आणविक मॉडल: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Physical model for representing molecules}} {{More footnotes needed|date=February 2023}} आणविक मॉडल एक परमाणु प्र...")
 
No edit summary
Line 1: Line 1:
{{short description|Physical model for representing molecules}}
{{short description|Physical model for representing molecules}}आणविक मॉडल एक परमाणु प्रणाली का एक [[भौतिक मॉडल]] है जो [[अणुओं]] और उनकी प्रक्रियाओं का प्रतिनिधित्व करता है। वे [[रसायन विज्ञान]] को समझने और [[परिकल्पना]]ओं को उत्पन्न करने और परीक्षण करने में महत्वपूर्ण भूमिका निभाते हैं। आणविक गुणों और व्यवहार के गणितीय मॉडल के निर्माण को [[आणविक मॉडलिंग]] कहा जाता है, और उनके चित्रमय चित्रण को [[आणविक ग्राफिक्स]] कहा जाता है।
{{More footnotes needed|date=February 2023}}
 
आणविक मॉडल एक परमाणु प्रणाली का एक [[भौतिक मॉडल]] है जो [[अणुओं]] और उनकी प्रक्रियाओं का प्रतिनिधित्व करता है। वे [[रसायन विज्ञान]] को समझने और [[परिकल्पना]]ओं को उत्पन्न करने और परीक्षण करने में महत्वपूर्ण भूमिका निभाते हैं। आणविक गुणों और व्यवहार के गणितीय मॉडल के निर्माण को [[आणविक मॉडलिंग]] कहा जाता है, और उनके चित्रमय चित्रण को [[आणविक ग्राफिक्स]] कहा जाता है।


आणविक मॉडल शब्द उन प्रणालियों को संदर्भित करता है जिनमें एक या अधिक स्पष्ट परमाणु होते हैं (हालांकि [[विलायक]] परमाणुओं को अंतर्निहित रूप से दर्शाया जा सकता है) और जहां [[परमाणु संरचना]] की उपेक्षा की जाती है। [[इलेक्ट्रॉनिक संरचना]] को भी अक्सर छोड़ दिया जाता है जब तक कि यह मॉडल किए जा रहे अणु के कार्य को दर्शाने के लिए आवश्यक न हो।
आणविक मॉडल शब्द उन प्रणालियों को संदर्भित करता है जिनमें एक या अधिक स्पष्ट परमाणु होते हैं (हालांकि [[विलायक]] परमाणुओं को अंतर्निहित रूप से दर्शाया जा सकता है) और जहां [[परमाणु संरचना]] की उपेक्षा की जाती है। [[इलेक्ट्रॉनिक संरचना]] को भी अक्सर छोड़ दिया जाता है जब तक कि यह मॉडल किए जा रहे अणु के कार्य को दर्शाने के लिए आवश्यक न हो।
Line 13: Line 10:
[[File:Molecular Model of Methane Hofmann.jpg|thumb|मीथेन के लिए हॉफमैन का मॉडल]]1600 के दशक में, [[जोहान्स केप्लर]] ने बर्फ के टुकड़ों की [[समरूपता]] और फलों जैसे करीबी [[गोलाकार पैकिंग]] पर भी अनुमान लगाया ([[केप्लर अनुमान]] हाल तक अनसुलझा रहा)।<ref name="kepler">{{cite book |last1=Kepler |first1=Johannes |last2=Hardie |first2=Colin (translated) |title=स्ट्रेना, सेउ डे निवे सेक्संगुला।|date=1611 |publisher=Clarendon Press |url=https://books.google.com/books?id=cLYYRAAACAAJ |access-date=13 June 2022}}</ref> बारीकी से पैक किए गए गोले की सममित व्यवस्था ने 1800 के दशक के अंत में आणविक संरचना के सिद्धांतों को सूचित किया, और [[क्रिस्टलोग्राफी]] और [[ठोस]] अकार्बनिक संरचना के कई सिद्धांतों ने पैकिंग का अनुकरण करने और संरचना की भविष्यवाणी करने के लिए समान और असमान क्षेत्रों के संग्रह का उपयोग किया।
[[File:Molecular Model of Methane Hofmann.jpg|thumb|मीथेन के लिए हॉफमैन का मॉडल]]1600 के दशक में, [[जोहान्स केप्लर]] ने बर्फ के टुकड़ों की [[समरूपता]] और फलों जैसे करीबी [[गोलाकार पैकिंग]] पर भी अनुमान लगाया ([[केप्लर अनुमान]] हाल तक अनसुलझा रहा)।<ref name="kepler">{{cite book |last1=Kepler |first1=Johannes |last2=Hardie |first2=Colin (translated) |title=स्ट्रेना, सेउ डे निवे सेक्संगुला।|date=1611 |publisher=Clarendon Press |url=https://books.google.com/books?id=cLYYRAAACAAJ |access-date=13 June 2022}}</ref> बारीकी से पैक किए गए गोले की सममित व्यवस्था ने 1800 के दशक के अंत में आणविक संरचना के सिद्धांतों को सूचित किया, और [[क्रिस्टलोग्राफी]] और [[ठोस]] अकार्बनिक संरचना के कई सिद्धांतों ने पैकिंग का अनुकरण करने और संरचना की भविष्यवाणी करने के लिए समान और असमान क्षेत्रों के संग्रह का उपयोग किया।


