ऑप्टिकल जाली: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:


ऑप्टिकल जाली में फंसे हुए परमाणु [[क्वांटम टनलिंग]] के कारण गति कर सकते हैं, भले ही जाली बिंदुओं की संभावित गहराई परमाणुओं की गतिज ऊर्जा से अधिक हो, जो एक संवाहक में इलेक्ट्रॉनों के समान है।<ref>{{cite book|last1=Gebhard|first1=Florian|title=Mott मेटल-इंसुलेटर ट्रांज़िशन मॉडल और तरीके|url=https://archive.org/details/springer_10.1007-3-540-14858-2|date=1997|publisher=Springer|location=Berlin [etc.]|isbn=978-3-540-61481-4}}</ref> हालांकि, एक सुपरफ्लूड-मॉट अवरोधक संक्रमण<ref name=":1">{{cite journal | last=Greiner | first=Markus |author2=Mandel, Olaf |author3=Esslinger, Tilman |author4=Hänsch, Theodor W. |author5= Bloch, Immanuel  | title=अल्ट्राकोल्ड परमाणुओं की गैस में सुपरफ्लुइड से एमओटी इंसुलेटर तक क्वांटम चरण संक्रमण| journal=Nature | volume=415 | pages=39–44 | date=January 3, 2002 | doi=10.1038/415039a | pmid=11780110 | issue=6867|bibcode = 2002Natur.415...39G | s2cid=4411344 }}</ref> हो सकता है, अगर कुएं की गहराई बहुत बड़ी होने पर परमाणुओं के बीच अंतःक्रियात्मक ऊर्जा होपिंग ऊर्जा से बड़ी हो जाती है। एमओटी अवरोधक चरण में, परमाणु संभावित मिनीमा में फंस जाएंगे और स्वतंत्र रूप से स्थानांतरित नहीं हो सकते हैं, जो एक अवरोधक में इलेक्ट्रॉनों के समान है। फर्मीओनिक परमाणुओं के मामले में, यदि अच्छी तरह से गहराई में और वृद्धि हुई है तो परमाणुओं में एक [[ प्रति-लौहचुंबकीय |प्रतिलौहचुंबकीय]] होने का अनुमान है, यानी पर्याप्त रूप से कम तापमान पर नील अवस्था है।<ref>{{cite journal | last=Koetsier | first=Arnaud |author2=Duine, R. A. |author3=Bloch, Immanuel |author4= Stoof, H. T. C. | title=Achieving the Néel state in an optical lattice | journal=Phys. Rev. A | volume=77 | issue=2 | pages=023623 | year=2008 | doi=10.1103/PhysRevA.77.023623|bibcode = 2008PhRvA..77b3623K |arxiv = 0711.3425 | s2cid=118519083 }}</ref>
ऑप्टिकल जाली में फंसे हुए परमाणु [[क्वांटम टनलिंग]] के कारण गति कर सकते हैं, भले ही जाली बिंदुओं की संभावित गहराई परमाणुओं की गतिज ऊर्जा से अधिक हो, जो एक संवाहक में इलेक्ट्रॉनों के समान है।<ref>{{cite book|last1=Gebhard|first1=Florian|title=Mott मेटल-इंसुलेटर ट्रांज़िशन मॉडल और तरीके|url=https://archive.org/details/springer_10.1007-3-540-14858-2|date=1997|publisher=Springer|location=Berlin [etc.]|isbn=978-3-540-61481-4}}</ref> हालांकि, एक सुपरफ्लूड-मॉट अवरोधक संक्रमण<ref name=":1">{{cite journal | last=Greiner | first=Markus |author2=Mandel, Olaf |author3=Esslinger, Tilman |author4=Hänsch, Theodor W. |author5= Bloch, Immanuel  | title=अल्ट्राकोल्ड परमाणुओं की गैस में सुपरफ्लुइड से एमओटी इंसुलेटर तक क्वांटम चरण संक्रमण| journal=Nature | volume=415 | pages=39–44 | date=January 3, 2002 | doi=10.1038/415039a | pmid=11780110 | issue=6867|bibcode = 2002Natur.415...39G | s2cid=4411344 }}</ref> हो सकता है, अगर कुएं की गहराई बहुत बड़ी होने पर परमाणुओं के बीच अंतःक्रियात्मक ऊर्जा होपिंग ऊर्जा से बड़ी हो जाती है। एमओटी अवरोधक चरण में, परमाणु संभावित मिनीमा में फंस जाएंगे और स्वतंत्र रूप से स्थानांतरित नहीं हो सकते हैं, जो एक अवरोधक में इलेक्ट्रॉनों के समान है। फर्मीओनिक परमाणुओं के मामले में, यदि अच्छी तरह से गहराई में और वृद्धि हुई है तो परमाणुओं में एक [[ प्रति-लौहचुंबकीय |प्रतिलौहचुंबकीय]] होने का अनुमान है, यानी पर्याप्त रूप से कम तापमान पर नील अवस्था है।<ref>{{cite journal | last=Koetsier | first=Arnaud |author2=Duine, R. A. |author3=Bloch, Immanuel |author4= Stoof, H. T. C. | title=Achieving the Néel state in an optical lattice | journal=Phys. Rev. A | volume=77 | issue=2 | pages=023623 | year=2008 | doi=10.1103/PhysRevA.77.023623|bibcode = 2008PhRvA..77b3623K |arxiv = 0711.3425 | s2cid=118519083 }}</ref>
== पैरामीटर ==
== मापदंड ==


एक ऑप्टिकल जाली के दो महत्वपूर्ण पैरामीटर हैं: संभावित अच्छी गहराई और [[आवृत्ति]]।
एक ऑप्टिकल जाली के दो महत्वपूर्ण पैरामीटर हैं: संभावित रूप से अच्छी गहराई और [[आवृत्ति]]।


=== संभावित गहराई का नियंत्रण ===
=== संभावित गहराई पर नियंत्रण ===
परमाणुओं द्वारा अनुभव की जाने वाली क्षमता ऑप्टिकल जाली उत्पन्न करने के लिए उपयोग की जाने वाली लेजर की तीव्रता से संबंधित है। लेजर की शक्ति को बदलकर ऑप्टिकल जाली की संभावित गहराई को वास्तविक समय में ट्यून किया जा सकता है, जिसे आमतौर पर एक [[ध्वनिक-ऑप्टिक न्यूनाधिक]] (एओएम) द्वारा नियंत्रित किया जाता है। एओएम को लेजर शक्ति की एक चर मात्रा को ऑप्टिकल जाली में विक्षेपित करने के लिए ट्यून किया गया है। एओएम को एक फोटोडायोड सिग्नल की प्रतिक्रिया द्वारा जाली लेजर का सक्रिय शक्ति स्थिरीकरण पूरा किया जा सकता है।
परमाणुओं द्वारा अनुभव की जाने वाली क्षमता ऑप्टिकल जालक उत्पन्न करने के लिए प्रयुक्त लेजर की तीव्रता से संबंधित है। ऑप्टिकल जाली की संभावित गहराई को वास्तविक समय में लेजर की शक्ति को बदलकर ट्यून किया जा सकता है, जिसे सामान्य रूप से एक [[ध्वनिक-ऑप्टिक न्यूनाधिक]] (एओएम) द्वारा नियंत्रित किया जाता है। एओएम को ऑप्टिकल लैटिस में लेजर पावर की एक चर मात्रा को विक्षेपित करने के लिए ट्यून किया गया है। जाली लेजर का सक्रिय शक्ति स्थिरीकरण एओएम को एक फोटोडायोड सिग्नल की प्रतिक्रिया से पूरा किया जा सकता है।


