द्विक लोलक: Difference between revisions

From Vigyanwiki
Line 25: Line 25:
  & = \tfrac{1}{2} m \left ( {\dot x_1}^2 + {\dot y_1}^2 + {\dot x_2}^2 + {\dot y_2}^2 \right ) + \tfrac{1}{2} I \left ( {\dot \theta_1}^2 + {\dot \theta_2}^2 \right ) - m g \left ( y_1 + y_2 \right ) \end{align}
  & = \tfrac{1}{2} m \left ( {\dot x_1}^2 + {\dot y_1}^2 + {\dot x_2}^2 + {\dot y_2}^2 \right ) + \tfrac{1}{2} I \left ( {\dot \theta_1}^2 + {\dot \theta_2}^2 \right ) - m g \left ( y_1 + y_2 \right ) \end{align}
</math>
</math>
पहला शब्द पिंडों के द्रव्यमान केन्द्र की रैखिक [[गतिज ऊर्जा]] है और दूसरा शब्द प्रत्येक छड़ के द्रव्यमान केन्द्र के चारों ओर घूर्णी गतिज ऊर्जा है। अंतिम शब्द समान गुरुत्वाकर्षण क्षेत्र में पिंडों की [[संभावित ऊर्जा]] है। न्यूटन का अंकन|डॉट-नोटेशन प्रश्न में चर के [[समय व्युत्पन्न]] को इंगित करता है।
पहला शब्द पिंडों के द्रव्यमान केन्द्र की रैखिक [[गतिज ऊर्जा]] है और दूसरा शब्द प्रत्येक छड़ के द्रव्यमान केन्द्र के चारों ओर घूर्णी गतिज ऊर्जा है। अंतिम शब्द समान गुरुत्वाकर्षण क्षेत्र में पिंडों की [[संभावित ऊर्जा]] है। न्यूटन का डॉट-नोटेशन प्रश्न में चर के [[समय व्युत्पन्न]] को इंगित करता है।


उपरोक्त निर्देशांकों को प्रतिस्थापित करने और समीकरण को पुनर्व्यवस्थित करने पर प्राप्त होता है
उपरोक्त निर्देशांकों को प्रतिस्थापित करने और समीकरण को पुनर्व्यवस्थित करने पर प्राप्त होता है।
:<math>
:<math>
L = \tfrac{1}{6} m l^2 \left ( {\dot \theta_2}^2 + 4 {\dot \theta_1}^2 + 3 {\dot \theta_1} {\dot \theta_2} \cos (\theta_1-\theta_2) \right ) + \tfrac{1}{2} m g l \left ( 3 \cos \theta_1 + \cos \theta_2 \right ).
L = \tfrac{1}{6} m l^2 \left ( {\dot \theta_2}^2 + 4 {\dot \theta_1}^2 + 3 {\dot \theta_1} {\dot \theta_2} \cos (\theta_1-\theta_2) \right ) + \tfrac{1}{2} m g l \left ( 3 \cos \theta_1 + \cos \theta_2 \right ).
Line 37: Line 37:
p_{\theta_2} &= \frac{\partial L}{\partial {\dot \theta_2}} = \tfrac{1}{6} m l^2 \left ( 2 {\dot \theta_2} + 3 {\dot \theta_1} \cos (\theta_1-\theta_2) \right ).
p_{\theta_2} &= \frac{\partial L}{\partial {\dot \theta_2}} = \tfrac{1}{6} m l^2 \left ( 2 {\dot \theta_2} + 3 {\dot \theta_1} \cos (\theta_1-\theta_2) \right ).
\end{align}</math>
\end{align}</math>
ये भाव उल्टे हो सकते हैं मैट्रिक्स#Inversion_of_2_.C3.97_2_matrices प्राप्त करने के लिए
इन व्यंजक को प्राप्त करने के लिए व्युत्क्रमित किया जा सकता है


:<math>\begin{align}
:<math>\begin{align}
Line 49: Line 49:
{\dot p_{\theta_2}} &= \frac{\partial L}{\partial \theta_2} = -\tfrac{1}{2} m l^2 \left ( -{\dot \theta_1} {\dot \theta_2} \sin (\theta_1-\theta_2) + \frac{g}{l} \sin \theta_2 \right ).
{\dot p_{\theta_2}} &= \frac{\partial L}{\partial \theta_2} = -\tfrac{1}{2} m l^2 \left ( -{\dot \theta_1} {\dot \theta_2} \sin (\theta_1-\theta_2) + \frac{g}{l} \sin \theta_2 \right ).
\end{align}</math>
\end{align}</math>
ये अंतिम चार समीकरण मौजूदा स्थिति को देखते हुए प्रणाली के समय के विकास के लिए स्पष्ट सूत्र हैं। यह संभव नहीं है{{Citation needed|date=September 2020}} आगे जाकर इन समीकरणों को बंद रूप में एक अभिव्यक्ति में एकीकृत करने के लिए सूत्र प्राप्त करने के लिए {{math|''θ''<sub>1</sub>}} और {{math|''θ''<sub>2</sub>}} समय के कार्यों के रूप में। हालांकि, रनगे-कुट्टा विधियों या इसी तरह की तकनीकों का उपयोग करके इस एकीकरण को संख्यात्मक रूप से निष्पादित करना संभव है।
ये अंतिम चार समीकरण मौजूदा स्थिति को देखते हुए प्रणाली के समय के विकास के लिए स्पष्ट सूत्र हैं। समय के कार्यों के रूप में {{math|''θ''<sub>1</sub>}} और {{math|''θ''<sub>2</sub>}} के सूत्र प्राप्त करने के लिए, आगे जाकर इन समीकरणों को बंद रूप में एक अभिव्यक्ति में एकीकृत करना संभव नहीं है। हालांकि, रनगे-कुट्टा विधियों या इसी तरह की तकनीकों का उपयोग करके इस एकीकरण को संख्यात्मक रूप से निष्पादित करना संभव है।


