से परिभाषित आकृतियों की समान घनत्व की वस्तुओं के द्रव्यमान के केंद्रों को खोजने के लिए गणितीय तकनीक विकसित की।[1] प्राचीन गणितज्ञ जिन्होंने द्रव्यमान के केंद्र के सिद्धांत में योगदान दिया, उनमें अलेक्जेंड्रिया के नायक और अलेक्जेंड्रिया के पप्पस शामिल हैं। पुनर्जागरण और शुरुआती आधुनिक अवधियों में, गुइडो उबाल्डी, फ्रांसेस्को मौरोलिको द्वारा काम करते हैं,[2] फेडेरिको कमांडिनो,[3] इंजीलवादी टोरिसेली, साइमन स्टीविन,[4] लुका वेलेरियो,[5] जीन-चार्ल्स डे ला फेल, पॉल गुल्डिन,[6] जॉन वालिस, क्रिस्टियान ह्यूजेंस,[7] लुई कार्रे (गणितज्ञ) | लुइस कैर्रे, पियरे वरिग्नन, और एलेक्सिस क्लेयरट ने इस अवधारणा को और विस्तारित किया।[8] यूलर के पहले नियम में द्रव्यमान के केंद्र के संबंध में न्यूटन के दूसरे नियम में सुधार किया गया है।।[9]

परिभाषा

द्रव्यमान का केंद्र के स्थान में द्रव्यमान के वितरण के केंद्र में एक अनूठा बिंदु है जिसमें संपत्ति है कि इस बिंदु के सापेक्ष भारित स्थिति वैक्टर शून्य से शून्य है।आंकड़ों के सादृश्य में, द्रव्यमान का केंद्र स्थान में द्रव्यमान के वितरण का औसत स्थान है।

कणों की एक प्रणाली

कणों की एक प्रणाली के मामले में Pi, i = 1, ..., n, प्रत्येक द्रव्यमान के साथ mi जो निर्देशांक के साथ स्थानमें स्थित हैं ri, i = 1, ..., n, द्रव्यमान के केंद्र के निर्देशांक आर स्थिति को संतुष्ट करते हैं

R के लिए इस समीकरण को हल करना सूत्र पैदा करता है कहाँ पे सभी कणों का कुल द्रव्यमान है।

एक निरंतर मात्रा

यदि द्रव्यमान वितरण घनत्व ρ (r) के साथ एक ठोस q के भीतर निरंतर है, तो वॉल्यूम v के ऊपर द्रव्यमान r के केंद्र के सापेक्ष इस वॉल्यूम में बिंदुओं के भारित स्थिति का अभिन्न अंग शून्य है, शून्य है,वह है

प्राप्त करने के लिए निर्देशांक r के लिए इस समीकरण को हल करें
जहां एम मात्रा में कुल द्रव्यमान है। यदि एक निरंतर द्रव्यमान वितरण में समान घनत्व होता है, जिसका अर्थ है कि ρ स्थिर है, तो द्रव्यमान का केंद्र मात्रा के केंद्र के समान है।[10]

बैरीसेंट्रिक निर्देशांक

एक दो-कण प्रणाली के द्रव्यमान के केंद्र के निर्देशांक, P1 और P2, के साथ m1 और m2 द्वारा दिया गया है

मान लीजिए इन दोनों कणों के बीच विभाजित कुल द्रव्यमान का प्रतिशत 100% P से भिन्न होता है1 और 0% P2 50% P के माध्यम से1 और 50% P2 से 0% P1 और 100% P2, फिर द्रव्यमान आर का केंद्र P से लाइन के साथ चलता है1 ऊपर2। प्रत्येक बिंदु पर द्रव्यमान के प्रतिशत को इस रेखा पर बिंदु आर के अनुमानित निर्देशांक के रूप में देखा जा सकता है, और उन्हें बैरीसेंट्रिक निर्देशांक कहा जाता है। यहां प्रक्रिया की व्याख्या करने का एक और तरीका एक मनमाना बिंदु के बारे में क्षणों का यांत्रिक संतुलन है। अंश कुल क्षण देता है जो तब द्रव्यमान के केंद्र में एक समकक्ष कुल बल द्वारा संतुलित होता है।यह विमान में, और अंतरिक्ष में क्रमशः प्रोजेक्टिव निर्देशांक को परिभाषित करने के लिए तीन बिंदुओं और चार बिंदुओं के लिए सामान्यीकृत किया जा सकता है।