=== आवधिकता का नियंत्रण ===
=== आवर्तिता का नियंत्रण ===
ऑप्टिकल जाली की आवधिकता को लेजर की [[तरंग दैर्ध्य]] को बदलकर या दो लेजर बीम के बीच सापेक्ष कोण को बदलकर ट्यून किया जा सकता है। जाली की आवधिकता का वास्तविक समय नियंत्रण अभी भी एक चुनौतीपूर्ण कार्य है। लेजर की तरंग दैर्ध्य वास्तविक समय में एक बड़ी रेंज में आसानी से भिन्न नहीं हो सकती है, और इसलिए जाली की आवधिकता आमतौर पर लेजर बीम के बीच सापेक्ष कोण द्वारा नियंत्रित होती है।<ref>{{cite journal | last=Fallani | first=Leonardo |author2=Fort, Chiara |author3=Lye, Jessica |author4= Inguscio, Massimo  | title=Bose-Einstein condensate in an optical lattice with tunable spacing: transport and static properties | journal=Optics Express | volume=13 | issue=11 | pages=4303–4313 | date=May 2005 | doi=10.1364/OPEX.13.004303 | pmid=19495345|arxiv = cond-mat/0505029 |bibcode = 2005OExpr..13.4303F | s2cid=27181534 }}</ref> हालांकि, सापेक्ष कोणों को बदलते समय जाली को स्थिर रखना मुश्किल होता है, क्योंकि हस्तक्षेप लेजर बीम के बीच सापेक्ष चरण (तरंगों) के प्रति संवेदनशील होता है। Ti-Sapphire Laser|Titanium-Sapphire Lasers, अपनी बड़ी ट्यून करने योग्य रेंज के साथ, ऑप्टिकल जाली प्रणालियों में तरंग दैर्ध्य के प्रत्यक्ष ट्यूनिंग के लिए एक संभावित मंच प्रदान करते हैं।
ऑप्टिकल लैटिस की आवधिकता को लेजर की [[तरंग दैर्ध्य]] को बदलकर या दो लेजर बीम के बीच सापेक्ष कोण को बदलकर ट्यून किया जा सकता है। जाली की आवधिकता का रीयल-टाइम नियंत्रण अभी भी एक चुनौतीपूर्ण कार्य है। लेज़र की तरंगदैर्घ्य को आसानी से रीयल-टाइम में एक बड़ी रेंज में परिवर्तित नहीं किया जा सकता है, और इसलिए लैटिस की आवधिकता को सामान्यतः लेज़र बीम के बीच के सापेक्ष कोण द्वारा नियंत्रित किया जाता है।<ref>{{cite journal | last=Fallani | first=Leonardo |author2=Fort, Chiara |author3=Lye, Jessica |author4= Inguscio, Massimo  | title=Bose-Einstein condensate in an optical lattice with tunable spacing: transport and static properties | journal=Optics Express | volume=13 | issue=11 | pages=4303–4313 | date=May 2005 | doi=10.1364/OPEX.13.004303 | pmid=19495345|arxiv = cond-mat/0505029 |bibcode = 2005OExpr..13.4303F | s2cid=27181534 }}</ref> हालांकि, संबंधित कोणों को बदलते समय जाली को स्थिर रखना मुश्किल होता है, क्योंकि हस्तक्षेप लेजर बीम के बीच सापेक्ष चरण के प्रति संवेदनशील होता है। टाइटेनियम-नीलम लेजर, उनकी बड़ी ट्यून करने योग्य रेंज के साथ, ऑप्टिकल लैटिस सिस्टम में वेवलेंथ की सीधी ट्यूनिंग के लिए एक संभावित मंच प्रदान करते हैं।


