सहसंबंध फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Correlation as a function of distance}}
{{Short description|Correlation as a function of distance}}
{{other uses}}
{{other uses}}
[[File:Comparison_convolution_correlation.svg|thumb|300px|[[कनवल्शन]], क्रॉस-सहसंबंध और ऑटोसहसंबंध की दृश्य तुलना।]]सहसंबंध फलन ऐसा फलन है जो यादृच्छिक चरों के बीच सांख्यिकीय सहसंबंध देता है, जो उन चरों के बीच स्थानिक या लौकिक दूरी पर निर्भर करता है। यदि कोई दो अलग-अलग बिंदुओं पर मापी गई समान मात्रा का प्रतिनिधित्व करने वाले यादृच्छिक चर के बीच सहसंबंध फलन पर विचार करता है, तो इसे अधिकांशतः [[स्वत: सहसंबंध समारोह|स्वत: सहसंबंध फलन]] के रूप में संदर्भित किया जाता है, जो ऑटोकॉरेलेशन से बना होता है। अलग-अलग यादृच्छिक [[सह - संबंध]] कार्यों को कभी-कभी क्रॉस-सहसंबंध कार्यों को बल देने के लिए कहा जाता है कि विभिन्न चरों पर विचार किया जा रहा है और क्योंकि वे क्रॉस-सहसंबंधों से बने हैं।  
[[File:Comparison_convolution_correlation.svg|thumb|300px|[[कनवल्शन]], क्रॉस-सहसंबंध और ऑटोसहसंबंध की दृश्य तुलना।]]सहसंबंध फलन ऐसा फलन है जो यादृच्छिक चरों के बीच सांख्यिकीय सहसंबंध देता है, जो उन चरों के बीच स्थानिक या लौकिक दूरी पर निर्भर करता है। यदि कोई दो अलग-अलग बिंदुओं पर मापी गई समान मात्रा का प्रतिनिधित्व करने वाले यादृच्छिक चर के बीच सहसंबंध फलन पर विचार करता है, तो इसे अधिकांशतः [[स्वत: सहसंबंध समारोह|स्वत: सहसंबंध फलन]] के रूप में संदर्भित किया जाता है, जो ऑटोकॉरेलेशन से बना होता है। अलग-अलग यादृच्छिक [[सह - संबंध|सह -संबंध]] कार्यों को कभी-कभी क्रॉस-सहसंबंध कार्यों को बल देने के लिए कहा जाता है कि विभिन्न चरों पर विचार किया जा रहा है और क्योंकि वे क्रॉस-सहसंबंधों से बने हैं।  


सहसंबंध कार्य समय या स्थान में दूरी के कार्य के रूप में निर्भरता का उपयोगी संकेतक हैं, और उनका उपयोग मूल्यों के प्रभावी रूप से असंबद्ध होने के लिए नमूना बिंदुओं के बीच आवश्यक दूरी का आकलन करने के लिए किया जा सकता है। इसके अतिरिक्त, वे उन बिंदुओं पर मूल्यों को प्रक्षेपित करने के लिए नियमों का आधार बना सकते हैं जिनके लिए कोई अवलोकन नहीं है।
सहसंबंध कार्य समय या स्थान में दूरी के कार्य के रूप में निर्भरता का उपयोगी संकेतक हैं, और उनका उपयोग मूल्यों के प्रभावी रूप से असंबद्ध होने के लिए नमूना बिंदुओं के बीच आवश्यक दूरी का आकलन करने के लिए किया जा सकता है। इसके अतिरिक्त, वे उन बिंदुओं पर मूल्यों को प्रक्षेपित करने के लिए नियमों का आधार बना सकते हैं जिनके लिए कोई अवलोकन नहीं है।
Line 28: Line 28:
अंकों की परिमित संख्या पर परिभाषित संभाव्यता वितरण हमेशा सामान्यीकृत किया जा सकता है, लेकिन जब इन्हें निरंतर रिक्त स्थान पर परिभाषित किया जाता है, तो अतिरिक्त देखभाल की आवश्यकता होती है। इस तरह के वितरण का अध्ययन यादृच्छिक चलने के अध्ययन से प्रारंभ हुआ और इटो कलन की धारणा को जन्म दिया।
अंकों की परिमित संख्या पर परिभाषित संभाव्यता वितरण हमेशा सामान्यीकृत किया जा सकता है, लेकिन जब इन्हें निरंतर रिक्त स्थान पर परिभाषित किया जाता है, तो अतिरिक्त देखभाल की आवश्यकता होती है। इस तरह के वितरण का अध्ययन यादृच्छिक चलने के अध्ययन से प्रारंभ हुआ और इटो कलन की धारणा को जन्म दिया।