आवधिक सीमा स्थितियों के साथ प्रणाली (सिस्टम)

आवधिक सीमा की स्थिति वाले एक प्रणाली में कणों के लिए दो कण समीपवासी हो सकते हैं, भले ही वे प्रणाली के विपरीत पक्षों पर हों। यह अक्सर आणविक गतिशीलता स्वांग (सिमुलेशन) में होता है, उदाहरण के लिए, जिसमें समूह यादृच्छिक स्थानों पर बनते हैं और कभी -कभी पड़ोसी परमाणु आवधिक सीमा को पार करते हैं।जब एक समूह आवधिक सीमा को बढ़ाता है, तो द्रव्यमान के केंद्र की एक भोली गणना गलत होगी।आवधिक प्रणालियों के लिए द्रव्यमान के केंद्र की गणना के लिए एक सामान्यीकृत विधि प्रत्येक समन्वय, x और y और/या z का इलाज करना है, जैसे कि यह एक रेखा के बजाय एक वृत्त पर था।[11] प्रत्येक कण गणना के x को समन्वयित करती है और इसे कोण पर आलेख्यपत्र (मैप) करती है,

जहां एक्सmax एक्स दिशा में प्रणाली का आकार है और ।इस कोण से, दो नए बिंदु उत्पन्न किया जा सकता है, जिसे कण के द्रव्यमान द्वारा भारित किया जा सकता है द्रव्यमान के केंद्र के लिए या ज्यामितीय केंद्र के लिए 1 का मान दिया गया:
में सतह, ये निर्देशांक त्रिज्या 1 के एक चक्र पर स्थित हैं। संग्रह से तथा सभी कणों से मान, औसत तथा गणना की जाती है।

कहाँ पे M सभी कणों के जनता का योग है।

इन मूल्यों को एक नए कोण में वापस आलेख्यपत्र ( मैप) किया जाता है, , जिसमें से द्रव्यमान के केंद्र का X समन्वय प्राप्त किया जा सकता है:

द्रव्यमान के पूर्ण केंद्र को निर्धारित करने के लिए प्रणाली के सभी आयामों के लिए प्रक्रिया को दोहराया जा सकता है। एल्गोरिथ्म की उपयोगिता यह है कि यह गणित को यह निर्धारित करने की अनुमति देता है कि समय-समय पर सीमाओं को फैलाते हुए क्लस्टर को "प्रकट" करने के लिए क्लस्टर विश्लेषण का अनुमान लगाने या द्रव्यमान का सबसे अच्छा केंद्र कहां है,अगर दोनों औसत मान शून्य हैं, , फिर अपरिभाषित है।यह एक सही परिणाम है, क्योंकि यह केवल तब होता है जब सभी कण बिल्कुल समान रूप से फैले होते हैं। उस स्थिति में, उनके एक्स निर्देशांक एक आवर्त प्रणाली गणितीय रूप से समान होते हैं।

गुरुत्वाकर्षण का केंद्र

एक शैक्षिक खिलौना का आरेख जो एक बिंदु पर संतुलित होता है: द्रव्यमान का केंद्र (सी) इसके समर्थन (P) के नीचे बसता है

