विषमता: Difference between revisions

From Vigyanwiki
Line 1: Line 1:
{{Short description|Absence of, or a violation of, symmetry}}
{{Short description|Absence of, or a violation of, symmetry}}
{{about|समरूपता का अभाव|गणित में एक विशिष्ट उपयोग|असममित संबंध|अन्य उपयोग}}
{{about|समरूपता का अभाव|गणित में एक विशिष्ट उपयोग|असममित संबंध|अन्य उपयोग}}
[[File:Asymmetric (PSF).svg|thumb]]विषमता का अभाव है, या [[समरूपता]] का उल्लंघन है (किसी वस्तु की संपत्ति एक परिवर्तन के लिए अपरिवर्तनीय है, जैसे प्रतिबिंब)। समरूपता भौतिक और सार दोनों प्रणालियों की एक महत्वपूर्ण संपत्ति है और इसे स्पष्ट शब्दों में या अधिक सौंदर्यपूर्ण शब्दों में प्रदर्शित किया जा सकता है। समरूपता की अनुपस्थिति या उल्लंघन जो या तो अपेक्षित या वांछित हैं, एक प्रणाली के लिए महत्वपूर्ण परिणाम हो सकते हैं।
[[File:Asymmetric (PSF).svg|thumb]]विषमता का अभाव है, या [[समरूपता]] का उल्लंघन है (किसी वस्तु की संपत्ति परिवर्तन के लिए अपरिवर्तनीय है, जैसे प्रतिबिंब)। समरूपता भौतिक और सार दोनों प्रणालियों की महत्वपूर्ण संपत्ति है और इसे स्पष्ट शब्दों में या अधिक सौंदर्यपूर्ण शब्दों में प्रदर्शित किया जा सकता है। समरूपता की अनुपस्थिति या उल्लंघन जो या तो अपेक्षित या वांछित हैं, प्रणाली के लिए महत्वपूर्ण परिणाम हो सकते हैं।


== [[जीव]] में ==
== [[जीव|जीवों]] में ==
जीवों में कोशिका (जीव विज्ञान) कैसे विभाजित होती है, इसके कारण जीवों में विषमता कम से कम एक आयाम में अत्यधिक सामान्य है, [[समरूपता (जीव विज्ञान)]] भी कम से कम एक आयाम में सामान्य है।
जीवों में कोशिका (जीव विज्ञान) कैसे विभाजित होती है, इसके कारण जीवों में विषमता कम से कम आयाम में अत्यधिक सामान्य है, [[समरूपता (जीव विज्ञान)]] भी कम से कम आयाम में सामान्य है।


लुई पाश्चर ने प्रस्तावित किया कि जैविक अणु असममित हैं क्योंकि लौकिक अर्थात्, भौतिक बल जो उनके गठन की अध्यक्षता करते हैं, वे स्वयं असममित हैं। जबकि उनके समय में, और अब भी, भौतिक प्रक्रियाओं की समरूपता पर प्रकाश डाला गया है, यह ज्ञात है कि मौलिक भौतिक विषमताएँ हैं, जो समय के साथ प्रारंभ होती हैं।
लुई पाश्चर ने प्रस्तावित किया कि जैविक अणु असममित हैं क्योंकि लौकिक अर्थात्, भौतिक बल जो उनके गठन की अध्यक्षता करते हैं, वे स्वयं असममित हैं। जबकि उनके समय में, और अब भी, भौतिक प्रक्रियाओं की समरूपता पर प्रकाश डाला गया है, यह ज्ञात है कि मौलिक भौतिक विषमताएँ हैं, जो समय के साथ प्रारंभ होती हैं।
Line 11: Line 11:
{{Main|जीव विज्ञान में समरूपता|बाएँ-दाएँ विषमता (जीव विज्ञान)}}
{{Main|जीव विज्ञान में समरूपता|बाएँ-दाएँ विषमता (जीव विज्ञान)}}


विषमता एक महत्वपूर्ण और व्यापक विशेषता है, जो कई जीवों में और संगठन के कई स्तरों पर कई बार विकसित हुई है (व्यक्तिगत कोशिकाओं से लेकर, अंगों के माध्यम से, पूरे शरीर-आकृतियों तक)। विषमता के लाभ कभी-कभी उत्तम स्थानिक व्यवस्था के साथ होते हैं, जैसे कि बाएं मानव फेफड़े छोटे होते हैं, और विषम हृदय के लिए जगह बनाने के लिए दाएं फेफड़े की तुलना में एक लोब कम होता है। अन्य उदाहरणों में, दाएं और बाएं आधे हिस्से के बीच कार्य का विभाजन लाभदायक हो सकता है और विषमता को कठोर होने के लिए प्रेरित किया है। इस तरह की व्याख्या सामान्यतः स्तनपायी हाथ या पंजा वरीयता (सौहार्द) के लिए दी जाती है, जो स्तनधारियों में कौशल विकास में एक विषमता है। एक हाथ (या पंजा) के कौशल में तंत्रिका मार्गों को प्रशिक्षित करने में दोनों हाथों से ऐसा करने की तुलना में कम प्रयास हो सकता है।<ref>{{cite book |last1=Baofu |first1=Peter |title=The Future of Post-Human Geometry: A Preface to a New Theory of Infinity, Symmetry, and Dimensionality |date=19 Mar 2009 |page=149 |isbn=978-1-4438-0524-7 }}</ref>
विषमता महत्वपूर्ण और व्यापक विशेषता है, जो कई जीवों में और संगठन के कई स्तरों पर कई बार विकसित हुई है (व्यक्तिगत कोशिकाओं से लेकर, अंगों के माध्यम से, पूरे शरीर-आकृतियों तक)। विषमता के लाभ कभी-कभी उत्तम स्थानिक व्यवस्था के साथ होते हैं, जैसे कि बाएं मानव फेफड़े छोटे होते हैं, और विषम हृदय के लिए जगह बनाने के लिए दाएं फेफड़े की तुलना में एक लोब कम होता है। अन्य उदाहरणों में, दाएं और बाएं आधे हिस्से के बीच कार्य का विभाजन लाभदायक हो सकता है और विषमता को कठोर होने के लिए प्रेरित किया है। इस तरह की व्याख्या सामान्यतः स्तनपायी हाथ या पंजा वरीयता (सौहार्द) के लिए दी जाती है, जो स्तनधारियों में कौशल विकास में विषमता है। हाथ (या पंजा) के कौशल में तंत्रिका मार्गों को प्रशिक्षित करने में दोनों हाथों से ऐसा करने की तुलना में कम प्रयास हो सकता है।<ref>{{cite book |last1=Baofu |first1=Peter |title=The Future of Post-Human Geometry: A Preface to a New Theory of Infinity, Symmetry, and Dimensionality |date=19 Mar 2009 |page=149 |isbn=978-1-4438-0524-7 }}</ref>


