गॉसियन माप: Difference between revisions
No edit summary |
|||
| Line 1: | Line 1: | ||
{{Short description|Type of Borel measure}} | {{Short description|Type of Borel measure}} | ||
गणित में, ''' | गणित में, '''गॉसियन माप''' सांख्यिकी में [[सामान्य वितरण]] से निकट रूप से संबंधित परिमित-आयामी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन दूरी]] "'''R'''<sup>''n"''</sup> पर एक बोरेल माप है। वहाँ भी अनंत-आयामी रिक्त स्थान के लिए सामान्यीकरण है। गॉसियन माप का नाम [[जर्मनी]] के [[गणितज्ञ]] [[कार्ल फ्रेडरिक गॉस]] के नाम पर रखा गया है। गॉसियन माप संभाव्यता सिद्धांत में इतने सर्वव्यापी होने का एक कारण [[केंद्रीय सीमा प्रमेय]] है। शिथिल रूप से बोलते हुए, यह कहता है कि यदि क्रम 1 के स्वतंत्र यादृच्छिक चरों के एक बड़ी संख्या N को योग करके एक यादृच्छिक चर X प्राप्त किया जाता है, तो ''X'' क्रम होता है <math>\sqrt{N}</math> और इसका नियम लगभग गॉसियन है। | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
मान लीजिए n ∈ 'N' और मान लीजिए B<sub>0</sub>(' | मान लीजिए n ∈ 'N' और मान लीजिए B<sub>0</sub>(''''R'''<sup>''n''</sup><nowiki>') ''</nowiki>'''R'''<sup>''n''</sup><nowiki>''</nowiki> पर बोरेल σ-बीजगणित के पूर्ण माप को दर्शाता है | मान लीजिए ''λ<sup>n</sup>'': ''B''<sub>0</sub>(''''R'''<sup>''n''</sup>') → [0, +∞] सामान्य n-आयामी लेबेस्गु माप को दर्शाता है। फिर 'मानक गॉसियन माप' ''γ<sup>n</sup>'' :''B''<sub>0</sub>('Rn') → [0, 1] द्वारा परिभाषित किया गया है | ||
:<math>\gamma^{n} (A) = \frac{1}{\sqrt{2 \pi}^{n}} \int_{A} \exp \left( - \frac{1}{2} \| x \|_{\mathbb{R}^{n}}^{2} \right) \, \mathrm{d} \lambda^{n} (x)</math> | :<math>\gamma^{n} (A) = \frac{1}{\sqrt{2 \pi}^{n}} \int_{A} \exp \left( - \frac{1}{2} \| x \|_{\mathbb{R}^{n}}^{2} \right) \, \mathrm{d} \lambda^{n} (x)</math> | ||
| Line 13: | Line 13: | ||
:<math>\gamma_{\mu, \sigma^{2}}^{n} (A) := \frac{1}{\sqrt{2 \pi \sigma^{2}}^{n}} \int_{A} \exp \left( - \frac{1}{2 \sigma^{2}} \| x - \mu \|_{\mathbb{R}^{n}}^{2} \right) \, \mathrm{d} \lambda^{n} (x).</math> | :<math>\gamma_{\mu, \sigma^{2}}^{n} (A) := \frac{1}{\sqrt{2 \pi \sigma^{2}}^{n}} \int_{A} \exp \left( - \frac{1}{2 \sigma^{2}} \| x - \mu \|_{\mathbb{R}^{n}}^{2} \right) \, \mathrm{d} \lambda^{n} (x).</math> | ||
माध्य μ = 0 वाले | माध्य μ = 0 वाले गॉसियन माप को 'केन्द्रित गॉसियन माप' के रूप में जाना जाता है। | ||
[[डिराक माप]] δ<sub>''μ''</sub> के [[उपायों का कमजोर अभिसरण|माप का कमजोर अभिसरण]] है <math>\gamma_{\mu, \sigma^{2}}^{n}</math> σ → 0 के रूप में, और इसे 'पतित गॉसियन माप' माना जाता है; इसके विपरीत, परिमित, गैर-शून्य प्रसरण वाले गॉसियन माप को 'गैर-पतित गॉसियन माप' कहा जाता है। | [[डिराक माप]] δ<sub>''μ''</sub> के [[उपायों का कमजोर अभिसरण|माप का कमजोर अभिसरण]] है <math>\gamma_{\mu, \sigma^{2}}^{n}</math> σ → 0 के रूप में, और इसे 'पतित गॉसियन माप' माना जाता है; इसके विपरीत, परिमित, गैर-शून्य प्रसरण वाले गॉसियन माप को 'गैर-पतित गॉसियन माप' कहा जाता है। | ||
| Line 24: | Line 24: | ||