2005 में एकल-अक्ष सर्वो-नियंत्रित गैल्वेनोमीटर का उपयोग करके पहली बार 2005 में फंसे हुए परमाणुओं को बनाए रखते हुए एक-आयामी ऑप्टिकल जाली की आवधिकता का निरंतर नियंत्रण प्रदर्शित किया गया था।<ref>{{cite journal | last=Huckans | first=J. H. | title=Optical Lattices and Quantum Degenerate Rb-87 in Reduced Dimensions | journal=University of Maryland Doctoral Dissertation | date=December 2006}}</ref> यह अकॉर्डियन जाली 1.30 से 9.3 माइक्रोन तक जाली आवधिकता को बदलने में सक्षम थी। हाल ही में, जाली आवधिकता के रीयल-टाइम नियंत्रण का एक अलग तरीका प्रदर्शित किया गया था,<ref>{{cite journal | last=Li | first=T. C. |author2=Kelkar,H. |author3=Medellin, D. |author4= Raizen, M. G.  | title=Real-time control of the periodicity of a standing wave: an optical accordion | journal=Optics Express | volume=16 | issue=8 | pages=5465–5470 | date=April 3, 2008 | doi=10.1364/OE.16.005465 | pmid=18542649|bibcode = 2008OExpr..16.5465L |arxiv = 0803.2733 | s2cid=11082498 }}</ref> जिसमें केंद्र फ्रिंज 2.7 माइक्रोन से कम चला गया जबकि जाली आवधिकता 0.96 से 11.2 माइक्रोन में बदल दी गई थी। जाली आवधिकता को बदलते समय फंसे हुए परमाणुओं (या अन्य कणों) को प्रयोगात्मक रूप से अधिक अच्छी तरह से परीक्षण किया जाना बाकी है। इस तरह के अकॉर्डियन लैटिस ऑप्टिकल लैटिस में अल्ट्राकोल्ड परमाणुओं को नियंत्रित करने के लिए उपयोगी होते हैं, जहां क्वांटम टनलिंग के लिए छोटी रिक्ति आवश्यक होती है, और बड़ी रिक्ति एकल-साइट हेरफेर और स्थानिक रूप से हल की गई पहचान को सक्षम बनाती है। एक उच्च टनलिंग शासन के भीतर बोसोन और फ़र्मियन दोनों की जाली साइटों के अधिभोग का साइट-सॉल्व्ड डिटेक्शन नियमित रूप से क्वांटम गैस माइक्रोस्कोप में किया जाता है।<ref>{{Cite journal|last1=Bakr|first1=Waseem S.|last2=Gillen|first2=Jonathon I.|last3=Peng|first3=Amy|last4=Fölling|first4=Simon|last5=Greiner|first5=Markus|date=2009-11-05|title=हबर्ड-शासन ऑप्टिकल जाली में एकल परमाणुओं का पता लगाने के लिए एक क्वांटम गैस माइक्रोस्कोप|journal=Nature|language=en|volume=462|issue=7269|pages=74–77|doi=10.1038/nature08482|pmid=19890326|issn=0028-0836|arxiv=0908.0174|bibcode=2009Natur.462...74B|s2cid=4419426 }}</ref><ref>{{Cite journal|last1=Haller|first1=Elmar|last2=Hudson|first2=James|last3=Kelly|first3=Andrew|last4=Cotta|first4=Dylan A.|last5=Peaudecerf|first5=Bruno|last6=Bruce|first6=Graham D.|last7=Kuhr|first7=Stefan|date=2015-09-01|title=क्वांटम-गैस माइक्रोस्कोप में फ़र्मियन की एकल-परमाणु इमेजिंग|journal=Nature Physics|language=en|volume=11|issue=9|pages=738–742|doi=10.1038/nphys3403|issn=1745-2473|arxiv=1503.02005|bibcode=2015NatPh..11..738H|hdl=10023/8011|s2cid=51991496 |hdl-access=free}}</ref>
फंसे हुए परमाणुओं को स्वस्थाने बनाए रखते हुए एक-आयामी ऑप्टिकल जाली की आवधिकता का निरंतर नियंत्रण 2005 में पहली बार एकल-अक्ष सर्वो-नियंत्रित गैल्वेनोमीटर का उपयोग करके प्रदर्शित किया गया था।<ref>{{cite journal | last=Huckans | first=J. H. | title=Optical Lattices and Quantum Degenerate Rb-87 in Reduced Dimensions | journal=University of Maryland Doctoral Dissertation | date=December 2006}}</ref> यह "अकॉर्डियन जाली" जाली आवधिकता को 1.30 से 9.3 माइक्रोन तक भिन्न करने में सक्षम था। अभी हाल ही में, जाली आवधिकता के वास्तविक समय नियंत्रण की एक अलग विधि का प्रदर्शन किया गया था,<ref>{{cite journal | last=Li | first=T. C. |author2=Kelkar,H. |author3=Medellin, D. |author4= Raizen, M. G.  | title=Real-time control of the periodicity of a standing wave: an optical accordion | journal=Optics Express | volume=16 | issue=8 | pages=5465–5470 | date=April 3, 2008 | doi=10.1364/OE.16.005465 | pmid=18542649|bibcode = 2008OExpr..16.5465L |arxiv = 0803.2733 | s2cid=11082498 }}</ref> जिसमें केंद्र फ्रिंज 2.7 माइक्रोन से कम स्थानांतरित हुआ जबकि जाली आवधिकता 0.96 से 11.2 माइक्रोन में बदल गई थी। जाली आवधिकता को बदलते समय फंसे परमाणुओं (या अन्य कणों) को प्रयोगात्मक रूप से अधिक अच्छी तरह से परीक्षण करने के लिए रहता है। इस तरह के अकॉर्डियन लैटिस ऑप्टिकल लैटिस में अल्ट्राकोल्ड परमाणुओं को नियंत्रित करने के लिए उपयोगी होते हैं, जहां क्वांटम टनलिंग के लिए छोटी रिक्ति आवश्यक होती है, और बड़ी स्पेसिंग सिंगल-साइट हेरफेर और स्थानिक रूप से हल की गई पहचान को सक्षम बनाती है। एक उच्च टनलिंग शासन के भीतर बोसोन और फर्मिऑन दोनों के जालक स्थलों के अधिभोग की साइट-सॉल्व्ड संसूचन नियमित रूप से क्वांटम गैस सूक्ष्मदर्शी में की जाती है।<ref>{{Cite journal|last1=Bakr|first1=Waseem S.|last2=Gillen|first2=Jonathon I.|last3=Peng|first3=Amy|last4=Fölling|first4=Simon|last5=Greiner|first5=Markus|date=2009-11-05|title=हबर्ड-शासन ऑप्टिकल जाली में एकल परमाणुओं का पता लगाने के लिए एक क्वांटम गैस माइक्रोस्कोप|journal=Nature|language=en|volume=462|issue=7269|pages=74–77|doi=10.1038/nature08482|pmid=19890326|issn=0028-0836|arxiv=0908.0174|bibcode=2009Natur.462...74B|s2cid=4419426 }}</ref><ref>{{Cite journal|last1=Haller|first1=Elmar|last2=Hudson|first2=James|last3=Kelly|first3=Andrew|last4=Cotta|first4=Dylan A.|last5=Peaudecerf|first5=Bruno|last6=Bruce|first6=Graham D.|last7=Kuhr|first7=Stefan|date=2015-09-01|title=क्वांटम-गैस माइक्रोस्कोप में फ़र्मियन की एकल-परमाणु इमेजिंग|journal=Nature Physics|language=en|volume=11|issue=9|pages=738–742|doi=10.1038/nphys3403|issn=1745-2473|arxiv=1503.02005|bibcode=2015NatPh..11..738H|hdl=10023/8011|s2cid=51991496 |hdl-access=free}}</ref>


== संचालन का सिद्धांत ==
== संचालन का सिद्धांत ==
एक बुनियादी ऑप्टिकल जाली दो प्रति-प्रचारित लेजर बीम के हस्तक्षेप पैटर्न द्वारा बनाई गई है। ट्रैपिंग तंत्र स्टार्क शिफ्ट के माध्यम से होता है, जहां ऑफ-रेजोनेंट प्रकाश एक परमाणु की आंतरिक संरचना में बदलाव का कारण बनता है। स्टार्क शिफ्ट का प्रभाव तीव्रता के समानुपातिक क्षमता का निर्माण करना है। यह [[ऑप्टिकल द्विध्रुवीय जाल]] (ODTs) की तरह ही ट्रैपिंग मैकेनिज्म है, जिसमें एकमात्र बड़ा अंतर यह है कि ऑप्टिकल जाली की तीव्रता में मानक ODT की तुलना में बहुत अधिक नाटकीय स्थानिक भिन्नता होती है।<ref name=":0" />
एक बुनियादी ऑप्टिकल जाली दो प्रति-प्रचारित लेजर बीम के हस्तक्षेप पैटर्न से बनती है। ट्रैपिंग तंत्र स्टार्क शिफ्ट के माध्यम से होता है, जहां ऑफ-रेजोनेंट लाइट परमाणु की आंतरिक संरचना में बदलाव का कारण बनती है। स्टार्क शिफ्ट का प्रभाव तीव्रता के अनुपात में एक संभावित अनुपात बनाना है। यह ऑप्टिकल डिपोल ट्रैप (ओडीटी) की तरह ही ट्रैपिंग मैकेनिज्म है, जिसमें एकमात्र बड़ा अंतर यह है कि ऑप्टिकल लैटिस की तीव्रता में मानक ओडीटी की तुलना में बहुत अधिक नाटकीय स्थानिक भिन्नता होती है।<ref name=":0" />


