प्रक्षोभ: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
द्रव गतिकी में, '''विक्षोभ''' या '''विक्षुब्ध प्रवाह''' तरल गति है, जो [[दबाव]] और [[प्रवाह वेग]] में कैओस सिद्धांत परिवर्तन की विशेषता है। यह एक लामिनार प्रवाह (पटलीय प्रवाह) के विपरीत है, जो तब होता है जब तरल समानांतर परतों में बहता है, उन परतों के बीच कोई व्यवधान नहीं होता है।<ref name=Batchelor>{{cite book | last=Batchelor | first=G. | title=द्रव यांत्रिकी का परिचय| year=2000}}</ref>
द्रव गतिकी में, '''विक्षोभ''' या '''विक्षुब्ध प्रवाह''' तरल गति है, जो [[दबाव]] और [[प्रवाह वेग]] में कैओस सिद्धांत परिवर्तन की विशेषता है। यह एक लामिनार प्रवाह (पटलीय प्रवाह) के विपरीत है, जो तब होता है जब तरल समानांतर परतों में बहता है, उन परतों के बीच कोई व्यवधान नहीं होता है।<ref name=Batchelor>{{cite book | last=Batchelor | first=G. | title=द्रव यांत्रिकी का परिचय| year=2000}}</ref>


विक्षोभ आमतौर पर रोजमर्रा की घटनाओं में देखी जाती है जैसे कि सर्फ, तेजी से बहने वाली नदियाँ, तूफानी बादल, या चिमनी से धुआं, और प्रकृति में होने वाले या इंजीनियरिंग अनुप्रयोगों में निर्मित अधिकांश द्रव प्रवाह विक्षुब्ध होते हैं।<ref name="ting-surf">{{cite journal|journal=Coastal Engineering|volume=27|issue=3–4|pages=131–160|year=1996|title=स्पिलिंग ब्रेकर में सर्फ-ज़ोन अशांति की गतिशीलता|last1=Ting|first1=F. C. K.|last2=Kirby|first2=J. T.|doi=10.1016/0378-3839(95)00037-2}}</ref><ref name="tennekes">{{cite book|last1=Tennekes|first1=H.|last2=Lumley|first2=J. L.|title=अशांति में पहला कोर्स|year=1972|publisher=[[MIT Press]]|isbn=9780262200196|url=https://mitpress.mit.edu/books/first-course-turbulence}}</ref>{{rp|2}} द्रव प्रवाह के कुछ हिस्सों में अत्यधिक गतिज ऊर्जा के कारण विक्षोभ होता है, जो द्रव की चिपचिपाहट के प्रभाव को कम करता है। इस कारण आमतौर पर कम चिपचिपाहट वाले तरल पदार्थों में विक्षोभ महसूस होता है। सामान्य शब्दों में, विक्षुब्ध प्रवाह में, अस्थिर भंवर कई आकार के दिखाई देते हैं जो एक दूसरे पर परस्पर प्रभाव करते हैं, परिणामस्वरूप घर्षण प्रभाव के कारण संकर्षण (भौतिकी) बढ़ जाता है। यह एक पाइप के माध्यम से द्रव को पंप करने के लिए आवश्यक ऊर्जा को बढ़ाता है।
विक्षोभ आमतौर पर रोजमर्रा की घटनाओं में देखी जाती है जैसे कि सर्फ, तेजी से बहने वाली नदियाँ, तूफानी बादल, या चिमनी से धुआं, और प्रकृति में होने वाले या इंजीनियरिंग अनुप्रयोगों में निर्मित अधिकांश द्रव प्रवाह विक्षुब्ध होते हैं।<ref name="ting-surf">{{cite journal|journal=Coastal Engineering|volume=27|issue=3–4|pages=131–160|year=1996|title=स्पिलिंग ब्रेकर में सर्फ-ज़ोन अशांति की गतिशीलता|last1=Ting|first1=F. C. K.|last2=Kirby|first2=J. T.|doi=10.1016/0378-3839(95)00037-2}}</ref><ref name="tennekes">{{cite book|last1=Tennekes|first1=H.|last2=Lumley|first2=J. L.|title=अशांति में पहला कोर्स|year=1972|publisher=[[MIT Press]]|isbn=9780262200196|url=https://mitpress.mit.edu/books/first-course-turbulence}}</ref>{{rp|2}} द्रव प्रवाह के कुछ हिस्सों में अत्यधिक गतिज ऊर्जा के कारण विक्षोभ होता है, जो द्रव की अपरुपणहट के प्रभाव को कम करता है। इस कारण आमतौर पर कम अपरुपणहट वाले तरल पदार्थों में विक्षोभ महसूस होता है। सामान्य शब्दों में, विक्षुब्ध प्रवाह में, अस्थिर भंवर कई आकार के दिखाई देते हैं जो एक दूसरे पर परस्पर प्रभाव करते हैं, परिणामस्वरूप घर्षण प्रभाव के कारण संकर्षण (भौतिकी) बढ़ जाता है। यह एक पाइप के माध्यम से द्रव को पंप करने के लिए आवश्यक ऊर्जा को बढ़ाता है।


विक्षोभ की शुरुआत का अनुमान आयामहीन रेनॉल्ड्स संख्या, द्रव प्रवाह में गतिज ऊर्जा और चिपचिपी नमी के अनुपात से लगाया जा सकता है। हालांकि, विक्षोभ ने लंबे समय तक विस्तृत भौतिक विश्लेषण का विरोध किया है, और विक्षोभ के अंदर की अंतःक्रिया एक बहुत ही जटिल घटना पैदा करती है। [[रिचर्ड फेनमैन]] ने शास्त्रीय भौतिकी में सबसे महत्वपूर्ण अनसुलझी समस्या के रूप में विक्षोभ का वर्णन किया है।<ref name="eames-quoting-feynman">{{cite journal|journal=[[Philosophical Transactions of the Royal Society A]]|title=अशांत प्रवाह में इंटरफेसियल प्रक्रियाओं को समझने में नया विकास|last1=Eames|first1=I.|last2=Flor|first2=J. B.|date=January 17, 2011|url=http://rsta.royalsocietypublishing.org/content/369/1937/702|doi=10.1098/rsta.2010.0332|pmid=21242127|bibcode=2011RSPTA.369..702E|volume=369|issue=1937|pages=702–705|doi-access=free}}</ref>
विक्षोभ की शुरुआत का अनुमान आयामहीन रेनॉल्ड्स संख्या, द्रव प्रवाह में गतिज ऊर्जा और चिपचिपी नमी के अनुपात से लगाया जा सकता है। हालांकि, विक्षोभ ने लंबे समय तक विस्तृत भौतिक विश्लेषण का विरोध किया है, और विक्षोभ के अंदर की अंतःक्रिया एक बहुत ही जटिल घटना पैदा करती है। [[रिचर्ड फेनमैन]] ने शास्त्रीय भौतिकी में सबसे महत्वपूर्ण अनसुलझी समस्या के रूप में विक्षोभ का वर्णन किया है।<ref name="eames-quoting-feynman">{{cite journal|journal=[[Philosophical Transactions of the Royal Society A]]|title=अशांत प्रवाह में इंटरफेसियल प्रक्रियाओं को समझने में नया विकास|last1=Eames|first1=I.|last2=Flor|first2=J. B.|date=January 17, 2011|url=http://rsta.royalsocietypublishing.org/content/369/1937/702|doi=10.1098/rsta.2010.0332|pmid=21242127|bibcode=2011RSPTA.369..702E|volume=369|issue=1937|pages=702–705|doi-access=free}}</ref>
Line 34: Line 34:


; विसारकता: विक्षुब्ध प्रवाह में ऊर्जा की आसानी से उपलब्ध आपूर्ति द्रव मिश्रणों के समरूपीकरण (मिश्रण) को तेज करती है। वह विशेषता जो एक प्रवाह में द्रव्यमान, संवेग और ऊर्जा परिवहन की बढ़ी हुई मिश्रण और बढ़ी हुई दरों के लिए जिम्मेदार होती है, विसारकता कहलाती है।<ref>Ferziger, Joel H.; Peric, Milovan (2002). ''Computational Methods for Fluid Dynamics''. Germany: Springer-Verlag Berlin Heidelberg. pp. 265–307. {{ISBN|978-3-642-56026-2}}.</ref>
; विसारकता: विक्षुब्ध प्रवाह में ऊर्जा की आसानी से उपलब्ध आपूर्ति द्रव मिश्रणों के समरूपीकरण (मिश्रण) को तेज करती है। वह विशेषता जो एक प्रवाह में द्रव्यमान, संवेग और ऊर्जा परिवहन की बढ़ी हुई मिश्रण और बढ़ी हुई दरों के लिए जिम्मेदार होती है, विसारकता कहलाती है।<ref>Ferziger, Joel H.; Peric, Milovan (2002). ''Computational Methods for Fluid Dynamics''. Germany: Springer-Verlag Berlin Heidelberg. pp. 265–307. {{ISBN|978-3-642-56026-2}}.</ref>
''प्रक्षुब्ध विसरण'' को आमतौर पर एक [[Index.php?title=प्रक्षुब्ध विसरण गुणांक|प्रक्षुब्ध विसरण गुणांक]] द्वारा वर्णित किया जाता है। इस प्रक्षुब्ध विसरण गुणांक को एक परिघटना संबंधी अर्थ में परिभाषित किया गया है, आणविक प्रसार के साथ सादृश्य द्वारा, लेकिन इसका वास्तविक भौतिक अर्थ नहीं है, प्रवाह की स्थिति पर निर्भर होने के कारण, और स्वयं द्रव की संपत्ति नहीं है। इसके अलावा, प्रक्षुब्ध विसरण अवधारणा एक विक्षुब्ध प्रवाह और आणविक परिवहन के लिए मौजूद प्रवाह और ढाल के बीच के संबंध के समान एक औसत चर के ढाल के बीच एक संवैधानिक संबंध मानती है। सर्वोत्तम स्थिति में, यह धारणा केवल एक सन्निकटन है। फिर भी, विक्षुब्ध प्रवाह के मात्रात्मक विश्लेषण के लिए विक्षुब्ध विसरणशीलता सबसे सरल तरीका है, और इसकी गणना करने के लिए कई मॉडल बनाए गए हैं। उदाहरण के लिए, महासागरों जैसे पानी के बड़े निकायों में यह गुणांक [[लुईस फ्राई रिचर्डसन]] के चार-तिहाई घात नियम का उपयोग करके पाया जा सकता है और यह [[यादृच्छिक चाल]] सिद्धांत द्वारा शासित होता है। नदियों और बड़े समुद्री धाराओं में, प्रसार गुणांक एल्डर के सूत्र के भिन्नरूपों द्वारा दिया जाता है।
''प्रक्षुब्ध विसरण'' को आमतौर पर एक [[Index.php?title=प्रक्षुब्ध विसरण गुणांक|प्रक्षुब्ध विसरण गुणांक]] द्वारा वर्णित किया जाता है। इस प्रक्षुब्ध विसरण गुणांक को एक परिघटना संबंधी अर्थ में परिभाषित किया गया है, आणविक प्रसार के साथ सादृश्य द्वारा, लेकिन इसका वास्तविक भौतिक अर्थ नहीं है, प्रवाह की स्थिति पर निर्भर होने के कारण, और स्वयं द्रव की प्रकृति नहीं है। इसके अलावा, प्रक्षुब्ध विसरण अवधारणा एक विक्षुब्ध प्रवाह और आणविक परिवहन के लिए मौजूद प्रवाह और ढाल के बीच के संबंध के समान एक औसत चर के ढाल के बीच एक संवैधानिक संबंध मानती है। सर्वोत्तम स्थिति में, यह धारणा केवल एक सन्निकटन है। फिर भी, विक्षुब्ध प्रवाह के मात्रात्मक विश्लेषण के लिए विक्षुब्ध विसरणशीलता सबसे सरल तरीका है, और इसकी गणना करने के लिए कई मॉडल बनाए गए हैं। उदाहरण के लिए, महासागरों जैसे पानी के बड़े निकायों में यह गुणांक [[लुईस फ्राई रिचर्डसन]] के चार-तिहाई घात नियम का उपयोग करके पाया जा सकता है और यह [[यादृच्छिक चाल]] सिद्धांत द्वारा शासित होता है। नदियों और बड़े समुद्री धाराओं में, प्रसार गुणांक एल्डर के सूत्र के भिन्नरूपों द्वारा दिया जाता है।


