जेमान प्रभाव: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 37: Line 37:


== दुर्बल क्षेत्र (जेमान प्रभाव) ==
== दुर्बल क्षेत्र (जेमान प्रभाव) ==
यदि स्पिन-ऑर्बिट परस्पर बाहरी चुंबकीय क्षेत्र के प्रभाव पर हावी है, तो <math> \vec L</math> और <math> \vec S</math> अलग से संरक्षित नहीं होते हैं, केवल कुल कोणीय गति <math> \vec J = \vec L + \vec S</math> है। प्रचक्रण और कक्षीय कोणीय संवेग सदिशों को (स्थिर) कुल कोणीय संवेग सदिश <math> \vec J</math> के बारे में पूर्ववर्ती माना जा सकता है। (समय-) "औसत" स्पिन वेक्टर तब <math> \vec J</math>की दिशा में स्पिन का प्रक्षेपण होता है:
यदि स्पिन-ऑर्बिट परस्पर बाहरी चुंबकीय क्षेत्र के प्रभाव पर हावी है, तो <math> \vec L</math> और <math> \vec S</math> अलग से संरक्षित नहीं होते हैं, केवल कुल कोणीय गति <math> \vec J = \vec L + \vec S</math> है। प्रचक्रण और कक्षीय कोणीय संवेग सदिशों को (स्थिर) कुल कोणीय संवेग सदिश <math> \vec J</math> के बारे में पूर्ववर्ती माना जा सकता है। (समय-) "औसत" स्पिन सदिश तब <math> \vec J</math>की दिशा में स्पिन का प्रक्षेपण होता है:


:<math>\vec S_{\rm avg} = \frac{(\vec S \cdot \vec J)}{J^2} \vec J</math>
:<math>\vec S_{\rm avg} = \frac{(\vec S \cdot \vec J)}{J^2} \vec J</math>
और (समय-) "औसत" कक्षीय वेक्टर के लिए:
और (समय-) "औसत" कक्षीय सदिश के लिए:


:<math>\vec L_{\rm avg} = \frac{(\vec L \cdot \vec J)}{J^2} \vec J.</math>
:<math>\vec L_{\rm avg} = \frac{(\vec L \cdot \vec J)}{J^2} \vec J.</math>
Line 63: Line 63:
\end{align}
\end{align}
</math>
</math>
जहां वर्ग कोष्ठक में मात्रा लांडे '''जी-फैक्टर''' g<sub>J</sub> है परमाणु का (<math>g_L = 1</math> और <math>g_S \approx 2</math>) और <math>m_j</math> कुल कोणीय संवेग का z-घटक है। भरे हुए गोले के ऊपर एकल इलेक्ट्रॉन के लिए <math>s = 1/2</math> और <math> j = l \pm s </math> लैंडे जी-फैक्टर को सरल बनाया जा सकता है:
जहां वर्ग कोष्ठक में मात्रा लांडे '''g-कारक''' g<sub>J</sub> है परमाणु का (<math>g_L = 1</math> और <math>g_S \approx 2</math>) और <math>m_j</math> कुल कोणीय संवेग का z-घटक है। भरे हुए गोले के ऊपर एकल इलेक्ट्रॉन के लिए <math>s = 1/2</math> और <math> j = l \pm s </math> लैंडे g-कारक को सरल बनाया जा सकता है:


:<math> g_j = 1 \pm \frac{g_S-1}{2l+1} </math>
:<math> g_j = 1 \pm \frac{g_S-1}{2l+1} </math>
Line 192: Line 192:


== j = 1/2 के लिए मध्यवर्ती क्षेत्र ==
== j = 1/2 के लिए मध्यवर्ती क्षेत्र ==


चुंबकीय द्विध्रुवीय सन्निकटन में, हैमिल्टनियन जिसमें [[हाइपरफाइन संरचना|हाइपरफाइन]] और ज़िमन दोनों परस्पर क्रियाएँ सम्मिलित हैं
चुंबकीय द्विध्रुवीय सन्निकटन में, हैमिल्टनियन जिसमें [[हाइपरफाइन संरचना|हाइपरफाइन]] और ज़िमन दोनों परस्पर क्रियाएँ सम्मिलित हैं
:<math> H = h A \vec I \cdot \vec J  - \vec \mu \cdot \vec B </math>
:<math> H = h A \vec I \cdot \vec J  - \vec \mu \cdot \vec B </math>
:<math> H = h A \vec I \cdot\vec J + ( \mu_{\rm B} g_J\vec J  + \mu_{\rm N} g_I\vec I ) \cdot \vec {\rm B} </math>
:<math> H = h A \vec I \cdot\vec J + ( \mu_{\rm B} g_J\vec J  + \mu_{\rm N} g_I\vec I ) \cdot \vec {\rm B} </math>
जहाँ <math>A</math> हाइपरफाइन स्प्लिटिंग (हर्ट्ज में) शून्य लागू चुंबकीय क्षेत्र में है, <math>\mu_{\rm B}</math> और <math>\mu_{\rm N}</math> बोह्र मैग्नेटॉन और परमाणु मैग्नेटॉन क्रमशः हैं, <math>\vec J</math> और <math>\vec I</math> इलेक्ट्रॉन और परमाणु कोणीय गति संचालक हैं और <math>g_J</math> लैंडे जी-फैक्टर है:
जहाँ <math>A</math> हाइपरफाइन स्प्लिटिंग (हर्ट्ज में) शून्य लागू चुंबकीय क्षेत्र में है, <math>\mu_{\rm B}</math> और <math>\mu_{\rm N}</math> बोह्र मैग्नेटॉन और परमाणु मैग्नेटॉन क्रमशः हैं, <math>\vec J</math> और <math>\vec I</math> इलेक्ट्रॉन और परमाणु कोणीय गति संचालक हैं और <math>g_J</math> लैंडे g-कारक है:
<math display="block"> g_J = g_L\frac{J(J+1) + L(L+1) - S(S+1)}{2J(J+1)} + g_S\frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}.</math>
<math display="block"> g_J = g_L\frac{J(J+1) + L(L+1) - S(S+1)}{2J(J+1)} + g_S\frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}.</math>
कमजोर चुंबकीय क्षेत्र के मामले में, ज़िमन परस्पर को क्षोभ के रूप में माना जा सकता है <math>|F,m_f \rangle</math> आधार। उच्च क्षेत्र व्यवस्था में, चुंबकीय क्षेत्र इतना प्रबल हो जाता है कि जेमान प्रभाव हावी हो जाएगा, और किसी को अधिक संपूर्ण आधार का उपयोग करना चाहिए <math>|I,J,m_I,m_J\rangle</math> या केवल <math>|m_I,m_J \rangle</math> तब से <math>I</math> और <math>J</math> दिए गए स्तर के भीतर स्थिर रहेगा।
कमजोर चुंबकीय क्षेत्र के मामले में, ज़िमन परस्पर को क्षोभ के रूप में माना जा सकता है <math>|F,m_f \rangle</math> आधार। उच्च क्षेत्र व्यवस्था में, चुंबकीय क्षेत्र इतना प्रबल हो जाता है कि जेमान प्रभाव हावी हो जाएगा, और किसी को अधिक संपूर्ण आधार का उपयोग करना चाहिए <math>|I,J,m_I,m_J\rangle</math> या केवल <math>|m_I,m_J \rangle</math> तब से <math>I</math> और <math>J</math> दिए गए स्तर के भीतर स्थिर रहेगा।
Line 224: Line 223:
जहाँ <math>\Delta W</math> चुंबकीय क्षेत्र की अनुपस्थिति में दो अतिसूक्ष्म उपस्तरों के बीच विभाजन (हर्ट्ज की इकाइयों में) है <math>B</math>, <math>x</math> को 'फ़ील्ड स्ट्रेंथ पैरामीटर' के रूप में संदर्भित किया जाता है (नोट: के लिए <math>m_F = \pm(I+1/2)</math> वर्गमूल के अंतर्गत अभिव्यक्ति एक यथार्थ वर्ग है, और इसलिए अंतिम शब्द को प्रतिस्थापित किया जाना चाहिए <math>+\frac{h\Delta W}{2}(1\pm x)</math>). इस समीकरण को '''ब्रेइट-रबी सूत्र''' के रूप में जाना जाता है और एक वैलेंस इलेक्ट्रॉन वाले सिस्टम के लिए उपयोगी है <math>s</math> (<math>J = 1/2</math>) स्तर।<ref>{{cite book |last1=Woodgate |first1=Gordon Kemble |title=प्राथमिक परमाणु संरचना|date=1980 |publisher=Oxford University Press |location=Oxford, England |pages=193–194 |edition=2nd}}</ref><ref>First appeared in:  {{cite journal |last1=Breit |first1=G. |last2=Rabi |first2=I.I. |title=Measurement of nuclear spin |journal=Physical Review |date=1931 |volume=38 |issue=11 |pages=2082–2083 |doi=10.1103/PhysRev.38.2082.2|bibcode=1931PhRv...38.2082B }}</ref>
जहाँ <math>\Delta W</math> चुंबकीय क्षेत्र की अनुपस्थिति में दो अतिसूक्ष्म उपस्तरों के बीच विभाजन (हर्ट्ज की इकाइयों में) है <math>B</math>, <math>x</math> को 'फ़ील्ड स्ट्रेंथ पैरामीटर' के रूप में संदर्भित किया जाता है (नोट: के लिए <math>m_F = \pm(I+1/2)</math> वर्गमूल के अंतर्गत अभिव्यक्ति एक यथार्थ वर्ग है, और इसलिए अंतिम शब्द को प्रतिस्थापित किया जाना चाहिए <math>+\frac{h\Delta W}{2}(1\pm x)</math>). इस समीकरण को '''ब्रेइट-रबी सूत्र''' के रूप में जाना जाता है और एक वैलेंस इलेक्ट्रॉन वाले सिस्टम के लिए उपयोगी है <math>s</math> (<math>J = 1/2</math>) स्तर।<ref>{{cite book |last1=Woodgate |first1=Gordon Kemble |title=प्राथमिक परमाणु संरचना|date=1980 |publisher=Oxford University Press |location=Oxford, England |pages=193–194 |edition=2nd}}</ref><ref>First appeared in:  {{cite journal |last1=Breit |first1=G. |last2=Rabi |first2=I.I. |title=Measurement of nuclear spin |journal=Physical Review |date=1931 |volume=38 |issue=11 |pages=2082–2083 |doi=10.1103/PhysRev.38.2082.2|bibcode=1931PhRv...38.2082B }}</ref>


