जेमान प्रभाव: Difference between revisions

From Vigyanwiki
Line 34: Line 34:
जहां <math>\vec{L}</math> और <math>\vec{S}</math> परमाणु की कुल कक्षीय गति और स्पिन हैं, और कुल कोणीय गति के दिए गए मान के साथ अवस्था पर औसत किया जाता है।
जहां <math>\vec{L}</math> और <math>\vec{S}</math> परमाणु की कुल कक्षीय गति और स्पिन हैं, और कुल कोणीय गति के दिए गए मान के साथ अवस्था पर औसत किया जाता है।


यदि अंतःक्रिया शब्द <math>V_M</math> छोटा है (ठीक संरचना से कम), तो इसे एक गड़बड़ी के रूप में माना जा सकता है; यह ज़ीमान प्रभाव उचित है। पास्चेन-बैक प्रभाव में, नीचे वर्णित, <math>V_M</math> एलएस युग्मन से काफी अधिक है (लेकिन <math>H_{0}</math> की तुलना में अभी भी छोटा है)। अति-मजबूत चुंबकीय क्षेत्रों में, चुंबकीय-क्षेत्र की बातचीत <math>H_0</math> से अधिक हो सकती है, जिस स्थिति में परमाणु अपने सामान्य अर्थ में मौजूद नहीं रह सकता है, और इसके बजाय लैंडौ स्तरों के बारे में बात करता है। ऐसे मध्यवर्ती मामले हैं जो इन सीमा मामलों की तुलना में अधिक जटिल हैं।
यदि अंतःक्रिया शब्द <math>V_M</math> छोटा है (ठीक संरचना से कम), तो इसे एक क्षोभ के रूप में माना जा सकता है; यह ज़ीमान प्रभाव उचित है। पास्चेन-बैक प्रभाव में, नीचे वर्णित, <math>V_M</math> एलएस युग्मन से काफी अधिक है (लेकिन <math>H_{0}</math> की तुलना में अभी भी छोटा है)। अति-प्रबल चुंबकीय क्षेत्रों में, चुंबकीय-क्षेत्र की बातचीत <math>H_0</math> से अधिक हो सकती है, जिस स्थिति में परमाणु अपने सामान्य अर्थ में मौजूद नहीं रह सकता है, और इसके बजाय लैंडौ स्तरों के बारे में बात करता है। ऐसे मध्यवर्ती मामले हैं जो इन सीमा मामलों की तुलना में अधिक जटिल हैं।


== कमजोर क्षेत्र (ज़ीमान प्रभाव) ==
== कमजोर क्षेत्र (ज़ीमान प्रभाव) ==
Line 134: Line 134:
[[Category:Template documentation pages|Short description/doc]]
[[Category:Template documentation pages|Short description/doc]]


== मजबूत क्षेत्र (पासचेन-बैक इफेक्ट) ==
== प्रबल क्षेत्र (पासचेन-बैक इफेक्ट) ==
पास्चेन-बैक प्रभाव एक मजबूत चुंबकीय क्षेत्र की उपस्थिति में परमाणु ऊर्जा स्तरों का विभाजन है। यह तब होता है जब एक बाहरी चुंबकीय क्षेत्र कक्षीय के बीच युग्मन को बाधित करने के लिए पर्याप्त रूप से मजबूत होता है (<math>\vec{L}</math>) और स्पिन (<math>\vec{S}</math>) कोणीय गति। यह प्रभाव Zeeman प्रभाव की प्रबल क्षेत्र सीमा है। कब <math>s = 0</math>, दो प्रभाव समतुल्य हैं। प्रभाव का नाम [[जर्मनी]] के भौतिकविदों [[फ्रेडरिक पासचेन]] और अर्न्स्ट एमिल अलेक्जेंडर बैक|अर्न्स्ट ई.ए. बैक के नाम पर रखा गया था।<ref>{{cite journal |last1=Paschen |first1=F. |last2=Back |first2=E. |title=Liniengruppen magnetisch vervollständigt |journal=Physica |date=1921 |volume=1 |pages=261–273 |trans-title=Line groups magnetically completed [i.e., completely resolved] |language=German}} Available at: [https://www.lorentz.leidenuniv.nl/history/proefschriften/Physica/Physica_1_1921_05391.pdf Leiden University (Netherlands)]</ref>
पासचेन-बैक इफेक्ट एक मजबूत चुंबकीय क्षेत्र की उपस्थिति में परमाणु ऊर्जा स्तरों का विभाजन है। यह तब होता है जब एक बाहरी चुंबकीय क्षेत्र कक्षीय (<math>\vec{L}</math>)और स्पिन (<math>\vec{S}</math>) कोणीय संवेग के बीच युग्मन को बाधित करने के लिए पर्याप्त रूप से मजबूत होता है। यह प्रभाव Zeeman प्रभाव की मजबूत-क्षेत्र सीमा है। जब <math>s = 0</math>, दो प्रभाव समान होते हैं। इस प्रभाव का नाम जर्मन भौतिकशास्त्रियों [[फ्रेडरिक पासचेन]] और अर्न्स्ट ई.ए. बैक के नाम पर रखा गया था।<ref>{{cite journal |last1=Paschen |first1=F. |last2=Back |first2=E. |title=Liniengruppen magnetisch vervollständigt |journal=Physica |date=1921 |volume=1 |pages=261–273 |trans-title=Line groups magnetically completed [i.e., completely resolved] |language=German}} Available at: [https://www.lorentz.leidenuniv.nl/history/proefschriften/Physica/Physica_1_1921_05391.pdf Leiden University (Netherlands)]</ref>
जब चुंबकीय क्षेत्र गड़बड़ी स्पिन-ऑर्बिट इंटरैक्शन से काफी अधिक हो जाती है, तो कोई सुरक्षित रूप से मान सकता है <math>[H_{0}, S] = 0</math>. यह उम्मीद मूल्यों की अनुमति देता है <math>L_{z}</math> और <math>S_{z}</math> आसानी से एक राज्य के लिए मूल्यांकन किया जा करने के लिए <math>|\psi\rangle </math>. ऊर्जाएं सरल हैं
 