यूक्लिडियन अंतरिक्ष में फेनमैन [[पथ अभिन्न सूत्रीकरण]] इसे सांख्यिकीय यांत्रिकी के लिए ब्याज की अन्य समस्याओं के लिए सामान्यीकृत करता है। कोई भी संभाव्यता वितरण जो सहसंबंध कार्यों पर नियम का पालन करता है जिसे परावर्तन सकारात्मकता कहा जाता है, [[ बाती का घूमना ]] के बाद [[मिन्कोव्स्की स्पेसटाइम]] ([[ओस्टरवाल्डर-श्रैडर स्वयंसिद्ध]] को देखें) के बाद स्थानीय क्वांटम क्षेत्र सिद्धांत की ओर जाता है। [[पुनर्सामान्यीकरण]] का संचालन संभाव्यता वितरण के स्थान से स्वयं के लिए मैपिंग का निर्दिष्ट समुच्चय है। क्वांटम क्षेत्र सिद्धांत को पुनर्सामान्यीकरण योग्य कहा जाता है यदि इस मानचित्रण में निश्चित बिंदु है जो क्वांटम क्षेत्र सिद्धांत देता है।
यूक्लिडियन अंतरिक्ष में फेनमैन [[पथ अभिन्न सूत्रीकरण]] इसे सांख्यिकीय यांत्रिकी के लिए ब्याज की अन्य समस्याओं के लिए सामान्यीकृत करता है। कोई भी संभाव्यता वितरण जो सहसंबंध कार्यों पर नियम का पालन करता है जिसे परावर्तन सकारात्मकता कहा जाता है, [[ बाती का घूमना |बाती का घूमना]] के बाद [[मिन्कोव्स्की स्पेसटाइम]] ([[ओस्टरवाल्डर-श्रैडर स्वयंसिद्ध]] को देखें) के बाद स्थानीय क्वांटम क्षेत्र सिद्धांत की ओर जाता है। [[पुनर्सामान्यीकरण]] का संचालन संभाव्यता वितरण के स्थान से स्वयं के लिए मैपिंग का निर्दिष्ट समुच्चय है। क्वांटम क्षेत्र सिद्धांत को पुनर्सामान्यीकरण योग्य कहा जाता है यदि इस मानचित्रण में निश्चित बिंदु है जो क्वांटम क्षेत्र सिद्धांत देता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 15:03, 2 May 2023

कनवल्शन, क्रॉस-सहसंबंध और ऑटोसहसंबंध की दृश्य तुलना।

सहसंबंध फलन ऐसा फलन है जो यादृच्छिक चरों के बीच सांख्यिकीय सहसंबंध देता है, जो उन चरों के बीच स्थानिक या लौकिक दूरी पर निर्भर करता है। यदि कोई दो अलग-अलग बिंदुओं पर मापी गई समान मात्रा का प्रतिनिधित्व करने वाले यादृच्छिक चर के बीच सहसंबंध फलन पर विचार करता है, तो इसे अधिकांशतः स्वत: सहसंबंध फलन के रूप में संदर्भित किया जाता है, जो ऑटोकॉरेलेशन से बना होता है। अलग-अलग यादृच्छिक सह -संबंध कार्यों को कभी-कभी क्रॉस-सहसंबंध कार्यों को बल देने के लिए कहा जाता है कि विभिन्न चरों पर विचार किया जा रहा है और क्योंकि वे क्रॉस-सहसंबंधों से बने हैं।

सहसंबंध कार्य समय या स्थान में दूरी के कार्य के रूप में निर्भरता का उपयोगी संकेतक हैं, और उनका उपयोग मूल्यों के प्रभावी रूप से असंबद्ध होने के लिए नमूना बिंदुओं के बीच आवश्यक दूरी का आकलन करने के लिए किया जा सकता है। इसके अतिरिक्त, वे उन बिंदुओं पर मूल्यों को प्रक्षेपित करने के लिए नियमों का आधार बना सकते हैं जिनके लिए कोई अवलोकन नहीं है।

सहसंबंध फलन (खगोल विज्ञान), वित्तीय विश्लेषण, अर्थमिति, और सांख्यिकीय यांत्रिकी में उपयोग किए जाने वाले सहसंबंध कार्य केवल उन विशेष स्टोकास्टिक प्रक्रियाओं में भिन्न होते हैं जिन पर वे प्रयुक्त होते हैं। क्वांटम फील्ड सिद्धांत में सहसंबंध फलन (क्वांटम क्षेत्र सिद्धांत) होते हैं।

परिभाषा

संभवतः भिन्न यादृच्छिक चर X(s) और Y(t) के लिए कुछ स्थान के विभिन्न बिंदुओं s और t पर, सहसंबंध फलन है।

