ग्राफिकल मॉडल: Difference between revisions

From Vigyanwiki
m (12 revisions imported from alpha:ग्राफिकल_मॉडल)
No edit summary
 
Line 87: Line 87:
* [[संरचनात्मक समीकरण मॉडल]]
* [[संरचनात्मक समीकरण मॉडल]]


[[Category:Collapse templates]]
 
[[Category:Created On 01/06/2023]]
 
[[Category:Machine Translated Page]]
 
[[Category:Navigational boxes| ]]
 
[[Category:Navigational boxes without horizontal lists]]
 
[[Category:Pages with empty portal template]]
 
[[Category:Pages with script errors]]
 
[[Category:Portal-inline template with redlinked portals]]
 
[[Category:Short description with empty Wikidata description]]
 
[[Category:Sidebars with styles needing conversion]]
 


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 171: Line 171:
{{Statistics|analysis}}
{{Statistics|analysis}}


[[Category:All articles lacking in-text citations]]
[[Category:Articles lacking in-text citations from मई 2017]]
[[Category:Articles with invalid date parameter in template]]
[[Category:CS1 English-language sources (en)]]
[[Category:Collapse templates]]
[[Category:Collapse templates]]
[[Category:Created On 01/06/2023]]
[[Category:Created On 01/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes| ]]
Line 181: Line 186:
[[Category:Short description with empty Wikidata description]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Vigyan Ready]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 13:26, 23 June 2023

ग्राफिकल मॉडल या संभावित ग्राफिकल मॉडल (पीजीएम) या संरचित संभावित मॉडल वह मॉडल है जिसके लिए एक ग्राफ (असतत गणित) आकस्मिक चर के बीच प्रतिबंधात्मक निर्भरता के संरचना को व्यक्त करता है। वे सामान्यतः संभावित सिद्धांत, सांख्यिकी-विशेष रूप से बायेसियन सांख्यिकी और यांत्रिक अधिगम में उपयोग किए जाते हैं।

ग्राफिकल मॉडल के प्रकार

सामान्यतः, संभावित ग्राफिकल मॉडल एक ग्राफ-आधारित प्रतिनिधित्व का उपयोग एक बहु-आयामी स्थान पर वितरण को कोडित करने के लिए आधार के रूप में करते हैं और एक ग्राफ जो विशिष्ट वितरण में होने वाली अभिकलनों के एक समुच्चय का सघन या आकारिकी ग्राफ को प्रतिनिधित्व करता है। वितरण के ग्राफिकल प्रतिनिधित्व की दो शाखाओं का सामान्यतः उपयोग किया जाता है, ये दो शाखाएं बायेसियन नेटवर्क और मार्कोव अनियमित क्षेत्र हैं। दोनों समूह गुणनखंड और अभिकलन के गुणों को सम्मिलित करते हैं, लेकिन वे उन अभिकलनों के समुच्चय में भिन्न होते हैं जिन्हें वे सांकेतिक रूप से प्रयोग कर सकते हैं और वे वितरण के गुणनखंड को प्रेरित करते हैं।[1]


अप्रत्यक्ष ग्राफिकल मॉडल

File:Examples of an Undirected Graph.svg
चार शीर्षों वाला एक अप्रत्यक्ष ग्राफ।

दिखाए गए अप्रत्यक्ष ग्राफ कई व्याख्याओं में से एक हो सकती है; सामान्य विशेषता यह है कि सीमाओं की उपस्थिति का तात्पर्य संगत आकस्मिक चर के बीच किसी प्रकार की निर्भरता से है। वितरण के ग्राफिकल प्रतिनिधित्व की दो शाखाओं का सामान्यतः उपयोग किया जाता है, वे सामान्यतः संभावित सिद्धांत, सांख्यिकी-विशेष रूप से बायेसियन सांख्यिकी और यांत्रिक अधिगम में उपयोग किए जाते हैं। इस ग्राफ से हम यह अनुमान लगा सकते हैं कि एक बार सभी परस्पर स्वतंत्र हैं, एक बार ज्ञात होने पर परिणामतः (समकक्ष रूप से इस सन्दर्भ में) यह कहा जा सकता है कि

कुछ गैर-नकारात्मक फलन के लिए होता है।

बायेसियन नेटवर्क

File:Example of a Directed Graph.svg
चार शीर्षों पर निर्देशित एसाइक्लिक ग्राफ का उदाहरण।