जब चुंबकीय-क्षेत्र क्षोभ स्पिन-ऑर्बिट इंटरैक्शन से काफी अधिक हो जाती है, तो कोई सुरक्षित रूप से <math>[H_{0}, S] = 0</math> मान सकता है। यह <math>L_{z}</math>और <math>S_{z}</math> के उम्मीद मूल्यों को अवस्था <math>|\psi\rangle </math> के लिए आसानी से मूल्यांकन करने की इजाजत देता है ⟩। ऊर्जाएं सरल हैं


:<math> E_{z} = \left\langle \psi \left| H_{0} + \frac{B_{z}\mu_{\rm B}}{\hbar}(L_{z}+g_{s}S_z) \right|\psi\right\rangle = E_{0} + B_z\mu_{\rm B} (m_l + g_{s}m_s). </math>
:<math> E_{z} = \left\langle \psi \left| H_{0} + \frac{B_{z}\mu_{\rm B}}{\hbar}(L_{z}+g_{s}S_z) \right|\psi\right\rangle = E_{0} + B_z\mu_{\rm B} (m_l + g_{s}m_s). </math>
उपरोक्त को यह कहते हुए पढ़ा जा सकता है कि एलएस-युग्मन बाहरी क्षेत्र द्वारा पूरी तरह से टूट गया है। हालाँकि <math>m_l</math> और <math>m_s</math> अभी भी अच्छे क्वांटम नंबर हैं। [[विद्युत द्विध्रुवीय संक्रमण]] के लिए चयन नियमों के साथ, अर्थात, <math>\Delta s = 0, \Delta m_s = 0, \Delta l = \pm 1, \Delta m_l = 0, \pm 1</math> यह स्वतंत्रता की स्पिन डिग्री को पूरी तरह से अनदेखा करने की अनुमति देता है। नतीजतन, केवल तीन वर्णक्रमीय रेखाएँ दिखाई देंगी, जो कि संगत हैं <math>\Delta m_l = 0, \pm 1</math> चयन नियम। बंटवारा <math>\Delta E = B \mu_{\rm B} \Delta m_l</math> विचार किए जा रहे स्तरों की अविचलित ऊर्जाओं और इलेक्ट्रॉनिक विन्यासों से स्वतंत्र है।
उपरोक्त को यह कहते हुए पढ़ा जा सकता है कि एलएस-युग्मन बाहरी क्षेत्र द्वारा पूरी तरह से टूट गया है। हालाँकि <math>m_l</math> और <math>m_s</math> अभी भी अच्छे क्वांटम नंबर हैं। [[विद्युत द्विध्रुवीय संक्रमण]] के लिए चयन नियमों के साथ, अर्थात, <math>\Delta s = 0, \Delta m_s = 0, \Delta l = \pm 1, \Delta m_l = 0, \pm 1</math> यह स्वतंत्रता की स्पिन डिग्री को पूरी तरह से अनदेखा करने की अनुमति देता है। परिणामस्वरूप, <math>\Delta m_l = 0, \pm 1</math> चयन नियम के अनुरूप, केवल तीन वर्णक्रमीय रेखाएँ दिखाई देंगी। विभाजन <math>\Delta E = B \mu_{\rm B} \Delta m_l</math>विचाराधीन स्तरों की अविचलित ऊर्जा और इलेक्ट्रॉनिक विन्यास से स्वतंत्र है।


अधिक सटीक, अगर <math>s \ne 0</math>, इन तीन घटकों में से प्रत्येक वास्तव में अवशिष्ट स्पिन-कक्षा युग्मन और सापेक्षिक सुधार (जो एक ही क्रम के हैं, जिन्हें 'ठीक संरचना' के रूप में जाना जाता है) के कारण कई संक्रमणों का एक समूह है। इन सुधारों के साथ प्रथम-क्रम गड़बड़ी सिद्धांत पास्चेन-बैक सीमा में हाइड्रोजन परमाणु के लिए निम्न सूत्र उत्पन्न करता है:<ref>{{cite book | author=Griffiths, David J.| title=क्वांटम यांत्रिकी का परिचय|edition=2nd | publisher=[[Prentice Hall]] |date=2004 |isbn=0-13-111892-7 | oclc=40251748 |page=247}}</ref>
अधिक सटीक, अगर <math>s \ne 0</math>, इन तीन घटकों में से प्रत्येक वास्तव में अवशिष्ट स्पिन-कक्षा युग्मन और सापेक्षिक सुधार (जो एक ही क्रम के हैं, जिन्हें 'ठीक संरचना' के रूप में जाना जाता है) के कारण कई संक्रमणों का एक समूह है। इन सुधारों के साथ प्रथम-क्रम क्षोभ सिद्धांत पास्चेन-बैक सीमा में हाइड्रोजन परमाणु के लिए निम्न सूत्र उत्पन्न करता है:<ref>{{cite book | author=Griffiths, David J.| title=क्वांटम यांत्रिकी का परिचय|edition=2nd | publisher=[[Prentice Hall]] |date=2004 |isbn=0-13-111892-7 | oclc=40251748 |page=247}}</ref>
:<math> E_{z+fs} = E_{z} + \frac{m_e c^2 \alpha^4}{2 n^3} \left\{ \frac{3}{4n} - \left[ \frac{l(l+1) - m_l m_s}{l(l+1/2)(l+1) } \right]\right\}.</math>
:<math> E_{z+fs} = E_{z} + \frac{m_e c^2 \alpha^4}{2 n^3} \left\{ \frac{3}{4n} - \left[ \frac{l(l+1) - m_l m_s}{l(l+1/2)(l+1) } \right]\right\}.</math>