एक पिंड का गुरुत्वाकर्षण केंद्र वह बिंदु है जिसके चारों ओर गुरुत्वाकर्षण बलों के कारण परिणामी घूर्णनबल गायब हो जाता है। जहां एक गुरुत्वाकर्षण क्षेत्र को समान माना जा सकता है, वहां द्रव्यमान-केंद्र और केंद्र-का-गुरुत्वाकर्षण समान होगा। हालांकि, एक ग्रह के चारों ओर कक्षा में उपग्रहों के लिए, एक उपग्रह पर लागू किए जा रहे अन्य टॉर्क की अनुपस्थिति में, करीब से (मजबूत) और आगे (कमजोर) के बीच गुरुत्वाकर्षण क्षेत्र में मामूली भिन्नता (ढाल) ग्रह को जन्म दे सकता है एक टोक़ जो उपग्रह को इस तरह से संरेखित करेगा कि इसकी लंबी धुरी ऊर्ध्वाधर है। ऐसे मामले में, केंद्र-की-गुरुत्वाकर्षण और द्रव्यमान-केंद्र के बीच अंतर करना महत्वपूर्ण है। दोनों के बीच किसी भी क्षैतिज समायोजन (ऑफसेट) के परिणामस्वरूप एक टोक़ लागू होगा।

यह ध्यान रखना उपयोगी है कि द्रव्यमान-केंद्र किसी दिए गए कठोर पिंड के लिए एक निश्चित संपत्ति है (जैसे कि कोई स्लॉश या ग्रंथन (आर्टिक्यूलेशन) के साथ), जबकि केंद्र-का-गुरुत्वाकर्षण, इसके अलावा, गैर-समान गुरुत्वाकर्षण में इसके क्षेत्र अभिविन्यास पर निर्भर करता है । बाद के मामले में, केंद्र-का-गुरुत्वाकर्षण हमेशा द्रव्यमान-केंद्र की तुलना में मुख्य आकर्षक निकाय के करीब कुछ हद तक स्थित होगी, और इस तरह पिंड में अपनी रुचि सें स्थिति को बदल देगा क्योंकि इसके अभिविन्यास को बदल दिया जाता है।

विमान, वाहनों और जहाजों, की गतिशीलता के अध्ययन में द्रव्यमान केंद्र के सापेक्ष बलों और क्षणों कोहल करने की आवश्यकता है। यह सच है कि क्या गुरुत्वाकर्षण स्वयं एक विचार है। द्रव्यमान-केंद्र को गुरुत्वाकर्षण के केंद्र के रूप में संदर्भित करना एक बोलचाल का कुछ है, लेकिन यह सामान्य उपयोग में है और जब गुरुत्वाकर्षण ढाल प्रभाव नगण्य होते हैं, तो केंद्र-से-गुरुत्वाकर्षण और द्रव्यमान-केंद्र समान होते हैं और इसका उपयोग परस्पर उपयोग किया जाता है।

भौतिकी में द्रव्यमान के केंद्र का उपयोग करने के लाभ एक द्रव्यमान वितरण को एक निरंतर पिंड पर गुरुत्वाकर्षण बलों के परिणाम पर विचार करके देखा जा सकता है। आयतन में प्रत्येक बिंदु r पर घनत्व ρ (r) के साथ आयतन v के एक पिंड Q पर विचार करें। एक समानांतर गुरुत्व क्षेत्र में प्रत्येक बिंदु r पर बल f द्वारा दिया जाता है,

जहां डीएम (DM) बिंदु आर पर द्रव्यमान है, जी गुरुत्वाकर्षण का त्वरण है, और ऊर्ध्वाधर दिशा को परिभाषित करने वाला एक इकाई वेक्टर है।

आयतन में एक संदर्भ बिंदु आर चुनें और इस बिंदु पर परिणामी बल और टोक़ की गणना करें,

तथायदि संदर्भ बिंदु r को चुना जाता है ताकि यह द्रव्यमान का केंद्र हो, तो
जिसका अर्थ है परिणामी टोक़ t = 0. क्योंकि परिणामी टोक़ शून्य है पिंड को आगे बढ़ेगा, हालांकि यह द्रव्यमान के केंद्र में केंद्रित द्रव्यमान के साथ एक कण है।