[[जॉन डाल्टन]] ने यौगिकों को वृत्ताकार परमाणुओं के एकत्रीकरण के रूप में प्रस्तुत किया, और हालांकि [[जोहान जोसेफ लॉस्च्मिड्ट]] ने भौतिक मॉडल नहीं बनाए, वृत्तों पर आधारित उनके चित्र बाद के मॉडल के द्वि-आयामी एनालॉग हैं।<ref name="Dalton">{{cite book |last1=Dalton |first1=John |title=रासायनिक दर्शन की एक नई प्रणाली।|date=1808 |publisher=Henderson & Spalding |location=London, United Kingdom |url=https://books.google.com/books?id=Wp7QAAAAMAAJ |access-date=14 June 2022}}</ref> [[अगस्त विल्हेम वॉन हॉफमैन]] को 1860 के आसपास पहले भौतिक आणविक मॉडल का श्रेय दिया जाता है।<ref name="mcbride">{{cite web |last1=McBride |first1=M. |title=Models and Structural Diagrams in the 1860s |url=http://chem125-oyc.webspace.yale.edu/125/history99/6Stereochemistry/models/models.html |publisher=Yale University |access-date=14 June 2022}}</ref> ध्यान दें कि [[कार्बन]] का आकार हाइड्रोजन से छोटा कैसे दिखाई देता है। तब [[ त्रिविम ]] के महत्व को पहचाना नहीं गया था और मॉडल अनिवार्य रूप से टोपोलॉजिकल है (यह एक 3-आयामी [[ चतुर्पाश्वीय ]] होना चाहिए)।
[[जॉन डाल्टन]] ने यौगिकों को वृत्ताकार परमाणुओं के एकत्रीकरण के रूप में प्रस्तुत किया, और हालांकि [[जोहान जोसेफ लॉस्च्मिड्ट]] ने भौतिक मॉडल नहीं बनाए, वृत्तों पर आधारित उनके चित्र बाद के मॉडल के द्वि-आयामी एनालॉग हैं।<ref name="Dalton">{{cite book |last1=Dalton |first1=John |title=रासायनिक दर्शन की एक नई प्रणाली।|date=1808 |publisher=Henderson & Spalding |location=London, United Kingdom |url=https://books.google.com/books?id=Wp7QAAAAMAAJ |access-date=14 June 2022}}</ref> [[अगस्त विल्हेम वॉन हॉफमैन]] को 1860 के आसपास पहले भौतिक आणविक मॉडल का श्रेय दिया जाता है।<ref name="mcbride">{{cite web |last1=McBride |first1=M. |title=Models and Structural Diagrams in the 1860s |url=http://chem125-oyc.webspace.yale.edu/125/history99/6Stereochemistry/models/models.html |publisher=Yale University |access-date=14 June 2022}}</ref> ध्यान दें कि [[कार्बन]] का आकार हाइड्रोजन से छोटा कैसे दिखाई देता है। तब [[ त्रिविम |त्रिविम]] के महत्व को पहचाना नहीं गया था और मॉडल अनिवार्य रूप से टोपोलॉजिकल है (यह एक 3-आयामी [[ चतुर्पाश्वीय |चतुर्पाश्वीय]] होना चाहिए)।
 
जेकोबस हेनरिकस वैन टी हॉफ और [[जोसेफ ले बेल]] ने अंतरिक्ष के तीन आयामों, यानी स्टीरियोकैमिस्ट्री में रसायन विज्ञान की अवधारणा पेश की। वैन टी हॉफ ने कार्बन के त्रि-आयामी गुणों का प्रतिनिधित्व करने वाले [[ चतुष्फलकीय |चतुष्फलकीय]] अणुओं का निर्माण किया।


जेकोबस हेनरिकस वैन टी हॉफ और [[जोसेफ ले बेल]] ने अंतरिक्ष के तीन आयामों, यानी स्टीरियोकैमिस्ट्री में रसायन विज्ञान की अवधारणा पेश की। वैन टी हॉफ ने कार्बन के त्रि-आयामी गुणों का प्रतिनिधित्व करने वाले [[ चतुष्फलकीय ]] अणुओं का निर्माण किया।{{citation needed|date=February 2023}}
<!-- More needed here on solid state models -->




== गोले पर आधारित मॉडल ==
== गोले पर आधारित मॉडल ==
[[Image:NaCl model s.jpg|thumb|सोडियम क्लोराइड (NaCl) जाली, क्लोज-पैक्ड गोले दिखाती है जो NaCl और अधिकांश अन्य [[क्षार]] [[ halide ]]ों के समान एक फलक-केंद्रित घन AB जाली का प्रतिनिधित्व करती है। इस मॉडल में गोले समान आकार के हैं जबकि अधिक यथार्थवादी मॉडल में धनायन और आयनों के लिए अलग-अलग त्रिज्याएँ होंगी।]]दोहराई जाने वाली इकाइयाँ यह दिखाने में मदद करेंगी कि परमाणुओं का प्रतिनिधित्व करने वाली गेंदों के माध्यम से अणुओं का प्रतिनिधित्व करना कितना आसान और स्पष्ट है।
[[Image:NaCl model s.jpg|thumb|सोडियम क्लोराइड (NaCl) जाली, क्लोज-पैक्ड गोले दिखाती है जो NaCl और अधिकांश अन्य [[क्षार]] [[ halide |halide]] ों के समान एक फलक-केंद्रित घन AB जाली का प्रतिनिधित्व करती है। इस मॉडल में गोले समान आकार के हैं जबकि अधिक यथार्थवादी मॉडल में धनायन और आयनों के लिए अलग-अलग त्रिज्याएँ होंगी।]]दोहराई जाने वाली इकाइयाँ यह दिखाने में मदद करेंगी कि परमाणुओं का प्रतिनिधित्व करने वाली गेंदों के माध्यम से अणुओं का प्रतिनिधित्व करना कितना आसान और स्पष्ट है।


[[द्विआधारी यौगिक]] [[सोडियम क्लोराइड]] (NaCl) और [[सीज़ियम क्लोराइड]] (CsCl) में घन संरचनाएं होती हैं लेकिन अलग-अलग स्थान समूह होते हैं। इसे विभिन्न आकारों के गोले की करीबी पैकिंग के संदर्भ में तर्कसंगत बनाया जा सकता है। उदाहरण के लिए, NaCl को [[अष्टभुजाकार]] छिद्रों में सोडियम [[आयन]]ों के साथ क्लोज-पैक क्लोराइड आयनों (एक फलक-केंद्रित घन जाली में) के रूप में वर्णित किया जा सकता है। क्रिस्टल संरचनाओं के निर्धारण के लिए एक उपकरण के रूप में [[एक्स - रे क्रिस्टलोग्राफी]] के विकास के बाद, कई प्रयोगशालाओं ने गोले के आधार पर मॉडल बनाए। प्लास्टिक या [[ POLYSTYRENE ]] गेंदों के विकास के साथ अब ऐसे मॉडल बनाना आसान हो गया है।
[[द्विआधारी यौगिक]] [[सोडियम क्लोराइड]] (NaCl) और [[सीज़ियम क्लोराइड]] (CsCl) में घन संरचनाएं होती हैं लेकिन अलग-अलग स्थान समूह होते हैं। इसे विभिन्न आकारों के गोले की करीबी पैकिंग के संदर्भ में तर्कसंगत बनाया जा सकता है। उदाहरण के लिए, NaCl को [[अष्टभुजाकार]] छिद्रों में सोडियम [[आयन]]ों के साथ क्लोज-पैक क्लोराइड आयनों (एक फलक-केंद्रित घन जाली में) के रूप में वर्णित किया जा सकता है। क्रिस्टल संरचनाओं के निर्धारण के लिए एक उपकरण के रूप में [[एक्स - रे क्रिस्टलोग्राफी]] के विकास के बाद, कई प्रयोगशालाओं ने गोले के आधार पर मॉडल बनाए। प्लास्टिक या [[ POLYSTYRENE |POLYSTYRENE]] गेंदों के विकास के साथ अब ऐसे मॉडल बनाना आसान हो गया है।