ध्यान दें कि <math>\Delta E_{F=I\pm1/2}</math> में सूचकांक <math>F</math> को परमाणु के कुल कोणीय संवेग के रूप में नहीं, बल्कि स्पर्शोन्मुख कुल कोणीय गति के रूप में माना जाना चाहिए। यह केवल कुल कोणीय संवेग के बराबर है यदि <math>B=0</math>अन्यथा हेमिल्टनियन के अलग-अलग आइगेनमान  ​​से संबंधित आइगेनवेक्टर अलग-अलग <math>F</math> के साथ राज्यों के सुपरपोजिशन हैं लेकिन समान <math>m_F</math> (एकमात्र अपवाद हैं <math>|F=I+1/2,m_F=\pm F \rangle</math>)।
ध्यान दें कि <math>\Delta E_{F=I\pm1/2}</math> में सूचकांक <math>F</math> को परमाणु के कुल कोणीय संवेग के रूप में नहीं, बल्कि स्पर्शोन्मुख कुल कोणीय गति के रूप में माना जाना चाहिए। यह केवल कुल कोणीय संवेग के बराबर है यदि <math>B=0</math>अन्यथा हेमिल्टनियन के अलग-अलग आइगेनमान  ​​से संबंधित आइगेनसदिश अलग-अलग <math>F</math> के साथ राज्यों के सुपरपोजिशन हैं लेकिन समान <math>m_F</math> (एकमात्र अपवाद हैं <math>|F=I+1/2,m_F=\pm F \rangle</math>)।


== अनुप्रयोग ==
== अनुप्रयोग ==

Revision as of 12:33, 25 May 2023

File:ZeemanEffectIllus.png
तरंग दैर्ध्य 546.1 एनएम पर पारा वाष्प लैंप की वर्णक्रमीय रेखाएँ, असामान्य जेमान प्रभाव दिखा रही हैं। (ए) चुंबकीय क्षेत्र के बिना। (बी) चुंबकीय क्षेत्र के साथ, वर्णक्रमीय रेखाएं अनुप्रस्थ जेमान प्रभाव के रूप में विभाजित होती हैं। (सी) चुंबकीय क्षेत्र के साथ, अनुदैर्ध्य जेमान प्रभाव के रूप में विभाजित। फेब्री-पेरोट इंटरफेरोमीटर का उपयोग करके वर्णक्रमीय रेखाएं प्राप्त की गईं।
File:Breit-rabi-Zeeman.png
87आरबी, ठीक संरचना और हाइपरफाइन संरचना विभाजन सहित। यहाँ F = J + I, जहाँ I परमाणु घुमाव है (के लिए 87आरबी, आई =32).
File:Explanation of how the magnetic field on a star affects the light emitted.webm
यह एनीमेशन दिखाता है कि सनस्पॉट (या स्टारस्पॉट) के रूप में क्या होता है और चुंबकीय क्षेत्र की ताकत बढ़ जाती है। मौके से निकलने वाली रोशनी जेमान प्रभाव को प्रदर्शित करने लगती है। उत्सर्जित प्रकाश के स्पेक्ट्रम में डार्क स्पेक्ट्रा लाइनें तीन घटकों में विभाजित हो जाती हैं और स्पेक्ट्रम के कुछ हिस्सों में गोलाकार ध्रुवीकरण की ताकत काफी बढ़ जाती है। यह ध्रुवीकरण प्रभाव तारकीय चुंबकीय क्षेत्रों का पता लगाने और मापने के लिए खगोलविदों के लिए एक शक्तिशाली उपकरण है।