कठोर शरीर के लिए संदर्भ बिंदु के रूप में गुरुत्वाकर्षण के केंद्र का चयन करके, गुरुत्वाकर्षण बल शरीर को घुमाने का कारण नहीं होगा, जिसका अर्थ है कि पिंड के वजन को द्रव्यमान के केंद्र में केंद्रित माना जा सकता है।

रैखिक और कोणीय गति

द्रव्यमान के केंद्र के सापेक्ष कणों की स्थिति और वेग को मापकर सरल किया जा सकता है।कणों की प्रणाली को Pi, i = 1, ..., n जनता miनिर्देशांक 'आर' पर स्थित होi वेग के साथ वीi।एक संदर्भ बिंदु r का चयन करें और सापेक्ष स्थिति और वेग वैक्टर की गणना करें,

प्रणाली की कुल रैखिक गति और कोणीय गति हैंतथायदि आर को द्रव्यमान के केंद्र के रूप में चुना जाता है, तो इन समीकरणों को सरल बनाता है
जहां एम सभी कणों का कुल द्रव्यमान है, 'P' रैखिक गति है, और 'एल' कोणीय गति है।


गति के संरक्षण का नियम भविष्यवाणी करता है कि बाहरी बलों के अधीन नहीं होने वाली किसी भी प्रणाली के लिए की गति स्थिर रहेगी, जिसका अर्थ है कि द्रव्यमान का केंद्र निरंतर वेग के साथ आगे बढ़ेगा।यह शास्त्रीय आंतरिक बलों के साथ सभी प्रणालियों के लिए लागू होता है, जिसमें चुंबकीय क्षेत्र, विद्युत क्षेत्र, रासायनिक प्रतिक्रियाएं, और इसी तरह शामिल हैं।औपचारिक रूप से, यह किसी भी आंतरिक बलों के लिए सच है जो न्यूटन के तीसरे कानून के अनुसार रद्द करते हैं।[12]

द्रव्यमान के केंद्र का पता लगाना

साहुल रेखा पद्धति

एक पिंड के द्रव्यमान के केंद्र का प्रयोगात्मक निर्धारण पिंड पर गुरुत्वाकर्षण बलों का उपयोग करता है और इस तथ्य पर आधारित है कि द्रव्यमान का केंद्र पृथ्वी की सतह के पास समानांतर गुरुत्व क्षेत्र में गुरुत्वाकर्षण के केंद्र के समान है।

समरूपता और निरंतर घनत्व की धुरी के साथ एक पिंड के द्रव्यमान का केंद्र इस अक्ष पर होना चाहिए। इस प्रकार, निरंतर घनत्व के एक गोलाकार अचर घनत्व वाले एक वृत्ताकार बेलन के द्रव्यमान केन्द्र का द्रव्यमान केन्द्र बेलन के अक्ष पर होता है। इसी प्रकार, स्थिर घनत्व वाले गोलाकार सममित पिंड के द्रव्यमान का केंद्र गोले के केंद्र में होता है। सामान्य तौर पर, किसी पिंड की किसी भी समरूपता के लिए, उसका द्रव्यमान केंद्र उस समरूपता का एक निश्चित बिंदु होगा।