== बॉल-एंड-स्टिक पर आधारित मॉडल ==
== बॉल-एंड-स्टिक पर आधारित मॉडल ==
Line 29: Line 26:
कठोर बंधनों और छिद्रों के साथ एक समस्या यह है कि मनमाने कोण वाले सिस्टम का निर्माण नहीं किया जा सकता है। इसे लचीले बंधनों से दूर किया जा सकता है, मूल रूप से पेचदार स्प्रिंग्स लेकिन अब आमतौर पर प्लास्टिक। यह दोहरे और तिहरे बांडों को कई एकल बांडों द्वारा अनुमानित करने की भी अनुमति देता है।
कठोर बंधनों और छिद्रों के साथ एक समस्या यह है कि मनमाने कोण वाले सिस्टम का निर्माण नहीं किया जा सकता है। इसे लचीले बंधनों से दूर किया जा सकता है, मूल रूप से पेचदार स्प्रिंग्स लेकिन अब आमतौर पर प्लास्टिक। यह दोहरे और तिहरे बांडों को कई एकल बांडों द्वारा अनुमानित करने की भी अनुमति देता है।


[[Image:proline model.jpg|thumb|left|एक आधुनिक प्लास्टिक बॉल और स्टिक मॉडल। दिखाया गया अणु [[ PROLINE ]] है]]बाईं ओर दिखाया गया मॉडल प्रोलाइन के बॉल-एंड-स्टिक मॉडल का प्रतिनिधित्व करता है। गेंदों में रंग होते हैं: काला कार्बन (सी) का प्रतिनिधित्व करता है; <span style= रंग: लाल; >लाल</span>, [[ऑक्सीजन]] (O); <span style= रंग: नीला; >नीला</span>, [[नाइट्रोजन]] (एन); और सफेद, [[हाइड्रोजन]] (एच)। प्रत्येक गेंद को उसके पारंपरिक वैलेंस (रसायन शास्त्र) (सी: 4; एन: 3; ओ: 2; एच: 1) के रूप में कई छेदों के साथ ड्रिल किया जाता है, जो टेट्राहेड्रोन के शीर्ष की ओर निर्देशित होता है। एकल बांडों को (काफ़ी हद तक) कठोर ग्रे छड़ों द्वारा दर्शाया जाता है। डबल और ट्रिपल बॉन्ड दो लंबे लचीले बॉन्ड का उपयोग करते हैं जो रोटेशन को प्रतिबंधित करते हैं और पारंपरिक [[सीआईएस-ट्रांस आइसोमेरिज्म]] आइसोमेरिज्म स्टीरियोकैमिस्ट्री का समर्थन करते हैं।
[[Image:proline model.jpg|thumb|left|एक आधुनिक प्लास्टिक बॉल और स्टिक मॉडल। दिखाया गया अणु [[ PROLINE |PROLINE]] है]]बाईं ओर दिखाया गया मॉडल प्रोलाइन के बॉल-एंड-स्टिक मॉडल का प्रतिनिधित्व करता है। गेंदों में रंग होते हैं: काला कार्बन (सी) का प्रतिनिधित्व करता है; <span style= रंग: लाल; >लाल</span>, [[ऑक्सीजन]] (O); <span style= रंग: नीला; >नीला</span>, [[नाइट्रोजन]] (एन); और सफेद, [[हाइड्रोजन]] (एच)। प्रत्येक गेंद को उसके पारंपरिक वैलेंस (रसायन शास्त्र) (सी: 4; एन: 3; ओ: 2; एच: 1) के रूप में कई छेदों के साथ ड्रिल किया जाता है, जो टेट्राहेड्रोन के शीर्ष की ओर निर्देशित होता है। एकल बांडों को (काफ़ी हद तक) कठोर ग्रे छड़ों द्वारा दर्शाया जाता है। डबल और ट्रिपल बॉन्ड दो लंबे लचीले बॉन्ड का उपयोग करते हैं जो रोटेशन को प्रतिबंधित करते हैं और पारंपरिक [[सीआईएस-ट्रांस आइसोमेरिज्म]] आइसोमेरिज्म स्टीरियोकैमिस्ट्री का समर्थन करते हैं।


[[Image:Ruby model.jpg|thumb|right|ऐक्रेलिक गेंदों और स्टेनलेस स्टील की छड़ों से बने [[ माणिक ]] (सीआर-डॉप्ड कोरन्डम) का बीवर बॉल और स्टिक मॉडल]]हालाँकि, अधिकांश अणुओं को अन्य कोणों पर छेद की आवश्यकता होती है और विशेषज्ञ कंपनियां किट और बीस्पोक मॉडल बनाती हैं। चतुष्फलकीय, त्रिकोणीय और अष्टफलकीय छिद्रों के अलावा, 24 छिद्रों वाली सर्व-उद्देश्यीय गेंदें भी थीं। इन मॉडलों ने एकल रॉड बांड के चारों ओर घूमने की अनुमति दी, जो एक फायदा (आणविक लचीलापन दिखा रहा है) और एक नुकसान (मॉडल फ्लॉपी हैं) दोनों हो सकते हैं। अनुमानित पैमाना 5 सेमी प्रति एंगस्ट्रॉम (0.5 मीटर/एनएम या 500,000,000:1) था, लेकिन सभी तत्वों पर सुसंगत नहीं था।
[[Image:Ruby model.jpg|thumb|right|ऐक्रेलिक गेंदों और स्टेनलेस स्टील की छड़ों से बने [[ माणिक |माणिक]] (सीआर-डॉप्ड कोरन्डम) का बीवर बॉल और स्टिक मॉडल]]हालाँकि, अधिकांश अणुओं को अन्य कोणों पर छेद की आवश्यकता होती है और विशेषज्ञ कंपनियां किट और बीस्पोक मॉडल बनाती हैं। चतुष्फलकीय, त्रिकोणीय और अष्टफलकीय छिद्रों के अलावा, 24 छिद्रों वाली सर्व-उद्देश्यीय गेंदें भी थीं। इन मॉडलों ने एकल रॉड बांड के चारों ओर घूमने की अनुमति दी, जो एक फायदा (आणविक लचीलापन दिखा रहा है) और एक नुकसान (मॉडल फ्लॉपी हैं) दोनों हो सकते हैं। अनुमानित पैमाना 5 सेमी प्रति एंगस्ट्रॉम (0.5 मीटर/एनएम या 500,000,000:1) था, लेकिन सभी तत्वों पर सुसंगत नहीं था।