प्रकृति भी स्वभाव के कई उदाहरण प्रदान करती है जो सामान्यतः सममित होते हैं। निम्नलिखित स्पष्ट बाएँ-दाएँ विषमता वाले जानवरों के उदाहरण हैं (जीव विज्ञान) | बाएँ-दाएँ विषमता:
प्रकृति भी स्वभाव के कई उदाहरण प्रदान करती है जो सामान्यतः सममित होते हैं। निम्नलिखित स्पष्ट बाएँ-दाएँ विषमता वाले जानवरों के उदाहरण हैं (जीव विज्ञान) | बाएँ-दाएँ विषमता:
[[File:Fiddler Crab Gulf Coast.jpg|thumb|खराब [[सारंगी केकड़ा]], आक्रामक उल्लू]]
[[File:Fiddler Crab Gulf Coast.jpg|thumb|खराब [[सारंगी केकड़ा]], आक्रामक उल्लू]]
*अधिकांश घोंघे, विकास के समय [[मरोड़ (गैस्ट्रोपोड)]] के कारण खोल और आंतरिक अंगों में उल्लेखनीय विषमता दिखाते हैं।
*अधिकांश घोंघे, विकास के समय [[मरोड़ (गैस्ट्रोपोड)]] के कारण खोल और आंतरिक अंगों में उल्लेखनीय विषमता दिखाते हैं।
*नर फिडलर केकड़ों का एक बड़ा पंजा और एक छोटा पंजा होता है।
*नर फिडलर केकड़ों का बड़ा पंजा और छोटा पंजा होता है।
* [[ नाउल |नाउल]]  का दाँत बायाँ कृंतक होता है जो लंबाई में 10 फीट तक बढ़ सकता है और बाएँ हाथ का कुण्डल बनाता है।
* [[ नाउल |नाउल]]  का दाँत बायाँ कृंतक होता है जो लंबाई में 10 फीट तक बढ़ सकता है और बाएँ हाथ का कुण्डल बनाता है।
*[[ चपटा मछली |चपटा मछली]]  एक ओर ऊपर की ओर तैरने के लिए विकसित हुई है, और इसके परिणामस्वरूप दोनों आंखें उनके सिर के एक ओर हैं।
*[[ चपटा मछली |चपटी मछली]]  एक ओर ऊपर की ओर तैरने के लिए विकसित हुई है, और इसके परिणामस्वरूप दोनों आंखें उनके सिर के ओर हैं।
*[[उल्लू]] की कई प्रजातियां अपने कानों के आकार और स्थिति में विषमता प्रदर्शित करती हैं, जिसके बारे में माना जाता है कि यह शिकार का पता लगाने में सहायता करती है।
*[[उल्लू]] की कई प्रजातियां अपने कानों के आकार और स्थिति में विषमता प्रदर्शित करती हैं, जिसके बारे में माना जाता है कि यह शिकार का पता लगाने में सहायता करती है।
*कई जानवरों (कीड़ों से लेकर स्तनधारियों तक) में विषम पुरुष [[जननांग]] होते हैं। इसके पीछे विकासवादी कारण अधिकतर स्थितियों में अभी भी एक रहस्य है।<ref>{{cite journal|last1=Schilthuizen|first1=Menno|title=Something gone awry: unsolved mysteries in the evolution of asymmetric animal genitalia|journal=Animal Biology|date=2013|volume=63|issue=1|pages=1–20|doi=10.1163/15707563-00002398|url=http://booksandjournals.brillonline.com/content/journals/10.1163/15707563-00002398|doi-access=free}}</ref>
*कई जानवरों (कीड़ों से लेकर स्तनधारियों तक) में विषम पुरुष [[जननांग]] होते हैं। इसके पीछे विकासवादी कारण अधिकतर स्थितियों में अभी भी रहस्य है।<ref>{{cite journal|last1=Schilthuizen|first1=Menno|title=Something gone awry: unsolved mysteries in the evolution of asymmetric animal genitalia|journal=Animal Biology|date=2013|volume=63|issue=1|pages=1–20|doi=10.1163/15707563-00002398|url=http://booksandjournals.brillonline.com/content/journals/10.1163/15707563-00002398|doi-access=free}}</ref>




Line 28: Line 28:
*कोशिका विभाजन के बाद लगने वाली ऐसी चोटें जिनकी जैविक रूप से पुनर्निर्माण नहीं की जा सकती, जैसे किसी दुर्घटना के कारण [[अंग (शरीर रचना)]] का खो जाना।
*कोशिका विभाजन के बाद लगने वाली ऐसी चोटें जिनकी जैविक रूप से पुनर्निर्माण नहीं की जा सकती, जैसे किसी दुर्घटना के कारण [[अंग (शरीर रचना)]] का खो जाना।


चूंकि जन्म दोष और चोटें जीव के खराब स्वास्थ्य का संकेत दे सकती हैं, विषमता के परिणामस्वरूप होने वाले दोष अधिकांशतः एक साथी को खोजने की बात आने पर एक जानवर को हानि पहुंचाते हैं। उदाहरण के लिए, [[चेहरे की समरूपता]] का एक बड़ा अंश मनुष्यों में अधिक आकर्षक के रूप में देखा जाता है, विशेष रूप से साथी चयन के संदर्भ में देखा जाता है। सामान्य तौर पर, कई प्रजातियों के लिए विकास दर, उर्वरता और उत्तरजीविता जैसे समरूपता और फिटनेस से संबंधित लक्षणों के बीच संबंध होता है। इसका अर्थ है कि, [[यौन चयन]] के माध्यम से, अधिक समरूपता (और इसलिए फिटनेस) वाले व्यक्तियों को साथी के रूप में पसंद किया जाता है, क्योंकि वे स्वस्थ संतान उत्पन्न करने की अधिक संभावना रखते हैं।<ref>{{Cite journal|last1=Little|first1=Anthony C.|last2=Jones|first2=Benedict C.|last3=DeBruine|first3=Lisa M.|date=2011-06-12|title=Facial attractiveness: evolutionary based research|journal=Philosophical Transactions of the Royal Society B: Biological Sciences|volume=366|issue=1571|pages=1638–1659|doi=10.1098/rstb.2010.0404|issn=0962-8436|pmc=3130383|pmid=21536551}}</ref>
चूंकि जन्म दोष और चोटें जीव के खराब स्वास्थ्य का संकेत दे सकती हैं, विषमता के परिणामस्वरूप होने वाले दोष अधिकांशतः साथी को खोजने की बात आने पर जानवर को हानि पहुंचाते हैं। उदाहरण के लिए, [[चेहरे की समरूपता]] का बड़ा अंश मनुष्यों में अधिक आकर्षक के रूप में देखा जाता है, विशेष रूप से साथी चयन के संदर्भ में देखा जाता है। सामान्य तौर पर, कई प्रजातियों के लिए विकास दर, उर्वरता और उत्तरजीविता जैसे समरूपता और फिटनेस से संबंधित लक्षणों के बीच संबंध होता है। इसका अर्थ है कि, [[यौन चयन]] के माध्यम से, अधिक समरूपता (और इसलिए फिटनेस) वाले व्यक्तियों को साथी के रूप में पसंद किया जाता है, क्योंकि वे स्वस्थ संतान उत्पन्न करने की अधिक संभावना रखते हैं।<ref>{{Cite journal|last1=Little|first1=Anthony C.|last2=Jones|first2=Benedict C.|last3=DeBruine|first3=Lisa M.|date=2011-06-12|title=Facial attractiveness: evolutionary based research|journal=Philosophical Transactions of the Royal Society B: Biological Sciences|volume=366|issue=1571|pages=1638–1659|doi=10.1098/rstb.2010.0404|issn=0962-8436|pmc=3130383|pmid=21536551}}</ref>




== संरचनाओं में ==
== संरचनाओं में ==
पूर्व-आधुनिक स्थापत्य शैली में समरूपता पर ध्यान देने की प्रवृत्ति थी, अतिरिक्त इसके कि चरम साइट की स्थिति या ऐतिहासिक विकास इस मौलिक आदर्श से दूर हो गए। इसके विपरीत, [[आधुनिक वास्तुकला]] और उत्तर-आधुनिकतावाद आर्किटेक्चर एक डिजाइन तत्व के रूप में विषमता का उपयोग करने के लिए और अधिक स्वतंत्र हो गया।
पूर्व-आधुनिक स्थापत्य शैली में समरूपता पर ध्यान देने की प्रवृत्ति थी, अतिरिक्त इसके कि चरम साइट की स्थिति या ऐतिहासिक विकास इस मौलिक आदर्श से दूर हो गए। इसके विपरीत, [[आधुनिक वास्तुकला]] और उत्तर-आधुनिकतावाद आर्किटेक्चर डिजाइन तत्व के रूप में विषमता का उपयोग करने के लिए और अधिक स्वतंत्र हो गया।


जबकि अधिकांश पुल डिजाइन, विश्लेषण और निर्माण की आंतरिक सरलता और सामग्री के लाभदायक उपयोग के कारण एक सममित रूप का उपयोग करते हैं, कई आधुनिक पुलों ने विचारपूर्वक या तो साइट-विशिष्ट विचारों के उत्तर में या एक नाटकीय डिजाइन स्टेटमेंट बनाने के लिए इससे प्रस्थान किया है।
जबकि अधिकांश पुल डिजाइन, विश्लेषण और निर्माण की आंतरिक सरलता और सामग्री के लाभदायक उपयोग के कारण सममित रूप का उपयोग करते हैं, कई आधुनिक पुलों ने विचारपूर्वक या तो साइट-विशिष्ट विचारों के उत्तर में या नाटकीय डिजाइन स्टेटमेंट बनाने के लिए इससे प्रस्थान किया है।


<big>कुछ असममित संरचनाएं</big>
<big>कुछ असममित संरचनाएं</big>
Line 48: Line 48:


=== अग्नि सुरक्षा में ===
=== अग्नि सुरक्षा में ===
'''अग्नि-प्रतिरोध रेटिंग में |''' अग्नि-प्रतिरोध रेटेड वॉल असेंबली, [[निष्क्रिय अग्नि सुरक्षा]] में उपयोग की जाती है, जिसमें उच्च वोल्टेज ट्रांसफार्मर [[आग]] बाधायें सम्मिलित हैं, लेकिन यह सीमित नहीं है, विषमता डिजाइन का एक महत्वपूर्ण पहलू है। किसी सुविधा को डिजाइन करते समय, यह सदैव निश्चित नहीं होता है कि आग लगने की स्थिति में आग किस ओर से आ सकती है। इसलिए, कई [[ निर्माण कोड ]] और अग्नि परीक्षण मानकों की रूपरेखा, कि एक सममित असेंबली, केवल एक ओर से [[अग्नि परीक्षा]] की आवश्यकता है, क्योंकि दोनों पक्ष समान हैं। चूंकि, जैसे ही एक असेंबली असममित होती है, दोनों पक्षों का परीक्षण किया जाना चाहिए और प्रत्येक पक्ष के परिणामों को बताने के लिए परीक्षण सूची की आवश्यकता होती है। व्यावहारिक उपयोग में, सबसे कम प्राप्त परिणाम वह होता है जो प्रमाणीकरण सूची में दिखाई देता है। न तो परीक्षण प्रायोजक, और न ही प्रयोगशाला किसी राय या निष्कर्ष से जा सकते हैं कि कौन सा पक्ष सोचे हुए परीक्षण के परिणामस्वरूप अधिक संकट में था और फिर केवल एक पक्ष का परीक्षण करें। परीक्षण मानकों और बिल्डिंग कोड के अनुरूप होने के लिए दोनों का परीक्षण किया जाना चाहिए।
'''अग्नि-प्रतिरोध रेटिंग में |''' अग्नि-प्रतिरोध रेटेड वॉल असेंबली, [[निष्क्रिय अग्नि सुरक्षा]] में उपयोग की जाती है, जिसमें उच्च वोल्टेज ट्रांसफार्मर [[आग]] बाधायें सम्मिलित हैं, लेकिन यह सीमित नहीं है, विषमता डिजाइन का महत्वपूर्ण पहलू है। किसी सुविधा को डिजाइन करते समय, यह सदैव निश्चित नहीं होता है कि आग लगने की स्थिति में आग किस ओर से आ सकती है। इसलिए, कई [[ निर्माण कोड ]] और अग्नि परीक्षण मानकों की रूपरेखा, कि सममित असेंबली, केवल एक ओर से [[अग्नि परीक्षा]] की आवश्यकता है, क्योंकि दोनों पक्ष समान हैं। चूंकि, जैसे ही असेंबली असममित होती है, दोनों पक्षों का परीक्षण किया जाना चाहिए और प्रत्येक पक्ष के परिणामों को बताने के लिए परीक्षण सूची की आवश्यकता होती है। व्यावहारिक उपयोग में, सबसे कम प्राप्त परिणाम वह होता है जो प्रमाणीकरण सूची में दिखाई देता है। न तो परीक्षण प्रायोजक, और न ही प्रयोगशाला किसी राय या निष्कर्ष से जा सकते हैं कि कौन सा पक्ष सोचे हुए परीक्षण के परिणामस्वरूप अधिक संकट में था और फिर केवल पक्ष का परीक्षण करें। परीक्षण मानकों और बिल्डिंग कोड के अनुरूप होने के लिए दोनों का परीक्षण किया जाना चाहिए।


== गणित में ==
== गणित में ==


''a'' < ''b'' और ''b'' < ''a,'' ऐसा कोई ''a'' और ''b'' नहीं है।<ref>''Introduction to Set Theory'', Third Edition, Revised and Expanded: Hrbacek, Jech.{{Full citation needed|date=October 2014}}<!--missing year, page, publisher, possibly ISBN--></ref> विषमता का यह रूप एक [[असममित संबंध]] है।
''a'' < ''b'' और ''b'' < ''a,'' ऐसा कोई ''a'' और ''b'' नहीं है।<ref>''Introduction to Set Theory'', Third Edition, Revised and Expanded: Hrbacek, Jech.{{Full citation needed|date=October 2014}}<!--missing year, page, publisher, possibly ISBN--></ref> विषमता का यह रूप [[असममित संबंध]] है।


== रसायन विज्ञान में ==
== रसायन विज्ञान में ==


कुछ अणु चिरलिटी (रसायन विज्ञान) हैं; अर्थात्, उन्हें उनकी दर्पण छवि पर आरोपित नहीं किया जा सकता है। अलग-अलग चिरायता वाले रासायनिक रूप से समान अणुओं को एनेंटिओमर कहा जाता है; अभिविन्यास में यह अंतर विभिन्न गुणों को जन्म दे सकता है जिस तरह से वे जैविक प्रणालियों के साथ प्रतिक्रिया करते हैं।
कुछ अणु चिरलिटी (रसायन विज्ञान) हैं; अर्थात्, उन्हें उनकी दर्पण छवि पर आरोपित नहीं किया जा सकता है। अलग-अलग चिरायता वाले रासायनिक रूप से समान अणुओं को एनेंटिओमर कहा जाता है; अभिविन्यास में यह अंतर विभिन्न गुणों को जन्म दे सकता है जिस तरह से वे जैविक प्रणालियों के साथ प्रतिक्रिया करते हैं।
{{Expand section|date=November 2007}}


== भौतिकी में ==
== भौतिकी में ==
Line 66: Line 64:
=== [[ऊष्मप्रवैगिकी]] ===
=== [[ऊष्मप्रवैगिकी]] ===


ऊष्मप्रवैगिकी का मूल गैर-सांख्यिकीय सूत्रीकरण [[एंट्रॉपी (समय का तीर)]] था: इसने प्रमाणित किया कि एक बंद प्रणाली में [[एन्ट्रापी]] केवल समय के साथ बढ़ सकती है। यह दूसरे नियम से लिया गया था (दो में से कोई भी, [[करीब|क्लॉसियस]] 'या [[लॉर्ड केल्विन]] के वाक्य का उपयोग किया जा सकता है क्योंकि वे समकक्ष हैं) और क्लॉसियस' प्रमेय का उपयोग करते हुए ([[कर्सन हुआंग]] देखें {{ISBN|978-0471815181}})। सांख्यिकीय यांत्रिकी का बाद का सिद्धांत, चूंकि, समय में सममित है। चूंकि यह बताता है कि अधिकतम एन्ट्रापी से अत्यधिक नीचे एक प्रणाली के उच्च एन्ट्रापी की ओर विकसित होने की बहुत संभावना है, यह भी बताता है कि इस तरह की प्रणाली के उच्च एन्ट्रापी से विकसित होने की बहुत संभावना है।
ऊष्मप्रवैगिकी का मूल गैर-सांख्यिकीय सूत्रीकरण [[एंट्रॉपी (समय का तीर)]] था: इसने प्रमाणित किया कि बंद प्रणाली में [[एन्ट्रापी]] केवल समय के साथ बढ़ सकती है। यह दूसरे नियम से लिया गया था (दो में से कोई भी, [[करीब|क्लॉसियस]] 'या [[लॉर्ड केल्विन]] के वाक्य का उपयोग किया जा सकता है क्योंकि वे समकक्ष हैं) और क्लॉसियस' प्रमेय का उपयोग करते हुए ([[कर्सन हुआंग]] देखें {{ISBN|978-0471815181}})। सांख्यिकीय यांत्रिकी का बाद का सिद्धांत, चूंकि, समय में सममित है। चूंकि यह बताता है कि अधिकतम एन्ट्रापी से अत्यधिक नीचे प्रणाली के उच्च एन्ट्रापी की ओर विकसित होने की बहुत संभावना है, यह भी बताता है कि इस तरह की प्रणाली के उच्च एन्ट्रापी से विकसित होने की बहुत संभावना है।


=== [[कण भौतिकी]] ===
=== [[कण भौतिकी]] ===
Line 75: Line 73:
{{Main|समता (भौतिकी)}}
{{Main|समता (भौतिकी)}}