दो आयामों में

द्रव्यमान के केंद्र का पता लगाने के लिए एक प्रायोगिक विधि दो स्थानों से वस्तु को निलंबित करना और निलंबन बिंदुओं से साहुल रेखाओं को छोड़ना है। रेखाओं का प्रतिच्छेदन द्रव्यमान का केंद्र है।[13] किसी वस्तु का आकार पहले से ही गणितीय रूप से निर्धारित किया जा सकता है, लेकिन यह एक ज्ञात सूत्र का उपयोग करने के लिए बहुत जटिल हो सकता है। इस मामले में, कोई भी जटिल आकार को सरल, अधिक प्राथमिक आकृतियों में विभाजित कर सकता है, जिनके द्रव्यमान के केंद्रों को ढूंढना आसान है। यदि प्रत्येक क्षेत्र के लिए द्रव्यमान का कुल द्रव्यमान और केंद्र निर्धारित किया जा सकता है, तो पूरे के द्रव्यमान का केंद्र केंद्रों का भारित औसत है।[14] यह विधि छिद्रों वाली वस्तुओं के लिए भी काम कर सकती है, जिसे ऋणात्मक द्रव्यमान के रूप में देखा जा सकता है।[15] एक पूर्णांक, या पूर्णांकमाP के रूप में जाना जाने वाला प्लैनीमीटर का एक प्रत्यक्ष विकास, एक अनियमित दो-आयामी आकार के द्रव्यमान के केंद्र या केंद्र की स्थिति को स्थापित करने के लिए उपयोग किया जा सकता है। इस विधि को एक अनियमित, चिकनी या जटिल सीमा के साथ एक आकार पर लागू किया जा सकता है जहां अन्य तरीके बहुत मुश्किल हैं। यह नियमित रूप से जहाज निर्माताओं द्वारा एक जहाज के उछाल के आवश्यक विस्थापन और केंद्र के साथ तुलना करने के लिए उपयोग किया गया था, और यह सुनिश्चित करता था कि यह पलट न जाए।।[16][17]

तीन आयामों में

द्रव्यमान के केंद्र के तीन-आयामी निर्देशांक का पता लगाने के लिए एक प्रयोगात्मक विधि तीन बिंदुओं पर वस्तु का समर्थन करके और बलों को मापने से शुरू होती है, F1, F2, और एफ3 यह वस्तु के वजन का विरोध करता है, ( ऊर्ध्वाधर दिशा में इकाई वेक्टर है)। R1, R2, और R3 समर्थन बिंदुओं की स्थिति निर्देशांक बनें, फिर द्रव्यमान के केंद्र के निर्देशांक r इस स्थिति को संतुष्ट करते हैं कि परिणामी टोक़ शून्य है,

या
यह समीकरण क्षैतिज विमान में द्रव्यमान r* के केंद्र के निर्देशांक देता है,
द्रव्यमान का केंद्र ऊर्ध्वाधर रेखा एल पर स्थित द्वारा दिया गया है,
द्रव्यमान के केंद्र के तीन-आयामी निर्देशांक इस प्रयोग को दो बार वस्तु के साथ निर्धारित किए जाते हैं ताकि इन बलों को वस्तु के माध्यम से दो अलग-अलग क्षैतिज विमानों के लिए मापा जाए। द्रव्यमान का केंद्र दो दो रेखाओं L1 और L2 का प्रतिच्छेदन होगा।

अनुप्रयोग

इंजीनियरिंग डिजाइन

ऑटोमोटिव अनुप्रयोग

इंजीनियर एक स्पोर्ट्स कार को डिजाइन करने की कोशिश करते हैं ताकि कार के संभाल को बेहतर बनाने के लिए इसका द्रव्यमान कम हो यानी अपेक्षाकृत तेज मोड़ को निष्पादित करते हुए कर्षण को बनाए रखें।

अमेरिकी सैन्य हुमवे की विशेषता कम प्रोफ़ाइल को भाग में डिज़ाइन किया गया था ताकि इसे बिना लुढ़कने के लम्बे वाहनों की तुलना में आगे बढ़ने की अनुमति दी जा सके, यह सुनिश्चित करके कि द्रव्यमान के कम केंद्र को क्षैतिज से दूर कोणों पर भी चार पहियों से घिरे अंतरिक्ष में रहता है।

विमान-विज्ञान (एरोनॉटिक्स)