[[ एडिनबरा ]] में अर्नोल्ड बीवर्स ने पीएमएमए गेंदों और स्टेनलेस स्टील की छड़ों का उपयोग करके छोटे मॉडल बनाए। इन मॉडलों में सटीक बॉन्ड कोण और बॉन्ड लंबाई के साथ व्यक्तिगत रूप से ड्रिल की गई गेंदों का उपयोग करके, बड़ी क्रिस्टल संरचनाएं सटीक रूप से बनाई जा सकती हैं, लेकिन हल्के और कठोर रूप के साथ। चित्र 4 इस शैली में माणिक की एक इकाई कोशिका दिखाता है।
[[ एडिनबरा | एडिनबरा]] में अर्नोल्ड बीवर्स ने पीएमएमए गेंदों और स्टेनलेस स्टील की छड़ों का उपयोग करके छोटे मॉडल बनाए। इन मॉडलों में सटीक बॉन्ड कोण और बॉन्ड लंबाई के साथ व्यक्तिगत रूप से ड्रिल की गई गेंदों का उपयोग करके, बड़ी क्रिस्टल संरचनाएं सटीक रूप से बनाई जा सकती हैं, लेकिन हल्के और कठोर रूप के साथ। चित्र 4 इस शैली में माणिक की एक इकाई कोशिका दिखाता है।


== कंकाल मॉडल ==
== कंकाल मॉडल ==
Line 46: Line 43:


== समग्र मॉडल ==
== समग्र मॉडल ==
[[Image:peptide model s.jpg|thumb|एक निकोलसन मॉडल, साइड चेन (ग्रे) के साथ प्रोटीन रीढ़ की हड्डी (सफेद) का एक छोटा हिस्सा दिखा रहा है। हाइड्रोजन परमाणुओं का प्रतिनिधित्व करने वाले कटे हुए स्टब्स पर ध्यान दें।]]मिश्रित मॉडल का एक अच्छा उदाहरण निकोलसन दृष्टिकोण है, जिसका व्यापक रूप से 1970 के दशक के अंत से जैविक [[ मैक्रो मोलेक्यूल ]]्स के मॉडल बनाने के लिए उपयोग किया जाता है। घटक मुख्य रूप से [[ एमिनो एसिड ]] और [[ न्यूक्लिक अम्ल ]] होते हैं जिनके पूर्वनिर्मित अवशेष परमाणुओं के समूहों का प्रतिनिधित्व करते हैं। इनमें से कई परमाणुओं को सीधे टेम्पलेट में ढाला जाता है, और प्लास्टिक के ठूंठों को छोटे छिद्रों में धकेल कर एक साथ फिट किया जाता है। प्लास्टिक अच्छी तरह से पकड़ता है और बंधनों को घुमाना मुश्किल बनाता है, ताकि मनमाने ढंग से मरोड़ वाले कोणों को सेट किया जा सके और उनके मूल्य को बनाए रखा जा सके। [[रीढ़ की हड्डी की जंजीर]] और [[पक्ष श्रृंखला]] की संरचना [[मरोड़ कोण]]ों की पूर्व-गणना और फिर एक [[चांदा]] के साथ मॉडल को समायोजित करके निर्धारित की जाती है।
[[Image:peptide model s.jpg|thumb|एक निकोलसन मॉडल, साइड चेन (ग्रे) के साथ प्रोटीन रीढ़ की हड्डी (सफेद) का एक छोटा हिस्सा दिखा रहा है। हाइड्रोजन परमाणुओं का प्रतिनिधित्व करने वाले कटे हुए स्टब्स पर ध्यान दें।]]मिश्रित मॉडल का एक अच्छा उदाहरण निकोलसन दृष्टिकोण है, जिसका व्यापक रूप से 1970 के दशक के अंत से जैविक [[ मैक्रो मोलेक्यूल |मैक्रो मोलेक्यूल]] ्स के मॉडल बनाने के लिए उपयोग किया जाता है। घटक मुख्य रूप से [[ एमिनो एसिड |एमिनो एसिड]] और [[ न्यूक्लिक अम्ल |न्यूक्लिक अम्ल]] होते हैं जिनके पूर्वनिर्मित अवशेष परमाणुओं के समूहों का प्रतिनिधित्व करते हैं। इनमें से कई परमाणुओं को सीधे टेम्पलेट में ढाला जाता है, और प्लास्टिक के ठूंठों को छोटे छिद्रों में धकेल कर एक साथ फिट किया जाता है। प्लास्टिक अच्छी तरह से पकड़ता है और बंधनों को घुमाना मुश्किल बनाता है, ताकि मनमाने ढंग से मरोड़ वाले कोणों को सेट किया जा सके और उनके मूल्य को बनाए रखा जा सके। [[रीढ़ की हड्डी की जंजीर]] और [[पक्ष श्रृंखला]] की संरचना [[मरोड़ कोण]]ों की पूर्व-गणना और फिर एक [[चांदा]] के साथ मॉडल को समायोजित करके निर्धारित की जाती है।


प्लास्टिक सफेद है और इसे O और N परमाणुओं के बीच अंतर करने के लिए पेंट किया जा सकता है। हाइड्रोजन परमाणु आम तौर पर अंतर्निहित होते हैं और तीलियों को काटकर प्रतिरूपित होते हैं। लगभग 300 अवशेषों वाले एक विशिष्ट प्रोटीन का एक मॉडल बनाने में एक महीने का समय लग सकता है। प्रयोगशालाओं के लिए हल किए गए प्रत्येक प्रोटीन के लिए एक मॉडल बनाना आम बात थी। 2005 तक, इतनी अधिक प्रोटीन संरचनाएँ निर्धारित की जा रही थीं कि अपेक्षाकृत कम मॉडल बनाए गए थे।
प्लास्टिक सफेद है और इसे O और N परमाणुओं के बीच अंतर करने के लिए पेंट किया जा सकता है। हाइड्रोजन परमाणु आम तौर पर अंतर्निहित होते हैं और तीलियों को काटकर प्रतिरूपित होते हैं। लगभग 300 अवशेषों वाले एक विशिष्ट प्रोटीन का एक मॉडल बनाने में एक महीने का समय लग सकता है। प्रयोगशालाओं के लिए हल किए गए प्रत्येक प्रोटीन के लिए एक मॉडल बनाना आम बात थी। 2005 तक, इतनी अधिक प्रोटीन संरचनाएँ निर्धारित की जा रही थीं कि अपेक्षाकृत कम मॉडल बनाए गए थे।