1950 के दशक तक, यह माना जाता था कि मौलिक भौतिकी बाएँ-दाएँ सममित थी; अर्थात्, समानता (भौतिकी) के अनुसार परस्पर क्रिया अपरिवर्तनीय थी। यद्यपि समानता [[विद्युत]] चुंबकत्व, कठोर इंटरैक्शन और [[गुरुत्वाकर्षण]] में संरक्षित है, लेकिन अशक्त इंटरैक्शन में इसका उल्लंघन हो जाता है। [[मानक मॉडल]] अशक्त वार्तालाप को [[चिरायता (भौतिकी)]] गेज इंटरैक्शन के रूप में व्यक्त करके समता उल्लंघन को सम्मिलित करता है। कणों के केवल बाएं हाथ के घटक और एंटीपार्टिकल्स के दाएं हाथ के घटक मानक मॉडल में [[कमजोर अंतःक्रिया|अशक्त अंतःक्रिया]]ओं में भाग लेते हैं। कण भौतिकी में समता उल्लंघन का एक परिणाम यह है कि [[न्युट्रीनो]] को केवल बाएं हाथ के कणों (और एंटीन्यूट्रिनो को दाएं हाथ के कणों के रूप में) के रूप में देखा गया है।
1950 के दशक तक, यह माना जाता था कि मौलिक भौतिकी बाएँ-दाएँ सममित थी; अर्थात्, समानता (भौतिकी) के अनुसार परस्पर क्रिया अपरिवर्तनीय थी। यद्यपि समानता [[विद्युत]] चुंबकत्व, कठोर इंटरैक्शन और [[गुरुत्वाकर्षण]] में संरक्षित है, लेकिन अशक्त इंटरैक्शन में इसका उल्लंघन हो जाता है। [[मानक मॉडल]] अशक्त वार्तालाप को [[चिरायता (भौतिकी)]] गेज इंटरैक्शन के रूप में व्यक्त करके समता उल्लंघन को सम्मिलित करता है। कणों के केवल बाएं हाथ के घटक और एंटीपार्टिकल्स के दाएं हाथ के घटक मानक मॉडल में [[कमजोर अंतःक्रिया|अशक्त अंतःक्रिया]]ओं में भाग लेते हैं। कण भौतिकी में समता उल्लंघन का परिणाम यह है कि [[न्युट्रीनो]] को केवल बाएं हाथ के कणों (और एंटीन्यूट्रिनो को दाएं हाथ के कणों के रूप में) के रूप में देखा गया है।


1956-1957 में [[χ en-shi UN GW U|चिएन-शिउंग वू]], ई. एंबलर, आर.डब्ल्यू. हेवर्ड, डी.डी. हॉप्स, और आर.पी. हडसन ने कोबाल्ट-60 के बीटा क्षय में समता संरक्षण का स्पष्ट उल्लंघन पाया। इसके साथ ही, आर.एल. गारविन, [[लियोन लेडरमैन]], और आर. वेनरिच ने एक मौजूदा साइक्लोट्रॉन प्रयोग को संशोधित किया और तुरंत समता उल्लंघन की पुष्टि की।. '''एल. गार्विन, , और आर. वेनरिच ने एक मौजूदा साइक्लोट्रॉन प्रयोग को संशोधित किया और तुरंत समता उल्लंघन की पुष्टि की।'''
1956-1957 में [[χ en-shi UN GW U|चिएन-शिउंग वू]], ई. एंबलर, आर.डब्ल्यू. हेवर्ड, डी.डी. हॉप्स, और आर.पी. हडसन ने कोबाल्ट-60 के बीटा क्षय में समता संरक्षण का स्पष्ट उल्लंघन पाया। इसके साथ ही, आर.एल. गारविन, [[लियोन लेडरमैन]], और आर. वेनरिच ने मौजूदा साइक्लोट्रॉन प्रयोग को संशोधित किया और तुरंत समता उल्लंघन की पुष्टि की।. '''एल. गार्विन, , और आर. वेनरिच ने एक मौजूदा साइक्लोट्रॉन प्रयोग को संशोधित किया और तुरंत समता उल्लंघन की पुष्टि की।'''


==== सीपी उल्लंघन ====
==== सीपी उल्लंघन ====
{{Main|सीपी-उल्लंघन}}
{{Main|सीपी-उल्लंघन}}


1956-57 में समता के उल्लंघन की खोज के बाद, यह माना गया कि समता (P) की संयुक्त समरूपता और एक साथ [[चार्ज संयुग्मन]] (C), जिसे सीपी कहा जाता है, को संरक्षित किया गया था। उदाहरण के लिए, सीपी बाएं हाथ के न्यूट्रिनो को दाएं हाथ के एंटीन्यूट्रिनो में बदल देता है। 1964 में, चूंकि, [[जेम्स क्रोनिन]] और [[वैल फिच]] ने स्पष्ट प्रमाण प्रदान किए कि सीपी समरूपता का भी तटस्थ [[काओन]] के साथ एक प्रयोग में उल्लंघन किया गया था।
1956-57 में समता के उल्लंघन की खोज के बाद, यह माना गया कि समता (P) की संयुक्त समरूपता और एक साथ [[चार्ज संयुग्मन]] (C), जिसे सीपी कहा जाता है, को संरक्षित किया गया था। उदाहरण के लिए, सीपी बाएं हाथ के न्यूट्रिनो को दाएं हाथ के एंटीन्यूट्रिनो में बदल देता है। 1964 में, चूंकि, [[जेम्स क्रोनिन]] और [[वैल फिच]] ने स्पष्ट प्रमाण प्रदान किए कि सीपी समरूपता का भी तटस्थ [[काओन]] के साथ प्रयोग में उल्लंघन किया गया था।


सीपी उल्लंघन प्रारंभिक ब्रह्मांड में बेरोन विषमता की पीढ़ी के लिए आवश्यक नियमों में से एक है।
सीपी उल्लंघन प्रारंभिक ब्रह्मांड में बेरोन विषमता की पीढ़ी के लिए आवश्यक नियमों में से एक है।


एक साथ टी-समरूपता (T) के साथ सीपी समरूपता का संयोजन एक संयुक्त समरूपता उत्पन्न करता है जिसे [[टी समरूपता|सीपीटी समरूपता]] कहा जाता है। [[सीपीटी समरूपता]] को किसी भी [[लोरेंत्ज़ अपरिवर्तनीय]] स्थानीय [[क्वांटम क्षेत्र सिद्धांत]] में [[स्व-आसन्न ऑपरेटर]] [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] के साथ संरक्षित किया जाना चाहिए। 2006 तक, सीपीटी समरूपता का कोई उल्लंघन नहीं देखा गया है।
एक साथ टी-समरूपता (T) के साथ सीपी समरूपता का संयोजन संयुक्त समरूपता उत्पन्न करता है जिसे [[टी समरूपता|सीपीटी समरूपता]] कहा जाता है। [[सीपीटी समरूपता]] को किसी भी [[लोरेंत्ज़ अपरिवर्तनीय]] स्थानीय [[क्वांटम क्षेत्र सिद्धांत]] में [[स्व-आसन्न ऑपरेटर]] [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] के साथ संरक्षित किया जाना चाहिए। 2006 तक, सीपीटी समरूपता का कोई उल्लंघन नहीं देखा गया है।


==== ब्रह्मांड की बेरियन विषमता ====
==== ब्रह्मांड की बेरियन विषमता ====
Line 95: Line 93:
==== [[ समभारिक प्रचक्रण ]] उल्लंघन ====
==== [[ समभारिक प्रचक्रण ]] उल्लंघन ====


आइसोस्पिन अशक्त अंतःक्रियाओं का समरूपता परिवर्तन है। यह अवधारणा पहली बार [[परमाणु भौतिकी]] में [[वर्नर हाइजेनबर्ग]] द्वारा प्रस्तुत की गई थी, जो इस अवलोकन पर आधारित थी कि [[न्यूट्रॉन]] और [[प्रोटॉन]] के द्रव्यमान लगभग समान हैं और यह कि किसी भी जोड़ी के न्यूक्लियंस के बीच कठोर संपर्क की ताकत समान है, तथापि वे प्रोटॉन हों या न्यूट्रॉन। यह समरूपता अधिक मौलिक स्तर पर अप-टाइप और डाउन-टाइप [[क्वार्क]] के बीच समरूपता के रूप में उत्पन्न होती है। कठोर इंटरैक्शन में आइसोस्पिन समरूपता को एक बड़े [[स्वाद समरूपता]] समूह के सबसेट के रूप में माना जा सकता है, जिसमें विभिन्न प्रकार के क्वार्कों के आदान-प्रदान के अनुसार कठोर इंटरैक्शन अपरिवर्तनीय होते हैं। इस योजना में [[अजीब क्वार्क]] को सम्मिलित करने से मेसॉन और बेरोन को वर्गीकृत करने के लिए [[आठ गुना रास्ता (भौतिकी)]] योजना को जन्म मिलता है।
आइसोस्पिन अशक्त अंतःक्रियाओं का समरूपता परिवर्तन है। यह अवधारणा पहली बार [[परमाणु भौतिकी]] में [[वर्नर हाइजेनबर्ग]] द्वारा प्रस्तुत की गई थी, जो इस अवलोकन पर आधारित थी कि [[न्यूट्रॉन]] और [[प्रोटॉन]] के द्रव्यमान लगभग समान हैं और यह कि किसी भी जोड़ी के न्यूक्लियंस के बीच कठोर संपर्क की ताकत समान है, तथापि वे प्रोटॉन हों या न्यूट्रॉन। यह समरूपता अधिक मौलिक स्तर पर अप-टाइप और डाउन-टाइप [[क्वार्क]] के बीच समरूपता के रूप में उत्पन्न होती है। कठोर इंटरैक्शन में आइसोस्पिन समरूपता को बड़े [[स्वाद समरूपता]] समूह के सबसेट के रूप में माना जा सकता है, जिसमें विभिन्न प्रकार के क्वार्कों के आदान-प्रदान के अनुसार कठोर इंटरैक्शन अपरिवर्तनीय होते हैं। इस योजना में [[अजीब क्वार्क]] को सम्मिलित करने से मेसॉन और बेरोन को वर्गीकृत करने के लिए [[आठ गुना रास्ता (भौतिकी)]] योजना को जन्म मिलता है।