एक इलेक्ट्रॉनिक जमीनी अवस्था में ऊर्जा (और इस प्रकार, अनुभव की जाने वाली क्षमता) में बदलाव <math>\vert g_i \rangle</math> दूसरे क्रम के [[समय-स्वतंत्र गड़बड़ी सिद्धांत]] द्वारा दिया जाता है, जहां ऑप्टिकल आवृत्तियों पर जाली क्षमता का तीव्र समय परिवर्तन समय-औसत किया गया है।<math display="block">U(\mathbf{r}) = \Delta E_{i}=\frac{3 \pi c^{2} \Gamma}{2 \omega_{0}^{3}} I(\mathbf{r}) \times \sum_{j} \frac{c_{i j}^{2}}{\Delta_{i j}}</math>कहाँ <math display="inline">\mu_{i j}=
इलेक्ट्रॉनिक आद्य अवस्था <math>\vert g_i \rangle</math> में ऊर्जा परिवर्तन (और इस प्रकार, अनुभव की गई क्षमता) दूसरे क्रम के [[समय-स्वतंत्र गड़बड़ी सिद्धांत]] द्वारा दिया जाता है, जहां ऑप्टिकल आवृत्तियों पर जाली क्षमता का तेजी से समय भिन्नता समय-औसत है।<math display="block">U(\mathbf{r}) = \Delta E_{i}=\frac{3 \pi c^{2} \Gamma}{2 \omega_{0}^{3}} I(\mathbf{r}) \times \sum_{j} \frac{c_{i j}^{2}}{\Delta_{i j}}</math>
\langle e_j \vert \mu \vert g_i \rangle
\equiv c_{i j}\|\mu\|</math> जमीनी अवस्था से संक्रमण के लिए संक्रमण मैट्रिक्स तत्व हैं <math display="inline">\vert g_i \rangle </math> उत्साहित राज्यों के लिए <math display="inline">\vert e_j \rangle </math>. दो-स्तरीय प्रणाली के लिए, यह सरल करता है<math display="block">U(\mathbf{r}) = \Delta E =\frac{3 \pi c^{2}}{2 \omega_{0}^{3}} \frac{\Gamma}{\Delta} I(\mathbf{r}) </math>कहाँ <math>\Gamma</math> उत्साहित राज्य संक्रमण की लाइनविड्थ है।<ref name=":0" />


[[एसी स्टार्क प्रभाव]] के कारण उत्तेजित प्रकाश बलों की एक वैकल्पिक तस्वीर प्रक्रिया को एक उत्तेजित रमन प्रक्रिया के रूप में देखने के लिए है, जहां परमाणु जाली बनाने वाले काउंटरप्रॉपगेटिंग लेजर बीम के बीच फोटॉन को पुनर्वितरित करता है। इस तस्वीर में, यह स्पष्ट है कि परमाणु केवल जाली से इकाइयों में संवेग प्राप्त कर सकते हैं <math>\pm 2 \hbar k</math>, कहाँ <math>\hbar k</math> एक लेजर बीम के फोटॉन का संवेग है।<ref name=":0" />


जहाँ <math display="inline">\mu_{i j}=
\langle e_j \vert \mu \vert g_i \rangle
\equiv c_{i j}\|\mu\|</math> आद्य अवस्था से ट्रांजीशन के लिए ट्रांजीशन मैट्रिक्स अवयव हैं <math display="inline">\vert g_i \rangle </math> उत्साहित अवस्था के लिए <math display="inline">\vert e_j \rangle </math>. दो-स्तरीय प्रणाली के लिए, यह सरल करता है<math display="block">U(\mathbf{r}) = \Delta E =\frac{3 \pi c^{2}}{2 \omega_{0}^{3}} \frac{\Gamma}{\Delta} I(\mathbf{r}) </math>जहाँ <math>\Gamma</math> अवस्था परिवर्तन की रेखा है।<ref name=":0" />


[[एसी स्टार्क प्रभाव]] के कारण संदीप्त प्रकाश बलों की एक वैकल्पिक तस्वीर प्रक्रिया को एक संदीप्त रमन प्रक्रिया के रूप में देखने के लिए है, जहां परमाणु प्रतिप्रसारक लेजर बीम के बीच फोटोन का पुनर्वितरण करता है जो जाली का निर्माण करता है।  इस तस्वीर में, यह स्पष्ट है कि परमाणु केवल <math>\pm 2 \hbar k</math> की इकाइयों में जाली से संवेग प्राप्त कर सकते हैं, जहां <math>\hbar k</math> एक लेजर बीम के फोटॉन का संवेग है।<ref name=":0" />
== तकनीकी चुनौतियाँ ==
== तकनीकी चुनौतियाँ ==
एक ऑप्टिकल द्विध्रुवीय जाल में परमाणुओं द्वारा अनुभव की जाने वाली ट्रैपिंग क्षमता कमजोर होती है, आमतौर पर 1 mK से नीचे। इस प्रकार परमाणुओं को ऑप्टिकल जाली में लोड करने से पहले काफी ठंडा किया जाना चाहिए। इसके लिए इस्तेमाल की जाने वाली कूलिंग तकनीकों में [[ मैग्नेटो-ऑप्टिकल जाल ]], [[डॉपलर शीतलन]], [[ ध्रुवीकरण ग्रेडिएंट कूलिंग ]], [[ रमन ठंडा ]], [[सुलझा हुआ साइडबैंड कूलिंग]] और [[ बाष्पीकरणीय शीतलन (परमाणु भौतिकी) ]] शामिल हैं।<ref name=":0" />
एक ऑप्टिकल द्विध्रुवीय जाल में परमाणुओं द्वारा अनुभव की जाने वाली ट्रैपिंग क्षमता कमजोर होती है, आमतौर पर 1 mK से नीचे। इस प्रकार परमाणुओं को ऑप्टिकल जाली में लोड करने से पहले काफी ठंडा किया जाना चाहिए। इसके लिए इस्तेमाल की जाने वाली कूलिंग तकनीकों में [[ मैग्नेटो-ऑप्टिकल जाल ]], [[डॉपलर शीतलन]], [[ ध्रुवीकरण ग्रेडिएंट कूलिंग ]], [[ रमन ठंडा ]], [[सुलझा हुआ साइडबैंड कूलिंग]] और [[ बाष्पीकरणीय शीतलन (परमाणु भौतिकी) ]] शामिल हैं।<ref name=":0" />
Line 36: Line 37:
एक बार ठंडा होने और एक ऑप्टिकल जाली में फंस जाने के बाद, उन्हें हेरफेर किया जा सकता है या विकसित होने के लिए छोड़ दिया जा सकता है। सामान्य जोड़-तोड़ में काउंटरप्रॉपगेटिंग बीम, या जाली के आयाम मॉडुलन के बीच सापेक्ष चरण को अलग करके ऑप्टिकल जाली को हिलाना शामिल है। जाली क्षमता और किसी भी जोड़तोड़ के जवाब में विकसित होने के बाद, परमाणुओं को अवशोषण इमेजिंग के माध्यम से चित्रित किया जा सकता है।
एक बार ठंडा होने और एक ऑप्टिकल जाली में फंस जाने के बाद, उन्हें हेरफेर किया जा सकता है या विकसित होने के लिए छोड़ दिया जा सकता है। सामान्य जोड़-तोड़ में काउंटरप्रॉपगेटिंग बीम, या जाली के आयाम मॉडुलन के बीच सापेक्ष चरण को अलग करके ऑप्टिकल जाली को हिलाना शामिल है। जाली क्षमता और किसी भी जोड़तोड़ के जवाब में विकसित होने के बाद, परमाणुओं को अवशोषण इमेजिंग के माध्यम से चित्रित किया जा सकता है।