==== [[घूर्णीता]]: ====
==== [[घूर्णीता]]: ====
विक्षुब्ध प्रवाह में गैर-शून्य भ्रमिलता होती है और एक मजबूत त्रि-आयामी भंवर जनन तंत्र की विशेषता होती है जिसे [[भंवर खिंचाव]] के रूप में जाना जाता है। द्रव गतिकी में, वे अनिवार्य रूप से खिंचाव के अधीन भंवर होते हैं जो खिंचाव की दिशा में भ्रमिलता के घटक की इसी वृद्धि के साथ जुड़े होते हैं - कोणीय गति के संरक्षण के कारण, दूसरी ओर, भंवर खिंचाव मुख्य तंत्र है जिस पर विक्षुब्धि ऊर्जा कैस्केड पहचान योग्य संरचना फलन को स्थापित करने और बनाए रखने के लिए निर्भर करता है।<ref name="Kundu, Pijush K. 2012 pp. 537">Kundu, Pijush K.; Cohen, Ira M.; Dowling, David R. (2012). ''Fluid Mechanics''. Netherlands: Elsevier Inc. pp. 537–601. {{ISBN|978-0-12-382100-3}}.</ref> सामान्य तौर पर, स्ट्रेचिंग मैकेनिज्म का तात्पर्य द्रव तत्वों के आयतन संरक्षण के कारण स्ट्रेचिंग दिशा के लंबवत दिशा में भंवरों के पतले होने से है। नतीजतन, भंवरों की रेडियल लंबाई कम हो जाती है और बड़ी प्रवाह संरचनाएं छोटी संरचनाओं में टूट जाती हैं। यह प्रक्रिया तब तक जारी रहती है जब तक कि छोटे पैमाने की संरचनाएं इतनी छोटी नहीं हो जाती कि उनकी गतिज ऊर्जा को द्रव की आणविक श्यानता द्वारा ऊष्मा में परिवर्तित किया जा सके। विक्षुब्ध प्रवाह हमेशा घूर्णी और त्रि-आयामी होता है।<ref name="Kundu, Pijush K. 2012 pp. 537" />उदाहरण के लिए, वायुमंडलीय चक्रवात घूर्णी होते हैं लेकिन उनके दो आयामी आकार भंवर पीढ़ी की अनुमति नहीं देते हैं और इसलिए विक्षुब्ध नहीं होते हैं। दूसरी ओर, महासागरीय प्रवाह परिक्षेपी होते हैं लेकिन अनिवार्य रूप से गैर-घूर्णी होते हैं और इसलिए विक्षुब्ध नहीं होते हैं।<ref name="Kundu, Pijush K. 2012 pp. 537" />
विक्षुब्ध प्रवाह में गैर-शून्य भ्रमिलता होती है और एक मजबूत त्रि-आयामी भंवर जनन तंत्र की विशेषता होती है जिसे [[भंवर खिंचाव]] के रूप में जाना जाता है। द्रव गतिकी में, वे अनिवार्य रूप से खिंचाव के अधीन भंवर होते हैं जो खिंचाव की दिशा में भ्रमिलता के घटक की इसी वृद्धि के साथ जुड़े होते हैं - कोणीय गति के संरक्षण के कारण, दूसरी ओर, भंवर खिंचाव मुख्य तंत्र है जिस पर विक्षुब्धि ऊर्जा सोपान पहचान योग्य संरचना फलन को स्थापित करने और बनाए रखने के लिए निर्भर करता है।<ref name="Kundu, Pijush K. 2012 pp. 537">Kundu, Pijush K.; Cohen, Ira M.; Dowling, David R. (2012). ''Fluid Mechanics''. Netherlands: Elsevier Inc. pp. 537–601. {{ISBN|978-0-12-382100-3}}.</ref> सामान्य तौर पर, खिंचाव तंत्र का तात्पर्य द्रव तत्वों के आयतन संरक्षण के कारण विस्तारण दिशा के लंबवत दिशा में भंवरों के पतले होने से है। नतीजतन, भंवरों की रेडियल लंबाई कम हो जाती है और बड़ी प्रवाह संरचनाएं छोटी संरचनाओं में टूट जाती हैं। यह प्रक्रिया तब तक जारी रहती है जब तक कि छोटे पैमाने की संरचनाएं इतनी छोटी नहीं हो जाती कि उनकी गतिज ऊर्जा को द्रव की आणविक श्यानता द्वारा ऊष्मा में परिवर्तित किया जा सके। विक्षुब्ध प्रवाह हमेशा घूर्णी और त्रि-आयामी होता है।<ref name="Kundu, Pijush K. 2012 pp. 537" />उदाहरण के लिए, वायुमंडलीय चक्रवात घूर्णी होते हैं लेकिन उनके दो आयामी आकार भंवर जनन की अनुमति नहीं देते हैं और इसलिए विक्षुब्ध नहीं होते हैं। दूसरी ओर, महासागरीय प्रवाह परिक्षेपी होते हैं लेकिन अनिवार्य रूप से गैर-घूर्णी होते हैं और इसलिए विक्षुब्ध नहीं होते हैं।<ref name="Kundu, Pijush K. 2012 pp. 537" />


;[[अपव्यय]]: विक्षुब्ध प्रवाह को बनाए रखने के लिए, ऊर्जा आपूर्ति के एक निरंतर स्रोत की आवश्यकता होती है क्योंकि विस्कोस शीयर तनाव द्वारा गतिज ऊर्जा को आंतरिक ऊर्जा में परिवर्तित करने के कारण विक्षोभ तेजी से फैलती है। विक्षोभ कई अलग-अलग लंबाई के पैमाने के [[एड़ी (द्रव गतिकी)]] के गठन का कारण बनती है। विक्षुब्ध गति की अधिकांश गतिज ऊर्जा बड़े पैमाने की संरचनाओं में समाहित है। इन बड़े पैमाने की संरचनाओं से ऊर्जा एक जड़त्वीय और अनिवार्य रूप से इनविसिड प्रवाह तंत्र द्वारा छोटे पैमाने की संरचनाओं में प्रवाहित होती है। यह प्रक्रिया जारी रहती है, छोटे और छोटे ढांचे बनाते हैं जो एडीज के पदानुक्रम का उत्पादन करते हैं। आखिरकार यह प्रक्रिया ऐसी संरचनाएं बनाती है जो इतनी छोटी होती हैं कि आणविक प्रसार महत्वपूर्ण हो जाता है और अंत में ऊर्जा का चिपचिपा अपव्यय होता है। जिस पैमाने पर यह होता है वह [[कोलमोगोरोव सूक्ष्मदर्शी]] है।
;[[अपव्यय]]: विक्षुब्ध प्रवाह को बनाए रखने के लिए, ऊर्जा आपूर्ति के एक निरंतर स्रोत की आवश्यकता होती है क्योंकि श्यानता अपरुपण तनाव द्वारा गतिज ऊर्जा को आंतरिक ऊर्जा में परिवर्तित करने के कारण विक्षोभ तेजी से फैलती है। विक्षोभ कई अलग-अलग लंबाई के पैमाने के [[एड़ी (द्रव गतिकी)]] के गठन का कारण बनती है। विक्षुब्ध गति की अधिकांश गतिज ऊर्जा बड़े पैमाने की संरचनाओं में समाहित है। इन बड़े पैमाने की संरचनाओं से ऊर्जा एक जड़त्वीय और अनिवार्य रूप से इनविसिड प्रवाह तंत्र द्वारा छोटे पैमाने की संरचनाओं में प्रवाहित होती है। यह प्रक्रिया जारी रहती है, और छोटे ढांचे बनाते हैं जो एडीज के पदानुक्रम का उत्पादन करते हैं। आखिरकार यह प्रक्रिया ऐसी संरचनाएं बनाती है जो इतनी छोटी होती हैं कि आणविक प्रसार महत्वपूर्ण हो जाता है और अंत में ऊर्जा का अपरुपण अपव्यय होता है। जिस पैमाने पर यह होता है वह [[कोलमोगोरोव सूक्ष्मदर्शी]] है।


इस ऊर्जा कैस्केड के माध्यम से, विक्षुब्ध प्रवाह को प्रवाह वेग में उतार-चढ़ाव और [[औसत प्रवाह]] पर एडीज के एक स्पेक्ट्रम के सुपरपोजिशन के रूप में महसूस किया जा सकता है। भंवरों को प्रवाह वेग, भ्रमिलता और दबाव के सुसंगत पैटर्न के रूप में शिथिल रूप से परिभाषित किया गया है। विक्षुब्ध प्रवाह को लंबाई के पैमाने की एक विस्तृत श्रृंखला पर भंवरों के पूरे पदानुक्रम के रूप में देखा जा सकता है और पदानुक्रम को ऊर्जा स्पेक्ट्रम द्वारा वर्णित किया जा सकता है जो प्रत्येक लंबाई पैमाने (तरंग संख्या) के लिए प्रवाह वेग में उतार-चढ़ाव में ऊर्जा को मापता है। [[ऊर्जा झरना]] में स्केल आमतौर पर बेकाबू और अत्यधिक गैर-सममित होते हैं। फिर भी, लंबाई के इन पैमानों के आधार पर इन भंवरों को तीन श्रेणियों में विभाजित किया जा सकता है।
इस ऊर्जा सोपान के माध्यम से, विक्षुब्ध प्रवाह को प्रवाह वेग में उतार-चढ़ाव और [[औसत प्रवाह]] पर एडीज के एक स्पेक्ट्रम के अध्यारोपण के रूप में महसूस किया जा सकता है। भंवरों को प्रवाह वेग, भ्रमिलता और दबाव के सुसंगत पैटर्न के रूप में शिथिल रूप से परिभाषित किया गया है। विक्षुब्ध प्रवाह को लंबाई के पैमाने की एक विस्तृत श्रृंखला पर भंवरों के पूरे पदानुक्रम के रूप में देखा जा सकता है और पदानुक्रम को ऊर्जा स्पेक्ट्रम द्वारा वर्णित किया जा सकता है जो प्रत्येक लंबाई पैमाने (तरंग संख्या) के लिए प्रवाह वेग में उतार-चढ़ाव में ऊर्जा को मापता है। [[Index.php?title=ऊर्जा सोपान|ऊर्जा सोपान]] में पैमाने आम तौर पर अनियंत्रित और अत्यधिक गैर-सममित होते हैं। फिर भी, लंबाई के पैमाने के आधार पर इन भंवरों को तीन श्रेणियों में विभाजित किया जा सकता है।
; इंटीग्रल टाइम स्केल
; अभिन्न समय पैमाना
Lagrangian प्रवाह के लिए अभिन्न समय के पैमाने को इस प्रकार परिभाषित किया जा सकता है:
लैग्रेंजियन प्रवाह के लिए अभिन्न समय के पैमाने को इस प्रकार परिभाषित किया जा सकता है:


: <math>T = \left ( \frac{1}{\langle u'u'\rangle} \right )\int_0^\infty \langle u'u'(\tau)\rangle \, d\tau</math>
: <math>T = \left ( \frac{1}{\langle u'u'\rangle} \right )\int_0^\infty \langle u'u'(\tau)\rangle \, d\tau</math>
जहां यू' वेग में उतार-चढ़ाव है, और <math>\tau</math> माप के बीच का समय अंतराल है।<ref name="Tennekes 1972">{{Cite book|title=अशांति में पहला कोर्स|last=Tennekes|first=Hendrik|publisher=The MIT Press|year=1972}}</ref>
जहां ''u''<nowiki/>' वेग में उतार-चढ़ाव है, और <math>\tau</math> माप के बीच का समय अंतराल है।<ref name="Tennekes 1972">{{Cite book|title=अशांति में पहला कोर्स|last=Tennekes|first=Hendrik|publisher=The MIT Press|year=1972}}</ref>
; अभिन्न लंबाई तराजू
; अभिन्न लंबाई पैमाने
: बड़े भँवर माध्य प्रवाह से और एक दूसरे से भी ऊर्जा प्राप्त करते हैं। इस प्रकार, ये ऊर्जा उत्पादन भँवर हैं जिनमें अधिकांश ऊर्जा होती है। उनके पास बड़े प्रवाह वेग में उतार-चढ़ाव होता है और आवृत्ति में कम होता है। इंटीग्रल स्केल अत्यधिक [[एनिस्ट्रोपिक]] हैं और सामान्यीकृत दो-बिंदु प्रवाह वेग सहसंबंधों के संदर्भ में परिभाषित किए गए हैं। इन पैमानों की अधिकतम लंबाई तंत्र की विशेषता लंबाई से विवश है। उदाहरण के लिए, पाइप प्रवाह का सबसे बड़ा अभिन्न लंबाई पैमाना पाइप व्यास के बराबर है। वायुमंडलीय विक्षोभ के मामले में, यह लंबाई कई सौ किलोमीटर के क्रम तक पहुँच सकती है। अभिन्न लंबाई के पैमाने को इस रूप में परिभाषित किया जा सकता है
: बड़े भँवर माध्य प्रवाह से और एक दूसरे से भी ऊर्जा प्राप्त करते हैं। इस प्रकार, ये ऊर्जा उत्पादन भँवर हैं जिनमें अधिकांश ऊर्जा होती है। उनके पास बड़े प्रवाह वेग में उतार-चढ़ाव होता है और आवृत्ति में कम होता है। अभिन्न पैमाना अत्यधिक [[एनिस्ट्रोपिक]] (विषमदैशिक) हैं और सामान्यीकृत दो-बिंदु प्रवाह वेग सहसंबंधों के संदर्भ में परिभाषित किए गए हैं। इन पैमानों की अधिकतम लंबाई उपकरण की विशिष्ट लंबाई से बाधित होती है। उदाहरण के लिए, पाइप प्रवाह का सबसे बड़ा अभिन्न लंबाई पैमाना पाइप व्यास के बराबर है। वायुमंडलीय विक्षोभ के मामले में, यह लंबाई कई सौ किलोमीटर के क्रम तक पहुँच सकती है। अभिन्न लंबाई के पैमाने को इस रूप में परिभाषित किया जा सकता है
:: <math>L = \left ( \frac{1}{\langle u'u'\rangle} \right ) \int_0^\infty \langle u'u'(r)\rangle \, dr</math>
:: <math>L = \left ( \frac{1}{\langle u'u'\rangle} \right ) \int_0^\infty \langle u'u'(r)\rangle \, dr</math>
: जहां r दो माप स्थानों के बीच की दूरी है, और u' उसी दिशा में वेग में उतार-चढ़ाव है।<ref name="Tennekes 1972"/>; कोल्मोगोरोव माइक्रोस्केल्स: स्पेक्ट्रम में सबसे छोटा स्केल जो विस्कस सब-लेयर रेंज बनाता है। इस सीमा में, अरेखीय अंतःक्रियाओं से ऊर्जा इनपुट और विस्कोस अपव्यय से ऊर्जा निकास सटीक संतुलन में हैं। छोटे पैमाने में उच्च आवृत्ति होती है, जिससे विक्षोभ स्थानीय रूप से [[समदैशिक]] और सजातीय हो जाती है।
: जहाँ r दो माप स्थानों के बीच की दूरी है, और u' उसी दिशा में वेग में उतार-चढ़ाव है।<ref name="Tennekes 1972"/>; कोल्मोगोरोव सूक्ष्म मापक्रम: स्पेक्ट्रम में सबसे छोटा स्केल जो श्यान उप-परत रेंज बनाता है। इस सीमा में, अरेखीय अंतःक्रियाओं से ऊर्जा निविष्ट और श्यानता अपव्यय से ऊर्जा निकास सटीक संतुलन में हैं। छोटे पैमाने में उच्च आवृत्ति होती है, जिससे विक्षोभ स्थानीय रूप से [[समदैशिक]] और सजातीय हो जाती है।
; [[टेलर सूक्ष्मदर्शी]]: सबसे बड़े और सबसे छोटे स्केल के बीच का मध्यवर्ती स्केल जो जड़त्वीय उपश्रेणी बनाता है। टेलर सूक्ष्म पैमाने विघटनकारी पैमाने नहीं हैं, लेकिन अपव्यय के बिना ऊर्जा को सबसे बड़े से सबसे छोटे तक पहुंचाते हैं। कुछ साहित्य टेलर सूक्ष्म पैमाने को एक विशिष्ट लंबाई के पैमाने के रूप में नहीं मानते हैं और केवल सबसे बड़े और सबसे छोटे पैमाने को समाहित करने के लिए ऊर्जा प्रपात पर विचार करते हैं; जबकि उत्तरार्द्ध जड़त्वीय उपश्रेणी और चिपचिपा उपस्तर दोनों को समायोजित करता है। फिर भी, टेलर माइक्रोस्केल्स का उपयोग अक्सर टर्बुलेंस शब्द का अधिक आसानी से वर्णन करने के लिए किया जाता है क्योंकि ये टेलर माइक्रोस्केल्स वेवनंबर स्पेस में ऊर्जा और संवेग हस्तांतरण में प्रमुख भूमिका निभाते हैं।
; [[टेलर सूक्ष्मदर्शी]]: सबसे बड़े और सबसे छोटे स्केल के बीच का मध्यवर्ती स्केल जो जड़त्वीय उपश्रेणी बनाता है। टेलर सूक्ष्म पैमाने विघटनकारी पैमाने नहीं हैं, लेकिन अपव्यय के बिना ऊर्जा को सबसे बड़े से सबसे छोटे तक पहुंचाते हैं। कुछ साहित्य टेलर सूक्ष्म पैमाने को एक विशिष्ट लंबाई के पैमाने के रूप में नहीं मानते हैं और केवल सबसे बड़े और सबसे छोटे पैमाने को समाहित करने के लिए ऊर्जा प्रपात पर विचार करते हैं; जबकि उत्तरार्द्ध जड़त्वीय उपश्रेणी और अपरुपण उपस्तर दोनों को समायोजित करता है। फिर भी, टेलर सूक्ष्म मापक्रम का उपयोग अक्सर टर्बुलेंस शब्द का अधिक आसानी से वर्णन करने के लिए किया जाता है क्योंकि ये टेलर सूक्ष्म मापक्रम वेवनंबर स्पेस में ऊर्जा और संवेग हस्तांतरण में प्रमुख भूमिका निभाते हैं।
 