आइसोस्पिन का उल्लंघन इस तथ्य से होता है कि ऊपर और नीचे क्वार्क के द्रव्यमान अलग-अलग होते हैं, साथ ही उनके अलग-अलग विद्युत आवेश भी होते हैं। क्योंकि यह उल्लंघन अधिकांश प्रक्रियाओं में केवल एक छोटा प्रभाव है जिसमें [[मजबूत बातचीत|कठोर वार्तालाप]] सम्मिलित है, आइसोस्पिन समरूपता एक उपयोगी गणनात्मक उपकरण बनी हुई है, और इसका उल्लंघन आइसोस्पिन-सममित परिणामों में सुधार का परिचय देता है।
आइसोस्पिन का उल्लंघन इस तथ्य से होता है कि ऊपर और नीचे क्वार्क के द्रव्यमान अलग-अलग होते हैं, साथ ही उनके अलग-अलग विद्युत आवेश भी होते हैं। क्योंकि यह उल्लंघन अधिकांश प्रक्रियाओं में केवल छोटा प्रभाव है जिसमें [[मजबूत बातचीत|कठोर वार्तालाप]] सम्मिलित है, आइसोस्पिन समरूपता उपयोगी गणनात्मक उपकरण बनी हुई है, और इसका उल्लंघन आइसोस्पिन-सममित परिणामों में सुधार का परिचय देता है।


==== [[कोलाइडर]] प्रयोगों में ====
==== [[कोलाइडर]] प्रयोगों में ====


क्योंकि [[कमजोर अंतःक्रिया|अशक्त अंतःक्रिया]]एं समानता का उल्लंघन करती हैं, कोलाइडर प्रक्रियाएं जो अशक्त अंतःक्रियाओं को सम्मिलित कर सकती हैं, सामान्यतः अंतिम-अवस्था कणों के वितरण में विषमता प्रदर्शित करती हैं। ये विषमताएं सामान्यतः कणों और एंटीपार्टिकल्स के बीच या बाएं हाथ और दाएं हाथ के कणों के बीच अंतर के प्रति संवेदनशील होती हैं। इस प्रकार उनका उपयोग अंतःक्रियात्मक शक्ति में अंतर के संवेदनशील माप के रूप में और एक बड़े लेकिन सममित पृष्ठभूमि से एक छोटे असममित संकेत को अलग करने के लिए किया जा सकता है।
क्योंकि [[कमजोर अंतःक्रिया|अशक्त अंतःक्रिया]]एं समानता का उल्लंघन करती हैं, कोलाइडर प्रक्रियाएं जो अशक्त अंतःक्रियाओं को सम्मिलित कर सकती हैं, सामान्यतः अंतिम-अवस्था कणों के वितरण में विषमता प्रदर्शित करती हैं। ये विषमताएं सामान्यतः कणों और एंटीपार्टिकल्स के बीच या बाएं हाथ और दाएं हाथ के कणों के बीच अंतर के प्रति संवेदनशील होती हैं। इस प्रकार उनका उपयोग अंतःक्रियात्मक शक्ति में अंतर के संवेदनशील माप के रूप में और बड़े लेकिन सममित पृष्ठभूमि से छोटे असममित संकेत को अलग करने के लिए किया जा सकता है।
*एक 'आगे-पीछे विषमता' को  A<sub>FB</sub>=(N<sub>F</sub>-N<sub>B</sub>)/(N<sub>F</sub>+N<sub>B</sub>), के रूप में परिभाषित किया गया है'''<sub>FB</sub>=(एन<sub>F</sub>-एन<sub>B</sub>)/(एन<sub>F</sub>+एन<sub>B</sub>)''', जहां N<sub>F</sub> घटनाओं की संख्या है, जिसमें कुछ विशेष अंतिम-अवस्था कण कुछ चुनी हुई दिशा के संबंध में आगे बढ़ रहा है (उदाहरण के लिए, एक अंतिम-अवस्था वाला इलेक्ट्रॉन उसी दिशा में आगे बढ़ रहा है जैसे इलेक्ट्रॉन-पॉज़िट्रॉन टकराव में प्रारंभिक-अवस्था इलेक्ट्रॉन बीम), जबकि N<sub>B</sub> अंतिम-अवस्था कण के पीछे की ओर बढ़ने वाली घटनाओं की संख्या है। [[LEP|एलईपी]] प्रयोगों द्वारा आगे-पीछे असममितता का उपयोग बाएं हाथ और दाएं हाथ के फ़र्मियन के बीच Z बोसॉन की अन्योन्यक्रिया शक्ति में अंतर को मापने के लिए किया गया था, जो [[कमजोर मिश्रण कोण|अशक्त मिश्रण कोण]] का स्पष्ट माप प्रदान करता है।
*'आगे-पीछे विषमता' को  A<sub>FB</sub>=(N<sub>F</sub>-N<sub>B</sub>)/(N<sub>F</sub>+N<sub>B</sub>), के रूप में परिभाषित किया गया है'''<sub>FB</sub>=(एन<sub>F</sub>-एन<sub>B</sub>)/(एन<sub>F</sub>+एन<sub>B</sub>)''', जहां N<sub>F</sub> घटनाओं की संख्या है, जिसमें कुछ विशेष अंतिम-अवस्था कण कुछ चुनी हुई दिशा के संबंध में आगे बढ़ रहा है (उदाहरण के लिए, अंतिम-अवस्था वाला इलेक्ट्रॉन उसी दिशा में आगे बढ़ रहा है जैसे इलेक्ट्रॉन-पॉज़िट्रॉन टकराव में प्रारंभिक-अवस्था इलेक्ट्रॉन बीम), जबकि N<sub>B</sub> अंतिम-अवस्था कण के पीछे की ओर बढ़ने वाली घटनाओं की संख्या है। [[LEP|एलईपी]] प्रयोगों द्वारा आगे-पीछे असममितता का उपयोग बाएं हाथ और दाएं हाथ के फ़र्मियन के बीच Z बोसॉन की अन्योन्यक्रिया शक्ति में अंतर को मापने के लिए किया गया था, जो [[कमजोर मिश्रण कोण|अशक्त मिश्रण कोण]] का स्पष्ट माप प्रदान करता है।
* बाएँ-दाएँ विषमता को A<sub>LR</sub>=(N<sub>L</sub>-N<sub>R</sub>)/(N<sub>L</sub>+N<sub>R</sub>) के रूप में परिभाषित किया गया है , जहां N<sub>L</sub> उन घटनाओं की संख्या है, जिनमें कुछ प्रारंभिक- या अंतिम-अवस्था का कण वाम-ध्रुवीकृत होता है, जबकि N<sub>R</sub> सही-ध्रुवीकृत घटनाओं की संगत संख्या है। Z बोसोन उत्पादन और क्षय में बाएं-दाएं विषमता को [[ स्टैनफोर्ड रैखिक कोलाइडर ]] में बाएं-ध्रुवीकृत के विपरीत दाएं-ध्रुवीकृत प्रारंभिक इलेक्ट्रॉन बीम के साथ प्राप्त घटना दर का उपयोग करके मापा गया था। बाएँ-दाएँ असममितता को अंतिम-अवस्था कणों के ध्रुवीकरण में विषमता के रूप में भी परिभाषित किया जा सकता है जिनके ध्रुवीकरण को मापा जा सकता है; जैसे, [[लेपटन चार्ज]]
* बाएँ-दाएँ विषमता को A<sub>LR</sub>=(N<sub>L</sub>-N<sub>R</sub>)/(N<sub>L</sub>+N<sub>R</sub>) के रूप में परिभाषित किया गया है , जहां N<sub>L</sub> उन घटनाओं की संख्या है, जिनमें कुछ प्रारंभिक- या अंतिम-अवस्था का कण वाम-ध्रुवीकृत होता है, जबकि N<sub>R</sub> सही-ध्रुवीकृत घटनाओं की संगत संख्या है। Z बोसोन उत्पादन और क्षय में बाएं-दाएं विषमता को [[ स्टैनफोर्ड रैखिक कोलाइडर ]] में बाएं-ध्रुवीकृत के विपरीत दाएं-ध्रुवीकृत प्रारंभिक इलेक्ट्रॉन बीम के साथ प्राप्त घटना दर का उपयोग करके मापा गया था। बाएँ-दाएँ असममितता को अंतिम-अवस्था कणों के ध्रुवीकरण में विषमता के रूप में भी परिभाषित किया जा सकता है जिनके ध्रुवीकरण को मापा जा सकता है; जैसे, [[लेपटन चार्ज]]
* आवेश विषमता या कण-प्रतिकण विषमता को इसी प्रकार परिभाषित किया जाता है। इस प्रकार की विषमता का उपयोग [[टेवाट्रॉन]] में प्रोटॉन के [[पार्टन (कण भौतिकी)]] को उन घटनाओं से रोकने के लिए किया गया है जिनमें एक उत्पादित [[डब्ल्यू बोसोन|W बोसोन]] एक आवेशित लेप्टान में क्षय होता है। प्रोटॉन बीम के सापेक्ष W बोसोन की दिशा के कार्य के रूप में सकारात्मक और नकारात्मक रूप से आवेशित लेप्टान के बीच की विषमता प्रोटॉन में उपर और नीचे क्वार्क के सापेक्ष वितरण के बारे में जानकारी प्रदान करती है। [[बाबर प्रयोग]] और [[बेले प्रयोग]] प्रयोगों में [[मेसन]] और एंटी-बी मेसन उत्पादन से सीपी उल्लंघन के माप निकालने के लिए कण-प्रतिपक्षी असममितता का भी उपयोग किया जाता है।
* आवेश विषमता या कण-प्रतिकण विषमता को इसी प्रकार परिभाषित किया जाता है। इस प्रकार की विषमता का उपयोग [[टेवाट्रॉन]] में प्रोटॉन के [[पार्टन (कण भौतिकी)]] को उन घटनाओं से रोकने के लिए किया गया है जिनमें उत्पादित [[डब्ल्यू बोसोन|W बोसोन]] आवेशित लेप्टान में क्षय होता है। प्रोटॉन बीम के सापेक्ष W बोसोन की दिशा के कार्य के रूप में सकारात्मक और नकारात्मक रूप से आवेशित लेप्टान के बीच की विषमता प्रोटॉन में उपर और नीचे क्वार्क के सापेक्ष वितरण के बारे में जानकारी प्रदान करती है। [[बाबर प्रयोग]] और [[बेले प्रयोग]] प्रयोगों में [[मेसन]] और एंटी-बी मेसन उत्पादन से सीपी उल्लंघन के माप निकालने के लिए कण-प्रतिपक्षी असममितता का भी उपयोग किया जाता है।


