भागफल श्रेणी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
== परिभाषा ==
== परिभाषा ==


C को एक श्रेणी होने दें। C पर [[सर्वांगसमता संबंध]] R निम्न द्वारा दिया जाता है: C में वस्तुओं X, Y के प्रत्येक युग्म के लिए, एक [[तुल्यता संबंध]] R<sub>''X'',''Y''</sub> Hom(''X'',''Y'') पर, जैसे कि समकक्ष संबंध आकारिकी की संरचना का सम्मान करते हैं। अर्थात यदि  
C को एक श्रेणी होने दें। C पर [[सर्वांगसमता संबंध]] R निम्न द्वारा दिया जाता है: C में वस्तुओं X, Y के प्रत्येक युग्म के लिए, एक [[तुल्यता संबंध]] R<sub>''X'',''Y''</sub> Hom(''X'',''Y'') पर, जैसे कि समकक्ष संबंध आकारिकी की संरचना का सम्मान करते हैं। अर्थात यदि  


:<math>f_1,f_2 : X \to Y\,</math>
:<math>f_1,f_2 : X \to Y\,</math>
होम ((X, Y) और में संबंधित हैं
होम ((X, Y) और में संबंधित हैं
:<math>g_1,g_2 : Y \to Z\,</math>
:<math>g_1,g_2 : Y \to Z\,</math>
होम (''Y'', ''Z'') में संबंधित हैं, फिर ''g''<sub>1</sub>''f''<sub>1</sub> और ''g''<sub>2</sub>''f''<sub>2</sub> होम (''X'', ''Z'') में संबंधित हैं।
होम (''Y'', ''Z'') में संबंधित हैं, फिर ''g''<sub>1</sub>''f''<sub>1</sub> और ''g''<sub>2</sub>''f''<sub>2</sub> होम (''X'', ''Z'') में संबंधित हैं।


C पर सर्वांगसमता संबंध R को देखते हुए हम 'भागफल श्रेणी' C/R को उस श्रेणी के रूप में परिभाषित कर सकते हैं, जिसकी वस्तुएँ C की हैं और जिनकी आकृतियाँ C में आकारिकी के समतुल्य वर्ग हैं। अर्थात्,
C पर सर्वांगसमता संबंध R को देखते हुए हम 'भागफल श्रेणी' C/R को उस श्रेणी के रूप में परिभाषित कर सकते हैं, जिसकी वस्तुएँ C की हैं और जिनकी आकृतियाँ C में आकारिकी के समतुल्य वर्ग हैं। अर्थात्,
Line 25: Line 25:
* [[मोनोइड]] और [[समूह (गणित)]] को एक वस्तु के साथ श्रेणियों के रूप में माना जा सकता है। इस स्थिति में भागफल श्रेणी [[भागफल मोनोइड]] या भागफल समूह की धारणा के साथ मेल खाती है।
* [[मोनोइड]] और [[समूह (गणित)]] को एक वस्तु के साथ श्रेणियों के रूप में माना जा सकता है। इस स्थिति में भागफल श्रेणी [[भागफल मोनोइड]] या भागफल समूह की धारणा के साथ मेल खाती है।
* टोपोलॉजिकल स्पेस की होमोटॉपी श्रेणी एचटॉप, टॉप की एक भागफल श्रेणी है, जो [[टोपोलॉजिकल स्पेस की श्रेणी]] है। आकारिकी के तुल्यता वर्ग निरंतर मानचित्रों के [[होमोटॉपी वर्ग]] हैं।
* टोपोलॉजिकल स्पेस की होमोटॉपी श्रेणी एचटॉप, टॉप की एक भागफल श्रेणी है, जो [[टोपोलॉजिकल स्पेस की श्रेणी]] है। आकारिकी के तुल्यता वर्ग निरंतर मानचित्रों के [[होमोटॉपी वर्ग]] हैं।
*''k'' को एक क्षेत्र (गणित) होने दें और ''k'' के साथ ''k'' पर सभी [[ सदिश स्थल ]] के [[एबेलियन श्रेणी]] मॉड (''k'') को रूपवाद के रूप में मानें सभी परिमित-आयामी स्थानों को मारने के लिए, हम दो रैखिक मानचित्रों को ''f'',''g'' : ''X'' → ''Y'' सर्वांगसम कह सकते हैं यदि उनके अंतर में परिमित-आयामी छवि है। परिणामी भागफल श्रेणी में, सभी परिमित-आयामी वेक्टर रिक्त स्थान 0. के लिए समरूप हैं। [यह वास्तव में योगात्मक श्रेणियों के भागफल का एक उदाहरण है, नीचे देखें।]
*''k'' को एक क्षेत्र (गणित) होने दें और ''k'' के साथ ''k'' पर सभी [[ सदिश स्थल |सदिश स्थल]] के [[एबेलियन श्रेणी]] मॉड (''k'') को रूपवाद के रूप में मानें सभी परिमित-आयामी स्थानों को मारने के लिए, हम दो रैखिक मानचित्रों को ''f'',''g'' : ''X'' → ''Y'' सर्वांगसम कह सकते हैं यदि उनके अंतर में परिमित-आयामी छवि है। परिणामी भागफल श्रेणी में, सभी परिमित-आयामी वेक्टर रिक्त स्थान 0. के लिए समरूप हैं। [यह वास्तव में योगात्मक श्रेणियों के भागफल का एक उदाहरण है, नीचे देखें।]