एक सामान्य अवलोकन तकनीक उड़ान का समय (TOF) इमेजिंग है। टीओएफ इमेजिंग पहले जाली क्षमता में परमाणुओं के विकसित होने के लिए कुछ समय की प्रतीक्षा करके काम करती है, फिर जाली क्षमता को बंद कर देती है (एओएम के साथ लेजर शक्ति को बंद करके)। परमाणु, जो अब मुक्त हैं, अपने संवेग के अनुसार अलग-अलग दरों पर फैलते हैं। समय की मात्रा को नियंत्रित करके परमाणुओं को विकसित होने की अनुमति दी जाती है, परमाणुओं के मानचित्रों द्वारा यात्रा की जाने वाली दूरी पर जाली बंद होने पर उनकी गति की स्थिति क्या रही होगी। क्योंकि जाली में परमाणु केवल संवेग में परिवर्तन कर सकते हैं <math>\pm 2 \hbar k</math>, एक ऑप्टिकल-जाली प्रणाली की टीओएफ छवि में एक विशिष्ट पैटर्न पल में जाली अक्ष के साथ चोटियों की एक श्रृंखला है <math>\pm 2 n \hbar k</math>, कहाँ <math>n \in \mathbb{Z}</math>. टीओएफ इमेजिंग का उपयोग करके, जाली में परमाणुओं का संवेग वितरण निर्धारित किया जा सकता है। इन-सीटू अवशोषण छवियों के साथ संयुक्त (अभी भी जाली के साथ लिया गया), यह फंसे हुए परमाणुओं के चरण अंतरिक्ष घनत्व को निर्धारित करने के लिए पर्याप्त है, बोस-आइंस्टीन कंडेनसेट के निदान के लिए एक महत्वपूर्ण मीट्रिक। बोस-आइंस्टीन संघनन (या अधिक आम तौर पर, पदार्थ के क्वांटम पतित चरणों का गठन)।
एक सामान्य अवलोकन तकनीक उड़ान का समय (TOF) इमेजिंग है। टीओएफ इमेजिंग पहले जाली क्षमता में परमाणुओं के विकसित होने के लिए कुछ समय की प्रतीक्षा करके काम करती है, फिर जाली क्षमता को बंद कर देती है (एओएम के साथ लेजर शक्ति को बंद करके)। परमाणु, जो अब मुक्त हैं, अपने संवेग के अनुसार अलग-अलग दरों पर फैलते हैं। समय की मात्रा को नियंत्रित करके परमाणुओं को विकसित होने की अनुमति दी जाती है, परमाणुओं के मानचित्रों द्वारा यात्रा की जाने वाली दूरी पर जाली बंद होने पर उनकी गति की स्थिति क्या रही होगी। क्योंकि जाली में परमाणु केवल संवेग में परिवर्तन कर सकते हैं <math>\pm 2 \hbar k</math>, एक ऑप्टिकल-जाली प्रणाली की टीओएफ छवि में एक विशिष्ट पैटर्न पल में जाली अक्ष के साथ चोटियों की एक श्रृंखला है <math>\pm 2 n \hbar k</math>, जहाँ <math>n \in \mathbb{Z}</math>. टीओएफ इमेजिंग का उपयोग करके, जाली में परमाणुओं का संवेग वितरण निर्धारित किया जा सकता है। इन-सीटू अवशोषण छवियों के साथ संयुक्त (अभी भी जाली के साथ लिया गया), यह फंसे हुए परमाणुओं के चरण अंतरिक्ष घनत्व को निर्धारित करने के लिए पर्याप्त है, बोस-आइंस्टीन कंडेनसेट के निदान के लिए एक महत्वपूर्ण मीट्रिक। बोस-आइंस्टीन संघनन (या अधिक आम तौर पर, पदार्थ के क्वांटम पतित चरणों का गठन)।


== उपयोग ==
== उपयोग ==

Revision as of 09:11, 6 June 2023

File:AtomsInLattice.png
2डी-ऑप्टिकल जालक क्षमता (पीले रंग की सतह के रूप में प्रदर्शित) में चित्रित परमाणु (नीले गोले के रूप में दर्शाए गए)।

एक स्थानिक आवधिक ध्रुवीकरण पैटर्न बनाने, लेजर बीम के प्रति-प्रसार के हस्तक्षेप से एक ऑप्टिकल जाली (ऑप्टिकल लैटिस) बनाई जाती है। परिणामस्वरूप आवधिक क्षमता तटस्थ परमाणुओं को द्विध्रुवीय बदलाव के माध्यम से पकड़ सकती है।[1] परमाणुओं को ठंडा किया जाता है और संभावित एक्स्ट्रेमा (ब्लू-डिट्यूनेड लैटिस के लिए मैक्सिमा पर, और रेड-डिट्यून्ड लैटिस के लिए मिनिमा) पर एकत्रित किया जाता है। फंसे हुए परमाणुओं की परिणामी व्यवस्था एक क्रिस्टल जाली [2] के समान होती है और क्वांटम अनुकरण के लिए इसका उपयोग किया जा सकता है।

ऑप्टिकल जाली में फंसे हुए परमाणु क्वांटम टनलिंग के कारण गति कर सकते हैं, भले ही जाली बिंदुओं की संभावित गहराई परमाणुओं की गतिज ऊर्जा से अधिक हो, जो एक संवाहक में इलेक्ट्रॉनों के समान है।[3] हालांकि, एक सुपरफ्लूड-मॉट अवरोधक संक्रमण[4] हो सकता है, अगर कुएं की गहराई बहुत बड़ी होने पर परमाणुओं के बीच अंतःक्रियात्मक ऊर्जा होपिंग ऊर्जा से बड़ी हो जाती है। एमओटी अवरोधक चरण में, परमाणु संभावित मिनीमा में फंस जाएंगे और स्वतंत्र रूप से स्थानांतरित नहीं हो सकते हैं, जो एक अवरोधक में इलेक्ट्रॉनों के समान है। फर्मीओनिक परमाणुओं के मामले में, यदि अच्छी तरह से गहराई में और वृद्धि हुई है तो परमाणुओं में एक प्रतिलौहचुंबकीय होने का अनुमान है, यानी पर्याप्त रूप से कम तापमान पर नील अवस्था है।[5]