== शाब्दिक ==
== शाब्दिक ==

Revision as of 12:13, 13 April 2023

विषमता का अभाव है, या समरूपता का उल्लंघन है (किसी वस्तु की संपत्ति परिवर्तन के लिए अपरिवर्तनीय है, जैसे प्रतिबिंब)। समरूपता भौतिक और सार दोनों प्रणालियों की महत्वपूर्ण संपत्ति है और इसे स्पष्ट शब्दों में या अधिक सौंदर्यपूर्ण शब्दों में प्रदर्शित किया जा सकता है। समरूपता की अनुपस्थिति या उल्लंघन जो या तो अपेक्षित या वांछित हैं, प्रणाली के लिए महत्वपूर्ण परिणाम हो सकते हैं।

जीवों में

जीवों में कोशिका (जीव विज्ञान) कैसे विभाजित होती है, इसके कारण जीवों में विषमता कम से कम आयाम में अत्यधिक सामान्य है, समरूपता (जीव विज्ञान) भी कम से कम आयाम में सामान्य है।

लुई पाश्चर ने प्रस्तावित किया कि जैविक अणु असममित हैं क्योंकि लौकिक अर्थात्, भौतिक बल जो उनके गठन की अध्यक्षता करते हैं, वे स्वयं असममित हैं। जबकि उनके समय में, और अब भी, भौतिक प्रक्रियाओं की समरूपता पर प्रकाश डाला गया है, यह ज्ञात है कि मौलिक भौतिक विषमताएँ हैं, जो समय के साथ प्रारंभ होती हैं।

जीव विज्ञान में विषमता

विषमता महत्वपूर्ण और व्यापक विशेषता है, जो कई जीवों में और संगठन के कई स्तरों पर कई बार विकसित हुई है (व्यक्तिगत कोशिकाओं से लेकर, अंगों के माध्यम से, पूरे शरीर-आकृतियों तक)। विषमता के लाभ कभी-कभी उत्तम स्थानिक व्यवस्था के साथ होते हैं, जैसे कि बाएं मानव फेफड़े छोटे होते हैं, और विषम हृदय के लिए जगह बनाने के लिए दाएं फेफड़े की तुलना में एक लोब कम होता है। अन्य उदाहरणों में, दाएं और बाएं आधे हिस्से के बीच कार्य का विभाजन लाभदायक हो सकता है और विषमता को कठोर होने के लिए प्रेरित किया है। इस तरह की व्याख्या सामान्यतः स्तनपायी हाथ या पंजा वरीयता (सौहार्द) के लिए दी जाती है, जो स्तनधारियों में कौशल विकास में विषमता है। हाथ (या पंजा) के कौशल में तंत्रिका मार्गों को प्रशिक्षित करने में दोनों हाथों से ऐसा करने की तुलना में कम प्रयास हो सकता है।[1]

प्रकृति भी स्वभाव के कई उदाहरण प्रदान करती है जो सामान्यतः सममित होते हैं। निम्नलिखित स्पष्ट बाएँ-दाएँ विषमता वाले जानवरों के उदाहरण हैं (जीव विज्ञान) | बाएँ-दाएँ विषमता:

File:Fiddler Crab Gulf Coast.jpg
खराब सारंगी केकड़ा, आक्रामक उल्लू
  • अधिकांश घोंघे, विकास के समय मरोड़ (गैस्ट्रोपोड) के कारण खोल और आंतरिक अंगों में उल्लेखनीय विषमता दिखाते हैं।
  • नर फिडलर केकड़ों का बड़ा पंजा और छोटा पंजा होता है।
  • नाउल का दाँत बायाँ कृंतक होता है जो लंबाई में 10 फीट तक बढ़ सकता है और बाएँ हाथ का कुण्डल बनाता है।
  • चपटी मछली एक ओर ऊपर की ओर तैरने के लिए विकसित हुई है, और इसके परिणामस्वरूप दोनों आंखें उनके सिर के ओर हैं।
  • उल्लू की कई प्रजातियां अपने कानों के आकार और स्थिति में विषमता प्रदर्शित करती हैं, जिसके बारे में माना जाता है कि यह शिकार का पता लगाने में सहायता करती है।
  • कई जानवरों (कीड़ों से लेकर स्तनधारियों तक) में विषम पुरुष जननांग होते हैं। इसके पीछे विकासवादी कारण अधिकतर स्थितियों में अभी भी रहस्य है।[2]


अयोग्यता के संकेतक के रूप में

  • जीव के विकास के समय कुछ गड़बड़ी, जिसके परिणामस्वरूप जन्म दोष होते हैं।
  • कोशिका विभाजन के बाद लगने वाली ऐसी चोटें जिनकी जैविक रूप से पुनर्निर्माण नहीं की जा सकती, जैसे किसी दुर्घटना के कारण अंग (शरीर रचना) का खो जाना।

चूंकि जन्म दोष और चोटें जीव के खराब स्वास्थ्य का संकेत दे सकती हैं, विषमता के परिणामस्वरूप होने वाले दोष अधिकांशतः साथी को खोजने की बात आने पर जानवर को हानि पहुंचाते हैं। उदाहरण के लिए, चेहरे की समरूपता का बड़ा अंश मनुष्यों में अधिक आकर्षक के रूप में देखा जाता है, विशेष रूप से साथी चयन के संदर्भ में देखा जाता है। सामान्य तौर पर, कई प्रजातियों के लिए विकास दर, उर्वरता और उत्तरजीविता जैसे समरूपता और फिटनेस से संबंधित लक्षणों के बीच संबंध होता है। इसका अर्थ है कि, यौन चयन के माध्यम से, अधिक समरूपता (और इसलिए फिटनेस) वाले व्यक्तियों को साथी के रूप में पसंद किया जाता है, क्योंकि वे स्वस्थ संतान उत्पन्न करने की अधिक संभावना रखते हैं।[3]