== संबंधित अवधारणाएँ ==
== संबंधित अवधारणाएँ ==
Line 32: Line 32:
यदि C एक योज्य श्रेणी है और हम चाहते हैं कि C पर सर्वांगसमता संबंध ~ योगात्मक हो (अर्थात् यदि ''f''<sub>1</sub>, ''f''<sub>2</sub>, ''g''<sub>1</sub> और ''g''<sub>2</sub> X से Y तक ''f''<sub>1</sub> ~ ''f''<sub>2</sub> और ''g''<sub>1</sub> ~''g''<sub>2</sub>, के साथ रूपवाद हैं फिर ''f''<sub>1</sub> + ''g''<sub>1</sub> ~ ''f''<sub>2</sub> + ''g''<sub>2</sub>), तो भागफल श्रेणी C/~ भी योगात्मक होगी, और भागफल फलक C → C/~ एक योगात्मक फलक होगा।
यदि C एक योज्य श्रेणी है और हम चाहते हैं कि C पर सर्वांगसमता संबंध ~ योगात्मक हो (अर्थात् यदि ''f''<sub>1</sub>, ''f''<sub>2</sub>, ''g''<sub>1</sub> और ''g''<sub>2</sub> X से Y तक ''f''<sub>1</sub> ~ ''f''<sub>2</sub> और ''g''<sub>1</sub> ~''g''<sub>2</sub>, के साथ रूपवाद हैं फिर ''f''<sub>1</sub> + ''g''<sub>1</sub> ~ ''f''<sub>2</sub> + ''g''<sub>2</sub>), तो भागफल श्रेणी C/~ भी योगात्मक होगी, और भागफल फलक C → C/~ एक योगात्मक फलक होगा।


एक योज्य सर्वांगसमता संबंध की अवधारणा आकृतिवाद के दो तरफा आदर्श की अवधारणा के बराबर है: किन्हीं भी दो वस्तुओं X और Y के लिए हमें Hom<sub>''C''</sub>(''X'', ''Y'') का एक योगात्मक उपसमूह ''I''(''X'',''Y'') दिया जाता है जैसे कि सभी ''f'' ∈ ''I''(''X'',''Y'') ''g'' ∈ Hom<sub>''C''</sub>(''Y'', ''Z'') और ''h''∈ Hom<sub>''C''</sub>(''W'', ''X''), हमारे पास ''gf'' ∈ ''I''(''X'',''Z'') और ''fh'' ∈ ''I''(''W'',''Y'') हैं। Hom<sub>''C''</sub>(''X'', ''Y'') में दो आकारिकी सर्वांगसम हैं यदि उनका अंतर ''I''(''X'',''Y'') में है।
एक योज्य सर्वांगसमता संबंध की अवधारणा आकृतिवाद के दो तरफा आदर्श की अवधारणा के बराबर है: किन्हीं भी दो वस्तुओं X और Y के लिए हमें Hom<sub>''C''</sub>(''X'', ''Y'') का एक योगात्मक उपसमूह ''I''(''X'',''Y'') दिया जाता है जैसे कि सभी ''f'' ∈ ''I''(''X'',''Y'') ''g'' ∈ Hom<sub>''C''</sub>(''Y'', ''Z'') और ''h''∈ Hom<sub>''C''</sub>(''W'', ''X''), हमारे पास ''gf'' ∈ ''I''(''X'',''Z'') और ''fh'' ∈ ''I''(''W'',''Y'') हैं। Hom<sub>''C''</sub>(''X'', ''Y'') में दो आकारिकी सर्वांगसम हैं यदि उनका अंतर ''I''(''X'',''Y'') में है।


प्रत्येक यूनिटल रिंग (गणित) को एक एकल वस्तु के साथ एक योगात्मक श्रेणी के रूप में देखा जा सकता है, और ऊपर परिभाषित योगात्मक श्रेणियों का भागफल इस स्थिति में एक भागफल रिंग मोडुलो दो तरफा आदर्श की धारणा के साथ मेल खाता है।
प्रत्येक यूनिटल रिंग (गणित) को एक एकल वस्तु के साथ एक योगात्मक श्रेणी के रूप में देखा जा सकता है, और ऊपर परिभाषित योगात्मक श्रेणियों का भागफल इस स्थिति में एक भागफल रिंग मोडुलो दो तरफा आदर्श की धारणा के साथ मेल खाता है।