मापदंड

एक ऑप्टिकल जाली के दो महत्वपूर्ण पैरामीटर हैं: संभावित रूप से अच्छी गहराई और आवृत्ति

संभावित गहराई पर नियंत्रण

परमाणुओं द्वारा अनुभव की जाने वाली क्षमता ऑप्टिकल जालक उत्पन्न करने के लिए प्रयुक्त लेजर की तीव्रता से संबंधित है। ऑप्टिकल जाली की संभावित गहराई को वास्तविक समय में लेजर की शक्ति को बदलकर ट्यून किया जा सकता है, जिसे सामान्य रूप से एक ध्वनिक-ऑप्टिक न्यूनाधिक (एओएम) द्वारा नियंत्रित किया जाता है। एओएम को ऑप्टिकल लैटिस में लेजर पावर की एक चर मात्रा को विक्षेपित करने के लिए ट्यून किया गया है। जाली लेजर का सक्रिय शक्ति स्थिरीकरण एओएम को एक फोटोडायोड सिग्नल की प्रतिक्रिया से पूरा किया जा सकता है।

आवर्तिता का नियंत्रण

ऑप्टिकल लैटिस की आवधिकता को लेजर की तरंग दैर्ध्य को बदलकर या दो लेजर बीम के बीच सापेक्ष कोण को बदलकर ट्यून किया जा सकता है। जाली की आवधिकता का रीयल-टाइम नियंत्रण अभी भी एक चुनौतीपूर्ण कार्य है। लेज़र की तरंगदैर्घ्य को आसानी से रीयल-टाइम में एक बड़ी रेंज में परिवर्तित नहीं किया जा सकता है, और इसलिए लैटिस की आवधिकता को सामान्यतः लेज़र बीम के बीच के सापेक्ष कोण द्वारा नियंत्रित किया जाता है।[6] हालांकि, संबंधित कोणों को बदलते समय जाली को स्थिर रखना मुश्किल होता है, क्योंकि हस्तक्षेप लेजर बीम के बीच सापेक्ष चरण के प्रति संवेदनशील होता है। टाइटेनियम-नीलम लेजर, उनकी बड़ी ट्यून करने योग्य रेंज के साथ, ऑप्टिकल लैटिस सिस्टम में वेवलेंथ की सीधी ट्यूनिंग के लिए एक संभावित मंच प्रदान करते हैं।

फंसे हुए परमाणुओं को स्वस्थाने बनाए रखते हुए एक-आयामी ऑप्टिकल जाली की आवधिकता का निरंतर नियंत्रण 2005 में पहली बार एकल-अक्ष सर्वो-नियंत्रित गैल्वेनोमीटर का उपयोग करके प्रदर्शित किया गया था।[7] यह "अकॉर्डियन जाली" जाली आवधिकता को 1.30 से 9.3 माइक्रोन तक भिन्न करने में सक्षम था। अभी हाल ही में, जाली आवधिकता के वास्तविक समय नियंत्रण की एक अलग विधि का प्रदर्शन किया गया था,[8] जिसमें केंद्र फ्रिंज 2.7 माइक्रोन से कम स्थानांतरित हुआ जबकि जाली आवधिकता 0.96 से 11.2 माइक्रोन में बदल गई थी। जाली आवधिकता को बदलते समय फंसे परमाणुओं (या अन्य कणों) को प्रयोगात्मक रूप से अधिक अच्छी तरह से परीक्षण करने के लिए रहता है। इस तरह के अकॉर्डियन लैटिस ऑप्टिकल लैटिस में अल्ट्राकोल्ड परमाणुओं को नियंत्रित करने के लिए उपयोगी होते हैं, जहां क्वांटम टनलिंग के लिए छोटी रिक्ति आवश्यक होती है, और बड़ी स्पेसिंग सिंगल-साइट हेरफेर और स्थानिक रूप से हल की गई पहचान को सक्षम बनाती है। एक उच्च टनलिंग शासन के भीतर बोसोन और फर्मिऑन दोनों के जालक स्थलों के अधिभोग की साइट-सॉल्व्ड संसूचन नियमित रूप से क्वांटम गैस सूक्ष्मदर्शी में की जाती है।[9][10]

संचालन का सिद्धांत

एक बुनियादी ऑप्टिकल जाली दो प्रति-प्रचारित लेजर बीम के हस्तक्षेप पैटर्न से बनती है। ट्रैपिंग तंत्र स्टार्क शिफ्ट के माध्यम से होता है, जहां ऑफ-रेजोनेंट लाइट परमाणु की आंतरिक संरचना में बदलाव का कारण बनती है। स्टार्क शिफ्ट का प्रभाव तीव्रता के अनुपात में एक संभावित अनुपात बनाना है। यह ऑप्टिकल डिपोल ट्रैप (ओडीटी) की तरह ही ट्रैपिंग मैकेनिज्म है, जिसमें एकमात्र बड़ा अंतर यह है कि ऑप्टिकल लैटिस की तीव्रता में मानक ओडीटी की तुलना में बहुत अधिक नाटकीय स्थानिक भिन्नता होती है।[1]

इलेक्ट्रॉनिक आद्य अवस्था में ऊर्जा परिवर्तन (और इस प्रकार, अनुभव की गई क्षमता) दूसरे क्रम के समय-स्वतंत्र गड़बड़ी सिद्धांत द्वारा दिया जाता है, जहां ऑप्टिकल आवृत्तियों पर जाली क्षमता का तेजी से समय भिन्नता समय-औसत है।


जहाँ आद्य अवस्था से ट्रांजीशन के लिए ट्रांजीशन मैट्रिक्स अवयव हैं उत्साहित अवस्था के लिए . दो-स्तरीय प्रणाली के लिए, यह सरल करता है

जहाँ अवस्था परिवर्तन की रेखा है।[1]

एसी स्टार्क प्रभाव के कारण संदीप्त प्रकाश बलों की एक वैकल्पिक तस्वीर प्रक्रिया को एक संदीप्त रमन प्रक्रिया के रूप में देखने के लिए है, जहां परमाणु प्रतिप्रसारक लेजर बीम के बीच फोटोन का पुनर्वितरण करता है जो जाली का निर्माण करता है।  इस तस्वीर में, यह स्पष्ट है कि परमाणु केवल की इकाइयों में जाली से संवेग प्राप्त कर सकते हैं, जहां एक लेजर बीम के फोटॉन का संवेग है।[1]

तकनीकी चुनौतियाँ

एक ऑप्टिकल द्विध्रुवीय जाल में परमाणुओं द्वारा अनुभव की जाने वाली ट्रैपिंग क्षमता कमजोर होती है, आमतौर पर 1 mK से नीचे। इस प्रकार परमाणुओं को ऑप्टिकल जाली में लोड करने से पहले काफी ठंडा किया जाना चाहिए। इसके लिए इस्तेमाल की जाने वाली कूलिंग तकनीकों में मैग्नेटो-ऑप्टिकल जाल , डॉपलर शीतलन, ध्रुवीकरण ग्रेडिएंट कूलिंग , रमन ठंडा , सुलझा हुआ साइडबैंड कूलिंग और बाष्पीकरणीय शीतलन (परमाणु भौतिकी) शामिल हैं।[1]