* एक संभाव्यता माप है(''γ<sup>n</sup>''('Rn') = 1), और इसलिए यह स्थानीय रूप से सीमित माप है; | * एक संभाव्यता माप है(''γ<sup>n</sup>''('Rn') = 1), और इसलिए यह स्थानीय रूप से सीमित माप है; | ||
* [[सख्ती से सकारात्मक उपाय|सख्ती से धनात्मक माप]] है: प्रत्येक गैर-खाली खुले सेट में धनात्मक माप होता है; | * [[सख्ती से सकारात्मक उपाय|सख्ती से धनात्मक माप]] है: प्रत्येक गैर-खाली खुले सेट में धनात्मक माप होता है; | ||
* [[आंतरिक नियमित उपाय|आंतरिक नियमित माप]] है: सभी बोरेल सेट ''A'' के लिए, <math display="block">\gamma^n (A) = \sup \{ \gamma^n (K) \mid K \subseteq A, K \text{ is compact} \},</math> इसलिए | * [[आंतरिक नियमित उपाय|आंतरिक नियमित माप]] है: सभी बोरेल सेट ''A'' के लिए, <math display="block">\gamma^n (A) = \sup \{ \gamma^n (K) \mid K \subseteq A, K \text{ is compact} \},</math> इसलिए गॉसियन माप एक [[रेडॉन माप]] है; | ||
* [[अनुवाद (ज्यामिति)]] नहीं है - [[अपरिवर्तनीय (गणित)]], लेकिन संबंध को संतुष्ट करता है<math display="block"> \frac{\mathrm{d} (T_h)_{*} (\gamma^n)}{\mathrm{d} \gamma^n} (x) = \exp \left( \langle h, x \rangle_{\R^n} - \frac{1}{2} \| h \|_{\R^n}^2 \right),</math> जहां बाईं ओर व्युत्पन्न रेडॉन-निकोडिम व्युत्पन्न है, और (''T<sub>h</sub>'')<sub>∗</sub>(''γ<sup>n</sup>'')अनुवाद मानचित्र द्वारा मानक गॉसियन माप का पुशफॉरवर्ड माप है''T<sub>h</sub>'' : ''''R'''<sup>''n''</sup>' → ''''R'''<sup>''n''</sup>', ''T<sub>h</sub>''(''x'') = ''x'' + ''h'';<nowiki/> | * [[अनुवाद (ज्यामिति)]] नहीं है - [[अपरिवर्तनीय (गणित)]], लेकिन संबंध को संतुष्ट करता है<math display="block"> \frac{\mathrm{d} (T_h)_{*} (\gamma^n)}{\mathrm{d} \gamma^n} (x) = \exp \left( \langle h, x \rangle_{\R^n} - \frac{1}{2} \| h \|_{\R^n}^2 \right),</math> जहां बाईं ओर व्युत्पन्न रेडॉन-निकोडिम व्युत्पन्न है, और (''T<sub>h</sub>'')<sub>∗</sub>(''γ<sup>n</sup>'')अनुवाद मानचित्र द्वारा मानक गॉसियन माप का पुशफॉरवर्ड माप है''T<sub>h</sub>'' : ''''R'''<sup>''n''</sup>' → ''''R'''<sup>''n''</sup>', ''T<sub>h</sub>''(''x'') = ''x'' + ''h'';<nowiki/> | ||
* एक सामान्य वितरण संभाव्यता वितरण से जुड़ा प्रायिकता माप है: <math display="block">Z \sim \operatorname{Normal} (\mu, \sigma^2) \implies \mathbb{P} (Z \in A) = \gamma_{\mu, \sigma^2}^n (A).</math><nowiki/> | * एक सामान्य वितरण संभाव्यता वितरण से जुड़ा प्रायिकता माप है: <math display="block">Z \sim \operatorname{Normal} (\mu, \sigma^2) \implies \mathbb{P} (Z \in A) = \gamma_{\mu, \sigma^2}^n (A).</math><nowiki/> | ||
| Line 38: | Line 38: | ||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link|बीएसोव माप}} - | * {{annotated link|बीएसोव माप}} - गॉसियन माप का एक सामान्यीकरण | ||
* {{annotated link|कैमरन-मार्टिन प्रमेय}} | * {{annotated link|कैमरन-मार्टिन प्रमेय}} | ||
* {{annotated link|सहप्रसरण संचालक}} | * {{annotated link|सहप्रसरण संचालक}} | ||
Revision as of 23:22, 18 June 2023