Line 199: Line 200:
कहाँ <math>A</math> हाइपरफाइन स्प्लिटिंग (हर्ट्ज में) शून्य लागू चुंबकीय क्षेत्र में है, <math>\mu_{\rm B}</math> और <math>\mu_{\rm N}</math> बोह्र मैग्नेटॉन और परमाणु मैग्नेटॉन क्रमशः हैं, <math>\vec J</math> और <math>\vec I</math> इलेक्ट्रॉन और परमाणु कोणीय गति संचालक हैं और <math>g_J</math> लैंडे जी-फैक्टर है:
कहाँ <math>A</math> हाइपरफाइन स्प्लिटिंग (हर्ट्ज में) शून्य लागू चुंबकीय क्षेत्र में है, <math>\mu_{\rm B}</math> और <math>\mu_{\rm N}</math> बोह्र मैग्नेटॉन और परमाणु मैग्नेटॉन क्रमशः हैं, <math>\vec J</math> और <math>\vec I</math> इलेक्ट्रॉन और परमाणु कोणीय गति संचालक हैं और <math>g_J</math> लैंडे जी-फैक्टर है:
<math display="block"> g_J = g_L\frac{J(J+1) + L(L+1) - S(S+1)}{2J(J+1)} + g_S\frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}.</math>
<math display="block"> g_J = g_L\frac{J(J+1) + L(L+1) - S(S+1)}{2J(J+1)} + g_S\frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}.</math>
कमजोर चुंबकीय क्षेत्र के मामले में, Zeeman इंटरैक्शन को गड़बड़ी के रूप में माना जा सकता है <math>|F,m_f \rangle</math> आधार। उच्च क्षेत्र शासन में, चुंबकीय क्षेत्र इतना मजबूत हो जाता है कि Zeeman प्रभाव हावी हो जाएगा, और किसी को अधिक संपूर्ण आधार का उपयोग करना चाहिए <math>|I,J,m_I,m_J\rangle</math> या केवल <math>|m_I,m_J \rangle</math> तब से <math>I</math> और <math>J</math> दिए गए स्तर के भीतर स्थिर रहेगा।
कमजोर चुंबकीय क्षेत्र के मामले में, Zeeman इंटरैक्शन को क्षोभ के रूप में माना जा सकता है <math>|F,m_f \rangle</math> आधार। उच्च क्षेत्र शासन में, चुंबकीय क्षेत्र इतना प्रबल हो जाता है कि Zeeman प्रभाव हावी हो जाएगा, और किसी को अधिक संपूर्ण आधार का उपयोग करना चाहिए <math>|I,J,m_I,m_J\rangle</math> या केवल <math>|m_I,m_J \rangle</math> तब से <math>I</math> और <math>J</math> दिए गए स्तर के भीतर स्थिर रहेगा।


पूरी तस्वीर प्राप्त करने के लिए, मध्यवर्ती क्षेत्र की ताकत सहित, हमें आइजेनस्टेट्स पर विचार करना चाहिए जो कि सुपरपोजिशन हैं <math>|F,m_F \rangle </math> और <math>|m_I,m_J \rangle </math> आधार राज्यों। के लिए <math>J = 1/2</math>, हैमिल्टनियन को विश्लेषणात्मक रूप से हल किया जा सकता है, जिसके परिणामस्वरूप ब्रेइट-रबी फॉर्मूला है। विशेष रूप से, विद्युत चतुष्कोणीय अंतःक्रिया शून्य है <math>L = 0</math> (<math>J = 1/2</math>), इसलिए यह सूत्र काफी सटीक है।
पूरी तस्वीर प्राप्त करने के लिए, मध्यवर्ती क्षेत्र की ताकत सहित, हमें आइजेनस्टेट्स पर विचार करना चाहिए जो कि सुपरपोजिशन हैं <math>|F,m_F \rangle </math> और <math>|m_I,m_J \rangle </math> आधार राज्यों। के लिए <math>J = 1/2</math>, हैमिल्टनियन को विश्लेषणात्मक रूप से हल किया जा सकता है, जिसके परिणामस्वरूप ब्रेइट-रबी फॉर्मूला है। विशेष रूप से, विद्युत चतुष्कोणीय अंतःक्रिया शून्य है <math>L = 0</math> (<math>J = 1/2</math>), इसलिए यह सूत्र काफी सटीक है।
Line 230: Line 231:


=== खगोल भौतिकी ===
=== खगोल भौतिकी ===
[[File:Sunzeeman1919.png|thumb|right|200px|सनस्पॉट वर्णक्रमीय रेखा पर Zeeman प्रभाव]][[जॉर्ज एलेरी हेल]] ​​सौर स्पेक्ट्रा में Zeeman प्रभाव को नोटिस करने वाले पहले व्यक्ति थे, जो सनस्पॉट में मजबूत चुंबकीय क्षेत्र के अस्तित्व का संकेत देते हैं। इस तरह के क्षेत्र 0.1 [[टेस्ला (यूनिट)]] या उच्चतर के क्रम में काफी ऊंचे हो सकते हैं। आज, Zeeman प्रभाव का उपयोग सूर्य पर चुंबकीय क्षेत्र की भिन्नता दिखाने वाले [[सौर मैग्नेटोग्राम]] बनाने के लिए किया जाता है।
[[File:Sunzeeman1919.png|thumb|right|200px|सनस्पॉट वर्णक्रमीय रेखा पर Zeeman प्रभाव]][[जॉर्ज एलेरी हेल]] ​​सौर स्पेक्ट्रा में Zeeman प्रभाव को नोटिस करने वाले पहले व्यक्ति थे, जो सनस्पॉट में प्रबल चुंबकीय क्षेत्र के अस्तित्व का संकेत देते हैं। इस तरह के क्षेत्र 0.1 [[टेस्ला (यूनिट)]] या उच्चतर के क्रम में काफी ऊंचे हो सकते हैं। आज, Zeeman प्रभाव का उपयोग सूर्य पर चुंबकीय क्षेत्र की भिन्नता दिखाने वाले [[सौर मैग्नेटोग्राम]] बनाने के लिए किया जाता है।


=== [[ लेजर शीतलन ]] ===
=== [[ लेजर शीतलन ]] ===

Revision as of 09:20, 25 May 2023

तरंग दैर्ध्य 546.1 एनएम पर पारा वाष्प लैंप की वर्णक्रमीय रेखाएँ, असामान्य Zeeman प्रभाव दिखा रही हैं। (ए) चुंबकीय क्षेत्र के बिना। (बी) चुंबकीय क्षेत्र के साथ, वर्णक्रमीय रेखाएं अनुप्रस्थ Zeeman प्रभाव के रूप में विभाजित होती हैं। (सी) चुंबकीय क्षेत्र के साथ, अनुदैर्ध्य Zeeman प्रभाव के रूप में विभाजित। फेब्री-पेरोट इंटरफेरोमीटर का उपयोग करके वर्णक्रमीय रेखाएं प्राप्त की गईं।
File:Breit-rabi-Zeeman.png
87आरबी, ठीक संरचना और हाइपरफाइन संरचना विभाजन सहित। यहाँ F = J + I, जहाँ I परमाणु घुमाव है (के लिए 87आरबी, आई =32).
Error creating thumbnail:
यह एनीमेशन दिखाता है कि सनस्पॉट (या स्टारस्पॉट) के रूप में क्या होता है और चुंबकीय क्षेत्र की ताकत बढ़ जाती है। मौके से निकलने वाली रोशनी Zeeman प्रभाव को प्रदर्शित करने लगती है। उत्सर्जित प्रकाश के स्पेक्ट्रम में डार्क स्पेक्ट्रा लाइनें तीन घटकों में विभाजित हो जाती हैं और स्पेक्ट्रम के कुछ हिस्सों में गोलाकार ध्रुवीकरण की ताकत काफी बढ़ जाती है। यह ध्रुवीकरण प्रभाव तारकीय चुंबकीय क्षेत्रों का पता लगाने और मापने के लिए खगोलविदों के लिए एक शक्तिशाली उपकरण है।

ज़िमन प्रभाव (/ˈzmən/; डच उच्चारण: [जेːमैन]) एक स्थिर चुंबकीय क्षेत्र की उपस्थिति में एक वर्णक्रमीय रेखा को कई घटकों में विभाजित करने का प्रभाव है। इसका नाम डच भौतिक विज्ञानी पीटर ज़िमन के नाम पर रखा गया है, जिन्होंने 1896 में इसकी खोज की थी और इस खोज के लिए उन्हें नोबेल पुरस्कार मिला था। यह स्टार्क प्रभाव के अनुरूप है, एक विद्युत क्षेत्र की उपस्थिति में एक वर्णक्रमीय रेखा को कई घटकों में विभाजित करना। स्टार्क प्रभाव के समान, विभिन्न घटकों के बीच संक्रमण, सामान्य रूप से, अलग-अलग तीव्रता के होते हैं, जिनमें से कुछ पूरी तरह से वर्जित होते हैं (द्विध्रुवीय सन्निकटन में), जैसा कि चयन नियमों द्वारा शासित होता है।

चूँकि Zeeman उप-स्तरों के बीच की दूरी चुंबकीय क्षेत्र की शक्ति का एक कार्य है, इस प्रभाव का उपयोग चुंबकीय क्षेत्र की शक्ति को मापने के लिए किया जा सकता है, उदा. वह सूर्य और अन्य तारों का या प्रयोगशाला के प्लाज्मा में। परमाणु चुंबकीय अनुनाद स्पेक्ट्रोस्कोपी, इलेक्ट्रॉन स्पिन अनुनाद स्पेक्ट्रोस्कोपी, चुंबकीय अनुनाद इमेजिंग (एमआरआई) और मोसबाउर स्पेक्ट्रोस्कोपी जैसे अनुप्रयोगों में Zeeman प्रभाव बहुत महत्वपूर्ण है। परमाणु अवशोषण स्पेक्ट्रोस्कोपी में सटीकता में सुधार के लिए इसका उपयोग भी किया जा सकता है। पक्षियों की चुंबकीय भावना के बारे में एक सिद्धांत मानता है कि ज़ीमेन प्रभाव के कारण रेटिना में एक प्रोटीन बदल जाता है।[1]

जब वर्णक्रमीय रेखाएँ अवशोषण रेखाएँ होती हैं, तो प्रभाव को व्युत्क्रम Zeeman प्रभाव कहा जाता है।