== कंप्यूटर आधारित मॉडल ==
== कंप्यूटर आधारित मॉडल ==
[[Image:anthrax and gfp s.jpg|thumb|एकीकृत प्रोटीन मॉडल]]कंप्यूटर-आधारित भौतिक मॉडलिंग के विकास के साथ, अब किसी सतह के निर्देशांक को कंप्यूटर में फीड करके पूर्ण एकल-टुकड़ा मॉडल बनाना संभव है। चित्र 6 में [[ बिसहरिया ]] विष के मॉडल दिखाए गए हैं, बाएं (लगभग 20 Å/सेमी या 1:5,000,000 के पैमाने पर) और [[हरी फ्लोरोसेंट प्रोटीन]], दाएं (5 सेमी ऊंचे, लगभग 4 Å/सेमी या 1:25,000,000 के पैमाने पर) 3डी आणविक डिजाइन। मॉडल तेजी से प्रोटोटाइपिंग प्रक्रिया का उपयोग करके प्लास्टर या स्टार्च से बने होते हैं।
[[Image:anthrax and gfp s.jpg|thumb|एकीकृत प्रोटीन मॉडल]]कंप्यूटर-आधारित भौतिक मॉडलिंग के विकास के साथ, अब किसी सतह के निर्देशांक को कंप्यूटर में फीड करके पूर्ण एकल-टुकड़ा मॉडल बनाना संभव है। चित्र 6 में [[ बिसहरिया |बिसहरिया]] विष के मॉडल दिखाए गए हैं, बाएं (लगभग 20 Å/सेमी या 1:5,000,000 के पैमाने पर) और [[हरी फ्लोरोसेंट प्रोटीन]], दाएं (5 सेमी ऊंचे, लगभग 4 Å/सेमी या 1:25,000,000 के पैमाने पर) 3डी आणविक डिजाइन। मॉडल तेजी से प्रोटोटाइपिंग प्रक्रिया का उपयोग करके प्लास्टर या स्टार्च से बने होते हैं।


हाल ही में उपसतह [[लेजर उत्कीर्णन]] नामक तकनीक का उपयोग करके ग्लास ब्लॉकों के अंदर सटीक आणविक मॉडल बनाना भी संभव हो गया है। दाईं ओर की छवि ब्रिटिश कंपनी ल्यूमिनोरम लिमिटेड द्वारा कांच के एक ब्लॉक के अंदर उकेरी गई ई. कोली प्रोटीन (डीएनए पोलीमरेज़ बीटा-सबयूनिट, [[प्रोटीन डाटा बैंक]] कोड 1MMI) की 3डी संरचना दिखाती है।
हाल ही में उपसतह [[लेजर उत्कीर्णन]] नामक तकनीक का उपयोग करके ग्लास ब्लॉकों के अंदर सटीक आणविक मॉडल बनाना भी संभव हो गया है। दाईं ओर की छवि ब्रिटिश कंपनी ल्यूमिनोरम लिमिटेड द्वारा कांच के एक ब्लॉक के अंदर उकेरी गई ई. कोली प्रोटीन (डीएनए पोलीमरेज़ बीटा-सबयूनिट, [[प्रोटीन डाटा बैंक]] कोड 1MMI) की 3डी संरचना दिखाती है।
Line 61: Line 58:
==सामान्य रंग==
==सामान्य रंग==
{{see also|CPK coloring}}
{{see also|CPK coloring}}
आणविक मॉडलों में उपयोग किए जाने वाले कुछ सबसे आम रंग इस प्रकार हैं:{{citation needed|date=March 2017}}
आणविक मॉडलों में उपयोग किए जाने वाले कुछ सबसे आम रंग इस प्रकार हैं:
:{| class="wikitable"
:{| class="wikitable"
|[[Hydrogen]]
|[[Hydrogen]]
Line 155: Line 152:
| 1951
| 1951
| [[Space-filling model]]s of alpha-helix, etc.
| [[Space-filling model]]s of alpha-helix, etc.
| Pauling's "Nature of the Chemical Bond" covered all aspects of molecular structure and influenced many aspects of models
| Pauling's "Nature of the Chemical Bond" covered all aspects of molecular structure and influenced many aspects of models
|-  
|-  
| [[Francis Crick]] and [[James D. Watson]]
| [[Francis Crick]] and [[James D. Watson]]
Line 193: Line 190:


* [http://www.umass.edu/microbio/rasmol/history.htm History of Visualization of Biological Macromolecules] by Eric Martz and Eric Francoeur. Contains a mixture of physical models and [[molecular graphics]].
* [http://www.umass.edu/microbio/rasmol/history.htm History of Visualization of Biological Macromolecules] by Eric Martz and Eric Francoeur. Contains a mixture of physical models and [[molecular graphics]].
{{Molecular visualization}}


{{DEFAULTSORT:Molecular Model}}[[Category: आणविक मॉडलिंग|मॉडल]]  
{{DEFAULTSORT:Molecular Model}}[[Category: आणविक मॉडलिंग|मॉडल]]  

Revision as of 11:01, 11 July 2023

आणविक मॉडल एक परमाणु प्रणाली का एक भौतिक मॉडल है जो अणुओं और उनकी प्रक्रियाओं का प्रतिनिधित्व करता है। वे रसायन विज्ञान को समझने और परिकल्पनाओं को उत्पन्न करने और परीक्षण करने में महत्वपूर्ण भूमिका निभाते हैं। आणविक गुणों और व्यवहार के गणितीय मॉडल के निर्माण को आणविक मॉडलिंग कहा जाता है, और उनके चित्रमय चित्रण को आणविक ग्राफिक्स कहा जाता है।

आणविक मॉडल शब्द उन प्रणालियों को संदर्भित करता है जिनमें एक या अधिक स्पष्ट परमाणु होते हैं (हालांकि विलायक परमाणुओं को अंतर्निहित रूप से दर्शाया जा सकता है) और जहां परमाणु संरचना की उपेक्षा की जाती है। इलेक्ट्रॉनिक संरचना को भी अक्सर छोड़ दिया जाता है जब तक कि यह मॉडल किए जा रहे अणु के कार्य को दर्शाने के लिए आवश्यक न हो।

आणविक मॉडल कई कारणों से बनाए जा सकते हैं - छात्रों या परमाणु संरचनाओं से अपरिचित लोगों के लिए शैक्षणिक उपकरण के रूप में; सिद्धांतों को उत्पन्न करने या परीक्षण करने के लिए वस्तुओं के रूप में (उदाहरण के लिए, डीएनए की संरचना); एनालॉग कंप्यूटर के रूप में (उदाहरण के लिए, लचीली प्रणालियों में दूरियां और कोण मापने के लिए); या कला और विज्ञान की सीमा पर सौंदर्य की दृष्टि से मनभावन वस्तुओं के रूप में।