यद्यपि द्रव गति को नियंत्रित करने वाले नेवियर-स्टोक्स समीकरणों के कुछ विशेष समाधान खोजना संभव है, ऐसे सभी समाधान बड़े रेनॉल्ड्स नंबरों पर परिमित गड़बड़ी के लिए अस्थिर हैं। प्रारंभिक और सीमा स्थितियों पर संवेदनशील निर्भरता तरल प्रवाह को समय और स्थान दोनों में अनियमित बनाती है ताकि एक सांख्यिकीय विवरण की आवश्यकता हो। [[Index.php?title=रूसी|रूसी]] गणितज्ञ [[एंड्री कोलमोगोरोव]] ने विक्षोभ के पहले सांख्यिकीय सिद्धांत का प्रस्ताव दिया, जो ऊर्जा सोपान (मूल रूप से लुईस फ्राई रिचर्डसन द्वारा पेश किया गया एक विचार) और [[स्व-समानता]] की अवधारणा के आधार पर किया गया था। नतीजतन, कोल्मोगोरोव सूक्ष्मदर्शी का नाम उनके नाम पर रखा गया था। अब यह ज्ञात है कि स्व-समानता टूट गई है इसलिए सांख्यिकीय विवरण वर्तमान में संशोधित किया गया है।<ref>[http://www.weizmann.ac.il/home/fnfal/papers/PhysToday.pdf weizmann.ac.il]</ref>
 
विक्षोभ का पूर्ण विवरण भौतिकी की अनसुलझी समस्याओं में से एक है। एक मनगढंत कहानी के अनुसार, [[वर्नर हाइजेनबर्ग]] से पूछा गया कि अवसर मिलने पर वह ईश्वर से क्या मांगेंगे। उनका उत्तर था: जब मैं ईश्वर से मिलूंगा, तो मैं उनसे दो प्रश्न पूछने जा रहा हूं: [[सापेक्षता का सिद्धांत]] क्यों? और विक्षोभ क्यों? मुझे वास्तव में विश्वास है कि उनके पास पहले के लिए एक उत्तर होगा।<ref>{{cite book|last=Marshak|first=Alex|title=बादल भरे वातावरण में 3डी विकिरण स्थानांतरण|page=76|url=https://books.google.com/books?id=wzg6wnpHyCUC|year=2005|publisher=[[Springer Science+Business Media|Springer]]|isbn=978-3-540-23958-1}}</ref> [[विज्ञान की उन्नति के लिए ब्रिटिश एसोसिएशन]] के एक भाषण में [[होरेस लैम्ब]] को इसी तरह की व्यंग्यात्मकता का श्रेय दिया गया है: मैं अब बूढ़ा आदमी हूं, और जब मैं मर जाता हूं और स्वर्ग जाता हूं तो दो चीजें हैं जिन पर मुझे ज्ञान की उम्मीद है। एक प्रमात्र विद्युत्गतिकी है, और दूसरा तरल पदार्थों की विक्षुब्ध गति है। और पूर्व के बारे में मैं अधिक आशावादी हूँ।<ref>{{cite journal|last=Mullin|first=Tom|date=11 November 1989|title=तरल पदार्थ के लिए अशांत समय|journal=[[New Scientist]]}}</ref><ref>{{cite book|last=Davidson|first=P. A.|title=अशांति: वैज्ञानिकों और इंजीनियरों के लिए एक परिचय|url=https://books.google.com/books?id=rkOmKzujZB4C&q=%22when+I+die+and+go+to+Heaven+there+are+two+matters+on+which+I+hope+for+enlightenment%22&pg=PA24|year=2004|publisher=[[Oxford University Press]]|isbn=978-0-19-852949-1}}</ref>


यद्यपि द्रव गति को नियंत्रित करने वाले नेवियर-स्टोक्स समीकरणों के कुछ विशेष समाधान खोजना संभव है, ऐसे सभी समाधान बड़े रेनॉल्ड्स नंबरों पर परिमित गड़बड़ी के लिए अस्थिर हैं। प्रारंभिक और सीमा स्थितियों पर संवेदनशील निर्भरता तरल प्रवाह को समय और स्थान दोनों में अनियमित बनाती है ताकि एक सांख्यिकीय विवरण की आवश्यकता हो। [[रूस]]ी गणितज्ञ [[एंड्री कोलमोगोरोव]] ने विक्षोभ के पहले सांख्यिकीय सिद्धांत का प्रस्ताव दिया, जो ऊर्जा कैस्केड (मूल रूप से लुईस फ्राई रिचर्डसन द्वारा पेश किया गया एक विचार) और [[स्व-समानता]] की अवधारणा के आधार पर किया गया था। नतीजतन, कोल्मोगोरोव सूक्ष्मदर्शी का नाम उनके नाम पर रखा गया था। अब यह ज्ञात है कि स्व-समानता टूट गई है इसलिए सांख्यिकीय विवरण वर्तमान में संशोधित किया गया है।<ref>[http://www.weizmann.ac.il/home/fnfal/papers/PhysToday.pdf weizmann.ac.il]</ref>
विक्षोभ का पूर्ण विवरण भौतिकी की अनसुलझी समस्याओं में से एक है। एक मनगढंत कहानी के अनुसार, [[वर्नर हाइजेनबर्ग]] से पूछा गया कि अवसर मिलने पर वह ईश्वर से क्या मांगेंगे। उनका उत्तर था: जब मैं ईश्वर से मिलूंगा, तो मैं उनसे दो प्रश्न पूछने जा रहा हूं: [[सापेक्षता का सिद्धांत]] क्यों? और विक्षोभ क्यों? मुझे वास्तव में विश्वास है कि उनके पास पहले के लिए एक उत्तर होगा।<ref>{{cite book|last=Marshak|first=Alex|title=बादल भरे वातावरण में 3डी विकिरण स्थानांतरण|page=76|url=https://books.google.com/books?id=wzg6wnpHyCUC|year=2005|publisher=[[Springer Science+Business Media|Springer]]|isbn=978-3-540-23958-1}}</ref> [[विज्ञान की उन्नति के लिए ब्रिटिश एसोसिएशन]] के एक भाषण में [[होरेस लैम्ब]] को इसी तरह की व्यंग्यात्मकता का श्रेय दिया गया है: मैं अब बूढ़ा आदमी हूं, और जब मैं मर जाता हूं और स्वर्ग जाता हूं तो दो चीजें हैं जिन पर मुझे ज्ञान की उम्मीद है। एक क्वांटम इलेक्ट्रोडायनामिक्स है, और दूसरा तरल पदार्थों की विक्षुब्ध गति है। और पूर्व के बारे में मैं अधिक आशावादी हूँ।<ref>{{cite journal|last=Mullin|first=Tom|date=11 November 1989|title=तरल पदार्थ के लिए अशांत समय|journal=[[New Scientist]]}}</ref><ref>{{cite book|last=Davidson|first=P. A.|title=अशांति: वैज्ञानिकों और इंजीनियरों के लिए एक परिचय|url=https://books.google.com/books?id=rkOmKzujZB4C&q=%22when+I+die+and+go+to+Heaven+there+are+two+matters+on+which+I+hope+for+enlightenment%22&pg=PA24|year=2004|publisher=[[Oxford University Press]]|isbn=978-0-19-852949-1}}</ref>




== विक्षोभ की शुरुआत ==
== विक्षोभ की शुरुआत ==
[[File:Laminar-turbulent transition.jpg|thumb|right|इस मोमबत्ती की लौ से निकलने वाला पंख लैमिनार से विक्षुब्ध हो जाता है। रेनॉल्ड्स संख्या का उपयोग यह अनुमान लगाने के लिए किया जा सकता है कि यह संक्रमण कहाँ होगा]]विक्षोभ की शुरुआत, कुछ हद तक, रेनॉल्ड्स संख्या द्वारा भविष्यवाणी की जा सकती है, जो एक तरल पदार्थ के अंदर [[चिपचिपा]] बलों के जड़त्वीय बलों का [[अनुपात]] है जो विभिन्न द्रव वेगों के कारण सापेक्ष आंतरिक गति के अधीन है, जिसे एक सीमा के रूप में जाना जाता है एक बाउंडिंग सतह के मामले में परत जैसे पाइप के इंटीरियर। एक समान प्रभाव उच्च वेग द्रव की एक धारा की शुरूआत से पैदा होता है, जैसे कि हवा में एक लौ से गर्म गैसें। यह सापेक्ष गति द्रव घर्षण उत्पन्न करती है, जो विक्षुब्ध प्रवाह को विकसित करने का एक कारक है। इस प्रभाव का प्रतिकार तरल पदार्थ की चिपचिपाहट है, जो जैसे-जैसे बढ़ता है, उत्तरोत्तर विक्षोभ को रोकता है, क्योंकि अधिक गतिज ऊर्जा एक अधिक चिपचिपे द्रव द्वारा अवशोषित की जाती है। रेनॉल्ड्स संख्या दी गई प्रवाह स्थितियों के लिए इन दो प्रकार के बलों के सापेक्ष महत्व को निर्धारित करती है, और यह एक गाइड है कि किसी विशेष स्थिति में विक्षुब्ध प्रवाह कब होगा।<ref>{{cite book|last=Falkovich|first=G.|date=2011|title=तरल यांत्रिकी|publisher=Cambridge University Press}}{{missing ISBN}}</ref>
[[File:Laminar-turbulent transition.jpg|thumb|right|इस मोमबत्ती की लौ से निकलने वाला पंख लैमिनार से विक्षुब्ध हो जाता है। रेनॉल्ड्स संख्या का उपयोग यह अनुमान लगाने के लिए किया जा सकता है कि यह संक्रमण कहाँ होगा]]विक्षोभ की शुरुआत, कुछ हद तक, रेनॉल्ड्स संख्या द्वारा भविष्यवाणी की जा सकती है, जो एक तरल पदार्थ के अंदर [[चिपचिपा|अपरुपण]] बलों के जड़त्वीय बलों का [[अनुपात]] है जो विभिन्न द्रव वेगों के कारण सापेक्ष आंतरिक गति के अधीन है, जिसे एक सीमा के रूप में जाना जाता है एक बाउंडिंग सतह के मामले में परत जैसे पाइप के इंटीरियर। एक समान प्रभाव उच्च वेग द्रव की एक धारा की शुरूआत से पैदा होता है, जैसे कि हवा में एक लौ से गर्म गैसें। यह सापेक्ष गति द्रव घर्षण उत्पन्न करती है, जो विक्षुब्ध प्रवाह को विकसित करने का एक कारक है। इस प्रभाव का प्रतिकार तरल पदार्थ की अपरुपणहट है, जो जैसे-जैसे बढ़ता है, उत्तरोत्तर विक्षोभ को रोकता है, क्योंकि अधिक गतिज ऊर्जा एक अधिक चिपचिपे द्रव द्वारा अवशोषित की जाती है। रेनॉल्ड्स संख्या दी गई प्रवाह स्थितियों के लिए इन दो प्रकार के बलों के सापेक्ष महत्व को निर्धारित करती है, और यह एक गाइड है कि किसी विशेष स्थिति में विक्षुब्ध प्रवाह कब होगा।<ref>{{cite book|last=Falkovich|first=G.|date=2011|title=तरल यांत्रिकी|publisher=Cambridge University Press}}{{missing ISBN}}</ref>
विक्षुब्ध प्रवाह की शुरुआत की भविष्यवाणी करने की यह क्षमता पाइपिंग सिस्टम या विमान पंखों जैसे उपकरणों के लिए एक महत्वपूर्ण डिजाइन उपकरण है, लेकिन रेनॉल्ड्स नंबर का उपयोग द्रव गतिकी समस्याओं के स्केलिंग में भी किया जाता है, और दो अलग-अलग मामलों के बीच [[गतिशील समानता]] निर्धारित करने के लिए उपयोग किया जाता है। द्रव प्रवाह, जैसे एक मॉडल विमान और उसके पूर्ण आकार के संस्करण के बीच। ऐसा स्केलिंग हमेशा रैखिक नहीं होता है और दोनों स्थितियों में रेनॉल्ड्स नंबरों का उपयोग स्केलिंग कारकों को विकसित करने की अनुमति देता है।
विक्षुब्ध प्रवाह की शुरुआत की भविष्यवाणी करने की यह क्षमता पाइपिंग सिस्टम या विमान पंखों जैसे उपकरणों के लिए एक महत्वपूर्ण डिजाइन उपकरण है, लेकिन रेनॉल्ड्स नंबर का उपयोग द्रव गतिकी समस्याओं के स्केलिंग में भी किया जाता है, और दो अलग-अलग मामलों के बीच [[गतिशील समानता]] निर्धारित करने के लिए उपयोग किया जाता है। द्रव प्रवाह, जैसे एक मॉडल विमान और उसके पूर्ण आकार के संस्करण के बीच। ऐसा स्केलिंग हमेशा रैखिक नहीं होता है और दोनों स्थितियों में रेनॉल्ड्स नंबरों का उपयोग स्केलिंग कारकों को विकसित करने की अनुमति देता है।
एक प्रवाह की स्थिति जिसमें द्रव आणविक चिपचिपाहट की क्रिया के कारण [[गतिज ऊर्जा]] महत्वपूर्ण रूप से अवशोषित हो जाती है, एक लामिनार प्रवाह शासन को जन्म देती है। इसके लिए आयामहीन मात्रा रेनॉल्ड्स संख्या ({{math|Re}}) एक गाइड के रूप में प्रयोग किया जाता है।
एक प्रवाह की स्थिति जिसमें द्रव आणविक अपरुपणहट की क्रिया के कारण [[गतिज ऊर्जा]] महत्वपूर्ण रूप से अवशोषित हो जाती है, एक लामिनार प्रवाह शासन को जन्म देती है। इसके लिए आयामहीन मात्रा रेनॉल्ड्स संख्या ({{math|Re}}) एक गाइड के रूप में प्रयोग किया जाता है।