जेमान प्रभाव (/ˈzmən/; डच उच्चारण: [जेːमैन]) एक स्थिर चुंबकीय क्षेत्र की उपस्थिति में वर्णक्रमीय रेखा को कई घटकों में विभाजित करने का प्रभाव है। इसका नाम डच भौतिक विज्ञानी पीटर ज़िमन के नाम पर रखा गया है, जिन्होंने 1896 में इसकी खोज की थी और इस खोज के लिए उन्हें नोबेल पुरस्कार मिला था। यह स्टार्क प्रभाव के अनुरूप है, विद्युत क्षेत्र की उपस्थिति में वर्णक्रमीय रेखा को कई घटकों में विभाजित करना। स्टार्क प्रभाव के समान, विभिन्न घटकों के बीच संक्रमण, सामान्य रूप से, अलग-अलग तीव्रता के होते हैं, जिनमें से कुछ पूरी तरह से वर्जित होते हैं (द्विध्रुवीय सन्निकटन में), जैसा कि चयन नियमों द्वारा शासित होता है।

चूँकि ज़िमन उप-स्तरों के बीच की दूरी चुंबकीय क्षेत्र की शक्ति का एक कार्य है, इस प्रभाव का उपयोग चुंबकीय क्षेत्र की शक्ति को मापने के लिए किया जा सकता है, उदा. वह सूर्य और अन्य तारों का या प्रयोगशाला के प्लाज्मा में। परमाणु चुंबकीय अनुनाद स्पेक्ट्रोस्कोपी, इलेक्ट्रॉन स्पिन अनुनाद स्पेक्ट्रोस्कोपी, चुंबकीय अनुनाद इमेजिंग (एमआरआई) और मोसबाउर स्पेक्ट्रोस्कोपी जैसे अनुप्रयोगों में जेमान प्रभाव बहुत महत्वपूर्ण है। परमाणु अवशोषण स्पेक्ट्रोस्कोपी में यथार्थता में सुधार के लिए इसका उपयोग भी किया जा सकता है। पक्षियों की चुंबकीय भावना के बारे में एक सिद्धांत मानता है कि ज़ीमेन प्रभाव के कारण रेटिना में प्रोटीन बदल जाता है।[1]

जब वर्णक्रमीय रेखाएँ अवशोषण रेखाएँ होती हैं, तो प्रभाव को व्युत्क्रम जेमान प्रभाव कहा जाता है।

नामकरण

ऐतिहासिक रूप से, सामान्य और विषम जेमान प्रभाव के बीच अंतर करता है (डबलिन, आयरलैंड में थॉमस प्रेस्टन द्वारा खोजा गया[2])। विषम प्रभाव उन संक्रमणों पर दिखाई देता है जहां इलेक्ट्रॉनों का शुद्ध स्पिन शून्य नहीं होता है। इसे "विसंगतिपूर्ण" कहा जाता था क्योंकि इलेक्ट्रॉन स्पिन अभी तक खोजा नहीं गया था, और इसलिए उस समय इसके लिए कोई अच्छी व्याख्या नहीं थी जब ज़ीमन ने प्रभाव देखा। वोल्फगैंग पाउली याद करते हैं कि जब उनके एक सहकर्मी ने उनसे पूछा कि वे दुखी क्यों दिखते हैं तो उन्होंने जवाब दिया "जब कोई विषम जेमान प्रभाव के बारे में सोच रहा है तो वह कैसे खुश दिख सकता है?"[3]

उच्च चुंबकीय क्षेत्र की ताकत पर प्रभाव रैखिक हो जाता है। परमाणु के आंतरिक क्षेत्र की ताकत की तुलना में उच्च क्षेत्र की ताकत पर, इलेक्ट्रॉन युग्मन परेशान होता है और वर्णक्रमीय रेखाएं पुनर्व्यवस्थित होती हैं। इसे पासचेन-बैक इफेक्ट कहा जाता है।

आधुनिक वैज्ञानिक साहित्य में, इन शब्दों का प्रयोग शायद ही कभी किया जाता है, जिसमें केवल "ज़ीमन प्रभाव" का उपयोग करने की प्रवृत्ति होती है।

सैद्धांतिक प्रस्तुति

चुंबकीय क्षेत्र में एक परमाणु का कुल हैमिल्टनियन होता है

जहाँ परमाणु का क्षोभ हैमिल्टनियन है, और चुंबकीय क्षेत्र के कारण क्षोभ है:

जहाँ परमाणु का चुम्बकीय आघूर्ण है। चुंबकीय क्षण में इलेक्ट्रॉनिक और परमाणु भाग होते हैं; हालाँकि, बाद वाले परिमाण के कई आदेश छोटे हैं और यहाँ उपेक्षित किया जाएगा। अत:

जहाँ बोहर मैग्नेटॉन है कुल इलेक्ट्रॉनिक कोणीय गति है, और लैंडे g-कारक है। अधिक यथार्थ दृष्टिकोण यह ध्यान में रखना है कि एक इलेक्ट्रॉन के चुंबकीय क्षण का संचालक कक्षीय कोणीय गति और स्पिन कोणीय गति के योगदान का योग है, प्रत्येक के साथ उपयुक्त जाइरोमैग्नेटिक अनुपात से गुणा किया जाता है:

जहां g और (उत्तरार्द्ध को विषम जाइरोमैग्नेटिक अनुपात कहा जाता है; 2 से मान का विचलन क्वांटम इलेक्ट्रोडायनामिक्स (विद्युतगतिकी) के प्रभावों के कारण होता है)। एलएस युग्मन की स्थिति में, परमाणु में सभी इलेक्ट्रॉनों का योग कर सकते हैं:

जहां और परमाणु की कुल कक्षीय गति और स्पिन हैं, और कुल कोणीय गति के दिए गए मान के साथ अवस्था पर औसत किया जाता है।

यदि अंतःक्रिया शब्द छोटा है (ठीक संरचना से कम), तो इसे क्षोभ के रूप में माना जा सकता है; यह ज़ीमान प्रभाव उचित है। पास्चेन-बैक प्रभाव में, नीचे वर्णित, एलएस युग्मन से काफी अधिक है (लेकिन की तुलना में अभी भी छोटा है)। अति-प्रबल चुंबकीय क्षेत्रों में, चुंबकीय-क्षेत्र की बातचीत से अधिक हो सकती है, जिस स्थिति में परमाणु अपने सामान्य अर्थ में मौजूद नहीं रह सकता है, और इसके बजाय लैंडौ स्तरों के बारे में बात करता है। ऐसे मध्यवर्ती मामले हैं जो इन सीमा मामलों की तुलना में अधिक जटिल हैं।

दुर्बल क्षेत्र (जेमान प्रभाव)

यदि स्पिन-ऑर्बिट परस्पर बाहरी चुंबकीय क्षेत्र के प्रभाव पर हावी है, तो और अलग से संरक्षित नहीं होते हैं, केवल कुल कोणीय गति है। प्रचक्रण और कक्षीय कोणीय संवेग सदिशों को (स्थिर) कुल कोणीय संवेग सदिश के बारे में पूर्ववर्ती माना जा सकता है। (समय-) "औसत" स्पिन सदिश तब की दिशा में स्पिन का प्रक्षेपण होता है:

और (समय-) "औसत" कक्षीय सदिश के लिए:

इस प्रकार,

का उपयोग करते हुए और दोनों पक्षों का वर्ग करने पर, हम पाते हैं

और: का उपयोग करते हुए दोनों पक्षों का वर्ग करने पर, हम पाते हैं

सब कुछ एक साथ लेने पर  , हम लागू बाहरी चुंबकीय क्षेत्र में परमाणु की चुंबकीय संभावित ऊर्जा प्राप्त करते हैं,

जहां वर्ग कोष्ठक में मात्रा लांडे g-कारक gJ है परमाणु का ( और ) और कुल कोणीय संवेग का z-घटक है। भरे हुए गोले के ऊपर एकल इलेक्ट्रॉन के लिए और लैंडे g-कारक को सरल बनाया जा सकता है:

को क्षोभ के रूप में लेते हुए, ऊर्जा के लिए ज़िमन संशोधन है

उदाहरण: हाइड्रोजन में लाइमन-अल्फा संक्रमण

स्पिन-ऑर्बिट परस्पर की उपस्थिति में हाइड्रोजन में लाइमन-अल्फा संक्रमण में संक्रमण सम्मिलित है

और

बाहरी चुंबकीय क्षेत्र की उपस्थिति में, दुर्बल क्षेत्र जेमान प्रभाव 1S1/2 और 2P1/2 स्तरों को 2 अवस्थाओं में विभाजित करता है और 2P3/2 स्तर 4 अवस्थाओं में । लैंडे जी-कारक तीन स्तरों के लिए हैं:

के लिए (जे = 1/2, एल = 0)
के लिए (जे = 1/2, एल = 1)
के लिए (जे = 3/2, एल = 1)।

विशेष रूप से ध्यान दें कि अलग-अलग ऑर्बिटल्स के लिए ऊर्जा विभाजन का आकार अलग-अलग होता है, क्योंकि gJ मान अलग-अलग होते हैं। बाईं ओर, बारीक संरचना विभाजन को दर्शाया गया है। यह विभाजन एक चुंबकीय क्षेत्र की अनुपस्थिति में भी होता है, क्योंकि यह स्पिन-ऑर्बिट कपलिंग के कारण होता है। दाहिनी ओर चित्रित अतिरिक्त ज़िमन विभाजन है, जो चुंबकीय क्षेत्र की उपस्थिति में होता है।

File:Zeeman p s doublet.svg

क्षोभ क्षेत्र व्यवस्था में डिपोल-अनुमति वाले लाइमन-अल्फा संक्रमण
प्रारंभिक अवस्था

()

अंतिम अवस्था

()

ऊर्जा अवरोध

प्रबल क्षेत्र (पासचेन-बैक इफेक्ट)