संरचनाओं में

पूर्व-आधुनिक स्थापत्य शैली में समरूपता पर ध्यान देने की प्रवृत्ति थी, अतिरिक्त इसके कि चरम साइट की स्थिति या ऐतिहासिक विकास इस मौलिक आदर्श से दूर हो गए। इसके विपरीत, आधुनिक वास्तुकला और उत्तर-आधुनिकतावाद आर्किटेक्चर डिजाइन तत्व के रूप में विषमता का उपयोग करने के लिए और अधिक स्वतंत्र हो गया।

जबकि अधिकांश पुल डिजाइन, विश्लेषण और निर्माण की आंतरिक सरलता और सामग्री के लाभदायक उपयोग के कारण सममित रूप का उपयोग करते हैं, कई आधुनिक पुलों ने विचारपूर्वक या तो साइट-विशिष्ट विचारों के उत्तर में या नाटकीय डिजाइन स्टेटमेंट बनाने के लिए इससे प्रस्थान किया है।

कुछ असममित संरचनाएं


अग्नि सुरक्षा में

अग्नि-प्रतिरोध रेटिंग में | अग्नि-प्रतिरोध रेटेड वॉल असेंबली, निष्क्रिय अग्नि सुरक्षा में उपयोग की जाती है, जिसमें उच्च वोल्टेज ट्रांसफार्मर आग बाधायें सम्मिलित हैं, लेकिन यह सीमित नहीं है, विषमता डिजाइन का महत्वपूर्ण पहलू है। किसी सुविधा को डिजाइन करते समय, यह सदैव निश्चित नहीं होता है कि आग लगने की स्थिति में आग किस ओर से आ सकती है। इसलिए, कई निर्माण कोड और अग्नि परीक्षण मानकों की रूपरेखा, कि सममित असेंबली, केवल एक ओर से अग्नि परीक्षा की आवश्यकता है, क्योंकि दोनों पक्ष समान हैं। चूंकि, जैसे ही असेंबली असममित होती है, दोनों पक्षों का परीक्षण किया जाना चाहिए और प्रत्येक पक्ष के परिणामों को बताने के लिए परीक्षण सूची की आवश्यकता होती है। व्यावहारिक उपयोग में, सबसे कम प्राप्त परिणाम वह होता है जो प्रमाणीकरण सूची में दिखाई देता है। न तो परीक्षण प्रायोजक, और न ही प्रयोगशाला किसी राय या निष्कर्ष से जा सकते हैं कि कौन सा पक्ष सोचे हुए परीक्षण के परिणामस्वरूप अधिक संकट में था और फिर केवल पक्ष का परीक्षण करें। परीक्षण मानकों और बिल्डिंग कोड के अनुरूप होने के लिए दोनों का परीक्षण किया जाना चाहिए।

गणित में

a < b और b < a, ऐसा कोई a और b नहीं है।[4] विषमता का यह रूप असममित संबंध है।

रसायन विज्ञान में

कुछ अणु चिरलिटी (रसायन विज्ञान) हैं; अर्थात्, उन्हें उनकी दर्पण छवि पर आरोपित नहीं किया जा सकता है। अलग-अलग चिरायता वाले रासायनिक रूप से समान अणुओं को एनेंटिओमर कहा जाता है; अभिविन्यास में यह अंतर विभिन्न गुणों को जन्म दे सकता है जिस तरह से वे जैविक प्रणालियों के साथ प्रतिक्रिया करते हैं।

भौतिकी में

कई अलग-अलग क्षेत्रों में भौतिकी में विषमता उत्पन्न होती है।

ऊष्मप्रवैगिकी

ऊष्मप्रवैगिकी का मूल गैर-सांख्यिकीय सूत्रीकरण एंट्रॉपी (समय का तीर) था: इसने प्रमाणित किया कि बंद प्रणाली में एन्ट्रापी केवल समय के साथ बढ़ सकती है। यह दूसरे नियम से लिया गया था (दो में से कोई भी, क्लॉसियस 'या लॉर्ड केल्विन के वाक्य का उपयोग किया जा सकता है क्योंकि वे समकक्ष हैं) और क्लॉसियस' प्रमेय का उपयोग करते हुए (कर्सन हुआंग देखें ISBN 978-0471815181)। सांख्यिकीय यांत्रिकी का बाद का सिद्धांत, चूंकि, समय में सममित है। चूंकि यह बताता है कि अधिकतम एन्ट्रापी से अत्यधिक नीचे प्रणाली के उच्च एन्ट्रापी की ओर विकसित होने की बहुत संभावना है, यह भी बताता है कि इस तरह की प्रणाली के उच्च एन्ट्रापी से विकसित होने की बहुत संभावना है।

कण भौतिकी

भौतिकी में समरूपता कण भौतिकी में सबसे शक्तिशाली उपकरणों में से एक है, क्योंकि यह स्पष्ट हो गया है कि व्यावहारिक रूप से प्रकृति के सभी नियम समरूपता में उत्पन्न होते हैं। समरूपता के उल्लंघन इसलिए सैद्धांतिक और प्रायोगिक पहेलियाँ प्रस्तुत करते हैं, जो प्रकृति की गहरी समझ की ओर ले जाती हैं। प्रायोगिक मापन में विषमताएं भी शक्तिशाली हैंडल प्रदान करती हैं, जो अधिकांशतः पृष्ठभूमि या व्यवस्थित अनिश्चितताओं से अपेक्षाकृत मुक्त होती हैं।

समता का उल्लंघन

1950 के दशक तक, यह माना जाता था कि मौलिक भौतिकी बाएँ-दाएँ सममित थी; अर्थात्, समानता (भौतिकी) के अनुसार परस्पर क्रिया अपरिवर्तनीय थी। यद्यपि समानता विद्युत चुंबकत्व, कठोर इंटरैक्शन और गुरुत्वाकर्षण में संरक्षित है, लेकिन अशक्त इंटरैक्शन में इसका उल्लंघन हो जाता है। मानक मॉडल अशक्त वार्तालाप को चिरायता (भौतिकी) गेज इंटरैक्शन के रूप में व्यक्त करके समता उल्लंघन को सम्मिलित करता है। कणों के केवल बाएं हाथ के घटक और एंटीपार्टिकल्स के दाएं हाथ के घटक मानक मॉडल में अशक्त अंतःक्रियाओं में भाग लेते हैं। कण भौतिकी में समता उल्लंघन का परिणाम यह है कि न्युट्रीनो को केवल बाएं हाथ के कणों (और एंटीन्यूट्रिनो को दाएं हाथ के कणों के रूप में) के रूप में देखा गया है।

1956-1957 में चिएन-शिउंग वू, ई. एंबलर, आर.डब्ल्यू. हेवर्ड, डी.डी. हॉप्स, और आर.पी. हडसन ने कोबाल्ट-60 के बीटा क्षय में समता संरक्षण का स्पष्ट उल्लंघन पाया। इसके साथ ही, आर.एल. गारविन, लियोन लेडरमैन, और आर. वेनरिच ने मौजूदा साइक्लोट्रॉन प्रयोग को संशोधित किया और तुरंत समता उल्लंघन की पुष्टि की।. एल. गार्विन, , और आर. वेनरिच ने एक मौजूदा साइक्लोट्रॉन प्रयोग को संशोधित किया और तुरंत समता उल्लंघन की पुष्टि की।

सीपी उल्लंघन

1956-57 में समता के उल्लंघन की खोज के बाद, यह माना गया कि समता (P) की संयुक्त समरूपता और एक साथ चार्ज संयुग्मन (C), जिसे सीपी कहा जाता है, को संरक्षित किया गया था। उदाहरण के लिए, सीपी बाएं हाथ के न्यूट्रिनो को दाएं हाथ के एंटीन्यूट्रिनो में बदल देता है। 1964 में, चूंकि, जेम्स क्रोनिन और वैल फिच ने स्पष्ट प्रमाण प्रदान किए कि सीपी समरूपता का भी तटस्थ काओन के साथ प्रयोग में उल्लंघन किया गया था।

सीपी उल्लंघन प्रारंभिक ब्रह्मांड में बेरोन विषमता की पीढ़ी के लिए आवश्यक नियमों में से एक है।

एक साथ टी-समरूपता (T) के साथ सीपी समरूपता का संयोजन संयुक्त समरूपता उत्पन्न करता है जिसे सीपीटी समरूपता कहा जाता है। सीपीटी समरूपता को किसी भी लोरेंत्ज़ अपरिवर्तनीय स्थानीय क्वांटम क्षेत्र सिद्धांत में स्व-आसन्न ऑपरेटर हैमिल्टनियन (क्वांटम यांत्रिकी) के साथ संरक्षित किया जाना चाहिए। 2006 तक, सीपीटी समरूपता का कोई उल्लंघन नहीं देखा गया है।