यदि मॉडल की नेटवर्क संरचना एक निर्देशित अचक्रीय ग्राफ है, इस ग्राफ से हम यह अनुमान लगा सकते हैं कि एक बार सभी परस्पर स्वतंत्र हैं, तो मॉडल सभी आकस्मिक चरों की संयुक्त संभावना के गुणनखंड का प्रतिनिधित्व करता है। यदि अधिक निर्धारित, घटनाएं हैं तब संयुक्त संभावना संतुष्ट होती है।

जहाँ नोड (किनारों के साथ नोड्स की ओर निर्देशित ) के मूल प्रमुख का समुच्चय है। दूसरे शब्दों में, प्रतिबंधात्मक वितरण के उत्पाद में संयुक्त वितरण आकारिकी का समुच्चय है। उदाहरण के लिए, चित्र में दिखाए गए निर्देशित चक्रीय ग्राफ में यह गुणनखंड होगा।

.

कोई भी दो नोड अपने मूल प्रमुख के मानों को देखते हुए प्रतिबंधात्मक रूप से स्वतंत्र हैं, सामान्यतः, नोड्स के किसी भी दो समुच्चय प्रतिबंधात्मक रूप से स्वतंत्र होते हैं, यदि डी-पृथक्करण नामक एक मानदंड ग्राफ में रहता है। बायेसियन नेटवर्क में स्थानीय अभिकलन और वैश्विक अभिकलन समान हैं।

इस प्रकार के ग्राफिकल मॉडल को निर्देशित ग्राफिकल मॉडल, बायेसियन नेटवर्क या पूर्वोत्तरपद नेटवर्क के रूप में जाना जाता है। प्रथम श्रेणी का यांत्रिक लर्निंग मॉडल जैसे छिपे हुए मार्कोव मॉडल, तंत्रिकीय - तंत्र और नए मॉडल जैसे चर-क्रम मार्कोव मॉडल को बायेसियन नेटवर्क के विशेष सन्दर्भ माना जा सकता है।

सबसे सरल बायेसियन नेटवर्क में से एक अनुभवहीन बेज़ वर्गीकरण है।

चक्रीय निर्देशित ग्राफिकल मॉडल

Error creating thumbnail:
निर्देशित, चक्रीय ग्राफिकल मॉडल का एक उदाहरण। प्रत्येक तीर एक निर्भरता को इंगित करता है। इस उदाहरण में: D, A, B और C पर निर्भर करता है; और C, B और D पर निर्भर करता है; जबकि A और B प्रत्येक स्वतंत्र हैं।

अगला आंकड़ा एक चक्र के साथ एक ग्राफिकल मॉडल को दर्शाता है। इसकी व्याख्या किसी न किसी रूप में इसके मूल प्रमुख के मानों के 'आधार' पर प्रत्येक चर के संदर्भ में की जा सकती है।

दिखाया गया विशेष ग्राफ एक संयुक्त संभावित घनत्व का सुझाव देता है जो आकारिकी के रूप में होता है। उदाहरण के लिए, चित्र में दिखाए गए निर्देशित चक्रीय ग्राफ में यह गुणनखंड होगा।,

लेकिन अन्य व्याख्याएं भी संभव हैं।[2]