लामिनार प्रवाह और विक्षुब्ध प्रवाह व्यवस्थाओं के संबंध में:
लामिनार प्रवाह और विक्षुब्ध प्रवाह व्यवस्थाओं के संबंध में:


* लामिना का प्रवाह कम रेनॉल्ड्स संख्या में होता है, जहां चिपचिपा बल प्रभावी होते हैं, और चिकनी, निरंतर द्रव गति की विशेषता होती है;
* लामिना का प्रवाह कम रेनॉल्ड्स संख्या में होता है, जहां अपरुपण बल प्रभावी होते हैं, और चिकनी, निरंतर द्रव गति की विशेषता होती है;
* विक्षुब्ध प्रवाह उच्च रेनॉल्ड्स संख्या में होता है और जड़त्वीय बलों का प्रभुत्व होता है, जो अव्यवस्थित एड़ी (द्रव गतिकी), [[भंवर]] और अन्य प्रवाह अस्थिरता पैदा करते हैं।
* विक्षुब्ध प्रवाह उच्च रेनॉल्ड्स संख्या में होता है और जड़त्वीय बलों का प्रभुत्व होता है, जो अव्यवस्थित एड़ी (द्रव गतिकी), [[भंवर]] और अन्य प्रवाह अस्थिरता पैदा करते हैं।


Line 73: Line 75:
* {{mvar|v}} वस्तु के संबंध में द्रव का एक विशिष्ट वेग है (एम/एस)
* {{mvar|v}} वस्तु के संबंध में द्रव का एक विशिष्ट वेग है (एम/एस)
* {{mvar|L}} एक विशिष्ट रैखिक आयाम (एम) है
* {{mvar|L}} एक विशिष्ट रैखिक आयाम (एम) है
* {{mvar|[[Mu (letter)|μ]]}} [[द्रव]] की गतिशील चिपचिपाहट है (Pa·s या N·s/m<sup>2</sup> या किग्रा/(मी·से))।
* {{mvar|[[Mu (letter)|μ]]}} [[द्रव]] की गतिशील अपरुपणहट है (Pa·s या N·s/m<sup>2</sup> या किग्रा/(मी·से))।


जबकि गैर-आयामी रेनॉल्ड्स संख्या को विक्षोभ से सीधे संबंधित करने वाला कोई प्रमेय नहीं है, 5000 से बड़े रेनॉल्ड्स नंबरों पर प्रवाह आम तौर पर (लेकिन जरूरी नहीं) विक्षुब्ध होते हैं, जबकि कम रेनॉल्ड्स संख्या वाले आमतौर पर लैमिनार रहते हैं। उदाहरण के लिए, [[हेगन-पॉइज़्यूइल समीकरण]] में, विक्षोभ को पहले बनाए रखा जा सकता है यदि रेनॉल्ड्स संख्या लगभग 2040 के महत्वपूर्ण मान से बड़ी है;<ref name=Recrit>{{cite journal|last1=Avila|first1=K.|first2=D.|last2=Moxey|first3=A.|last3=de Lozar |first4=M. |last4=Avila |first5=D. |last5=Barkley|author5-link=Dwight Barkley |author6=B. Hof |title=पाइप प्रवाह में अशांति की शुरुआत|journal=Science|date=July 2011|volume=333|issue=6039|pages=192–196|doi=10.1126/science.1203223|pmid=21737736|url=https://www.science.org/doi/10.1126/science.1203223|bibcode = 2011Sci...333..192A |s2cid=22560587}}</ref> इसके अलावा, विक्षोभ आम तौर पर लगभग 4000 की एक बड़ी रेनॉल्ड्स संख्या तक लैमिनार प्रवाह के साथ फैली हुई है।
जबकि गैर-आयामी रेनॉल्ड्स संख्या को विक्षोभ से सीधे संबंधित करने वाला कोई प्रमेय नहीं है, 5000 से बड़े रेनॉल्ड्स नंबरों पर प्रवाह आम तौर पर (लेकिन जरूरी नहीं) विक्षुब्ध होते हैं, जबकि कम रेनॉल्ड्स संख्या वाले आमतौर पर लैमिनार रहते हैं। उदाहरण के लिए, [[हेगन-पॉइज़्यूइल समीकरण]] में, विक्षोभ को पहले बनाए रखा जा सकता है यदि रेनॉल्ड्स संख्या लगभग 2040 के महत्वपूर्ण मान से बड़ी है;<ref name=Recrit>{{cite journal|last1=Avila|first1=K.|first2=D.|last2=Moxey|first3=A.|last3=de Lozar |first4=M. |last4=Avila |first5=D. |last5=Barkley|author5-link=Dwight Barkley |author6=B. Hof |title=पाइप प्रवाह में अशांति की शुरुआत|journal=Science|date=July 2011|volume=333|issue=6039|pages=192–196|doi=10.1126/science.1203223|pmid=21737736|url=https://www.science.org/doi/10.1126/science.1203223|bibcode = 2011Sci...333..192A |s2cid=22560587}}</ref> इसके अलावा, विक्षोभ आम तौर पर लगभग 4000 की एक बड़ी रेनॉल्ड्स संख्या तक लैमिनार प्रवाह के साथ फैली हुई है।


संक्रमण तब होता है जब वस्तु का आकार धीरे-धीरे बढ़ जाता है, या द्रव की चिपचिपाहट कम हो जाती है, या यदि द्रव का घनत्व बढ़ जाता है।
संक्रमण तब होता है जब वस्तु का आकार धीरे-धीरे बढ़ जाता है, या द्रव की अपरुपणहट कम हो जाती है, या यदि द्रव का घनत्व बढ़ जाता है।


== ऊष्मा और संवेग स्थानांतरण ==
== ऊष्मा और संवेग स्थानांतरण ==
Line 93: Line 95:
\tau &=\underbrace{-\rho \overline{v'_y v'_x}}_\text{experimental value} = \mu_\text{turb}\frac{\partial \overline{v}_x}{\partial y} \,;
\tau &=\underbrace{-\rho \overline{v'_y v'_x}}_\text{experimental value} = \mu_\text{turb}\frac{\partial \overline{v}_x}{\partial y} \,;
\end{align}</math>
\end{align}</math>
कहां {{mvar|c<sub>P</sub>}} निरंतर दबाव पर ताप क्षमता है, {{mvar|ρ}} द्रव का घनत्व है, {{math|''μ''<sub>turb</sub>}} विक्षुब्ध चिपचिपाहट का गुणांक है और {{math|''k''<sub>turb</sub>}} विक्षुब्ध तापीय चालकता है।<ref name="tennekes" />
कहां {{mvar|c<sub>P</sub>}} निरंतर दबाव पर ताप क्षमता है, {{mvar|ρ}} द्रव का घनत्व है, {{math|''μ''<sub>turb</sub>}} विक्षुब्ध अपरुपणहट का गुणांक है और {{math|''k''<sub>turb</sub>}} विक्षुब्ध तापीय चालकता है।<ref name="tennekes" />




== कोल्मोगोरोव का 1941 का सिद्धांत{{anchor|Kolmogorov's theory}}==
== कोल्मोगोरोव का 1941 का सिद्धांत{{anchor|Kolmogorov's theory}}==


रिचर्डसन की विक्षोभ की धारणा यह थी कि एक विक्षुब्ध प्रवाह विभिन्न आकारों के भंवरों द्वारा रचित है। आकार एडीज के लिए एक विशेषता लंबाई पैमाने को परिभाषित करते हैं, जो लंबाई के पैमाने पर निर्भर प्रवाह वेग तराजू और समय के पैमाने (टर्नओवर समय) की विशेषता है। बड़े भंवर अस्थिर होते हैं और अंतत: छोटे भंवर उत्पन्न होते हुए टूट जाते हैं, और प्रारंभिक बड़े भंवर की गतिज ऊर्जा को उससे उत्पन्न होने वाले छोटे भंवरों में विभाजित किया जाता है। ये छोटे एडीज एक ही प्रक्रिया से गुजरते हैं, और भी छोटे एडीज को जन्म देते हैं जो अपने पूर्ववर्ती एडी की ऊर्जा को विरासत में लेते हैं, और इसी तरह। इस तरह, ऊर्जा को गति के बड़े पैमानों से छोटे पैमानों तक नीचे पारित किया जाता है, जब तक कि पर्याप्त छोटे लंबाई के पैमाने तक नहीं पहुंच जाता है, जैसे कि द्रव की चिपचिपाहट आंतरिक ऊर्जा में गतिज ऊर्जा को प्रभावी ढंग से नष्ट कर सकती है।
रिचर्डसन की विक्षोभ की धारणा यह थी कि एक विक्षुब्ध प्रवाह विभिन्न आकारों के भंवरों द्वारा रचित है। आकार एडीज के लिए एक विशेषता लंबाई पैमाने को परिभाषित करते हैं, जो लंबाई के पैमाने पर निर्भर प्रवाह वेग तराजू और समय के पैमाने (टर्नओवर समय) की विशेषता है। बड़े भंवर अस्थिर होते हैं और अंतत: छोटे भंवर उत्पन्न होते हुए टूट जाते हैं, और प्रारंभिक बड़े भंवर की गतिज ऊर्जा को उससे उत्पन्न होने वाले छोटे भंवरों में विभाजित किया जाता है। ये छोटे एडीज एक ही प्रक्रिया से गुजरते हैं, और भी छोटे एडीज को जन्म देते हैं जो अपने पूर्ववर्ती एडी की ऊर्जा को विरासत में लेते हैं, और इसी तरह। इस तरह, ऊर्जा को गति के बड़े पैमानों से छोटे पैमानों तक नीचे पारित किया जाता है, जब तक कि पर्याप्त छोटे लंबाई के पैमाने तक नहीं पहुंच जाता है, जैसे कि द्रव की अपरुपणहट आंतरिक ऊर्जा में गतिज ऊर्जा को प्रभावी ढंग से नष्ट कर सकती है।