एक बार ठंडे परमाणुओं को ऑप्टिकल जाली में लोड कर दिया जाता है, तो वे ऑप्टिकल जाली लेज़रों से फोटॉनों के सहज बिखरने जैसे विभिन्न तंत्रों द्वारा ताप का अनुभव करेंगे। ये तंत्र आम तौर पर ऑप्टिकल जाली प्रयोगों के जीवनकाल को सीमित करते हैं।[1]


उड़ान इमेजिंग का समय

एक बार ठंडा होने और एक ऑप्टिकल जाली में फंस जाने के बाद, उन्हें हेरफेर किया जा सकता है या विकसित होने के लिए छोड़ दिया जा सकता है। सामान्य जोड़-तोड़ में काउंटरप्रॉपगेटिंग बीम, या जाली के आयाम मॉडुलन के बीच सापेक्ष चरण को अलग करके ऑप्टिकल जाली को हिलाना शामिल है। जाली क्षमता और किसी भी जोड़तोड़ के जवाब में विकसित होने के बाद, परमाणुओं को अवशोषण इमेजिंग के माध्यम से चित्रित किया जा सकता है।

एक सामान्य अवलोकन तकनीक उड़ान का समय (TOF) इमेजिंग है। टीओएफ इमेजिंग पहले जाली क्षमता में परमाणुओं के विकसित होने के लिए कुछ समय की प्रतीक्षा करके काम करती है, फिर जाली क्षमता को बंद कर देती है (एओएम के साथ लेजर शक्ति को बंद करके)। परमाणु, जो अब मुक्त हैं, अपने संवेग के अनुसार अलग-अलग दरों पर फैलते हैं। समय की मात्रा को नियंत्रित करके परमाणुओं को विकसित होने की अनुमति दी जाती है, परमाणुओं के मानचित्रों द्वारा यात्रा की जाने वाली दूरी पर जाली बंद होने पर उनकी गति की स्थिति क्या रही होगी। क्योंकि जाली में परमाणु केवल संवेग में परिवर्तन कर सकते हैं , एक ऑप्टिकल-जाली प्रणाली की टीओएफ छवि में एक विशिष्ट पैटर्न पल में जाली अक्ष के साथ चोटियों की एक श्रृंखला है , जहाँ . टीओएफ इमेजिंग का उपयोग करके, जाली में परमाणुओं का संवेग वितरण निर्धारित किया जा सकता है। इन-सीटू अवशोषण छवियों के साथ संयुक्त (अभी भी जाली के साथ लिया गया), यह फंसे हुए परमाणुओं के चरण अंतरिक्ष घनत्व को निर्धारित करने के लिए पर्याप्त है, बोस-आइंस्टीन कंडेनसेट के निदान के लिए एक महत्वपूर्ण मीट्रिक। बोस-आइंस्टीन संघनन (या अधिक आम तौर पर, पदार्थ के क्वांटम पतित चरणों का गठन)।

उपयोग

क्वांटम सिमुलेशन

ऑप्टिकल जालक में परमाणु एक आदर्श क्वांटम प्रणाली प्रदान करते हैं जहां सभी मापदंडों को नियंत्रित किया जा सकता है। क्योंकि परमाणुओं को सीधे चित्रित किया जा सकता है - ठोस पदार्थों में इलेक्ट्रॉनों के साथ कुछ करना मुश्किल है - उनका उपयोग उन प्रभावों का अध्ययन करने के लिए किया जा सकता है जो वास्तविक क्रिस्टल में निरीक्षण करना मुश्किल होता है। फंसे हुए परमाणु ऑप्टिकल-जाली प्रणालियों पर लागू क्वांटम गैस माइक्रोस्कोपी तकनीक उनके विकास के एकल-साइट इमेजिंग रिज़ॉल्यूशन भी प्रदान कर सकती है।[11] विभिन्न ज्यामितियों में बीमों की अलग-अलग संख्या में हस्तक्षेप करके, अलग-अलग जाली ज्यामिति बनाई जा सकती हैं। ये एक आयामी जाली बनाने वाले दो प्रतिप्रचारक बीमों के सरलतम मामले से लेकर हेक्सागोनल जाली जैसे अधिक जटिल ज्यामिति तक हैं। ऑप्टिकल लैटिस सिस्टम में उत्पादित की जा सकने वाली ज्यामिति की विविधता विभिन्न हैमिल्टनियों के भौतिक अहसास की अनुमति देती है, जैसे कि बोस-हबर्ड मॉडल,[4]कगोम जाली और सचदेव-ये-कितैव मॉडल,[12] और ऑब्री-आंद्रे मॉडल। इन हैमिल्टनियनों के प्रभाव में परमाणुओं के विकास का अध्ययन करके, हैमिल्टनियन के समाधान के बारे में अंतर्दृष्टि प्राप्त की जा सकती है। यह जटिल हैमिल्टनवासियों के लिए विशेष रूप से प्रासंगिक है जो सैद्धांतिक या संख्यात्मक तकनीकों का उपयोग करके आसानी से हल करने योग्य नहीं हैं, जैसे कि दृढ़ता से सहसंबद्ध प्रणालियों के लिए।

ऑप्टिकल घड़ियां

दुनिया की सबसे अच्छी परमाणु घड़ियां संकीर्ण वर्णक्रमीय रेखाओं को प्राप्त करने के लिए ऑप्टिकल लैटिस में फंसे परमाणुओं का उपयोग करती हैं जो डॉप्लर प्रभाव और परमाणु पुनरावृत्ति से अप्रभावित हैं।[13][14]


क्वांटम जानकारी

वे क्वांटम सूचना प्रसंस्करण के लिए आशाजनक उम्मीदवार भी हैं।[15][16]


एटम इंटरफेरोमेट्री

हिलती हुई ऑप्टिकल जाली - जहां जाली के चरण को संशोधित किया जाता है, जाली पैटर्न को आगे और पीछे स्कैन करने का कारण बनता है - जाली में फंसे परमाणुओं की गति की स्थिति को नियंत्रित करने के लिए इस्तेमाल किया जा सकता है। इस नियंत्रण का उपयोग परमाणुओं को अलग-अलग गति की आबादी में विभाजित करने के लिए किया जाता है, उन्हें आबादी के बीच चरण के अंतर को जमा करने के लिए प्रचारित किया जाता है, और एक हस्तक्षेप पैटर्न का निर्माण करने के लिए उन्हें पुनः संयोजित किया जाता है।[17]