गणित में, गॉसियन माप सांख्यिकी में सामान्य वितरण से निकट रूप से संबंधित परिमित-आयामी यूक्लिडियन दूरी "Rn" पर एक बोरेल माप है। वहाँ भी अनंत-आयामी रिक्त स्थान के लिए सामान्यीकरण है। गॉसियन माप का नाम जर्मनी के गणितज्ञ कार्ल फ्रेडरिक गॉस के नाम पर रखा गया है। गॉसियन माप संभाव्यता सिद्धांत में इतने सर्वव्यापी होने का एक कारण केंद्रीय सीमा प्रमेय है। शिथिल रूप से बोलते हुए, यह कहता है कि यदि क्रम 1 के स्वतंत्र यादृच्छिक चरों के एक बड़ी संख्या N को योग करके एक यादृच्छिक चर X प्राप्त किया जाता है, तो X क्रम होता है और इसका नियम लगभग गॉसियन है।
परिभाषाएँ
मान लीजिए n ∈ 'N' और मान लीजिए B0('Rn') ''Rn'' पर बोरेल σ-बीजगणित के पूर्ण माप को दर्शाता है | मान लीजिए λn: B0('Rn') → [0, +∞] सामान्य n-आयामी लेबेस्गु माप को दर्शाता है। फिर 'मानक गॉसियन माप' γn :B0('Rn') → [0, 1] द्वारा परिभाषित किया गया है
किसी भी मापने योग्य सेट A ∈ B0('Rn') के लिए। रैडॉन-निकोडिम व्युत्पन्न के संदर्भ में,
अधिक सामान्यतः, माध्य μ ∈ ''Rn'' के साथ गॉसियन माप और प्रसरण p2 > 0 द्वारा दिया गया है
माध्य μ = 0 वाले गॉसियन माप को 'केन्द्रित गॉसियन माप' के रूप में जाना जाता है।
डिराक माप δμ के माप का कमजोर अभिसरण है σ → 0 के रूप में, और इसे 'पतित गॉसियन माप' माना जाता है; इसके विपरीत, परिमित, गैर-शून्य प्रसरण वाले गॉसियन माप को 'गैर-पतित गॉसियन माप' कहा जाता है।
गुण
'Rn'पर मानक गॉसियन माप γn
- एक बोरेल माप है (वास्तव में, जैसा कि ऊपर बताया गया है, इसे बोरेल सिग्मा बीजगणित के पूरा होने पर परिभाषित किया गया है, जो एक बेहतर संरचना है);
- लेबेस्गु माप के लिए तुल्यता (माप सिद्धांत) है: , जहां माप की पूर्ण निरंतरता के लिए खड़ा है;
- सभी यूक्लिडियन अंतरिक्ष पर समर्थन (माप सिद्धांत) है: supp(γn) = 'Rn';
- एक संभाव्यता माप है(γn('Rn') = 1), और इसलिए यह स्थानीय रूप से सीमित माप है;
- सख्ती से धनात्मक माप है: प्रत्येक गैर-खाली खुले सेट में धनात्मक माप होता है;
- आंतरिक नियमित माप है: सभी बोरेल सेट A के लिए, इसलिए गॉसियन माप एक रेडॉन माप है;
- अनुवाद (ज्यामिति) नहीं है - अपरिवर्तनीय (गणित), लेकिन संबंध को संतुष्ट करता हैजहां बाईं ओर व्युत्पन्न रेडॉन-निकोडिम व्युत्पन्न है, और (Th)∗(γn)अनुवाद मानचित्र द्वारा मानक गॉसियन माप का पुशफॉरवर्ड माप हैTh : 'Rn' → 'Rn', Th(x) = x + h;
- एक सामान्य वितरण संभाव्यता वितरण से जुड़ा प्रायिकता माप है:
अनंत-आयामी स्थान
यह दिखाया जा सकता है कि अनंत-आयामी सदिश स्थान पर कोई अनंत-आयामी लेबेस्गु माप नहीं है। फिर भी, अनंत-आयामी रिक्त स्थान पर गॉसियन माप को परिभाषित करना संभव है, मुख्य उदाहरण अमूर्त वीनर अंतरिक्ष निर्माण है। एक अलग करने योग्य स्थान पर A बोरेल माप γ बनच स्थान E को 'गैर-पतित (केंद्रित) गॉसियन माप' कहा जाता है, यदि प्रत्येक रैखिक कार्यात्मक L ∈ E∗ को छोड़कर t L = 0, धक्का देने वाला माप माप L∗(γ) ऊपर परिभाषित अर्थ में 'R' पर एक गैर-पतित (केंद्रित) गॉसियन माप है।
उदाहरण के लिए, निरंतर कार्य पथ (टोपोलॉजी) के स्थान परशास्त्रीय वीनर अंतरिक्ष एक गॉसियन माप है।
संदर्भ
- बोगचेव, व्लादिमीर (1998). गाऊसी माप. अमेरिकी गणितीय सोसायटी. ISBN 978-1470418694.
- आघात, डैनियल (2010). संभाव्यता सिद्धांत: एक विश्लेषणात्मक दृश्य. कैम्ब्रिज यूनिवर्सिटी प्रेस. ISBN 978-0521132503.
यह भी देखें
- बीएसोव माप - गॉसियन माप का एक सामान्यीकरण
- कैमरन-मार्टिन प्रमेय
- सहप्रसरण संचालक
- फेल्डमैन-हाजेक प्रमेय