नामकरण

ऐतिहासिक रूप से, एक सामान्य और एक विषम ज़ीमैन प्रभाव के बीच अंतर करता है (डबलिन, आयरलैंड में थॉमस प्रेस्टन द्वारा खोजा गया[2])। विषम प्रभाव उन संक्रमणों पर दिखाई देता है जहां इलेक्ट्रॉनों का शुद्ध स्पिन शून्य नहीं होता है। इसे "विसंगतिपूर्ण" कहा जाता था क्योंकि इलेक्ट्रॉन स्पिन अभी तक खोजा नहीं गया था, और इसलिए उस समय इसके लिए कोई अच्छी व्याख्या नहीं थी जब ज़ीमन ने प्रभाव देखा। वोल्फगैंग पाउली याद करते हैं कि जब उनके एक सहकर्मी ने उनसे पूछा कि वे दुखी क्यों दिखते हैं तो उन्होंने जवाब दिया "जब कोई विषम Zeeman प्रभाव के बारे में सोच रहा है तो वह कैसे खुश दिख सकता है?"[3]

उच्च चुंबकीय क्षेत्र की ताकत पर प्रभाव रैखिक हो जाता है। परमाणु के आंतरिक क्षेत्र की ताकत की तुलना में उच्च क्षेत्र की ताकत पर, इलेक्ट्रॉन युग्मन परेशान होता है और वर्णक्रमीय रेखाएं पुनर्व्यवस्थित होती हैं। इसे पासचेन-बैक इफेक्ट कहा जाता है।

आधुनिक वैज्ञानिक साहित्य में, इन शब्दों का प्रयोग शायद ही कभी किया जाता है, जिसमें केवल "ज़ीमन प्रभाव" का उपयोग करने की प्रवृत्ति होती है।

सैद्धांतिक प्रस्तुति

एक चुंबकीय क्षेत्र में एक परमाणु का कुल हैमिल्टनियन होता है

जहाँ परमाणु का क्षोभ हैमिल्टनियन है, और चुंबकीय क्षेत्र के कारण क्षोभ है:

जहाँ परमाणु का चुम्बकीय आघूर्ण है। चुंबकीय क्षण में इलेक्ट्रॉनिक और परमाणु भाग होते हैं; हालाँकि, बाद वाले परिमाण के कई आदेश छोटे हैं और यहाँ उपेक्षित किया जाएगा। अत:

जहाँ बोहर मैग्नेटॉन है कुल इलेक्ट्रॉनिक कोणीय गति है, और लैंडे जी-कारक है। एक अधिक सटीक दृष्टिकोण यह ध्यान में रखना है कि एक इलेक्ट्रॉन के चुंबकीय क्षण का संचालक कक्षीय कोणीय गति और स्पिन कोणीय गति के योगदान का योग है, प्रत्येक के साथ उपयुक्त जाइरोमैग्नेटिक अनुपात से गुणा किया जाता है:

जहां g और (उत्तरार्द्ध को विषम जाइरोमैग्नेटिक अनुपात कहा जाता है; 2 से मान का विचलन क्वांटम इलेक्ट्रोडायनामिक्स (विद्युतगतिकी) के प्रभावों के कारण होता है)। एलएस युग्मन की स्थिति में, परमाणु में सभी इलेक्ट्रॉनों का योग कर सकते हैं:

जहां और परमाणु की कुल कक्षीय गति और स्पिन हैं, और कुल कोणीय गति के दिए गए मान के साथ अवस्था पर औसत किया जाता है।

यदि अंतःक्रिया शब्द छोटा है (ठीक संरचना से कम), तो इसे एक क्षोभ के रूप में माना जा सकता है; यह ज़ीमान प्रभाव उचित है। पास्चेन-बैक प्रभाव में, नीचे वर्णित, एलएस युग्मन से काफी अधिक है (लेकिन की तुलना में अभी भी छोटा है)। अति-प्रबल चुंबकीय क्षेत्रों में, चुंबकीय-क्षेत्र की बातचीत से अधिक हो सकती है, जिस स्थिति में परमाणु अपने सामान्य अर्थ में मौजूद नहीं रह सकता है, और इसके बजाय लैंडौ स्तरों के बारे में बात करता है। ऐसे मध्यवर्ती मामले हैं जो इन सीमा मामलों की तुलना में अधिक जटिल हैं।

कमजोर क्षेत्र (ज़ीमान प्रभाव)

यदि स्पिन-ऑर्बिट इंटरेक्शन बाहरी चुंबकीय क्षेत्र के प्रभाव पर हावी है, तो और अलग से संरक्षित नहीं होते हैं, केवल कुल कोणीय गति है। प्रचक्रण और कक्षीय कोणीय संवेग सदिशों को (स्थिर) कुल कोणीय संवेग सदिश के बारे में पूर्ववर्ती माना जा सकता है। (समय-) "औसत" स्पिन वेक्टर तब की दिशा में स्पिन का प्रक्षेपण होता है:

और (समय-) "औसत" कक्षीय वेक्टर के लिए:

इस प्रकार,

का उपयोग करते हुए और दोनों पक्षों का वर्ग करने पर, हम पाते हैं

और: का उपयोग करते हुए दोनों पक्षों का वर्ग करने पर, हम पाते हैं

सब कुछ एक साथ लेने पर  , हम लागू बाहरी चुंबकीय क्षेत्र में परमाणु की चुंबकीय संभावित ऊर्जा प्राप्त करते हैं,

जहां वर्ग कोष्ठक में मात्रा लांडे जी-फैक्टर gJ है परमाणु का ( और ) और कुल कोणीय संवेग का z-घटक है। भरे हुए गोले के ऊपर एक एकल इलेक्ट्रॉन के लिए और लैंडे जी-फैक्टर को सरल बनाया जा सकता है:

को क्षोभ के रूप में लेते हुए, ऊर्जा के लिए Zeeman संशोधन है

उदाहरण: हाइड्रोजन में लाइमन-अल्फा संक्रमण

स्पिन-ऑर्बिट इंटरेक्शन की उपस्थिति में हाइड्रोजन में लाइमन-अल्फा संक्रमण में संक्रमण शामिल है

और

एक बाहरी चुंबकीय क्षेत्र की उपस्थिति में, कमजोर-क्षेत्र Zeeman प्रभाव 1S1/2 और 2P1/2 स्तरों को 2 अवस्थाओं में विभाजित करता है और 2P3/2 स्तर 4 अवस्थाओं में । लैंडे जी-कारक तीन स्तरों के लिए हैं:

के लिए (जे = 1/2, एल = 0)
के लिए (जे = 1/2, एल = 1)
के लिए (जे = 3/2, एल = 1)।

विशेष रूप से ध्यान दें कि अलग-अलग ऑर्बिटल्स के लिए ऊर्जा विभाजन का आकार अलग-अलग होता है, क्योंकि gJ मान अलग-अलग होते हैं। बाईं ओर, बारीक संरचना विभाजन को दर्शाया गया है। यह विभाजन एक चुंबकीय क्षेत्र की अनुपस्थिति में भी होता है, क्योंकि यह स्पिन-ऑर्बिट कपलिंग के कारण होता है। दाहिनी ओर चित्रित अतिरिक्त Zeeman विभाजन है, जो चुंबकीय क्षेत्र की उपस्थिति में होता है।

File:Zeeman p s doublet.svg

क्षोभ क्षेत्र व्यवस्था में डिपोल-अनुमति वाले लाइमन-अल्फा संक्रमण
प्रारंभिक अवस्था

()

अंतिम अवस्था

()

ऊर्जा अवरोध

प्रबल क्षेत्र (पासचेन-बैक इफेक्ट)

पासचेन-बैक इफेक्ट एक मजबूत चुंबकीय क्षेत्र की उपस्थिति में परमाणु ऊर्जा स्तरों का विभाजन है। यह तब होता है जब एक बाहरी चुंबकीय क्षेत्र कक्षीय ()और स्पिन () कोणीय संवेग के बीच युग्मन को बाधित करने के लिए पर्याप्त रूप से मजबूत होता है। यह प्रभाव Zeeman प्रभाव की मजबूत-क्षेत्र सीमा है। जब , दो प्रभाव समान होते हैं। इस प्रभाव का नाम जर्मन भौतिकशास्त्रियों फ्रेडरिक पासचेन और अर्न्स्ट ई.ए. बैक के नाम पर रखा गया था।[4]

जब चुंबकीय-क्षेत्र क्षोभ स्पिन-ऑर्बिट इंटरैक्शन से काफी अधिक हो जाती है, तो कोई सुरक्षित रूप से मान सकता है। यह और के उम्मीद मूल्यों को अवस्था के लिए आसानी से मूल्यांकन करने की इजाजत देता है ⟩। ऊर्जाएं सरल हैं

उपरोक्त को यह कहते हुए पढ़ा जा सकता है कि एलएस-युग्मन बाहरी क्षेत्र द्वारा पूरी तरह से टूट गया है। हालाँकि और अभी भी अच्छे क्वांटम नंबर हैं। विद्युत द्विध्रुवीय संक्रमण के लिए चयन नियमों के साथ, अर्थात, यह स्वतंत्रता की स्पिन डिग्री को पूरी तरह से अनदेखा करने की अनुमति देता है। परिणामस्वरूप, चयन नियम के अनुरूप, केवल तीन वर्णक्रमीय रेखाएँ दिखाई देंगी। विभाजन विचाराधीन स्तरों की अविचलित ऊर्जा और इलेक्ट्रॉनिक विन्यास से स्वतंत्र है।

अधिक सटीक, अगर , इन तीन घटकों में से प्रत्येक वास्तव में अवशिष्ट स्पिन-कक्षा युग्मन और सापेक्षिक सुधार (जो एक ही क्रम के हैं, जिन्हें 'ठीक संरचना' के रूप में जाना जाता है) के कारण कई संक्रमणों का एक समूह है। इन सुधारों के साथ प्रथम-क्रम क्षोभ सिद्धांत पास्चेन-बैक सीमा में हाइड्रोजन परमाणु के लिए निम्न सूत्र उत्पन्न करता है:[5]


=== उदाहरण: हाइड्रोजन === में लाइमन-अल्फा संक्रमण इस उदाहरण में, फ़ाइन-स्ट्रक्चर सुधारों पर ध्यान नहीं दिया जाता है।

Dipole-allowed Lyman-alpha transitions in the strong-field regime
Initial state

()

Initial energy perturbation Final state

()

Final energy perturbation

== जे = 1/2 == के लिए मध्यवर्ती क्षेत्र चुंबकीय द्विध्रुवीय सन्निकटन में, हैमिल्टनियन जिसमें हाइपरफाइन संरचना और ज़ीमैन इंटरैक्शन दोनों शामिल हैं

कहाँ हाइपरफाइन स्प्लिटिंग (हर्ट्ज में) शून्य लागू चुंबकीय क्षेत्र में है, और बोह्र मैग्नेटॉन और परमाणु मैग्नेटॉन क्रमशः हैं, और इलेक्ट्रॉन और परमाणु कोणीय गति संचालक हैं और लैंडे जी-फैक्टर है:

कमजोर चुंबकीय क्षेत्र के मामले में, Zeeman इंटरैक्शन को क्षोभ के रूप में माना जा सकता है आधार। उच्च क्षेत्र शासन में, चुंबकीय क्षेत्र इतना प्रबल हो जाता है कि Zeeman प्रभाव हावी हो जाएगा, और किसी को अधिक संपूर्ण आधार का उपयोग करना चाहिए या केवल तब से और दिए गए स्तर के भीतर स्थिर रहेगा।

पूरी तस्वीर प्राप्त करने के लिए, मध्यवर्ती क्षेत्र की ताकत सहित, हमें आइजेनस्टेट्स पर विचार करना चाहिए जो कि सुपरपोजिशन हैं और आधार राज्यों। के लिए , हैमिल्टनियन को विश्लेषणात्मक रूप से हल किया जा सकता है, जिसके परिणामस्वरूप ब्रेइट-रबी फॉर्मूला है। विशेष रूप से, विद्युत चतुष्कोणीय अंतःक्रिया शून्य है (), इसलिए यह सूत्र काफी सटीक है।

अब हम क्वांटम मैकेनिकल सीढ़ी संचालक ों का उपयोग करते हैं, जो एक सामान्य कोणीय गति ऑपरेटर के लिए परिभाषित हैं जैसा

इन सीढ़ी संचालकों के पास संपत्ति है

जब तक कि दायरे में है (अन्यथा, वे शून्य लौटते हैं)। सीढ़ी ऑपरेटरों का उपयोग करना और हम हैमिल्टनियन को फिर से लिख सकते हैं

अब हम देख सकते हैं कि हर समय, कुल कोणीय संवेग प्रक्षेपण संरक्षित किया जाएगा। ऐसा इसलिए है क्योंकि दोनों और राज्यों को निश्चित छोड़ दें और अपरिवर्तित, जबकि और या तो बढ़ो और घटाना या इसके विपरीत, इसलिए योग हमेशा अप्रभावित रहता है। इसके अलावा, चूंकि के केवल दो संभावित मान हैं जो हैं . इसलिए, के हर मूल्य के लिए केवल दो संभावित अवस्थाएँ हैं, और हम उन्हें आधार के रूप में परिभाषित कर सकते हैं:

राज्यों की यह जोड़ी दो-स्तरीय क्वांटम यांत्रिक प्रणाली है। अब हम हैमिल्टनियन के मैट्रिक्स तत्वों को निर्धारित कर सकते हैं:

इस मैट्रिक्स के eigenvalues ​​​​के लिए समाधान - जैसा कि हाथ से किया जा सकता है (दो-स्तरीय क्वांटम मैकेनिकल सिस्टम देखें), या अधिक आसानी से, कंप्यूटर बीजगणित प्रणाली के साथ - हम ऊर्जा बदलाव पर पहुंचते हैं:

कहाँ चुंबकीय क्षेत्र की अनुपस्थिति में दो अतिसूक्ष्म उपस्तरों के बीच विभाजन (हर्ट्ज की इकाइयों में) है , को 'फ़ील्ड स्ट्रेंथ पैरामीटर' के रूप में संदर्भित किया जाता है (नोट: के लिए वर्गमूल के अंतर्गत अभिव्यक्ति एक सटीक वर्ग है, और इसलिए अंतिम शब्द को प्रतिस्थापित किया जाना चाहिए ). इस समीकरण को ब्रेइट-रबी सूत्र के रूप में जाना जाता है और एक वैलेंस इलेक्ट्रॉन वाले सिस्टम के लिए उपयोगी है () स्तर।[6][7] ध्यान दें कि index में परमाणु के कुल कोणीय संवेग के रूप में नहीं बल्कि उपगामी कुल कोणीय संवेग के रूप में माना जाना चाहिए। यह केवल पूर्ण कोणीय संवेग के बराबर होता है यदि अन्यथा हेमिल्टनियन के विभिन्न eigenvalues ​​​​के अनुरूप eigenvectors अलग-अलग राज्यों के सुपरपोजिशन हैं लेकिन बराबर (केवल अपवाद हैं ).

अनुप्रयोग

खगोल भौतिकी

File:Sunzeeman1919.png
सनस्पॉट वर्णक्रमीय रेखा पर Zeeman प्रभाव

जॉर्ज एलेरी हेल ​​सौर स्पेक्ट्रा में Zeeman प्रभाव को नोटिस करने वाले पहले व्यक्ति थे, जो सनस्पॉट में प्रबल चुंबकीय क्षेत्र के अस्तित्व का संकेत देते हैं। इस तरह के क्षेत्र 0.1 टेस्ला (यूनिट) या उच्चतर के क्रम में काफी ऊंचे हो सकते हैं। आज, Zeeman प्रभाव का उपयोग सूर्य पर चुंबकीय क्षेत्र की भिन्नता दिखाने वाले सौर मैग्नेटोग्राम बनाने के लिए किया जाता है।

लेजर शीतलन

Zeeman प्रभाव का उपयोग कई लेजर कूलिंग अनुप्रयोगों जैसे मैग्नेटो-ऑप्टिकल जाल और Zeeman स्लोअर में किया जाता है।