अन्य उपयोग

ठंडे परमाणुओं को फँसाने के अलावा, झंझरी और फोटोनिक क्रिस्टल बनाने में ऑप्टिकल जाली का व्यापक रूप से उपयोग किया गया है। वे सूक्ष्म कणों को छांटने के लिए भी उपयोगी होते हैं,[18] और सेल सरणियों को असेंबल करने के लिए उपयोगी हो सकता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Grimm, Rudolf; Weidemüller, Matthias; Ovchinnikov, Yurii B. (2000), "Optical Dipole Traps for Neutral Atoms", Advances In Atomic, Molecular, and Optical Physics, Elsevier, pp. 95–170, arXiv:physics/9902072, doi:10.1016/s1049-250x(08)60186-x, ISBN 978-0-12-003842-8, S2CID 16499267, retrieved 2020-12-17
  2. Bloch, Immanuel (October 2005). "ऑप्टिकल लैटिस में अल्ट्राकोल्ड क्वांटम गैसें". Nature Physics. 1 (1): 23–30. Bibcode:2005NatPh...1...23B. doi:10.1038/nphys138. S2CID 28043590.
  3. Gebhard, Florian (1997). Mott मेटल-इंसुलेटर ट्रांज़िशन मॉडल और तरीके. Berlin [etc.]: Springer. ISBN 978-3-540-61481-4.
  4. 4.0 4.1 Greiner, Markus; Mandel, Olaf; Esslinger, Tilman; Hänsch, Theodor W.; Bloch, Immanuel (January 3, 2002). "अल्ट्राकोल्ड परमाणुओं की गैस में सुपरफ्लुइड से एमओटी इंसुलेटर तक क्वांटम चरण संक्रमण". Nature. 415 (6867): 39–44. Bibcode:2002Natur.415...39G. doi:10.1038/415039a. PMID 11780110. S2CID 4411344.
  5. Koetsier, Arnaud; Duine, R. A.; Bloch, Immanuel; Stoof, H. T. C. (2008). "Achieving the Néel state in an optical lattice". Phys. Rev. A. 77 (2): 023623. arXiv:0711.3425. Bibcode:2008PhRvA..77b3623K. doi:10.1103/PhysRevA.77.023623. S2CID 118519083.
  6. Fallani, Leonardo; Fort, Chiara; Lye, Jessica; Inguscio, Massimo (May 2005). "Bose-Einstein condensate in an optical lattice with tunable spacing: transport and static properties". Optics Express. 13 (11): 4303–4313. arXiv:cond-mat/0505029. Bibcode:2005OExpr..13.4303F. doi:10.1364/OPEX.13.004303. PMID 19495345. S2CID 27181534.
  7. Huckans, J. H. (December 2006). "Optical Lattices and Quantum Degenerate Rb-87 in Reduced Dimensions". University of Maryland Doctoral Dissertation.
  8. Li, T. C.; Kelkar,H.; Medellin, D.; Raizen, M. G. (April 3, 2008). "Real-time control of the periodicity of a standing wave: an optical accordion". Optics Express. 16 (8): 5465–5470. arXiv:0803.2733. Bibcode:2008OExpr..16.5465L. doi:10.1364/OE.16.005465. PMID 18542649. S2CID 11082498.
  9. Bakr, Waseem S.; Gillen, Jonathon I.; Peng, Amy; Fölling, Simon; Greiner, Markus (2009-11-05). "हबर्ड-शासन ऑप्टिकल जाली में एकल परमाणुओं का पता लगाने के लिए एक क्वांटम गैस माइक्रोस्कोप". Nature (in English). 462 (7269): 74–77. arXiv:0908.0174. Bibcode:2009Natur.462...74B. doi:10.1038/nature08482. ISSN 0028-0836. PMID 19890326. S2CID 4419426.
  10. Haller, Elmar; Hudson, James; Kelly, Andrew; Cotta, Dylan A.; Peaudecerf, Bruno; Bruce, Graham D.; Kuhr, Stefan (2015-09-01). "क्वांटम-गैस माइक्रोस्कोप में फ़र्मियन की एकल-परमाणु इमेजिंग". Nature Physics (in English). 11 (9): 738–742. arXiv:1503.02005. Bibcode:2015NatPh..11..738H. doi:10.1038/nphys3403. hdl:10023/8011. ISSN 1745-2473. S2CID 51991496.
  11. Bakr, Waseem S.; Gillen, Jonathon I.; Peng, Amy; Fölling, Simon; Greiner, Markus (November 2009). "हबर्ड-शासन ऑप्टिकल जाली में एकल परमाणुओं का पता लगाने के लिए एक क्वांटम गैस माइक्रोस्कोप". Nature (in English). 462 (7269): 74–77. arXiv:0908.0174. Bibcode:2009Natur.462...74B. doi:10.1038/nature08482. ISSN 1476-4687. PMID 19890326. S2CID 4419426.
  12. Wei, Chenan; Sedrakyan, Tigran (2021-01-29). "सचदेव-ये-कीताएव मॉडल के लिए ऑप्टिकल जाली मंच". Phys. Rev. A. 103 (1): 013323. arXiv:2005.07640. Bibcode:2021PhRvA.103a3323W. doi:10.1103/PhysRevA.103.013323. S2CID 234363891.
  13. Derevianko, Andrei; Katori, Hidetoshi (3 May 2011). "Colloquium : Physics of optical lattice clocks". Reviews of Modern Physics. 83 (2): 331–347. arXiv:1011.4622. Bibcode:2011RvMP...83..331D. doi:10.1103/RevModPhys.83.331. S2CID 29455812.
  14. "ये लैब". ये लैब.
  15. Brennen, Gavin K.; Caves, Carlton; Jessen, Poul S.; Deutsch, Ivan H. (1999). "ऑप्टिकल लैटिस में क्वांटम लॉजिक गेट्स". Phys. Rev. Lett. 82 (5): 1060–1063. arXiv:quant-ph/9806021. Bibcode:1999PhRvL..82.1060B. doi:10.1103/PhysRevLett.82.1060. S2CID 15297433.
  16. Yang, Bing; Sun, Hui; Hunag, Chun-Jiong; Wang, Han-Yi; Deng, Youjin; Dai, Han-Ning; Yuan, Zhen-Sheng; Pan, Jian-Wei (2020). "ऑप्टिकल लैटिस में अल्ट्राकोल्ड परमाणुओं को ठंडा करना और उलझाना". Science. 369 (6503): 550–553. arXiv:1901.01146. Bibcode:2020Sci...369..550Y. doi:10.1126/science.aaz6801. PMID 32554628. S2CID 219901015.
  17. Weidner, C. A.; Anderson, Dana Z. (27 June 2018). "शेकेन-लैटिस इंटरफेरोमेट्री का प्रायोगिक प्रदर्शन". Physical Review Letters. 120 (26): 263201. arXiv:1801.09277. doi:10.1103/PhysRevLett.120.263201. PMID 30004774. S2CID 51625118.
  18. MacDonald, M. P.; Spalding, G. C.; Dholakia, K. (November 27, 2003). "एक ऑप्टिकल जाली में माइक्रोफ्लुइडिक छँटाई". Nature. 426 (6965): 421–424. Bibcode:2003Natur.426..421M. doi:10.1038/nature02144. PMID 14647376. S2CID 4424652.


बाहरी संबंध