भौतिक मॉडलों का निर्माण अक्सर एक रचनात्मक कार्य होता है, और विज्ञान विभागों की कार्यशालाओं में कई विशिष्ट उदाहरण सावधानीपूर्वक बनाए गए हैं। भौतिक मॉडलिंग के लिए दृष्टिकोणों की एक बहुत विस्तृत श्रृंखला है, जिसमें व्यावसायिक रूप से खरीद के लिए उपलब्ध बॉल-एंड-स्टिक मॉडल से लेकर 3 थ्री डी प्रिण्टर का उपयोग करके बनाए गए आणविक मॉडल शामिल हैं। मुख्य रणनीति, शुरुआत में पाठ्यपुस्तकों और शोध लेखों में और हाल ही में कंप्यूटर पर। आणविक ग्राफिक्स ने कंप्यूटर हार्डवेयर पर आणविक मॉडलों के दृश्य को आसान, अधिक सुलभ और सस्ता बना दिया है, हालांकि चित्रित किए जा रहे स्पर्श और दृश्य संदेश को बढ़ाने के लिए भौतिक मॉडल का व्यापक रूप से उपयोग किया जाता है।

इतिहास

Error creating thumbnail:
मीथेन के लिए हॉफमैन का मॉडल

1600 के दशक में, जोहान्स केप्लर ने बर्फ के टुकड़ों की समरूपता और फलों जैसे करीबी गोलाकार पैकिंग पर भी अनुमान लगाया (केप्लर अनुमान हाल तक अनसुलझा रहा)।[1] बारीकी से पैक किए गए गोले की सममित व्यवस्था ने 1800 के दशक के अंत में आणविक संरचना के सिद्धांतों को सूचित किया, और क्रिस्टलोग्राफी और ठोस अकार्बनिक संरचना के कई सिद्धांतों ने पैकिंग का अनुकरण करने और संरचना की भविष्यवाणी करने के लिए समान और असमान क्षेत्रों के संग्रह का उपयोग किया।

जॉन डाल्टन ने यौगिकों को वृत्ताकार परमाणुओं के एकत्रीकरण के रूप में प्रस्तुत किया, और हालांकि जोहान जोसेफ लॉस्च्मिड्ट ने भौतिक मॉडल नहीं बनाए, वृत्तों पर आधारित उनके चित्र बाद के मॉडल के द्वि-आयामी एनालॉग हैं।[2] अगस्त विल्हेम वॉन हॉफमैन को 1860 के आसपास पहले भौतिक आणविक मॉडल का श्रेय दिया जाता है।[3] ध्यान दें कि कार्बन का आकार हाइड्रोजन से छोटा कैसे दिखाई देता है। तब त्रिविम के महत्व को पहचाना नहीं गया था और मॉडल अनिवार्य रूप से टोपोलॉजिकल है (यह एक 3-आयामी चतुर्पाश्वीय होना चाहिए)।

जेकोबस हेनरिकस वैन टी हॉफ और जोसेफ ले बेल ने अंतरिक्ष के तीन आयामों, यानी स्टीरियोकैमिस्ट्री में रसायन विज्ञान की अवधारणा पेश की। वैन टी हॉफ ने कार्बन के त्रि-आयामी गुणों का प्रतिनिधित्व करने वाले चतुष्फलकीय अणुओं का निर्माण किया।


गोले पर आधारित मॉडल

Error creating thumbnail:
सोडियम क्लोराइड (NaCl) जाली, क्लोज-पैक्ड गोले दिखाती है जो NaCl और अधिकांश अन्य क्षार halide ों के समान एक फलक-केंद्रित घन AB जाली का प्रतिनिधित्व करती है। इस मॉडल में गोले समान आकार के हैं जबकि अधिक यथार्थवादी मॉडल में धनायन और आयनों के लिए अलग-अलग त्रिज्याएँ होंगी।

दोहराई जाने वाली इकाइयाँ यह दिखाने में मदद करेंगी कि परमाणुओं का प्रतिनिधित्व करने वाली गेंदों के माध्यम से अणुओं का प्रतिनिधित्व करना कितना आसान और स्पष्ट है।

द्विआधारी यौगिक सोडियम क्लोराइड (NaCl) और सीज़ियम क्लोराइड (CsCl) में घन संरचनाएं होती हैं लेकिन अलग-अलग स्थान समूह होते हैं। इसे विभिन्न आकारों के गोले की करीबी पैकिंग के संदर्भ में तर्कसंगत बनाया जा सकता है। उदाहरण के लिए, NaCl को अष्टभुजाकार छिद्रों में सोडियम आयनों के साथ क्लोज-पैक क्लोराइड आयनों (एक फलक-केंद्रित घन जाली में) के रूप में वर्णित किया जा सकता है। क्रिस्टल संरचनाओं के निर्धारण के लिए एक उपकरण के रूप में एक्स - रे क्रिस्टलोग्राफी के विकास के बाद, कई प्रयोगशालाओं ने गोले के आधार पर मॉडल बनाए। प्लास्टिक या POLYSTYRENE गेंदों के विकास के साथ अब ऐसे मॉडल बनाना आसान हो गया है।

बॉल-एंड-स्टिक पर आधारित मॉडल

परमाणुओं के बीच सीधे संबंध के रूप में रासायनिक बंधन की अवधारणा को गेंदों (परमाणु) को छड़ियों/छड़ (बंधन) से जोड़कर तैयार किया जा सकता है। यह बेहद लोकप्रिय रहा है और आज भी इसका व्यापक रूप से उपयोग किया जाता है। प्रारंभ में परमाणु गोलाकार लकड़ी की गेंदों से बने होते थे जिनमें छड़ों के लिए विशेष रूप से ड्रिल किए गए छेद होते थे। इस प्रकार कार्बन को चतुष्फलकीय कोण cos पर चार छिद्रों वाले एक गोले के रूप में दर्शाया जा सकता है−1(-13) ≈ 109.47°.