1941 के अपने मूल सिद्धांत में, [[Kolmogorov]] ने कहा कि बहुत अधिक रेनॉल्ड्स संख्या के लिए, छोटे पैमाने पर विक्षुब्ध गति सांख्यिकीय रूप से आइसोट्रोपिक हैं (अर्थात कोई तरजीही स्थानिक दिशा नहीं समझी जा सकती)। सामान्य तौर पर, प्रवाह के बड़े पैमाने आइसोटोपिक नहीं होते हैं, क्योंकि वे सीमाओं की विशेष ज्यामितीय विशेषताओं द्वारा निर्धारित होते हैं (बड़े पैमाने की विशेषता वाले आकार को इस रूप में दर्शाया जाएगा {{mvar|L}}). कोलमोगोरोव का विचार था कि रिचर्डसन के ऊर्जा कैस्केड में यह ज्यामितीय और दिशात्मक जानकारी खो जाती है, जबकि पैमाना कम हो जाता है, ताकि छोटे पैमानों के आँकड़ों में एक सार्वभौमिक चरित्र हो: रेनॉल्ड्स संख्या पर्याप्त होने पर वे सभी विक्षुब्ध प्रवाह के लिए समान होते हैं। उच्च।
1941 के अपने मूल सिद्धांत में, [[Kolmogorov]] ने कहा कि बहुत अधिक रेनॉल्ड्स संख्या के लिए, छोटे पैमाने पर विक्षुब्ध गति सांख्यिकीय रूप से आइसोट्रोपिक हैं (अर्थात कोई तरजीही स्थानिक दिशा नहीं समझी जा सकती)। सामान्य तौर पर, प्रवाह के बड़े पैमाने आइसोटोपिक नहीं होते हैं, क्योंकि वे सीमाओं की विशेष ज्यामितीय विशेषताओं द्वारा निर्धारित होते हैं (बड़े पैमाने की विशेषता वाले आकार को इस रूप में दर्शाया जाएगा {{mvar|L}}). कोलमोगोरोव का विचार था कि रिचर्डसन के ऊर्जा सोपान में यह ज्यामितीय और दिशात्मक जानकारी खो जाती है, जबकि पैमाना कम हो जाता है, ताकि छोटे पैमानों के आँकड़ों में एक सार्वभौमिक चरित्र हो: रेनॉल्ड्स संख्या पर्याप्त होने पर वे सभी विक्षुब्ध प्रवाह के लिए समान होते हैं। उच्च।


इस प्रकार, कोलमोगोरोव ने एक दूसरी परिकल्पना पेश की: बहुत अधिक रेनॉल्ड्स संख्याओं के लिए छोटे पैमाने के आंकड़े सार्वभौमिक रूप से और विशिष्ट रूप से कीनेमेटिक चिपचिपाहट द्वारा निर्धारित किए जाते हैं। {{mvar|ν}} और ऊर्जा अपव्यय की दर {{mvar|ε}}. केवल इन दो मापदंडों के साथ, आयामी विश्लेषण द्वारा बनाई जा सकने वाली अद्वितीय लंबाई है
इस प्रकार, कोलमोगोरोव ने एक दूसरी परिकल्पना पेश की: बहुत अधिक रेनॉल्ड्स संख्याओं के लिए छोटे पैमाने के आंकड़े सार्वभौमिक रूप से और विशिष्ट रूप से कीनेमेटिक अपरुपणहट द्वारा निर्धारित किए जाते हैं। {{mvar|ν}} और ऊर्जा अपव्यय की दर {{mvar|ε}}. केवल इन दो मापदंडों के साथ, आयामी विश्लेषण द्वारा बनाई जा सकने वाली अद्वितीय लंबाई है


:<math>\eta = \left(\frac{\nu^3}{\varepsilon}\right)^{1/4} \,.</math>
:<math>\eta = \left(\frac{\nu^3}{\varepsilon}\right)^{1/4} \,.</math>
यह आज कोलमोगोरोव लंबाई पैमाने के रूप में जाना जाता है (कोलमोगोरोव सूक्ष्मदर्शी देखें)।
यह आज कोलमोगोरोव लंबाई पैमाने के रूप में जाना जाता है (कोलमोगोरोव सूक्ष्मदर्शी देखें)।


एक विक्षुब्ध प्रवाह की विशेषता तराजू के एक पदानुक्रम से होती है जिसके माध्यम से ऊर्जा झरना होता है। कोल्मोगोरोव लंबाई के क्रम के पैमाने पर गतिज ऊर्जा का अपव्यय होता है {{mvar|η}}, जबकि कैस्केड में ऊर्जा का इनपुट क्रम के बड़े पैमाने के क्षय से आता है {{mvar|L}}. कैस्केड के चरम पर ये दो पैमाने उच्च रेनॉल्ड्स संख्या में परिमाण के कई आदेशों से भिन्न हो सकते हैं। बीच में तराजू की एक श्रृंखला होती है (प्रत्येक की अपनी विशिष्ट लंबाई होती है {{mvar|r}}) जो बड़े लोगों की ऊर्जा की कीमत पर बना है। कोल्मोगोरोव लंबाई की तुलना में ये पैमाने बहुत बड़े हैं, लेकिन प्रवाह के बड़े पैमाने की तुलना में अभी भी बहुत छोटे हैं (यानी। {{math|''η'' ≪ ''r'' ≪ ''L''}}). चूंकि इस रेंज में एडीज कोल्मोगोरोव स्केल में मौजूद विघटनकारी एडीज से काफी बड़े हैं, इस रेंज में गतिज ऊर्जा अनिवार्य रूप से नष्ट नहीं होती है, और इसे केवल छोटे पैमाने पर तब तक स्थानांतरित किया जाता है जब तक चिपचिपा प्रभाव महत्वपूर्ण नहीं हो जाता है क्योंकि कोल्मोगोरोव स्केल के क्रम से संपर्क किया जाता है। . इस सीमा के अंदर जड़त्वीय प्रभाव अभी भी चिपचिपे प्रभावों की तुलना में बहुत बड़े हैं, और यह मान लेना संभव है कि चिपचिपाहट उनकी आंतरिक गतिकी में कोई भूमिका नहीं निभाती है (इस कारण से इस सीमा को जड़त्वीय श्रेणी कहा जाता है)।
एक विक्षुब्ध प्रवाह की विशेषता तराजू के एक पदानुक्रम से होती है जिसके माध्यम से ऊर्जा झरना होता है। कोल्मोगोरोव लंबाई के क्रम के पैमाने पर गतिज ऊर्जा का अपव्यय होता है {{mvar|η}}, जबकि कैस्केड में ऊर्जा का निविष्ट क्रम के बड़े पैमाने के क्षय से आता है {{mvar|L}}. कैस्केड के चरम पर ये दो पैमाने उच्च रेनॉल्ड्स संख्या में परिमाण के कई आदेशों से भिन्न हो सकते हैं। बीच में तराजू की एक श्रृंखला होती है (प्रत्येक की अपनी विशिष्ट लंबाई होती है {{mvar|r}}) जो बड़े लोगों की ऊर्जा की कीमत पर बना है। कोल्मोगोरोव लंबाई की तुलना में ये पैमाने बहुत बड़े हैं, लेकिन प्रवाह के बड़े पैमाने की तुलना में अभी भी बहुत छोटे हैं (यानी। {{math|''η'' ≪ ''r'' ≪ ''L''}}). चूंकि इस रेंज में एडीज कोल्मोगोरोव स्केल में मौजूद विघटनकारी एडीज से काफी बड़े हैं, इस रेंज में गतिज ऊर्जा अनिवार्य रूप से नष्ट नहीं होती है, और इसे केवल छोटे पैमाने पर तब तक स्थानांतरित किया जाता है जब तक अपरुपण प्रभाव महत्वपूर्ण नहीं हो जाता है क्योंकि कोल्मोगोरोव स्केल के क्रम से संपर्क किया जाता है। . इस सीमा के अंदर जड़त्वीय प्रभाव अभी भी चिपचिपे प्रभावों की तुलना में बहुत बड़े हैं, और यह मान लेना संभव है कि अपरुपणहट उनकी आंतरिक गतिकी में कोई भूमिका नहीं निभाती है (इस कारण से इस सीमा को जड़त्वीय श्रेणी कहा जाता है)।


इसलिए, कोल्मोगोरोव की एक तीसरी परिकल्पना यह थी कि बहुत अधिक रेनॉल्ड्स संख्या में पैमाने के आंकड़े श्रेणी में हैं {{math|''η'' ≪ ''r'' ≪ ''L''}} पैमाने द्वारा सार्वभौमिक और विशिष्ट रूप से निर्धारित होते हैं {{mvar|r}} और ऊर्जा अपव्यय की दर {{mvar|ε}}.
इसलिए, कोल्मोगोरोव की एक तीसरी परिकल्पना यह थी कि बहुत अधिक रेनॉल्ड्स संख्या में पैमाने के आंकड़े श्रेणी में हैं {{math|''η'' ≪ ''r'' ≪ ''L''}} पैमाने द्वारा सार्वभौमिक और विशिष्ट रूप से निर्धारित होते हैं {{mvar|r}} और ऊर्जा अपव्यय की दर {{mvar|ε}}.

Revision as of 21:28, 30 November 2023

द्रव गतिकी में, विक्षोभ या विक्षुब्ध प्रवाह तरल गति है, जो दबाव और प्रवाह वेग में कैओस सिद्धांत परिवर्तन की विशेषता है। यह एक लामिनार प्रवाह (पटलीय प्रवाह) के विपरीत है, जो तब होता है जब तरल समानांतर परतों में बहता है, उन परतों के बीच कोई व्यवधान नहीं होता है।[1]

विक्षोभ आमतौर पर रोजमर्रा की घटनाओं में देखी जाती है जैसे कि सर्फ, तेजी से बहने वाली नदियाँ, तूफानी बादल, या चिमनी से धुआं, और प्रकृति में होने वाले या इंजीनियरिंग अनुप्रयोगों में निर्मित अधिकांश द्रव प्रवाह विक्षुब्ध होते हैं।[2][3]: 2  द्रव प्रवाह के कुछ हिस्सों में अत्यधिक गतिज ऊर्जा के कारण विक्षोभ होता है, जो द्रव की अपरुपणहट के प्रभाव को कम करता है। इस कारण आमतौर पर कम अपरुपणहट वाले तरल पदार्थों में विक्षोभ महसूस होता है। सामान्य शब्दों में, विक्षुब्ध प्रवाह में, अस्थिर भंवर कई आकार के दिखाई देते हैं जो एक दूसरे पर परस्पर प्रभाव करते हैं, परिणामस्वरूप घर्षण प्रभाव के कारण संकर्षण (भौतिकी) बढ़ जाता है। यह एक पाइप के माध्यम से द्रव को पंप करने के लिए आवश्यक ऊर्जा को बढ़ाता है।

विक्षोभ की शुरुआत का अनुमान आयामहीन रेनॉल्ड्स संख्या, द्रव प्रवाह में गतिज ऊर्जा और चिपचिपी नमी के अनुपात से लगाया जा सकता है। हालांकि, विक्षोभ ने लंबे समय तक विस्तृत भौतिक विश्लेषण का विरोध किया है, और विक्षोभ के अंदर की अंतःक्रिया एक बहुत ही जटिल घटना पैदा करती है। रिचर्ड फेनमैन ने शास्त्रीय भौतिकी में सबसे महत्वपूर्ण अनसुलझी समस्या के रूप में विक्षोभ का वर्णन किया है।[4]

विक्षोभ की तीव्रता कई क्षेत्रों को प्रभावित करती है, उदाहरण के लिए मछली पारिस्थितिकी,[5] वायु प्रदूषण,[6] वर्षण,[7] और जलवायु परिवर्तन। [8]

विक्षोभ के उदाहरण

एक पनडुब्बी के पतवार के ऊपर लामिनार प्रवाह और विक्षुब्ध जल प्रवाह। जैसे-जैसे पानी का सापेक्ष वेग बढ़ता है विक्षोभ होती है।
रंगीन धुएँ से गुजरने वाले हवाई जहाज के पंख से विंगटिप भंवर में विक्षोभ

* सिगरेट से उठता धुआँ, पहले कुछ सेंटीमीटर के लिए, धुआँ लामिनार प्रवाह है। धुआँ प्लूम (द्रव गतिकी) विक्षुब्ध हो जाता है क्योंकि इसकी रेनॉल्ड्स संख्या प्रवाह वेग और विशेषता लंबाई पैमाने में वृद्धि के साथ बढ़ जाती है।

  • गोल्फ की गेंद पर प्रवाहित करें। (इसे सबसे अच्छी तरह से समझा जा सकता है कि गोल्फ की गेंद स्थिर है, इसके ऊपर हवा बहती है।) यदि गोल्फ की गेंद चिकनी होती है, तो गोले के सामने की परिसीमा परत प्रवाह सामान्य परिस्थितियों में लामिनार होगा, हालाँकि, परिसीमा परत जल्दी अलग हो जाएगी, क्योंकि दबाव प्रवणता अनुकूल (प्रवाह दिशा में दबाव घटने) से प्रतिकूल (प्रवाह दिशा में दबाव बढ़ रहा है) मे बदल जाती है, जिससे गेंद के पीछे कम दबाव का एक बड़ा क्षेत्र बन जाता है जो उच्च रूप से संकर्षण बनाता है। इसे रोकने के लिए, परिसीमा परत को उद्विग्न करने और विक्षोभ को बढ़ावा देने के लिए सतह को डिंपल किया जाता है। इसके परिणामस्वरूप उच्च त्वचा घर्षण होता है, लेकिन यह परिसीमा परत पृथक्करण के बिंदु को और आगे ले जाता है, जिसके परिणामस्वरूप कम खिंचाव होता है।
  • हवाई जहाज़ की उड़ान के दौरान साफ ​​हवा में विक्षोभ का अनुभव, साथ ही खराब खगोलीय दृष्टि (वायुमंडल के माध्यम से दिखाई देने वाली छवियों का धुंधलापन)।
  • अधिकांश स्थलीय वायुमंडलीय परिसंचरण
  • महासागरीय और वायुमंडलीय मिश्रित परतें और तीव्र महासागरीय धाराएँ।
  • कई औद्योगिक उपकरण (जैसे पाइप, नलिकाएं, अवक्षेपक, गैस मार्जक, गतिशील घृष्ट सतह ऊष्मा विनिमयक, आदि) और मशीनों (उदाहरण के लिए, आंतरिक दहन इंजन और गैस टर्बाइन) में प्रवाह की स्थिति।
  • कारों, हवाई जहाजों,और पनडुब्बी जैसे सभी प्रकार के वाहनों पर बाहरी प्रवाह।
  • तारकीय वातावरण में पदार्थ की गति।
  • एक जेट एक तुंड से एक शांत तरल पदार्थ में समाप्त हो रहा है। जैसे ही प्रवाह इस बाहरी द्रव में उभरता है, तुंड के अधर पर उत्पन्न होने वाली अपरूपण परतें बन जाती हैं। ये परतें तेजी से चलने वाले जेट को बाहरी द्रव से अलग करती हैं, और एक निश्चित महत्वपूर्ण रेनॉल्ड्स संख्या में वे अस्थिर हो जाती हैं और विक्षोभ में टूट जाती हैं।
  • तैरने वाले जानवरों से उत्पन्न जैविक रूप से उत्पन्न विक्षोभ समुद्र के मिश्रण को प्रभावित करती है।[9]
  • बर्फ की बाड़, हवा में विक्षोभ को प्रेरित करके काम करती है, जिससे यह बाड़ के पास अपना अधिकांश बर्फ भार गिराने के लिए मजबूर हो जाती है।
  • पानी में पुल का सहारा (खम्भे)। जब नदी का प्रवाह धीमा होता है, तो सहायक खम्भों के चारों ओर पानी सुचारू रूप से बहता है। जब प्रवाह तेज होता है, तो प्रवाह के साथ एक उच्च रेनॉल्ड्स संख्या जुड़ी होती है। प्रवाह लैमिनार से शुरू हो सकता है लेकिन खम्भे से जल्दी अलग हो जाता है और विक्षुब्ध हो जाता है।
  • कई भूभौतिकीय प्रवाहों (नदियों, वायुमंडलीय परिसीमा परत) में, प्रवाह विक्षोभ सुसंगत संरचनाओं और विक्षुब्ध घटनाओं पर हावी है। एक विक्षुब्ध घटना विक्षुब्ध उतार-चढ़ाव की एक श्रृंखला है जिसमें औसत प्रवाह विक्षोभ की तुलना में अधिक ऊर्जा होती है।[10]Cite error: Closing </ref> missing for <ref> tag