अन्य प्रकार

प्रवाल डेटासमुच्चय के लिए टैन मॉडल।
  • लक्षित बायेसियन नेटवर्क लर्निंग (टीबीएनएल)
    कोरल डेटासमुच्चय के लिए टीबीएनएल मॉडल
    *एक आकारिकी ग्राफ एक अप्रत्यक्ष द्विदलीय ग्राफ है जो चर और आकारिकी को जोड़ता है। प्रत्येक आकारिकी उन चरों पर एक फलन का प्रतिनिधित्व करता है जिनसे यह जुड़ा हुआ है। पूर्वोत्तरपद प्रसारण को समझने और लागू करने के लिए यह एक उपयोगी प्रतिनिधित्व है। निर्भरता नेटवर्क (ग्राफिकल मॉडल) जहां चक्रों की अनुमति है।
  • एक क्लिक ट्री या जंक्शन ट्री, गुट (ग्राफ सिद्धांत) का एक ट्री (ग्राफ सिद्धांत) है, जिसका उपयोग जंक्शन ट्री कलन विधि में किया जाता है।
  • एक श्रृंखला ग्राफ एक ऐसा ग्राफ है जिसमें निर्देशित और अप्रत्यक्ष दोनों सीमाएं हो सकते हैं, लेकिन बिना किसी निर्देशित चक्र के (अर्थात यदि हम किसी शीर्ष पर प्रारम्भ करते हैं और किसी भी तीर की दिशाओं का सम्मान करते हुए ग्राफ के साथ आगे बढ़ते हैं, तो हम उस शीर्ष पर वापस नहीं लौट सकते हैं जहां से हमने प्रारम्भ किया था) यदि हमने एक तीर स्वीकार्य किया है। निर्देशित चक्रीय रेखांकन और अप्रत्यक्ष रेखांकन दोनों श्रृंखला रेखांकन के विशेष सन्दर्भ हैं, जो बायेसियन और मार्कोव नेटवर्क को एकीकृत और सामान्य बनाने का एक तरीका प्रदान कर सकते हैं।[3]
  • पूर्वज संबंधी ग्राफ एक अन्य विस्तार है, जिसमें निर्देशित, द्विदिश और अप्रत्यक्ष सीमाओं हैं।[4]
  • आकस्मिक क्षेत्र तकनीकें मार्कोव आकस्मिक क्षेत्र, जिसे मार्कोव नेटवर्क के रूप में भी जाना जाता है, एक अप्रत्यक्ष ग्राफ पर एक मॉडल है। कई दोहराई गई उप इकाई के साथ एक ग्राफिकल मॉडल को एकलविमीय अंकन के साथ प्रदर्शित किया जा सकता है।
  • एक प्रतिबंधात्मक आकस्मिक क्षेत्र एक भेदभावपूर्ण मॉडल है जो एक अप्रत्यक्ष ग्राफ पर निर्दिष्ट है।
  • एक प्रतिबंधित बोल्ट्जमैन यांत्रिक एक द्विदलीय ग्राफ जनरेटिव मॉडल है जो एक अप्रत्यक्ष ग्राफ पर निर्दिष्ट है।

अनुप्रयोग

मॉडल का प्रारूप, जो जटिल वितरण में संरचना की खोज और विश्लेषण के लिए उन्हें संक्षिप्त रूप से वर्णन करने और असंरचित जानकारी निकालने के लिए कलन विधि को प्रदान करता है, निर्देशित चक्रीय रेखांकन और अप्रत्यक्ष रेखांकन दोनों श्रृंखला रेखांकन के विशेष सन्दर्भ हैं, वह उन्हें प्रभावी ढंग से निर्मित और उपयोग करने की अनुमति देता है।[1] एक प्रतिबंधात्मक आकस्मिक क्षेत्र एक भेदभावपूर्ण मॉडल है जो एक अप्रत्यक्ष ग्राफ पर निर्दिष्ट है। ग्राफिकल मॉडल के अनुप्रयोगों में कारण अनुमान, सूचना निष्कर्षण, भाषण मान्यता, कंप्यूटर दृष्टि, कम घनत्व समानता-जांच कोड का डिकोडिंग, जीन नियामक नेटवर्क का मॉडलिंग, जीन खोज और रोगों का निदान, और प्रोटीन संरचना के लिए ग्राफिकल मॉडल सम्मिलित हैं।

यह भी देखें







टिप्पणियाँ

  1. 1.0 1.1 Koller, D.; Friedman, N. (2009). Probabilistic Graphical Models. Massachusetts: MIT Press. p. 1208. ISBN 978-0-262-01319-2. Archived from the original on 2014-04-27.
  2. Richardson, Thomas (1996). "A discovery algorithm for directed cyclic graphs". Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence. ISBN 978-1-55860-412-4.
  3. Frydenberg, Morten (1990). "चेन ग्राफ मार्कोव संपत्ति". Scandinavian Journal of Statistics. 17 (4): 333–353. JSTOR 4616181. MR 1096723.
  4. Richardson, Thomas; Spirtes, Peter (2002). "Ancestral graph Markov models". Annals of Statistics. 30 (4): 962–1030. CiteSeerX 10.1.1.33.4906. doi:10.1214/aos/1031689015. MR 1926166. Zbl 1033.60008.


अग्रिम पठन

पुस्तकें और पुस्तक अध्याय

  • Barber, David (2012). बायेसियन रीजनिंग एंड मशीन लर्निंग. Cambridge University Press. ISBN 978-0-521-51814-7.

जर्नल लेख

अन्य

बाहरी संबंध