कठोर बंधनों और छिद्रों के साथ एक समस्या यह है कि मनमाने कोण वाले सिस्टम का निर्माण नहीं किया जा सकता है। इसे लचीले बंधनों से दूर किया जा सकता है, मूल रूप से पेचदार स्प्रिंग्स लेकिन अब आमतौर पर प्लास्टिक। यह दोहरे और तिहरे बांडों को कई एकल बांडों द्वारा अनुमानित करने की भी अनुमति देता है।

एक आधुनिक प्लास्टिक बॉल और स्टिक मॉडल। दिखाया गया अणु PROLINE है

बाईं ओर दिखाया गया मॉडल प्रोलाइन के बॉल-एंड-स्टिक मॉडल का प्रतिनिधित्व करता है। गेंदों में रंग होते हैं: काला कार्बन (सी) का प्रतिनिधित्व करता है; लाल, ऑक्सीजन (O); नीला, नाइट्रोजन (एन); और सफेद, हाइड्रोजन (एच)। प्रत्येक गेंद को उसके पारंपरिक वैलेंस (रसायन शास्त्र) (सी: 4; एन: 3; ओ: 2; एच: 1) के रूप में कई छेदों के साथ ड्रिल किया जाता है, जो टेट्राहेड्रोन के शीर्ष की ओर निर्देशित होता है। एकल बांडों को (काफ़ी हद तक) कठोर ग्रे छड़ों द्वारा दर्शाया जाता है। डबल और ट्रिपल बॉन्ड दो लंबे लचीले बॉन्ड का उपयोग करते हैं जो रोटेशन को प्रतिबंधित करते हैं और पारंपरिक सीआईएस-ट्रांस आइसोमेरिज्म आइसोमेरिज्म स्टीरियोकैमिस्ट्री का समर्थन करते हैं।

File:Ruby model.jpg
ऐक्रेलिक गेंदों और स्टेनलेस स्टील की छड़ों से बने माणिक (सीआर-डॉप्ड कोरन्डम) का बीवर बॉल और स्टिक मॉडल

हालाँकि, अधिकांश अणुओं को अन्य कोणों पर छेद की आवश्यकता होती है और विशेषज्ञ कंपनियां किट और बीस्पोक मॉडल बनाती हैं। चतुष्फलकीय, त्रिकोणीय और अष्टफलकीय छिद्रों के अलावा, 24 छिद्रों वाली सर्व-उद्देश्यीय गेंदें भी थीं। इन मॉडलों ने एकल रॉड बांड के चारों ओर घूमने की अनुमति दी, जो एक फायदा (आणविक लचीलापन दिखा रहा है) और एक नुकसान (मॉडल फ्लॉपी हैं) दोनों हो सकते हैं। अनुमानित पैमाना 5 सेमी प्रति एंगस्ट्रॉम (0.5 मीटर/एनएम या 500,000,000:1) था, लेकिन सभी तत्वों पर सुसंगत नहीं था।

एडिनबरा में अर्नोल्ड बीवर्स ने पीएमएमए गेंदों और स्टेनलेस स्टील की छड़ों का उपयोग करके छोटे मॉडल बनाए। इन मॉडलों में सटीक बॉन्ड कोण और बॉन्ड लंबाई के साथ व्यक्तिगत रूप से ड्रिल की गई गेंदों का उपयोग करके, बड़ी क्रिस्टल संरचनाएं सटीक रूप से बनाई जा सकती हैं, लेकिन हल्के और कठोर रूप के साथ। चित्र 4 इस शैली में माणिक की एक इकाई कोशिका दिखाता है।

कंकाल मॉडल

क्रिक और वॉटसन का डीएनए मॉडल और जॉन केंड्रयू की प्रोटीन-निर्माण किट पहले कंकाल मॉडल में से थे। ये परमाणु घटकों पर आधारित थे जहां संयोजकता को छड़ों द्वारा दर्शाया जाता था; परमाणु प्रतिच्छेदन बिंदु थे। बॉन्ड को लॉकिंग स्क्रू के साथ ट्यूबलर कनेक्टर के साथ घटकों को जोड़कर बनाया गया था।

आंद्रे ड्रिडिंग ने 1950 के दशक के अंत में एक आणविक मॉडलिंग किट पेश की जिसमें कनेक्टर्स शामिल नहीं थे। किसी दिए गए परमाणु में ठोस और खोखले वैलेंस स्पाइक्स होंगे। ठोस छड़ें ट्यूबों में चिपक जाती हैं और एक बंधन बनाती हैं, आमतौर पर मुक्त घुमाव के साथ। ये कार्बनिक रसायन विज्ञान विभागों में बहुत व्यापक रूप से उपयोग किए जाते थे और हैं और इतने सटीक रूप से बनाए गए थे कि शासक द्वारा अंतर-परमाणु माप किए जा सकते थे।

हाल ही में, सस्ते प्लास्टिक मॉडल (जैसे ऑर्बिट) एक समान सिद्धांत का उपयोग करते हैं। एक छोटे प्लास्टिक के गोले में उभार होते हैं जिन पर प्लास्टिक ट्यूब फिट की जा सकती हैं। प्लास्टिक के लचीलेपन का मतलब है कि विकृत ज्यामिति बनाई जा सकती है।

बहुफलकीय मॉडल

कई अकार्बनिक ठोस ऐसे परमाणुओं से बने होते हैं जो विद्युत ऋणात्मक परमाणुओं के समन्वय क्षेत्र से घिरे होते हैं (जैसे पीओ)।4 टेट्राहेड्रा, TiO6 अष्टफलक)। कागज या प्लास्टिक से बने पॉलीहेड्रा को एक साथ चिपकाकर संरचनाओं का मॉडल तैयार किया जा सकता है।

समग्र मॉडल

File:Peptide model s.jpg
एक निकोलसन मॉडल, साइड चेन (ग्रे) के साथ प्रोटीन रीढ़ की हड्डी (सफेद) का एक छोटा हिस्सा दिखा रहा है। हाइड्रोजन परमाणुओं का प्रतिनिधित्व करने वाले कटे हुए स्टब्स पर ध्यान दें।

मिश्रित मॉडल का एक अच्छा उदाहरण निकोलसन दृष्टिकोण है, जिसका व्यापक रूप से 1970 के दशक के अंत से जैविक मैक्रो मोलेक्यूल ्स के मॉडल बनाने के लिए उपयोग किया जाता है। घटक मुख्य रूप से एमिनो एसिड और न्यूक्लिक अम्ल होते हैं जिनके पूर्वनिर्मित अवशेष परमाणुओं के समूहों का प्रतिनिधित्व करते हैं। इनमें से कई परमाणुओं को सीधे टेम्पलेट में ढाला जाता है, और प्लास्टिक के ठूंठों को छोटे छिद्रों में धकेल कर एक साथ फिट किया जाता है। प्लास्टिक अच्छी तरह से पकड़ता है और बंधनों को घुमाना मुश्किल बनाता है, ताकि मनमाने ढंग से मरोड़ वाले कोणों को सेट किया जा सके और उनके मूल्य को बनाए रखा जा सके। रीढ़ की हड्डी की जंजीर और पक्ष श्रृंखला की संरचना मरोड़ कोणों की पूर्व-गणना और फिर एक चांदा के साथ मॉडल को समायोजित करके निर्धारित की जाती है।