=== किसी श्रेणी का स्थानीयकरण ===
=== किसी श्रेणी का स्थानीयकरण ===
किसी श्रेणी का स्थानीयकरण नए आकारिकी को प्रस्तुत करता है जिससे मूल श्रेणी के आकारिकी को समरूपता में बदल दिया जाता है। यह भागफल श्रेणियों के स्थिति में इसे कम करने के बजाय वस्तुओं के बीच रूपवाद की संख्या में वृद्धि करता है। किंतु दोनों निर्माणों में अधिकांशतः ऐसा होता है कि दो वस्तुएं आइसोमोर्फिक बन जाती हैं जो मूल श्रेणी में आइसोमोर्फिक नहीं थीं।
किसी श्रेणी का स्थानीयकरण नए आकारिकी को प्रस्तुत करता है जिससे मूल श्रेणी के आकारिकी को समरूपता में बदल दिया जाता है। यह भागफल श्रेणियों के स्थिति में इसे कम करने के बजाय वस्तुओं के बीच रूपवाद की संख्या में वृद्धि करता है। किंतु दोनों निर्माणों में अधिकांशतः ऐसा होता है कि दो वस्तुएं आइसोमोर्फिक बन जाती हैं जो मूल श्रेणी में आइसोमोर्फिक नहीं थीं।


'''त करता है जिससे मूल श्रेणी के आकारिकी को समरूपता में बदल दिया जाता है। यह भागफल श्रेणियों के स्थिति में इसे कम करने के बजाय वस्तुओं के बीच रूपवाद की संख्या में वृद्धि करता है।'''                                        
'''त करता है जिससे मूल श्रेणी के आकारिकी को समरूपता में बदल दिया जाता'''                                        


=== एबेलियन श्रेणियों के गंभीर भागफल ===
=== एबेलियन श्रेणियों के गंभीर भागफल ===
एक सेरे उपश्रेणी द्वारा एबेलियन श्रेणी की [[एक एबेलियन श्रेणी का भागफल]] एक नई एबेलियन श्रेणी है जो एक भागफल श्रेणी के समान है किंतु कई स्थितियो   में श्रेणी के स्थानीयकरण का चरित्र भी है।
एक सेरे उपश्रेणी द्वारा एबेलियन श्रेणी की [[एक एबेलियन श्रेणी का भागफल]] एक नई एबेलियन श्रेणी है जो एक भागफल श्रेणी के समान है किंतु कई स्थितियो में श्रेणी के स्थानीयकरण का चरित्र भी है।


==संदर्भ==
==संदर्भ==

Revision as of 14:48, 17 May 2023

गणित में, एक भागफल श्रेणी एक श्रेणी (गणित) है जो आकारिकी के सेट की पहचान करके एक दूसरे से प्राप्त की जाती है। औपचारिक रूप से, यह छोटी श्रेणियों की श्रेणी में एक भागफल वस्तु है। (स्थानीय रूप से छोटी) श्रेणियों की श्रेणी, भागफल समूह या भागफल स्थान (टोपोलॉजी) के अनुरूप है, किंतु श्रेणीबद्ध सेटिंग में।

परिभाषा

C को एक श्रेणी होने दें। C पर सर्वांगसमता संबंध R निम्न द्वारा दिया जाता है: C में वस्तुओं X, Y के प्रत्येक युग्म के लिए, एक तुल्यता संबंध RX,Y Hom(X,Y) पर, जैसे कि समकक्ष संबंध आकारिकी की संरचना का सम्मान करते हैं। अर्थात यदि

होम ((X, Y) और में संबंधित हैं

होम (Y, Z) में संबंधित हैं, फिर g1f1 और g2f2 होम (X, Z) में संबंधित हैं।

C पर सर्वांगसमता संबंध R को देखते हुए हम 'भागफल श्रेणी' C/R को उस श्रेणी के रूप में परिभाषित कर सकते हैं, जिसकी वस्तुएँ C की हैं और जिनकी आकृतियाँ C में आकारिकी के समतुल्य वर्ग हैं। अर्थात्,

C/R में आकारिकी की संरचना अच्छी तरह से परिभाषित है क्योंकि R एक सर्वांगसमता संबंध है।

गुण

C से C/R तक एक प्राकृतिक भागफल कारक है जो प्रत्येक आकारिकी को उसके समकक्ष वर्ग में भेजता है। यह ऑपरेटर वस्तुओं पर विशेषण है और होम-सेट पर विशेषण है (अर्थात यह एक पूर्ण कारक है)।