द्रव्यमान का केंद्र एक विमान पर एक महत्वपूर्ण बिंदु है, जो विमान की स्थिरता को महत्वपूर्ण रूप से प्रभावित करता है।यह सुनिश्चित करने के लिए कि विमान उड़ान भरने के लिए सुरक्षित होने के लिए पर्याप्त स्थिर है, द्रव्यमान का केंद्र निर्दिष्ट सीमाओं के भीतर गिरना चाहिए। यदि द्रव्यमान का केंद्र आगे की सीमा से आगे है, तो विमान कम गतिमान होगा, संभवतः उड़ान भरना (टेकऑफ़) के लिए अवतरण (लैंडिंग) या घूमने में असमर्थ होने के बिंदु तक।[18] यदि द्रव्यमान का केंद्र पिछाड़ी सीमा के Pछे है, तो विमान अधिक गतिशील होगा, लेकिन कम स्थिर भी होगा, और संभवतः इतना अस्थिर होगा ताकि उड़ना असंभव हो। लिफ्ट का पल-पल की भुजा भी कम हो जाएगा, जिससे एक रुकी हुई स्थिति से उबरना अधिक कठिन हो जाता है।[19] होवर में हेलीकॉप्टरों के लिए, द्रव्यमान का केंद्र हमेशा रोटोरहेड के नीचे होता है। आगे की उड़ान में, द्रव्यमान का केंद्र हेलीकॉप्टर को आगे बढ़ाने के लिए चक्रीय नियंत्रण को लागू करके उत्पादित नकारात्मक पिच टॉर्क को संतुलित करने के लिए आगे बढ़ेगा;नतीजतन एक क्रूज़िंग हेलीकॉप्टर स्तर की उड़ान में नाक-नीचे उड़ता है।[20]

खगोल विज्ञान

दो निकायों ने अपने barcenter (रेड क्रॉस) की परिक्रमा की

द्रव्यमान का केंद्र खगोल विज्ञान और खगोल भौतिकी में एक महत्वपूर्ण भूमिका निभाता है, जहां इसे आमतौर पर बैरीसेंटर के रूप में जाना जाता है। बैरीसेंटर दो वस्तुओं के बीच का बिंदु है जहां वे एक दूसरे को संतुलित करते हैं;यह द्रव्यमान का केंद्र है जहां दो या अधिक खगोलीय पिंड एक दूसरे की परिक्रमा करते हैं। जब एक चंद्रमा किसी ग्रह की परिक्रमा करता है, या एक ग्रह एक तारे की परिक्रमा करता है, तो दोनों पिंड वास्तव में एक बिंदु पर परिक्रमा कर रहे हैं जो प्राथमिक (बड़े) निकाय के केंद्र से दूर स्थित है।[21] उदाहरण के लिए, चंद्रमा पृथ्वी के सटीक केंद्र की परिक्रमा नहीं करता है, लेकिन पृथ्वी और चंद्रमा के केंद्र के बीच एक रेखा पर एक बिंदु, लगभग जो पृथ्वी की सतह से लगभग 1,710 किमी (1,062 मील) नीचे है, जहां उनका संबंधित द्रव्यमान संतुलन है।यह वह बिंदु है जिसके बारे में पृथ्वी और चंद्रमा की कक्षा के रूप में वे सूर्य के चारों ओर यात्रा करते हैं। यदि द्रव्यमान अधिक समान है, उदाहरण के लिए, प्लूटो और चारोन, तो बैरीसेंटर दोनों निकायों के बाहर गिर जाएगा।

धांधली और सुरक्षा

गुरुत्वाकर्षण के केंद्र के स्थान को जानना महत्वपूर्ण होता है, संभवतः गंभीर चोट या मृत्यु हो सकती है यदि गलत तरीके से मान लिया जाए। गुरुत्वाकर्षण का एक केंद्र जो उद्वाहक बिंदु पर या उससे ऊपर है, सबसे अधिक संभावनाएक टिप-ओवर घटना में होगी। सामान्य तौर पर, चुनें बिन्दु के नीचे गुरुत्वाकर्षण का केंद्र जितना अधिक होता है, उतना ही सुरक्षित होता है। विचार करने के लिए अन्य चीजें हैं, जैसे कि स्थानांतरण भार, भार और द्रव्यमान की ताकत , चुनें बिन्दु के बीच की दूरी, और चुनें बिन्दु की संख्या।विशेष रूप से, उद्वाहक बिंदुओं का चयन करते समय, केंद्र में गुरुत्वाकर्षण के केंद्र को और उद्वाहक बिंदुओं के नीचे अच्छी तरह से रखना बहुत महत्वपूर्ण है।[22]