स्पिन और कक्षीय गतियों का Zeeman- ऊर्जा मध्यस्थता युग्मन

क्रिस्टल में स्पिन-ऑर्बिट इंटरेक्शन को आमतौर पर पाउली मेट्रिसेस के युग्मन के लिए जिम्मेदार ठहराया जाता है इलेक्ट्रॉन गति के लिए जो चुंबकीय क्षेत्र के अभाव में भी विद्यमान रहता है . हालाँकि, Zeeman प्रभाव की शर्तों के तहत, जब , युग्मन द्वारा एक समान सहभागिता प्राप्त की जा सकती है इलेक्ट्रॉन समन्वय के लिए स्थानिक रूप से विषम Zeeman हैमिल्टनियन के माध्यम से

,

कहाँ एक टेंसोरियल लांडे जी-फैक्टर है और या तो या , या दोनों, इलेक्ट्रॉन निर्देशांक पर निर्भर करते हैं . ऐसा निर्भर Zeeman हैमिल्टनियन जोड़े इलेक्ट्रॉन स्पिन संचालिका को इलेक्ट्रॉन की कक्षीय गति का प्रतिनिधित्व। विषम क्षेत्र या तो बाहरी स्रोतों का एक चिकना क्षेत्र हो सकता है या एंटीफेरोमैग्नेट्स में तेजी से दोलन करने वाला सूक्ष्म चुंबकीय क्षेत्र हो सकता है।[8] मैक्रोस्कोपिक रूप से विषम क्षेत्र के माध्यम से स्पिन-ऑर्बिट युग्मन विद्युत द्विध्रुव स्पिन अनुनाद के माध्यम से क्वांटम डॉट्स में इलेक्ट्रॉन स्पिन के विद्युत संचालन के लिए नैनोमैग्नेट्स का उपयोग किया जाता है,[9] और अमानवीय होने के कारण विद्युत क्षेत्र द्वारा ड्राइविंग स्पिन भी प्रदर्शित किया गया है।[10]


अन्य

पुराने उच्च-सटीक आवृत्ति मानक, यानी हाइपरफाइन संरचना संक्रमण-आधारित परमाणु घड़ियों को चुंबकीय क्षेत्रों के संपर्क में आने के कारण समय-समय पर ठीक-ठाक करने की आवश्यकता हो सकती है। यह स्रोत तत्व (सीज़ियम) के विशिष्ट हाइपरफाइन संरचना संक्रमण स्तरों पर Zeeman प्रभाव को मापकर और एक समान रूप से सटीक, कम-शक्ति वाले चुंबकीय क्षेत्र को उक्त स्रोत पर लागू करने के लिए किया जाता है, जिसे degaussing के रूप में जाना जाता है।[11]


यह भी देखें

संदर्भ

  1. Thalau, Peter; Ritz, Thorsten; Burda, Hynek; Wegner, Regina E.; Wiltschko, Roswitha (18 April 2006). "पक्षियों और कृन्तकों के चुंबकीय कम्पास तंत्र विभिन्न भौतिक सिद्धांतों पर आधारित होते हैं". Journal of the Royal Society Interface. 3 (9): 583–587. doi:10.1098/rsif.2006.0130. PMC 1664646. PMID 16849254.
  2. Preston, Thomas (1898). "एक मजबूत चुंबकीय क्षेत्र में विकिरण घटनाएं". The Scientific Transactions of the Royal Dublin Society. 2nd series. 6: 385–391.
  3. "Niels Bohr's Times: In Physics, Philosophy, and Polity" By Abraham Pais, page 201
  4. Paschen, F.; Back, E. (1921). "Liniengruppen magnetisch vervollständigt" [Line groups magnetically completed [i.e., completely resolved]]. Physica (in German). 1: 261–273.{{cite journal}}: CS1 maint: unrecognized language (link) Available at: Leiden University (Netherlands)
  5. Griffiths, David J. (2004). क्वांटम यांत्रिकी का परिचय (2nd ed.). Prentice Hall. p. 247. ISBN 0-13-111892-7. OCLC 40251748.
  6. Woodgate, Gordon Kemble (1980). प्राथमिक परमाणु संरचना (2nd ed.). Oxford, England: Oxford University Press. pp. 193–194.
  7. First appeared in: Breit, G.; Rabi, I.I. (1931). "Measurement of nuclear spin". Physical Review. 38 (11): 2082–2083. Bibcode:1931PhRv...38.2082B. doi:10.1103/PhysRev.38.2082.2.
  8. S. I. Pekar and E. I. Rashba, Combined resonance in crystals in inhomogeneous magnetic fields, Sov. Phys. - JETP 20, 1295 (1965) http://www.jetp.ac.ru/cgi-bin/dn/e_020_05_1295.pdf Archived 18 May 2018 at the Wayback Machine
  9. Y. Tokura, W. G. van der Wiel, T. Obata, and S. Tarucha, Coherent single electron spin control in a slanting Zeeman field, Phys. Rev. Lett. 96, 047202 (2006)
  10. Salis G, Kato Y, Ensslin K, Driscoll DC, Gossard AC, Awschalom DD (2001). "सेमीकंडक्टर नैनोस्ट्रक्चर में स्पिन सुसंगतता का विद्युत नियंत्रण". Nature. 414 (6864): 619–622. Bibcode:2001Natur.414..619S. doi:10.1038/414619a. PMID 11740554. S2CID 4393582.
  11. Verdiell, Marc (CuriousMarc) (31 October 2022). How an Atomic Clock Really Works, Round 2: Zeeman Alignment (YouTube video) (in English). Retrieved 11 March 2023.



ऐतिहासिक

आधुनिक


श्रेणी:स्पेक्ट्रोस्कोपी श्रेणी:क्वांटम चुंबकत्व श्रेणी:आधारभूत क्वांटम भौतिकी श्रेणी:वीडियो क्लिप वाले लेख श्रेणी:मैग्नेटो-ऑप्टिक प्रभाव