प्लास्टिक सफेद है और इसे O और N परमाणुओं के बीच अंतर करने के लिए पेंट किया जा सकता है। हाइड्रोजन परमाणु आम तौर पर अंतर्निहित होते हैं और तीलियों को काटकर प्रतिरूपित होते हैं। लगभग 300 अवशेषों वाले एक विशिष्ट प्रोटीन का एक मॉडल बनाने में एक महीने का समय लग सकता है। प्रयोगशालाओं के लिए हल किए गए प्रत्येक प्रोटीन के लिए एक मॉडल बनाना आम बात थी। 2005 तक, इतनी अधिक प्रोटीन संरचनाएँ निर्धारित की जा रही थीं कि अपेक्षाकृत कम मॉडल बनाए गए थे।

कंप्यूटर आधारित मॉडल

File:Anthrax and gfp s.jpg
एकीकृत प्रोटीन मॉडल

कंप्यूटर-आधारित भौतिक मॉडलिंग के विकास के साथ, अब किसी सतह के निर्देशांक को कंप्यूटर में फीड करके पूर्ण एकल-टुकड़ा मॉडल बनाना संभव है। चित्र 6 में बिसहरिया विष के मॉडल दिखाए गए हैं, बाएं (लगभग 20 Å/सेमी या 1:5,000,000 के पैमाने पर) और हरी फ्लोरोसेंट प्रोटीन, दाएं (5 सेमी ऊंचे, लगभग 4 Å/सेमी या 1:25,000,000 के पैमाने पर) 3डी आणविक डिजाइन। मॉडल तेजी से प्रोटोटाइपिंग प्रक्रिया का उपयोग करके प्लास्टर या स्टार्च से बने होते हैं।

हाल ही में उपसतह लेजर उत्कीर्णन नामक तकनीक का उपयोग करके ग्लास ब्लॉकों के अंदर सटीक आणविक मॉडल बनाना भी संभव हो गया है। दाईं ओर की छवि ब्रिटिश कंपनी ल्यूमिनोरम लिमिटेड द्वारा कांच के एक ब्लॉक के अंदर उकेरी गई ई. कोली प्रोटीन (डीएनए पोलीमरेज़ बीटा-सबयूनिट, प्रोटीन डाटा बैंक कोड 1MMI) की 3डी संरचना दिखाती है।

File:Model of the E. coli DNA polymerase beta-subunit, engraved in glass.jpg
कांच में प्रोटीन मॉडल

कम्प्यूटेशनल मॉडल

कंप्यूटर अणुओं का गणितीय मॉडल भी बना सकते हैं। एवोगैड्रो जैसे प्रोग्राम विशिष्ट डेस्कटॉप पर चल सकते हैं और बॉन्ड की लंबाई और कोण, आणविक ध्रुवता और चार्ज वितरण, और यहां तक ​​​​कि अवशोषण और उत्सर्जन स्पेक्ट्रा जैसे क्वांटम यांत्रिक गुणों की भविष्यवाणी कर सकते हैं। हालाँकि, इस प्रकार के कार्यक्रम अणुओं का मॉडल नहीं बना सकते क्योंकि अधिक परमाणु जोड़े जाते हैं, क्योंकि गणना की संख्या शामिल परमाणुओं की संख्या में द्विघात होती है; यदि एक अणु में चार गुना अधिक परमाणुओं का उपयोग किया जाता है, तो गणना में 16 गुना अधिक समय लगता है। अधिकांश व्यावहारिक उद्देश्यों के लिए, जैसे दवा डिजाइन या प्रोटीन फोल्डिंग के लिए, किसी मॉडल की गणना के लिए सुपरकंप्यूटिंग की आवश्यकता होती है या इसे उचित समय में शास्त्रीय कंप्यूटर पर नहीं किया जा सकता है। क्वांटम कंप्यूटर कम गणनाओं के साथ अणुओं का मॉडल बना सकते हैं क्योंकि क्वांटम कंप्यूटर द्वारा प्रत्येक चक्र में की जाने वाली गणनाएं आणविक मॉडलिंग के लिए उपयुक्त होती हैं।

सामान्य रंग

आणविक मॉडलों में उपयोग किए जाने वाले कुछ सबसे आम रंग इस प्रकार हैं:

Hydrogen white
Alkali metals violet
Alkaline earth metals dark green
Boron, most transition metals Pink
Carbon black
Nitrogen blue
Oxygen red
Fluorine green yellow
Chlorine lime green
Bromine dark red
Iodine dark violet
Noble gases cyan
Phosphorus orange
Sulfur yellow
Titanium gray
Copper apricot
Mercury light grey


कालक्रम

यह तालिका उन घटनाओं का अधूरा कालक्रम है जहां भौतिक आणविक मॉडल प्रमुख वैज्ञानिक अंतर्दृष्टि प्रदान करते हैं।

Developer(s) Date Technology Comments
Johannes Kepler c. 1600 sphere packing, symmetry of snowflakes.
Johann Josef Loschmidt 1861 2-D graphics representation of atoms and bonds by touching circles
August Wilhelm von Hofmann 1860 ball-and-stick first recognisable physical molecular model
Jacobus Henricus van 't Hoff 1874 paper? representation of atoms as tetrahedra supported the development of stereochemistry
John Desmond Bernal c. 1930 Plasticine and spokes model of liquid water
Robert Corey, Linus Pauling, Walter Koltun (CPK coloring) 1951 Space-filling models of alpha-helix, etc. Pauling's "Nature of the Chemical Bond" covered all aspects of molecular structure and influenced many aspects of models
Francis Crick and James D. Watson 1953 spikes, flat templates and connectors with screws model of DNA
Molecular graphics c. 1960 display on computer screens complements rather than replaces physical models


यह भी देखें

संदर्भ

  1. Kepler, Johannes; Hardie, Colin (translated) (1611). स्ट्रेना, सेउ डे निवे सेक्संगुला।. Clarendon Press. Retrieved 13 June 2022.
  2. Dalton, John (1808). रासायनिक दर्शन की एक नई प्रणाली।. London, United Kingdom: Henderson & Spalding. Retrieved 14 June 2022.
  3. McBride, M. "Models and Structural Diagrams in the 1860s". Yale University. Retrieved 14 June 2022.


अग्रिम पठन


बाहरी संबंध