शारीरिक गति (बॉडी मोशन)

काइन्सियोलॉजी और बायोमैकेनिक्स में, द्रव्यमान का केंद्र एक महत्वपूर्ण पैरामीटर है जो लोगों को उनके मानव गति को समझने में सहायता करता है। आमतौर पर, एक मानव के द्रव्यमान का केंद्र दो तरीकों में से एक के साथ पाया जाता है: प्रतिक्रिया बोर्ड विधि एक स्थिर विश्लेषण है जिसमें उस उपकरण पर झूठ बोलने वाला व्यक्ति शामिल होता है, और द्रव्यमान के केंद्र को खोजने के लिए उनके स्थिर संतुलन समीकरण का उपयोग होता है; विभाजन विधि भौतिक सिद्धांत के आधार पर एक गणितीय समाधान पर निर्भर करती है कि एक निर्दिष्ट अक्ष के सापेक्ष व्यक्तिगत शरीर वर्गों के टॉर्क्स का योग, शरीर का गठन करने वाले पूरे व्यवस्था के टोक़ के बराबर होना चाहिए, एक ही अक्ष के सापेक्ष मापा जाता है।[23]

यह भी देखें

  • बैरी सेंटर
  • उछाल
  • द्रव्यमान का केंद्र (सापेक्ष)
  • टक्कर का केंद्र
  • दबाव का केंद्र (द्रव यांत्रिकी)
  • दबाव का केंद्र (स्थलीय लोकोमोशन)
  • सेंट्रोइड
  • द्रव्यमान का परिधि
  • अपेक्षित मूल्य
  • मास प्वाइंट ज्यामिति
  • मेटासेंट्रिक ऊंचाई
  • रोल सेंटर
  • वजन का वितरण


टिप्पणियाँ

  1. Shore 2008, pp. 9–11.
  2. Baron 2004, pp. 91–94.
  3. Baron 2004, pp. 94–96.
  4. Baron 2004, pp. 96–101.
  5. Baron 2004, pp. 101–106.
  6. Mancosu 1999, pp. 56–61.
  7. Erlichson, H. (1996). "Christiaan Huygens' discovery of the center of oscillation formula". American Journal of Physics. 64 (5): 571–574. Bibcode:1996AmJPh..64..571E. doi:10.1119/1.18156. ISSN 0002-9505.
  8. Walton 1855, p. 2.
  9. Beatty 2006, p. 29.
  10. Levi 2009, p. 85.
  11. Bai & Breen 2008.
  12. Kleppner & Kolenkow 1973, p. 117.
  13. Kleppner & Kolenkow 1973, pp. 119–120.
  14. Feynman, Leighton & Sands 1963, pp. 19.1–19.2.
  15. Hamill 2009, pp. 20–21.
  16. "The theory and design of British shipbuilding". Amos Lowrey Ayre. p. 3. Retrieved 20 August 2012.
  17. Sangwin 2006, p. 7.
  18. Federal Aviation Administration 2007, p. 1.4.
  19. Federal Aviation Administration 2007, p. 1.3.
  20. "Helicopter Aerodynamics" (PDF). p. 82. Archived from the original (PDF) on 24 March 2012. Retrieved 23 November 2013.
  21. Murray & Dermott 1999, pp. 45–47.
  22. "Structural Collapse Technician: Module 4 - Lifting and Rigging" (PDF). FEMA.gov. Retrieved 27 November 2019.
  23. Vint 2003, pp. 1–11.

संदर्भ


बाहरी संबंध