पासचेन-बैक इफेक्ट एक प्रबल चुंबकीय क्षेत्र की उपस्थिति में परमाणु ऊर्जा स्तरों का विभाजन है। यह तब होता है जब एक बाहरी चुंबकीय क्षेत्र कक्षीय ()और स्पिन () कोणीय संवेग के बीच युग्मन को बाधित करने के लिए पर्याप्त रूप से प्रबल होता है। यह प्रभाव जेमान प्रभाव की प्रबल-क्षेत्र सीमा है। जब , दो प्रभाव समान होते हैं। इस प्रभाव का नाम जर्मन भौतिकशास्त्रियों फ्रेडरिक पासचेन और अर्न्स्ट ई.ए. बैक के नाम पर रखा गया था।[4]

जब चुंबकीय-क्षेत्र क्षोभ स्पिन-ऑर्बिट परस्पर से काफी अधिक हो जाती है, तो कोई सुरक्षित रूप से मान सकता है। यह और के अपेक्षा मूल्यों को अवस्था के लिए आसानी से मूल्यांकन करने की इजाजत देता है ⟩। ऊर्जाएं सरल हैं

उपरोक्त को यह कहते हुए पढ़ा जा सकता है कि एलएस-युग्मन बाहरी क्षेत्र द्वारा पूरी तरह से टूट गया है। हालाँकि और अभी भी अच्छे क्वांटम नंबर हैं। विद्युत द्विध्रुवीय संक्रमण के लिए चयन नियमों के साथ, अर्थात, यह स्वतंत्रता की स्पिन डिग्री को पूरी तरह से अनदेखा करने की अनुमति देता है। परिणामस्वरूप, चयन नियम के अनुरूप, केवल तीन वर्णक्रमीय रेखाएँ दिखाई देंगी। विभाजन विचाराधीन स्तरों की अविचलित ऊर्जा और इलेक्ट्रॉनिक विन्यास से स्वतंत्र है।

अधिक यथार्थ, अगर , इन तीन घटकों में से प्रत्येक वास्तव में अवशिष्ट स्पिन-कक्षा युग्मन और सापेक्षिक सुधार (जो एक ही क्रम के हैं, जिन्हें 'ठीक संरचना' के रूप में जाना जाता है) के कारण कई संक्रमणों का एक समूह है। इन सुधारों के साथ प्रथम-क्रम क्षोभ सिद्धांत पास्चेन-बैक सीमा में हाइड्रोजन परमाणु के लिए निम्न सूत्र उत्पन्न करता है:[5]

उदाहरण: हाइड्रोजन में लाइमन-अल्फा संक्रमण

इस उदाहरण में, सूक्ष्म संरचना सुधारों पर ध्यान नहीं दिया गया है।

प्रबल क्षेत्र व्यवस्था में डिपोल-अनुमत लाइमन-अल्फा संक्रमण
प्रारंभिक अवस्था

()

प्रारंभिक ऊर्जा अवरोधन अंतिम अवस्था

()

अंतिम ऊर्जा अवरोधन

j = 1/2 के लिए मध्यवर्ती क्षेत्र

चुंबकीय द्विध्रुवीय सन्निकटन में, हैमिल्टनियन जिसमें हाइपरफाइन और ज़िमन दोनों परस्पर क्रियाएँ सम्मिलित हैं

जहाँ हाइपरफाइन स्प्लिटिंग (हर्ट्ज में) शून्य लागू चुंबकीय क्षेत्र में है, और बोह्र मैग्नेटॉन और परमाणु मैग्नेटॉन क्रमशः हैं, और इलेक्ट्रॉन और परमाणु कोणीय गति संचालक हैं और लैंडे g-कारक है:

कमजोर चुंबकीय क्षेत्र के मामले में, ज़िमन परस्पर को क्षोभ के रूप में माना जा सकता है आधार। उच्च क्षेत्र व्यवस्था में, चुंबकीय क्षेत्र इतना प्रबल हो जाता है कि जेमान प्रभाव हावी हो जाएगा, और किसी को अधिक संपूर्ण आधार का उपयोग करना चाहिए या केवल तब से और दिए गए स्तर के भीतर स्थिर रहेगा।

पूरी तस्वीर प्राप्त करने के लिए, मध्यवर्ती क्षेत्र की ताकत सहित, हमें आइजेनस्टेट्स पर विचार करना चाहिए जो कि अध्यारोपण हैं और आधार अवस्थाओं के लिए , हैमिल्टनियन को विश्लेषणात्मक रूप से हल किया जा सकता है, जिसके परिणामस्वरूप ब्रेइट-रबी फॉर्मूला है। विशेष रूप से, विद्युत चतुष्कोणीय अंतःक्रिया शून्य है (), इसलिए यह सूत्र यथार्थ है।