ब्रह्मांड की बेरियन विषमता

ब्रह्मांड में अब तक देखे गए बेरोन (अर्थात्, प्रोटॉन और न्यूट्रॉन और उनमें सम्मिलित परमाणु) एंटी-स्थिति के विपरीत भारी मात्रा में पदार्थ हैं। इस विषमता को ब्रह्मांड की बेरोन विषमता कहा जाता है।

समभारिक प्रचक्रण उल्लंघन

आइसोस्पिन अशक्त अंतःक्रियाओं का समरूपता परिवर्तन है। यह अवधारणा पहली बार परमाणु भौतिकी में वर्नर हाइजेनबर्ग द्वारा प्रस्तुत की गई थी, जो इस अवलोकन पर आधारित थी कि न्यूट्रॉन और प्रोटॉन के द्रव्यमान लगभग समान हैं और यह कि किसी भी जोड़ी के न्यूक्लियंस के बीच कठोर संपर्क की ताकत समान है, तथापि वे प्रोटॉन हों या न्यूट्रॉन। यह समरूपता अधिक मौलिक स्तर पर अप-टाइप और डाउन-टाइप क्वार्क के बीच समरूपता के रूप में उत्पन्न होती है। कठोर इंटरैक्शन में आइसोस्पिन समरूपता को बड़े स्वाद समरूपता समूह के सबसेट के रूप में माना जा सकता है, जिसमें विभिन्न प्रकार के क्वार्कों के आदान-प्रदान के अनुसार कठोर इंटरैक्शन अपरिवर्तनीय होते हैं। इस योजना में अजीब क्वार्क को सम्मिलित करने से मेसॉन और बेरोन को वर्गीकृत करने के लिए आठ गुना रास्ता (भौतिकी) योजना को जन्म मिलता है।

आइसोस्पिन का उल्लंघन इस तथ्य से होता है कि ऊपर और नीचे क्वार्क के द्रव्यमान अलग-अलग होते हैं, साथ ही उनके अलग-अलग विद्युत आवेश भी होते हैं। क्योंकि यह उल्लंघन अधिकांश प्रक्रियाओं में केवल छोटा प्रभाव है जिसमें कठोर वार्तालाप सम्मिलित है, आइसोस्पिन समरूपता उपयोगी गणनात्मक उपकरण बनी हुई है, और इसका उल्लंघन आइसोस्पिन-सममित परिणामों में सुधार का परिचय देता है।

कोलाइडर प्रयोगों में

क्योंकि अशक्त अंतःक्रियाएं समानता का उल्लंघन करती हैं, कोलाइडर प्रक्रियाएं जो अशक्त अंतःक्रियाओं को सम्मिलित कर सकती हैं, सामान्यतः अंतिम-अवस्था कणों के वितरण में विषमता प्रदर्शित करती हैं। ये विषमताएं सामान्यतः कणों और एंटीपार्टिकल्स के बीच या बाएं हाथ और दाएं हाथ के कणों के बीच अंतर के प्रति संवेदनशील होती हैं। इस प्रकार उनका उपयोग अंतःक्रियात्मक शक्ति में अंतर के संवेदनशील माप के रूप में और बड़े लेकिन सममित पृष्ठभूमि से छोटे असममित संकेत को अलग करने के लिए किया जा सकता है।

  • 'आगे-पीछे विषमता' को AFB=(NF-NB)/(NF+NB), के रूप में परिभाषित किया गया हैFB=(एनF-एनB)/(एनF+एनB), जहां NF घटनाओं की संख्या है, जिसमें कुछ विशेष अंतिम-अवस्था कण कुछ चुनी हुई दिशा के संबंध में आगे बढ़ रहा है (उदाहरण के लिए, अंतिम-अवस्था वाला इलेक्ट्रॉन उसी दिशा में आगे बढ़ रहा है जैसे इलेक्ट्रॉन-पॉज़िट्रॉन टकराव में प्रारंभिक-अवस्था इलेक्ट्रॉन बीम), जबकि NB अंतिम-अवस्था कण के पीछे की ओर बढ़ने वाली घटनाओं की संख्या है। एलईपी प्रयोगों द्वारा आगे-पीछे असममितता का उपयोग बाएं हाथ और दाएं हाथ के फ़र्मियन के बीच Z बोसॉन की अन्योन्यक्रिया शक्ति में अंतर को मापने के लिए किया गया था, जो अशक्त मिश्रण कोण का स्पष्ट माप प्रदान करता है।
  • बाएँ-दाएँ विषमता को ALR=(NL-NR)/(NL+NR) के रूप में परिभाषित किया गया है , जहां NL उन घटनाओं की संख्या है, जिनमें कुछ प्रारंभिक- या अंतिम-अवस्था का कण वाम-ध्रुवीकृत होता है, जबकि NR सही-ध्रुवीकृत घटनाओं की संगत संख्या है। Z बोसोन उत्पादन और क्षय में बाएं-दाएं विषमता को स्टैनफोर्ड रैखिक कोलाइडर में बाएं-ध्रुवीकृत के विपरीत दाएं-ध्रुवीकृत प्रारंभिक इलेक्ट्रॉन बीम के साथ प्राप्त घटना दर का उपयोग करके मापा गया था। बाएँ-दाएँ असममितता को अंतिम-अवस्था कणों के ध्रुवीकरण में विषमता के रूप में भी परिभाषित किया जा सकता है जिनके ध्रुवीकरण को मापा जा सकता है; जैसे, लेपटन चार्ज
  • आवेश विषमता या कण-प्रतिकण विषमता को इसी प्रकार परिभाषित किया जाता है। इस प्रकार की विषमता का उपयोग टेवाट्रॉन में प्रोटॉन के पार्टन (कण भौतिकी) को उन घटनाओं से रोकने के लिए किया गया है जिनमें उत्पादित W बोसोन आवेशित लेप्टान में क्षय होता है। प्रोटॉन बीम के सापेक्ष W बोसोन की दिशा के कार्य के रूप में सकारात्मक और नकारात्मक रूप से आवेशित लेप्टान के बीच की विषमता प्रोटॉन में उपर और नीचे क्वार्क के सापेक्ष वितरण के बारे में जानकारी प्रदान करती है। बाबर प्रयोग और बेले प्रयोग प्रयोगों में मेसन और एंटी-बी मेसन उत्पादन से सीपी उल्लंघन के माप निकालने के लिए कण-प्रतिपक्षी असममितता का भी उपयोग किया जाता है।

शाब्दिक

विषमता व्याकरण और भाषाविज्ञान के लिए भी प्रासंगिक है, विशेष रूप से शाब्दिक विश्लेषण और परिवर्तनकारी व्याकरण के संदर्भ में।

गणना उदाहरण:

अंग्रेजी भाषा में, गणना या श्रृंखला में समन्वयित वस्तुओं को निर्दिष्ट करने के लिए व्याकरणिक नियम हैं। प्रोग्रामिंग भाषाओं और गणितीय संकेतन के लिए समान नियम उपलब्ध हैं। ये नियम भिन्न होते हैं, और कुछ को व्याकरणिक रूप से सही माने जाने के लिए शाब्दिक विषमता की आवश्यकता होती है।

उदाहरण के लिए, मानक लिखित अंग्रेजी में:

 We sell domesticated cats, dogs, and goldfish.        ### in-line asymmetric and grammatical
   We sell domesticated animals (cats, dogs, goldfish).  ### in-line symmetric and grammatical
   We sell domesticated animals (cats, dogs, goldfish,). ### in-line symmetric and ungrammatical
   We sell domesticated animals:                         ### outline symmetric and grammatical
     - cats
     - dogs
     - goldfish


यह भी देखें

संदर्भ

  1. Baofu, Peter (19 Mar 2009). The Future of Post-Human Geometry: A Preface to a New Theory of Infinity, Symmetry, and Dimensionality. p. 149. ISBN 978-1-4438-0524-7.
  2. Schilthuizen, Menno (2013). "Something gone awry: unsolved mysteries in the evolution of asymmetric animal genitalia". Animal Biology. 63 (1): 1–20. doi:10.1163/15707563-00002398.
  3. Little, Anthony C.; Jones, Benedict C.; DeBruine, Lisa M. (2011-06-12). "Facial attractiveness: evolutionary based research". Philosophical Transactions of the Royal Society B: Biological Sciences. 366 (1571): 1638–1659. doi:10.1098/rstb.2010.0404. ISSN 0962-8436. PMC 3130383. PMID 21536551.
  4. Introduction to Set Theory, Third Edition, Revised and Expanded: Hrbacek, Jech.[full citation needed]


अग्रिम पठन