विशेषताएं

File:False color image of the far field of a submerged turbulent jet.jpg
लेजर-प्रेरित प्रतिदीप्ति द्वारा निर्मित एक विक्षुब्ध जेट का प्रवाह दृश्य। जेट लंबाई के पैमाने की एक विस्तृत श्रृंखला प्रदर्शित करता है, जो विक्षुब्ध प्रवाह की एक महत्वपूर्ण विशेषता है।

विक्षोभ निम्नलिखित विशेषताओं की विशेषता है:

अनियमितता
विक्षुब्ध प्रवाह हमेशा अत्यधिक अनियमित होते हैं। इस कारण से, विक्षोभ की समस्याओं को सामान्य रूप से निश्चित रूप के बजाय सांख्यिकीय रूप से व्यवहार किया जाता है। विक्षुब्ध प्रवाह अव्यवस्थित है। हालांकि, सभी अव्यवस्थित प्रवाह विक्षुब्ध नहीं होते हैं।
विसारकता
विक्षुब्ध प्रवाह में ऊर्जा की आसानी से उपलब्ध आपूर्ति द्रव मिश्रणों के समरूपीकरण (मिश्रण) को तेज करती है। वह विशेषता जो एक प्रवाह में द्रव्यमान, संवेग और ऊर्जा परिवहन की बढ़ी हुई मिश्रण और बढ़ी हुई दरों के लिए जिम्मेदार होती है, विसारकता कहलाती है।[11]

प्रक्षुब्ध विसरण को आमतौर पर एक प्रक्षुब्ध विसरण गुणांक द्वारा वर्णित किया जाता है। इस प्रक्षुब्ध विसरण गुणांक को एक परिघटना संबंधी अर्थ में परिभाषित किया गया है, आणविक प्रसार के साथ सादृश्य द्वारा, लेकिन इसका वास्तविक भौतिक अर्थ नहीं है, प्रवाह की स्थिति पर निर्भर होने के कारण, और स्वयं द्रव की प्रकृति नहीं है। इसके अलावा, प्रक्षुब्ध विसरण अवधारणा एक विक्षुब्ध प्रवाह और आणविक परिवहन के लिए मौजूद प्रवाह और ढाल के बीच के संबंध के समान एक औसत चर के ढाल के बीच एक संवैधानिक संबंध मानती है। सर्वोत्तम स्थिति में, यह धारणा केवल एक सन्निकटन है। फिर भी, विक्षुब्ध प्रवाह के मात्रात्मक विश्लेषण के लिए विक्षुब्ध विसरणशीलता सबसे सरल तरीका है, और इसकी गणना करने के लिए कई मॉडल बनाए गए हैं। उदाहरण के लिए, महासागरों जैसे पानी के बड़े निकायों में यह गुणांक लुईस फ्राई रिचर्डसन के चार-तिहाई घात नियम का उपयोग करके पाया जा सकता है और यह यादृच्छिक चाल सिद्धांत द्वारा शासित होता है। नदियों और बड़े समुद्री धाराओं में, प्रसार गुणांक एल्डर के सूत्र के भिन्नरूपों द्वारा दिया जाता है।

घूर्णीता:

विक्षुब्ध प्रवाह में गैर-शून्य भ्रमिलता होती है और एक मजबूत त्रि-आयामी भंवर जनन तंत्र की विशेषता होती है जिसे भंवर खिंचाव के रूप में जाना जाता है। द्रव गतिकी में, वे अनिवार्य रूप से खिंचाव के अधीन भंवर होते हैं जो खिंचाव की दिशा में भ्रमिलता के घटक की इसी वृद्धि के साथ जुड़े होते हैं - कोणीय गति के संरक्षण के कारण, दूसरी ओर, भंवर खिंचाव मुख्य तंत्र है जिस पर विक्षुब्धि ऊर्जा सोपान पहचान योग्य संरचना फलन को स्थापित करने और बनाए रखने के लिए निर्भर करता है।[12] सामान्य तौर पर, खिंचाव तंत्र का तात्पर्य द्रव तत्वों के आयतन संरक्षण के कारण विस्तारण दिशा के लंबवत दिशा में भंवरों के पतले होने से है। नतीजतन, भंवरों की रेडियल लंबाई कम हो जाती है और बड़ी प्रवाह संरचनाएं छोटी संरचनाओं में टूट जाती हैं। यह प्रक्रिया तब तक जारी रहती है जब तक कि छोटे पैमाने की संरचनाएं इतनी छोटी नहीं हो जाती कि उनकी गतिज ऊर्जा को द्रव की आणविक श्यानता द्वारा ऊष्मा में परिवर्तित किया जा सके। विक्षुब्ध प्रवाह हमेशा घूर्णी और त्रि-आयामी होता है।[12]उदाहरण के लिए, वायुमंडलीय चक्रवात घूर्णी होते हैं लेकिन उनके दो आयामी आकार भंवर जनन की अनुमति नहीं देते हैं और इसलिए विक्षुब्ध नहीं होते हैं। दूसरी ओर, महासागरीय प्रवाह परिक्षेपी होते हैं लेकिन अनिवार्य रूप से गैर-घूर्णी होते हैं और इसलिए विक्षुब्ध नहीं होते हैं।[12]

अपव्यय
विक्षुब्ध प्रवाह को बनाए रखने के लिए, ऊर्जा आपूर्ति के एक निरंतर स्रोत की आवश्यकता होती है क्योंकि श्यानता अपरुपण तनाव द्वारा गतिज ऊर्जा को आंतरिक ऊर्जा में परिवर्तित करने के कारण विक्षोभ तेजी से फैलती है। विक्षोभ कई अलग-अलग लंबाई के पैमाने के एड़ी (द्रव गतिकी) के गठन का कारण बनती है। विक्षुब्ध गति की अधिकांश गतिज ऊर्जा बड़े पैमाने की संरचनाओं में समाहित है। इन बड़े पैमाने की संरचनाओं से ऊर्जा एक जड़त्वीय और अनिवार्य रूप से इनविसिड प्रवाह तंत्र द्वारा छोटे पैमाने की संरचनाओं में प्रवाहित होती है। यह प्रक्रिया जारी रहती है, और छोटे ढांचे बनाते हैं जो एडीज के पदानुक्रम का उत्पादन करते हैं। आखिरकार यह प्रक्रिया ऐसी संरचनाएं बनाती है जो इतनी छोटी होती हैं कि आणविक प्रसार महत्वपूर्ण हो जाता है और अंत में ऊर्जा का अपरुपण अपव्यय होता है। जिस पैमाने पर यह होता है वह कोलमोगोरोव सूक्ष्मदर्शी है।

इस ऊर्जा सोपान के माध्यम से, विक्षुब्ध प्रवाह को प्रवाह वेग में उतार-चढ़ाव और औसत प्रवाह पर एडीज के एक स्पेक्ट्रम के अध्यारोपण के रूप में महसूस किया जा सकता है। भंवरों को प्रवाह वेग, भ्रमिलता और दबाव के सुसंगत पैटर्न के रूप में शिथिल रूप से परिभाषित किया गया है। विक्षुब्ध प्रवाह को लंबाई के पैमाने की एक विस्तृत श्रृंखला पर भंवरों के पूरे पदानुक्रम के रूप में देखा जा सकता है और पदानुक्रम को ऊर्जा स्पेक्ट्रम द्वारा वर्णित किया जा सकता है जो प्रत्येक लंबाई पैमाने (तरंग संख्या) के लिए प्रवाह वेग में उतार-चढ़ाव में ऊर्जा को मापता है। ऊर्जा सोपान में पैमाने आम तौर पर अनियंत्रित और अत्यधिक गैर-सममित होते हैं। फिर भी, लंबाई के पैमाने के आधार पर इन भंवरों को तीन श्रेणियों में विभाजित किया जा सकता है।

अभिन्न समय पैमाना

लैग्रेंजियन प्रवाह के लिए अभिन्न समय के पैमाने को इस प्रकार परिभाषित किया जा सकता है:

जहां u' वेग में उतार-चढ़ाव है, और माप के बीच का समय अंतराल है।[13]

अभिन्न लंबाई पैमाने
बड़े भँवर माध्य प्रवाह से और एक दूसरे से भी ऊर्जा प्राप्त करते हैं। इस प्रकार, ये ऊर्जा उत्पादन भँवर हैं जिनमें अधिकांश ऊर्जा होती है। उनके पास बड़े प्रवाह वेग में उतार-चढ़ाव होता है और आवृत्ति में कम होता है। अभिन्न पैमाना अत्यधिक एनिस्ट्रोपिक (विषमदैशिक) हैं और सामान्यीकृत दो-बिंदु प्रवाह वेग सहसंबंधों के संदर्भ में परिभाषित किए गए हैं। इन पैमानों की अधिकतम लंबाई उपकरण की विशिष्ट लंबाई से बाधित होती है। उदाहरण के लिए, पाइप प्रवाह का सबसे बड़ा अभिन्न लंबाई पैमाना पाइप व्यास के बराबर है। वायुमंडलीय विक्षोभ के मामले में, यह लंबाई कई सौ किलोमीटर के क्रम तक पहुँच सकती है। अभिन्न लंबाई के पैमाने को इस रूप में परिभाषित किया जा सकता है
जहाँ r दो माप स्थानों के बीच की दूरी है, और u' उसी दिशा में वेग में उतार-चढ़ाव है।[13]; कोल्मोगोरोव सूक्ष्म मापक्रम: स्पेक्ट्रम में सबसे छोटा स्केल जो श्यान उप-परत रेंज बनाता है। इस सीमा में, अरेखीय अंतःक्रियाओं से ऊर्जा निविष्ट और श्यानता अपव्यय से ऊर्जा निकास सटीक संतुलन में हैं। छोटे पैमाने में उच्च आवृत्ति होती है, जिससे विक्षोभ स्थानीय रूप से समदैशिक और सजातीय हो जाती है।
टेलर सूक्ष्मदर्शी
सबसे बड़े और सबसे छोटे स्केल के बीच का मध्यवर्ती स्केल जो जड़त्वीय उपश्रेणी बनाता है। टेलर सूक्ष्म पैमाने विघटनकारी पैमाने नहीं हैं, लेकिन अपव्यय के बिना ऊर्जा को सबसे बड़े से सबसे छोटे तक पहुंचाते हैं। कुछ साहित्य टेलर सूक्ष्म पैमाने को एक विशिष्ट लंबाई के पैमाने के रूप में नहीं मानते हैं और केवल सबसे बड़े और सबसे छोटे पैमाने को समाहित करने के लिए ऊर्जा प्रपात पर विचार करते हैं; जबकि उत्तरार्द्ध जड़त्वीय उपश्रेणी और अपरुपण उपस्तर दोनों को समायोजित करता है। फिर भी, टेलर सूक्ष्म मापक्रम का उपयोग अक्सर टर्बुलेंस शब्द का अधिक आसानी से वर्णन करने के लिए किया जाता है क्योंकि ये टेलर सूक्ष्म मापक्रम वेवनंबर स्पेस में ऊर्जा और संवेग हस्तांतरण में प्रमुख भूमिका निभाते हैं।

यद्यपि द्रव गति को नियंत्रित करने वाले नेवियर-स्टोक्स समीकरणों के कुछ विशेष समाधान खोजना संभव है, ऐसे सभी समाधान बड़े रेनॉल्ड्स नंबरों पर परिमित गड़बड़ी के लिए अस्थिर हैं। प्रारंभिक और सीमा स्थितियों पर संवेदनशील निर्भरता तरल प्रवाह को समय और स्थान दोनों में अनियमित बनाती है ताकि एक सांख्यिकीय विवरण की आवश्यकता हो। रूसी गणितज्ञ एंड्री कोलमोगोरोव ने विक्षोभ के पहले सांख्यिकीय सिद्धांत का प्रस्ताव दिया, जो ऊर्जा सोपान (मूल रूप से लुईस फ्राई रिचर्डसन द्वारा पेश किया गया एक विचार) और स्व-समानता की अवधारणा के आधार पर किया गया था। नतीजतन, कोल्मोगोरोव सूक्ष्मदर्शी का नाम उनके नाम पर रखा गया था। अब यह ज्ञात है कि स्व-समानता टूट गई है इसलिए सांख्यिकीय विवरण वर्तमान में संशोधित किया गया है।[14]