अब हम क्वांटम मैकेनिकल लैडर ऑपरेटरों का उपयोग करते हैं, जिन्हें एक सामान्य कोणीय गति ऑपरेटर के रूप में परिभाषित किया गया है

इन लैडर ऑपरेटरों के पास गुण है

जब तक कि दायरे में है (अन्यथा, वे शून्य लौटते हैं)। लैडर ऑपरेटरों का उपयोग करना और हम हैमिल्टनियन को फिर से लिख सकते हैं

अब हम देख सकते हैं कि हर समय, कुल कोणीय संवेग प्रक्षेपण संरक्षित किया जाएगा। ऐसा इसलिए है क्योंकि दोनों और अवस्थाओं को निश्चित छोड़ दें और अपरिवर्तित, जबकि और या तो बढ़ो और घटाना या इसके विपरीत, इसलिए योग हमेशा अप्रभावित रहता है। इसके अलावा, चूंकि के केवल दो संभावित मान हैं जो हैं . इसलिए, के हर मूल्य के लिए केवल दो संभावित अवस्थाएँ हैं, और हम उन्हें आधार के रूप में परिभाषित कर सकते हैं:

अवस्थाओं की यह जोड़ी दो-स्तरीय क्वांटम यांत्रिक प्रणाली है। अब हम हैमिल्टनियन के मैट्रिक्स तत्वों को निर्धारित कर सकते हैं:

इस आव्यूह के आइगेनमूल्य ​​के लिए समाधान - जैसा कि मैन्युअल रूप से किया जा सकता है (दो-स्तरीय क्वांटम मैकेनिकल सिस्टम देखें), या अधिक आसानी से, कंप्यूटर बीजगणित प्रणाली के साथ - हम ऊर्जा परिवर्तन पर पहुंचते हैं:

जहाँ चुंबकीय क्षेत्र की अनुपस्थिति में दो अतिसूक्ष्म उपस्तरों के बीच विभाजन (हर्ट्ज की इकाइयों में) है , को 'फ़ील्ड स्ट्रेंथ पैरामीटर' के रूप में संदर्भित किया जाता है (नोट: के लिए वर्गमूल के अंतर्गत अभिव्यक्ति एक यथार्थ वर्ग है, और इसलिए अंतिम शब्द को प्रतिस्थापित किया जाना चाहिए ). इस समीकरण को ब्रेइट-रबी सूत्र के रूप में जाना जाता है और एक वैलेंस इलेक्ट्रॉन वाले सिस्टम के लिए उपयोगी है () स्तर।[6][7]

ध्यान दें कि में सूचकांक को परमाणु के कुल कोणीय संवेग के रूप में नहीं, बल्कि स्पर्शोन्मुख कुल कोणीय गति के रूप में माना जाना चाहिए। यह केवल कुल कोणीय संवेग के बराबर है यदि अन्यथा हेमिल्टनियन के अलग-अलग आइगेनमान ​​से संबंधित आइगेनसदिश अलग-अलग के साथ राज्यों के सुपरपोजिशन हैं लेकिन समान (एकमात्र अपवाद हैं )।

अनुप्रयोग

खगोल भौतिकी

Error creating thumbnail:
सनस्पॉट वर्णक्रमीय रेखा पर जेमान प्रभाव

जॉर्ज एलेरी हेल सौर स्पेक्ट्रा में जेमान प्रभाव को ध्यान करने वाले पहले व्यक्ति थे, जो सनस्पॉट में प्रबल चुंबकीय क्षेत्र के अस्तित्व का संकेत देते हैं। 0.1 टेस्ला या उच्चतर के क्रम में ऐसे क्षेत्र काफी ऊंचे हो सकते हैं। आज, जेमान प्रभाव का उपयोग मैग्नेटोग्राम बनाने के लिए किया जाता है जो सूर्य पर चुंबकीय क्षेत्र की भिन्नता दिखाते हैं।

लेजर शीतलन

जेमान प्रभाव का उपयोग कई लेज़र कूलिंग अनुप्रयोगों जैसे मैग्नेटो-ऑप्टिकल ट्रैप और ज़िमन धीमे में किया जाता है।

स्पिन और कक्षीय गतियों का ज़िमन- ऊर्जा मध्यस्थता युग्मन

क्रिस्टल में स्पिन-ऑर्बिट परस्पर को सामान्यतः पाउली मेट्रिसेस के युग्मन के लिए जिम्मेदार ठहराया जाता है इलेक्ट्रॉन गति के लिए जो चुंबकीय क्षेत्र के अभाव में भी विद्यमान रहता है . हालाँकि, जेमान प्रभाव की शर्तों के तहत, जब , युग्मन द्वारा एक समान सहभागिता प्राप्त की जा सकती है इलेक्ट्रॉन समन्वय के लिए स्थानिक रूप से विषम ज़िमन हैमिल्टनियन के माध्यम से