जहाँ सहसंबंध पर लेख में वर्णित है। इस परिभाषा में, यह मान लिया गया है कि स्टोकेस्टिक चर अदिश-मूल्यवान हैं। यदि वे नहीं हैं, तो अधिक जटिल सहसंबंध कार्यों को परिभाषित किया जा सकता है। उदाहरण के लिए, यदि X(s) n तत्वों के साथ यादृच्छिक वेक्टर है और Y(t) q तत्वों के साथ वेक्टर है, तो सहसंबंध कार्यों का n×q मैट्रिक्स परिभाषित किया गया है। तत्व

जब n = q, कभी-कभी इस मैट्रिक्स के ट्रेस (मैट्रिक्स) पर ध्यान केंद्रित किया जाता है। यदि संभाव्यता वितरण में कोई लक्ष्य स्थान समरूपता है, अर्थात स्टोकेस्टिक चर के मूल्य स्थान में समरूपता (जिसे 'आंतरिक समरूपता' भी कहा जाता है), तो सहसंबंध मैट्रिक्स में प्रेरित समरूपता होगी। इसी तरह, यदि अंतरिक्ष (या समय) डोमेन की समरूपताएं हैं जिनमें यादृच्छिक चर उपस्थित हैं (जिसे 'अंतरिक्ष-समय समरूपता' भी कहा जाता है), तो सहसंबंध फलन में संबंधित स्थान या समय समरूपता होगी। महत्वपूर्ण स्पेसटाइम समरूपता के उदाहरण हैं -

  • 'अनुवादात्मक समरूपता' से C(s,s') = C(s − s') प्राप्त होता है, जहाँ s और s' होते हैं बिंदुओं के निर्देशांक देने वाले वैक्टर के रूप में व्याख्या की गई
  • 'घूर्णी समरूपता' उपरोक्त के अतिरिक्त C(s, s') = C(|s − s'|) देती है जहाँ |x| सदिश x के मानक को दर्शाता है (वास्तविक घुमावों के लिए यह यूक्लिडियन या 2-मानक है।)

उच्च क्रम सहसंबंध कार्यों को अधिकांशतः परिभाषित किया जाता है। क्रम n का विशिष्ट सहसंबंध कार्य है (कोण कोष्ठक अपेक्षा मान का प्रतिनिधित्व करते हैं।)

यदि यादृच्छिक वेक्टर में केवल घटक चर है, तो index बेमानी हैं। यदि समरूपताएं हैं, तो सहसंबंध फलन को आंतरिक और अंतरिक्ष-समय दोनों में समरूपता के अप्रासंगिक अभ्यावेदन में विभाजित किया जा सकता है।

संभाव्यता वितरण के गुण

इन परिभाषाओं के साथ, सहसंबंध कार्यों का अध्ययन संभाव्यता वितरण के अध्ययन के समान है। कई स्टोचैस्टिक प्रक्रियाओं को उनके सहसंबंध कार्यों द्वारा पूरी तरह से चित्रित किया जा सकता है; सबसे उल्लेखनीय उदाहरण गॉसियन प्रक्रियाओं का वर्ग है।

अंकों की परिमित संख्या पर परिभाषित संभाव्यता वितरण हमेशा सामान्यीकृत किया जा सकता है, लेकिन जब इन्हें निरंतर रिक्त स्थान पर परिभाषित किया जाता है, तो अतिरिक्त देखभाल की आवश्यकता होती है। इस तरह के वितरण का अध्ययन यादृच्छिक चलने के अध्ययन से प्रारंभ हुआ और इटो कलन की धारणा को जन्म दिया।

यूक्लिडियन अंतरिक्ष में फेनमैन पथ अभिन्न सूत्रीकरण इसे सांख्यिकीय यांत्रिकी के लिए ब्याज की अन्य समस्याओं के लिए सामान्यीकृत करता है। कोई भी संभाव्यता वितरण जो सहसंबंध कार्यों पर नियम का पालन करता है जिसे परावर्तन सकारात्मकता कहा जाता है, बाती का घूमना के बाद मिन्कोव्स्की स्पेसटाइम (ओस्टरवाल्डर-श्रैडर स्वयंसिद्ध को देखें) के बाद स्थानीय क्वांटम क्षेत्र सिद्धांत की ओर जाता है। पुनर्सामान्यीकरण का संचालन संभाव्यता वितरण के स्थान से स्वयं के लिए मैपिंग का निर्दिष्ट समुच्चय है। क्वांटम क्षेत्र सिद्धांत को पुनर्सामान्यीकरण योग्य कहा जाता है यदि इस मानचित्रण में निश्चित बिंदु है जो क्वांटम क्षेत्र सिद्धांत देता है।

यह भी देखें

श्रेणी:सहप्रसरण और सहसंबंध श्रेणी:समय श्रृंखला श्रेणी:स्थानिक विश्लेषण