प्रत्येक फलनकार F : C → D, f ~ g iff F(f) = F(g) कहकर C पर सर्वांगसमता निर्धारित करता है। फ़ंक्टर F तब पूर्ण काम करनेवाला C → C/~ के माध्यम से एक अनोखे विधि से कारक होता है। इसे श्रेणियों के लिए पहला समरूपता प्रमेय माना जा सकता है।

उदाहरण

  • मोनोइड और समूह (गणित) को एक वस्तु के साथ श्रेणियों के रूप में माना जा सकता है। इस स्थिति में भागफल श्रेणी भागफल मोनोइड या भागफल समूह की धारणा के साथ मेल खाती है।
  • टोपोलॉजिकल स्पेस की होमोटॉपी श्रेणी एचटॉप, टॉप की एक भागफल श्रेणी है, जो टोपोलॉजिकल स्पेस की श्रेणी है। आकारिकी के तुल्यता वर्ग निरंतर मानचित्रों के होमोटॉपी वर्ग हैं।
  • k को एक क्षेत्र (गणित) होने दें और k के साथ k पर सभी सदिश स्थल के एबेलियन श्रेणी मॉड (k) को रूपवाद के रूप में मानें सभी परिमित-आयामी स्थानों को मारने के लिए, हम दो रैखिक मानचित्रों को f,g : XY सर्वांगसम कह सकते हैं यदि उनके अंतर में परिमित-आयामी छवि है। परिणामी भागफल श्रेणी में, सभी परिमित-आयामी वेक्टर रिक्त स्थान 0. के लिए समरूप हैं। [यह वास्तव में योगात्मक श्रेणियों के भागफल का एक उदाहरण है, नीचे देखें।]

संबंधित अवधारणाएँ

योज्य श्रेणियों के गुणांक आदर्श आदर्श

यदि C एक योज्य श्रेणी है और हम चाहते हैं कि C पर सर्वांगसमता संबंध ~ योगात्मक हो (अर्थात् यदि f1, f2, g1 और g2 X से Y तक f1 ~ f2 और g1 ~g2, के साथ रूपवाद हैं फिर f1 + g1 ~ f2 + g2), तो भागफल श्रेणी C/~ भी योगात्मक होगी, और भागफल फलक C → C/~ एक योगात्मक फलक होगा।

एक योज्य सर्वांगसमता संबंध की अवधारणा आकृतिवाद के दो तरफा आदर्श की अवधारणा के बराबर है: किन्हीं भी दो वस्तुओं X और Y के लिए हमें HomC(X, Y) का एक योगात्मक उपसमूह I(X,Y) दिया जाता है जैसे कि सभी fI(X,Y) g ∈ HomC(Y, Z) और h∈ HomC(W, X), हमारे पास gfI(X,Z) और fhI(W,Y) हैं। HomC(X, Y) में दो आकारिकी सर्वांगसम हैं यदि उनका अंतर I(X,Y) में है।

प्रत्येक यूनिटल रिंग (गणित) को एक एकल वस्तु के साथ एक योगात्मक श्रेणी के रूप में देखा जा सकता है, और ऊपर परिभाषित योगात्मक श्रेणियों का भागफल इस स्थिति में एक भागफल रिंग मोडुलो दो तरफा आदर्श की धारणा के साथ मेल खाता है।

किसी श्रेणी का स्थानीयकरण

किसी श्रेणी का स्थानीयकरण नए आकारिकी को प्रस्तुत करता है जिससे मूल श्रेणी के आकारिकी को समरूपता में बदल दिया जाता है। यह भागफल श्रेणियों के स्थिति में इसे कम करने के बजाय वस्तुओं के बीच रूपवाद की संख्या में वृद्धि करता है। किंतु दोनों निर्माणों में अधिकांशतः ऐसा होता है कि दो वस्तुएं आइसोमोर्फिक बन जाती हैं जो मूल श्रेणी में आइसोमोर्फिक नहीं थीं।

त करता है जिससे मूल श्रेणी के आकारिकी को समरूपता में बदल दिया जाता

एबेलियन श्रेणियों के गंभीर भागफल

एक सेरे उपश्रेणी द्वारा एबेलियन श्रेणी की एक एबेलियन श्रेणी का भागफल एक नई एबेलियन श्रेणी है जो एक भागफल श्रेणी के समान है किंतु कई स्थितियो में श्रेणी के स्थानीयकरण का चरित्र भी है।

संदर्भ

  • Mac Lane, Saunders (1998). Categories for the Working Mathematician. Graduate Texts in Mathematics. Vol. 5 (Second ed.). Springer-Verlag.