,

जहाँ एक टेन्सोरियल लैन्डे g-कारक है और या तो या , या दोनों, इलेक्ट्रॉन निर्देशांक पर निर्भर करते हैं। इस तरह के निर्भर ज़िमन हैमिल्टनियन युगल इलेक्ट्रॉन स्पिन ऑपरेटर इलेक्ट्रॉन की कक्षीय गति का प्रतिनिधित्व करते हैं। अमानवीय क्षेत्र या तो बाहरी स्रोतों का एक सुचारु क्षेत्र हो सकता है या एंटीफेरोमैग्नेट में तेजी से दोलन करने वाला सूक्ष्म चुंबकीय क्षेत्र हो सकता है।[8] नैनोमैग्नेट्स के मैक्रोस्कोपिक रूप से विषम क्षेत्र के माध्यम से स्पिन-ऑर्बिट युग्मन का उपयोग विद्युत द्विध्रुवीय स्पिन अनुनाद के माध्यम से क्वांटम डॉट्स में इलेक्ट्रॉन स्पिन के विद्युत संचालन के लिए किया जाता है, [9] और अमानवीय के कारण विद्युत क्षेत्र द्वारा घूमने का प्रदर्शन भी किया गया है।[10]

अन्य

पुराने उच्च-परिशुद्धता आवृत्ति मानक, यानी हाइपरफाइन संरचना संक्रमण-आधारित परमाणु घड़ियों को चुंबकीय क्षेत्रों के संपर्क में आने के कारण आवधिक ठीक-ट्यूनिंग की आवश्यकता हो सकती है। यह स्रोत तत्व (सीज़ियम) के विशिष्ट हाइपरफाइन संरचना संक्रमण स्तर पर जेमान प्रभाव को मापकर और उक्त स्रोत के लिए एक समान रूप से यथार्थ, कम-शक्ति वाले चुंबकीय क्षेत्र को लागू करने के द्वारा किया जाता है, जिसे डीगॉसिंग के रूप में जाना जाता है।[11]

यह भी देखें

संदर्भ

  1. Thalau, Peter; Ritz, Thorsten; Burda, Hynek; Wegner, Regina E.; Wiltschko, Roswitha (18 April 2006). "पक्षियों और कृन्तकों के चुंबकीय कम्पास तंत्र विभिन्न भौतिक सिद्धांतों पर आधारित होते हैं". Journal of the Royal Society Interface. 3 (9): 583–587. doi:10.1098/rsif.2006.0130. PMC 1664646. PMID 16849254.
  2. Preston, Thomas (1898). "एक मजबूत चुंबकीय क्षेत्र में विकिरण घटनाएं". The Scientific Transactions of the Royal Dublin Society. 2nd series. 6: 385–391.
  3. "Niels Bohr's Times: In Physics, Philosophy, and Polity" By Abraham Pais, page 201
  4. Paschen, F.; Back, E. (1921). "Liniengruppen magnetisch vervollständigt" [Line groups magnetically completed [i.e., completely resolved]]. Physica (in German). 1: 261–273.{{cite journal}}: CS1 maint: unrecognized language (link) Available at: Leiden University (Netherlands)
  5. Griffiths, David J. (2004). क्वांटम यांत्रिकी का परिचय (2nd ed.). Prentice Hall. p. 247. ISBN 0-13-111892-7. OCLC 40251748.
  6. Woodgate, Gordon Kemble (1980). प्राथमिक परमाणु संरचना (2nd ed.). Oxford, England: Oxford University Press. pp. 193–194.
  7. First appeared in: Breit, G.; Rabi, I.I. (1931). "Measurement of nuclear spin". Physical Review. 38 (11): 2082–2083. Bibcode:1931PhRv...38.2082B. doi:10.1103/PhysRev.38.2082.2.
  8. S. I. Pekar and E. I. Rashba, Combined resonance in crystals in inhomogeneous magnetic fields, Sov. Phys. - JETP 20, 1295 (1965) http://www.jetp.ac.ru/cgi-bin/dn/e_020_05_1295.pdf Archived 18 May 2018 at the Wayback Machine
  9. Y. Tokura, W. G. van der Wiel, T. Obata, and S. Tarucha, Coherent single electron spin control in a slanting Zeeman field, Phys. Rev. Lett. 96, 047202 (2006)
  10. Salis G, Kato Y, Ensslin K, Driscoll DC, Gossard AC, Awschalom DD (2001). "सेमीकंडक्टर नैनोस्ट्रक्चर में स्पिन सुसंगतता का विद्युत नियंत्रण". Nature. 414 (6864): 619–622. Bibcode:2001Natur.414..619S. doi:10.1038/414619a. PMID 11740554. S2CID 4393582.
  11. Verdiell, Marc (CuriousMarc) (October 31, 2022). How an Atomic Clock Really Works, Round 2: Zeeman Alignment (YouTube video) (in English). Retrieved March 11, 2023.

ऐतिहासिक

आधुनिक