विक्षोभ का पूर्ण विवरण भौतिकी की अनसुलझी समस्याओं में से एक है। एक मनगढंत कहानी के अनुसार, वर्नर हाइजेनबर्ग से पूछा गया कि अवसर मिलने पर वह ईश्वर से क्या मांगेंगे। उनका उत्तर था: जब मैं ईश्वर से मिलूंगा, तो मैं उनसे दो प्रश्न पूछने जा रहा हूं: सापेक्षता का सिद्धांत क्यों? और विक्षोभ क्यों? मुझे वास्तव में विश्वास है कि उनके पास पहले के लिए एक उत्तर होगा।[15] विज्ञान की उन्नति के लिए ब्रिटिश एसोसिएशन के एक भाषण में होरेस लैम्ब को इसी तरह की व्यंग्यात्मकता का श्रेय दिया गया है: मैं अब बूढ़ा आदमी हूं, और जब मैं मर जाता हूं और स्वर्ग जाता हूं तो दो चीजें हैं जिन पर मुझे ज्ञान की उम्मीद है। एक प्रमात्र विद्युत्गतिकी है, और दूसरा तरल पदार्थों की विक्षुब्ध गति है। और पूर्व के बारे में मैं अधिक आशावादी हूँ।[16][17]


विक्षोभ की शुरुआत

File:Laminar-turbulent transition.jpg
इस मोमबत्ती की लौ से निकलने वाला पंख लैमिनार से विक्षुब्ध हो जाता है। रेनॉल्ड्स संख्या का उपयोग यह अनुमान लगाने के लिए किया जा सकता है कि यह संक्रमण कहाँ होगा

विक्षोभ की शुरुआत, कुछ हद तक, रेनॉल्ड्स संख्या द्वारा भविष्यवाणी की जा सकती है, जो एक तरल पदार्थ के अंदर अपरुपण बलों के जड़त्वीय बलों का अनुपात है जो विभिन्न द्रव वेगों के कारण सापेक्ष आंतरिक गति के अधीन है, जिसे एक सीमा के रूप में जाना जाता है एक बाउंडिंग सतह के मामले में परत जैसे पाइप के इंटीरियर। एक समान प्रभाव उच्च वेग द्रव की एक धारा की शुरूआत से पैदा होता है, जैसे कि हवा में एक लौ से गर्म गैसें। यह सापेक्ष गति द्रव घर्षण उत्पन्न करती है, जो विक्षुब्ध प्रवाह को विकसित करने का एक कारक है। इस प्रभाव का प्रतिकार तरल पदार्थ की अपरुपणहट है, जो जैसे-जैसे बढ़ता है, उत्तरोत्तर विक्षोभ को रोकता है, क्योंकि अधिक गतिज ऊर्जा एक अधिक चिपचिपे द्रव द्वारा अवशोषित की जाती है। रेनॉल्ड्स संख्या दी गई प्रवाह स्थितियों के लिए इन दो प्रकार के बलों के सापेक्ष महत्व को निर्धारित करती है, और यह एक गाइड है कि किसी विशेष स्थिति में विक्षुब्ध प्रवाह कब होगा।[18]

विक्षुब्ध प्रवाह की शुरुआत की भविष्यवाणी करने की यह क्षमता पाइपिंग सिस्टम या विमान पंखों जैसे उपकरणों के लिए एक महत्वपूर्ण डिजाइन उपकरण है, लेकिन रेनॉल्ड्स नंबर का उपयोग द्रव गतिकी समस्याओं के स्केलिंग में भी किया जाता है, और दो अलग-अलग मामलों के बीच गतिशील समानता निर्धारित करने के लिए उपयोग किया जाता है। द्रव प्रवाह, जैसे एक मॉडल विमान और उसके पूर्ण आकार के संस्करण के बीच। ऐसा स्केलिंग हमेशा रैखिक नहीं होता है और दोनों स्थितियों में रेनॉल्ड्स नंबरों का उपयोग स्केलिंग कारकों को विकसित करने की अनुमति देता है। एक प्रवाह की स्थिति जिसमें द्रव आणविक अपरुपणहट की क्रिया के कारण गतिज ऊर्जा महत्वपूर्ण रूप से अवशोषित हो जाती है, एक लामिनार प्रवाह शासन को जन्म देती है। इसके लिए आयामहीन मात्रा रेनॉल्ड्स संख्या (Re) एक गाइड के रूप में प्रयोग किया जाता है।

लामिनार प्रवाह और विक्षुब्ध प्रवाह व्यवस्थाओं के संबंध में:

  • लामिना का प्रवाह कम रेनॉल्ड्स संख्या में होता है, जहां अपरुपण बल प्रभावी होते हैं, और चिकनी, निरंतर द्रव गति की विशेषता होती है;
  • विक्षुब्ध प्रवाह उच्च रेनॉल्ड्स संख्या में होता है और जड़त्वीय बलों का प्रभुत्व होता है, जो अव्यवस्थित एड़ी (द्रव गतिकी), भंवर और अन्य प्रवाह अस्थिरता पैदा करते हैं।

रेनॉल्ड्स संख्या के रूप में परिभाषित किया गया है[19]

कहां:

  • ρ द्रव का घनत्व है (SI इकाई: किग्रा/मीटर3)
  • v वस्तु के संबंध में द्रव का एक विशिष्ट वेग है (एम/एस)
  • L एक विशिष्ट रैखिक आयाम (एम) है
  • μ द्रव की गतिशील अपरुपणहट है (Pa·s या N·s/m2 या किग्रा/(मी·से))।

जबकि गैर-आयामी रेनॉल्ड्स संख्या को विक्षोभ से सीधे संबंधित करने वाला कोई प्रमेय नहीं है, 5000 से बड़े रेनॉल्ड्स नंबरों पर प्रवाह आम तौर पर (लेकिन जरूरी नहीं) विक्षुब्ध होते हैं, जबकि कम रेनॉल्ड्स संख्या वाले आमतौर पर लैमिनार रहते हैं। उदाहरण के लिए, हेगन-पॉइज़्यूइल समीकरण में, विक्षोभ को पहले बनाए रखा जा सकता है यदि रेनॉल्ड्स संख्या लगभग 2040 के महत्वपूर्ण मान से बड़ी है;[20] इसके अलावा, विक्षोभ आम तौर पर लगभग 4000 की एक बड़ी रेनॉल्ड्स संख्या तक लैमिनार प्रवाह के साथ फैली हुई है।

संक्रमण तब होता है जब वस्तु का आकार धीरे-धीरे बढ़ जाता है, या द्रव की अपरुपणहट कम हो जाती है, या यदि द्रव का घनत्व बढ़ जाता है।

ऊष्मा और संवेग स्थानांतरण

जब प्रवाह विक्षुब्ध होता है, तो कण अतिरिक्त अनुप्रस्थ गति प्रदर्शित करते हैं जो ऊर्जा की दर और उनके बीच संवेग विनिमय को बढ़ाता है जिससे गर्मी हस्तांतरण गुणांक और घर्षण गुणांक बढ़ जाता है।

एक द्वि-आयामी विक्षुब्ध प्रवाह के लिए मान लें कि कोई द्रव में एक विशिष्ट बिंदु का पता लगाने और वास्तविक प्रवाह वेग को मापने में सक्षम था v = (vx,vy) किसी भी समय उस बिंदु से गुजरने वाले हर कण का। तब किसी को वास्तविक प्रवाह वेग एक औसत मूल्य के बारे में उतार-चढ़ाव मिलेगा:

और इसी तरह तापमान के लिए (T = T + T′) और दबाव (P = P + P′), जहां प्राइमेड मात्राएं उतार-चढ़ाव को दर्शाती हैं, जो माध्य से अधिक होती हैं। एक प्रवाह चर का एक औसत मूल्य और एक विक्षुब्ध उतार-चढ़ाव में अपघटन मूल रूप से 1895 में ओसबोर्न रेनॉल्ड्स द्वारा प्रस्तावित किया गया था, और इसे द्रव गतिकी के उप-क्षेत्र के रूप में विक्षुब्ध प्रवाह के व्यवस्थित गणितीय विश्लेषण की शुरुआत माना जाता है। जबकि औसत मूल्यों को गतिकी नियमों द्वारा निर्धारित अनुमानित चर के रूप में लिया जाता है, विक्षुब्ध उतार-चढ़ाव को स्टोकेस्टिक चर के रूप में माना जाता है।

गर्मी प्रवाह और गति हस्तांतरण (कतरनी तनाव द्वारा दर्शाया गया τ) किसी निश्चित समय के लिए प्रवाह की सामान्य दिशा में होते हैं

कहां cP निरंतर दबाव पर ताप क्षमता है, ρ द्रव का घनत्व है, μturb विक्षुब्ध अपरुपणहट का गुणांक है और kturb विक्षुब्ध तापीय चालकता है।[3]


कोल्मोगोरोव का 1941 का सिद्धांत

रिचर्डसन की विक्षोभ की धारणा यह थी कि एक विक्षुब्ध प्रवाह विभिन्न आकारों के भंवरों द्वारा रचित है। आकार एडीज के लिए एक विशेषता लंबाई पैमाने को परिभाषित करते हैं, जो लंबाई के पैमाने पर निर्भर प्रवाह वेग तराजू और समय के पैमाने (टर्नओवर समय) की विशेषता है। बड़े भंवर अस्थिर होते हैं और अंतत: छोटे भंवर उत्पन्न होते हुए टूट जाते हैं, और प्रारंभिक बड़े भंवर की गतिज ऊर्जा को उससे उत्पन्न होने वाले छोटे भंवरों में विभाजित किया जाता है। ये छोटे एडीज एक ही प्रक्रिया से गुजरते हैं, और भी छोटे एडीज को जन्म देते हैं जो अपने पूर्ववर्ती एडी की ऊर्जा को विरासत में लेते हैं, और इसी तरह। इस तरह, ऊर्जा को गति के बड़े पैमानों से छोटे पैमानों तक नीचे पारित किया जाता है, जब तक कि पर्याप्त छोटे लंबाई के पैमाने तक नहीं पहुंच जाता है, जैसे कि द्रव की अपरुपणहट आंतरिक ऊर्जा में गतिज ऊर्जा को प्रभावी ढंग से नष्ट कर सकती है।

1941 के अपने मूल सिद्धांत में, Kolmogorov ने कहा कि बहुत अधिक रेनॉल्ड्स संख्या के लिए, छोटे पैमाने पर विक्षुब्ध गति सांख्यिकीय रूप से आइसोट्रोपिक हैं (अर्थात कोई तरजीही स्थानिक दिशा नहीं समझी जा सकती)। सामान्य तौर पर, प्रवाह के बड़े पैमाने आइसोटोपिक नहीं होते हैं, क्योंकि वे सीमाओं की विशेष ज्यामितीय विशेषताओं द्वारा निर्धारित होते हैं (बड़े पैमाने की विशेषता वाले आकार को इस रूप में दर्शाया जाएगा L). कोलमोगोरोव का विचार था कि रिचर्डसन के ऊर्जा सोपान में यह ज्यामितीय और दिशात्मक जानकारी खो जाती है, जबकि पैमाना कम हो जाता है, ताकि छोटे पैमानों के आँकड़ों में एक सार्वभौमिक चरित्र हो: रेनॉल्ड्स संख्या पर्याप्त होने पर वे सभी विक्षुब्ध प्रवाह के लिए समान होते हैं। उच्च।

इस प्रकार, कोलमोगोरोव ने एक दूसरी परिकल्पना पेश की: बहुत अधिक रेनॉल्ड्स संख्याओं के लिए छोटे पैमाने के आंकड़े सार्वभौमिक रूप से और विशिष्ट रूप से कीनेमेटिक अपरुपणहट द्वारा निर्धारित किए जाते हैं। ν और ऊर्जा अपव्यय की दर ε. केवल इन दो मापदंडों के साथ, आयामी विश्लेषण द्वारा बनाई जा सकने वाली अद्वितीय लंबाई है

यह आज कोलमोगोरोव लंबाई पैमाने के रूप में जाना जाता है (कोलमोगोरोव सूक्ष्मदर्शी देखें)।

एक विक्षुब्ध प्रवाह की विशेषता तराजू के एक पदानुक्रम से होती है जिसके माध्यम से ऊर्जा झरना होता है। कोल्मोगोरोव लंबाई के क्रम के पैमाने पर गतिज ऊर्जा का अपव्यय होता है η, जबकि कैस्केड में ऊर्जा का निविष्ट क्रम के बड़े पैमाने के क्षय से आता है L. कैस्केड के चरम पर ये दो पैमाने उच्च रेनॉल्ड्स संख्या में परिमाण के कई आदेशों से भिन्न हो सकते हैं। बीच में तराजू की एक श्रृंखला होती है (प्रत्येक की अपनी विशिष्ट लंबाई होती है r) जो बड़े लोगों की ऊर्जा की कीमत पर बना है। कोल्मोगोरोव लंबाई की तुलना में ये पैमाने बहुत बड़े हैं, लेकिन प्रवाह के बड़े पैमाने की तुलना में अभी भी बहुत छोटे हैं (यानी। ηrL). चूंकि इस रेंज में एडीज कोल्मोगोरोव स्केल में मौजूद विघटनकारी एडीज से काफी बड़े हैं, इस रेंज में गतिज ऊर्जा अनिवार्य रूप से नष्ट नहीं होती है, और इसे केवल छोटे पैमाने पर तब तक स्थानांतरित किया जाता है जब तक अपरुपण प्रभाव महत्वपूर्ण नहीं हो जाता है क्योंकि कोल्मोगोरोव स्केल के क्रम से संपर्क किया जाता है। . इस सीमा के अंदर जड़त्वीय प्रभाव अभी भी चिपचिपे प्रभावों की तुलना में बहुत बड़े हैं, और यह मान लेना संभव है कि अपरुपणहट उनकी आंतरिक गतिकी में कोई भूमिका नहीं निभाती है (इस कारण से इस सीमा को जड़त्वीय श्रेणी कहा जाता है)।

इसलिए, कोल्मोगोरोव की एक तीसरी परिकल्पना यह थी कि बहुत अधिक रेनॉल्ड्स संख्या में पैमाने के आंकड़े श्रेणी में हैं ηrL पैमाने द्वारा सार्वभौमिक और विशिष्ट रूप से निर्धारित होते हैं r और ऊर्जा अपव्यय की दर ε.

जिस तरह से गतिज ऊर्जा को तराजू की बहुलता पर वितरित किया जाता है वह विक्षुब्ध प्रवाह का एक मौलिक लक्षण है। सजातीय विक्षोभ के लिए (यानी, संदर्भ फ्रेम के अनुवाद के तहत सांख्यिकीय रूप से अपरिवर्तनीय) यह आमतौर पर ऊर्जा स्पेक्ट्रम फलन के माध्यम से किया जाता है E(k), कहां k प्रवाह वेग क्षेत्र के फूरियर प्रतिनिधित्व में कुछ हार्मोनिक्स के अनुरूप वेववेक्टर का मापांक है u(x):

कहां û(k) प्रवाह वेग क्षेत्र का फूरियर रूपांतरण है। इस प्रकार, E(k) dk के साथ सभी फूरियर मोड से गतिज ऊर्जा में योगदान का प्रतिनिधित्व करता है k < |k| < k + dk, और इसीलिए,

कहां 1/2uiui प्रवाह की औसत विक्षुब्ध गतिज ऊर्जा है। तरंग संख्या k लंबाई के पैमाने के अनुरूप r है k = /r. इसलिए, आयामी विश्लेषण द्वारा, तीसरे कोलमोगोरोव की परिकल्पना के अनुसार ऊर्जा स्पेक्ट्रम फलन के लिए एकमात्र संभव रूप है

कहां एक सार्वभौमिक स्थिरांक होगा। यह कोलमोगोरोव 1941 सिद्धांत के सबसे प्रसिद्ध परिणामों में से एक है, और इसका समर्थन करने वाले काफी प्रायोगिक साक्ष्य जमा हुए हैं।[21] जड़त्वीय क्षेत्र के बाहर, कोई सूत्र खोज सकता है [22] नीचे :

इस सफलता के बावजूद, कोलमोगोरोव सिद्धांत वर्तमान में संशोधन के अधीन है। यह सिद्धांत स्पष्ट रूप से मानता है कि विक्षोभ सांख्यिकीय रूप से विभिन्न पैमानों पर स्व-समान है। इसका अनिवार्य रूप से मतलब है कि आंकड़े स्केल-इनवेरिएंट और जड़त्वीय श्रेणी में गैर-आंतरायिक हैं। विक्षुब्ध प्रवाह वेग क्षेत्रों का अध्ययन करने का एक सामान्य तरीका प्रवाह वेग वृद्धि के माध्यम से होता है:

अर्थात्, सदिश द्वारा अलग किए गए बिंदुओं के बीच प्रवाह वेग में अंतर r (चूंकि विक्षोभ को आइसोट्रोपिक माना जाता है, प्रवाह वेग वृद्धि केवल के मापांक पर निर्भर करती है r). प्रवाह वेग वृद्धि उपयोगी होती है क्योंकि वे अलगाव के आदेश के पैमाने के प्रभाव पर जोर देते हैं r जब आँकड़ों की गणना की जाती है। आंतरायिकता के बिना सांख्यिकीय स्केल-इनवेरियन का अर्थ है कि प्रवाह वेग वृद्धि की स्केलिंग एक अद्वितीय स्केलिंग एक्सपोनेंट के साथ होनी चाहिए β, ताकि कब r एक कारक द्वारा बढ़ाया जाता है λ,

के समान सांख्यिकीय वितरण होना चाहिए

साथ β पैमाने से स्वतंत्र r. इस तथ्य से, और कोलमोगोरोव 1941 सिद्धांत के अन्य परिणामों से, यह इस प्रकार है कि प्रवाह वेग वृद्धि के सांख्यिकीय क्षणों (विक्षोभ में संरचना कार्यों के रूप में जाना जाता है) को पैमाने पर होना चाहिए

जहां ब्रैकेट सांख्यिकीय औसत दर्शाते हैं, और Cn सार्वभौमिक स्थिरांक होंगे।

इस बात के पर्याप्त प्रमाण हैं कि विक्षुब्ध प्रवाह इस व्यवहार से विचलित होते हैं। स्केलिंग एक्सपोर्टर इससे विचलित होते हैं n/3 सिद्धांत द्वारा भविष्यवाणी की गई मूल्य, क्रम का एक गैर-रैखिक कार्य बन गया n संरचना समारोह की। स्थिरांक की सार्वभौमिकता पर भी सवाल उठाया गया है। कम ऑर्डर के लिए कोलमोगोरोव के साथ विसंगति n/3 मान बहुत छोटा है, जो कम क्रम के सांख्यिकीय क्षणों के संबंध में कोलमोगोरोव सिद्धांत की सफलता की व्याख्या करता है। विशेष रूप से, यह दिखाया जा सकता है कि जब ऊर्जा स्पेक्ट्रम एक घात नियम का पालन करता है

साथ 1 < p < 3, दूसरे क्रम संरचना समारोह में फॉर्म के साथ एक घात नियम भी है

चूंकि दूसरे क्रम संरचना फलन के लिए प्राप्त प्रयोगात्मक मान केवल थोड़ा विचलन करते हैं 2/3 कोलमोगोरोव सिद्धांत द्वारा अनुमानित मूल्य, के लिए मूल्य p के बहुत निकट है 5/3 (अंतर लगभग 2% हैं[23]). इस प्रकार कोलमोगोरोव -5/3 स्पेक्ट्रम आमतौर पर विक्षोभ में देखा जाता है। हालांकि, उच्च क्रम संरचना कार्यों के लिए, कोलमोगोरोव स्केलिंग के साथ अंतर महत्वपूर्ण है, और सांख्यिकीय स्व-समानता का टूटना स्पष्ट है। यह व्यवहार, और की सार्वभौमिकता की कमी Cn स्थिरांक, विक्षोभ में आंतरायिकता की घटना से संबंधित हैं और अपव्यय दर के गैर-तुच्छ स्केलिंग व्यवहार से संबंधित हो सकते हैं जो पैमाने पर औसत है r.[24] यह इस क्षेत्र में अनुसंधान का एक महत्वपूर्ण क्षेत्र है, और विक्षोभ के आधुनिक सिद्धांत का एक प्रमुख लक्ष्य यह समझना है कि जड़त्वीय सीमा में सार्वभौमिक क्या है, और नेवियर-स्टोक्स समीकरणों से आंतरायिक गुणों को कैसे घटाया जाए, अर्थात पहले सिद्धांतों से।

यह भी देखें


संदर्भ और नोट्स

  1. Batchelor, G. (2000). द्रव यांत्रिकी का परिचय.
  2. Ting, F. C. K.; Kirby, J. T. (1996). "स्पिलिंग ब्रेकर में सर्फ-ज़ोन अशांति की गतिशीलता". Coastal Engineering. 27 (3–4): 131–160. doi:10.1016/0378-3839(95)00037-2.
  3. 3.0 3.1 Tennekes, H.; Lumley, J. L. (1972). अशांति में पहला कोर्स. MIT Press. ISBN 9780262200196.
  4. Eames, I.; Flor, J. B. (January 17, 2011). "अशांत प्रवाह में इंटरफेसियल प्रक्रियाओं को समझने में नया विकास". Philosophical Transactions of the Royal Society A. 369 (1937): 702–705. Bibcode:2011RSPTA.369..702E. doi:10.1098/rsta.2010.0332. PMID 21242127.
  5. MacKENZIE, Brian R (August 2000). "टर्बुलेंस, लार्वा फिश इकोलॉजी एंड फिशरीज रिक्रूटमेंट: ए रिव्यू ऑफ फील्ड स्टडीज". Oceanologica Acta. 23 (4): 357–375. doi:10.1016/s0399-1784(00)00142-0. ISSN 0399-1784. S2CID 83538414.
  6. Wei, Wei; Zhang, Hongsheng; Cai, Xuhui; Song, Yu; Bian, Yuxuan; Xiao, Kaitao; Zhang, He (February 2020). "बीजिंग, चीन पर वायु प्रदूषण और शीतकालीन 2016/2017 में इसके फैलाव पर आंतरायिक अशांति का प्रभाव". Journal of Meteorological Research (in English). 34 (1): 176–188. Bibcode:2020JMetR..34..176W. doi:10.1007/s13351-020-9128-4. ISSN 2095-6037.
  7. Benmoshe, N.; Pinsky, M.; Pokrovsky, A.; Khain, A. (2012-03-27). "माइक्रोफ़िज़िक्स पर अशांत प्रभाव और गहरे संवहनी बादलों में गर्म बारिश की शुरुआत: वर्णक्रमीय मिश्रित-चरण माइक्रोफ़िज़िक्स क्लाउड मॉडल द्वारा 2-डी सिमुलेशन". Journal of Geophysical Research: Atmospheres. 117 (D6): n/a. Bibcode:2012JGRD..117.6220B. doi:10.1029/2011jd016603. ISSN 0148-0227.
  8. Sneppen, Albert (2022-05-05). "जलवायु परिवर्तन का शक्ति स्पेक्ट्रम". The European Physical Journal Plus (in English). 137 (5): 555. arXiv:2205.07908. Bibcode:2022EPJP..137..555S. doi:10.1140/epjp/s13360-022-02773-w. ISSN 2190-5444. S2CID 248652864.
  9. Kunze, Eric; Dower, John F.; Beveridge, Ian; Dewey, Richard; Bartlett, Kevin P. (2006-09-22). "एक तटीय इनलेट में जैविक रूप से उत्पन्न अशांति का अवलोकन". Science (in English). 313 (5794): 1768–1770. Bibcode:2006Sci...313.1768K. doi:10.1126/science.1129378. ISSN 0036-8075. PMID 16990545. S2CID 33460051.
  10. Narasimha, R.; Rudra Kumar, S.; Prabhu, A.; Kailas, S. V. (2007). "लगभग तटस्थ वायुमंडलीय सीमा परत में अशांत प्रवाह की घटनाएं" (PDF). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 365 (1852): 841–858. Bibcode:2007RSPTA.365..841N. doi:10.1098/rsta.2006.1949. PMID 17244581. S2CID 1975604.
  11. Ferziger, Joel H.; Peric, Milovan (2002). Computational Methods for Fluid Dynamics. Germany: Springer-Verlag Berlin Heidelberg. pp. 265–307. ISBN 978-3-642-56026-2.
  12. 12.0 12.1 12.2 Kundu, Pijush K.; Cohen, Ira M.; Dowling, David R. (2012). Fluid Mechanics. Netherlands: Elsevier Inc. pp. 537–601. ISBN 978-0-12-382100-3.
  13. 13.0 13.1 Tennekes, Hendrik (1972). अशांति में पहला कोर्स. The MIT Press.
  14. weizmann.ac.il
  15. Marshak, Alex (2005). बादल भरे वातावरण में 3डी विकिरण स्थानांतरण. Springer. p. 76. ISBN 978-3-540-23958-1.
  16. Mullin, Tom (11 November 1989). "तरल पदार्थ के लिए अशांत समय". New Scientist.
  17. Davidson, P. A. (2004). अशांति: वैज्ञानिकों और इंजीनियरों के लिए एक परिचय. Oxford University Press. ISBN 978-0-19-852949-1.
  18. Falkovich, G. (2011). तरल यांत्रिकी. Cambridge University Press.[ISBN missing]
  19. Sommerfeld, Arnold (1908). "अशांत द्रव आंदोलनों के हाइड्रोडायनामिक स्पष्टीकरण में योगदान" [A Contribution to Hydrodynamic Explanation of Turbulent Fluid Motions]. International Congress of Mathematicians. 3: 116–124.
  20. Avila, K.; Moxey, D.; de Lozar, A.; Avila, M.; Barkley, D.; B. Hof (July 2011). "पाइप प्रवाह में अशांति की शुरुआत". Science. 333 (6039): 192–196. Bibcode:2011Sci...333..192A. doi:10.1126/science.1203223. PMID 21737736. S2CID 22560587.
  21. Frisch, U. (1995). टर्बुलेंस: ए.एन. कोलमोगोरोव की विरासत. Cambridge University Press. ISBN 9780521457132.
  22. Leslie, D. C. (1973). अशांति के सिद्धांत में विकास. Clarendon Press, Oxford.
  23. Mathieu, J.; Scott, J. (2000). टर्बुलेंट फ्लो का परिचय. Cambridge University Press.[ISBN missing]
  24. Meneveau, C.; Sreenivasan, K.R. (1991). "अशांत ऊर्जा अपव्यय की बहुआयामी प्रकृति". J. Fluid Mech. 224: 429–484. Bibcode:1991JFM...224..429M. doi:10.1017/S0022112091001830. S2CID 122027556.


आगे की पढाई


बाहरी कड़ियाँ

श्रेणी:भौतिकी की अवधारणा श्रेणी:वायुगतिकी श्रेणी: अव्यवस्थितता सिद्धांत श्रेणी: परिवहन घटनाएं श्रेणी:द्रव गतिकी श्रेणी:प्रवाह व्यवस्था