== अराजकता गति ==
== अराजकता गति ==

Revision as of 17:13, 31 March 2023

File:Double-Pendulum.svg
एक डबल लंगर में दो पेंडुलम होते हैं जो एक सिरे से दूसरे सिरे तक जुड़े होते हैं।

भौतिकी और गणित में, गतिकीय तन्त्र के क्षेत्र में, डबल पेंडुलम जिसे अराजकता पेंडुलम के रूप में भी जाना जाता है, एक पेंडुलम होता है जिसके अंत में एक और पेंडुलम जुड़ा होता है, जो सरल भौतिक प्रणाली बनाता है जो प्रारंभिक स्थितियों के लिए एक मजबूत संवेदनशीलता के साथ समृद्ध गतिकीय तन्त्र को प्रदर्शित करता है।[1] डबल पेंडुलम की गति युग्मित साधारण अंतर समीकरण के सेट द्वारा नियंत्रित होती है और अराजकता सिद्धांत है।

विश्लेषण और व्याख्या

डबल पेंडुलम के कई रूपों पर विचार किया जा सकता है; दो फलक समान या असमान लंबाई और द्रव्यमान के हो सकते हैं, वे साधारण पेंडुलम या मिश्रित पेंडुलम (जिन्हें सरल पेंडुलम भी कहा जाता है) हो सकते हैं और गति तीन आयामों में हो सकती है या ऊर्ध्वाधर तल तक सीमित हो सकती है। निम्नलिखित विश्लेषण में, फलक को लंबाई l और द्रव्यमान m के समान मिश्रित पेंडुलम के रूप में लिया जाता है और गति दो आयामों तक सीमित है।

Error creating thumbnail:
डबल यौगिक पेंडुलम
Error creating thumbnail:
दोहरे यौगिक लोलक की गति (गति के समीकरणों के संख्यात्मक एकीकरण से)

मिश्रित पेंडुलम में, द्रव्यमान उसकी लंबाई के अनुदिश वितरित होता है। यदि द्रव्यमान समान रूप से वितरित किया जाता है, तो प्रत्येक फलक के द्रव्यमान का केंद्र उसके मध्य बिंदु पर होता है, और फलक का जड़त्वाघूर्ण उस बिंदु के बारे में I = 1/12ml2 होता है।

प्रणाली के विन्यास स्थान (भौतिकी) को परिभाषित करने वाले सामान्यीकृत निर्देशांक के रूप में प्रत्येक फलक और ऊर्ध्वाधर के बीच के कोणों का उपयोग करना सुविधाजनक है। इन कोणों को θ1 और θ2 द्वारा निरूपित किया जाता है। प्रत्येक छड़ के द्रव्यमान केन्द्र की स्थिति को इन दो निर्देशांकों के पदों में लिखा जा सकता है। यदि कार्तीय निर्देशांक तंत्र का उद्गम प्रथम लोलक के निलंबन के बिंदु पर लिया जाता है, तो इस लोलक का द्रव्यमान केंद्र है:

तथा दूसरे लोलक का द्रव्यमान केन्द्र पर है

लग्रंगियन को लिखने के लिए यह पर्याप्त जानकारी है।

लग्रंगियन

लग्रंगियन यांत्रिकी है

पहला शब्द पिंडों के द्रव्यमान केन्द्र की रैखिक गतिज ऊर्जा है और दूसरा शब्द प्रत्येक छड़ के द्रव्यमान केन्द्र के चारों ओर घूर्णी गतिज ऊर्जा है। अंतिम शब्द समान गुरुत्वाकर्षण क्षेत्र में पिंडों की संभावित ऊर्जा है। न्यूटन का डॉट-नोटेशन प्रश्न में चर के समय व्युत्पन्न को इंगित करता है।

उपरोक्त निर्देशांकों को प्रतिस्थापित करने और समीकरण को पुनर्व्यवस्थित करने पर प्राप्त होता है।

केवल एक संरक्षित मात्रा (ऊर्जा) है, और कोई संरक्षित संवेग नहीं है। दो सामान्यीकृत गति के रूप में लिखा जा सकता है

इन व्यंजक को प्राप्त करने के लिए व्युत्क्रमित किया जा सकता है

गति के शेष समीकरणों को इस प्रकार लिखा जाता है

ये अंतिम चार समीकरण मौजूदा स्थिति को देखते हुए प्रणाली के समय के विकास के लिए स्पष्ट सूत्र हैं। समय के कार्यों के रूप में θ1 और θ2 के सूत्र प्राप्त करने के लिए, आगे जाकर इन समीकरणों को बंद रूप में एक अभिव्यक्ति में एकीकृत करना संभव नहीं है। हालांकि, रनगे-कुट्टा विधियों या इसी तरह की तकनीकों का उपयोग करके इस एकीकरण को संख्यात्मक रूप से निष्पादित करना संभव है।

अराजकता गति

File:Double pendulum flip time 2021.png
प्रारंभिक स्थितियों के कार्य के रूप में पेंडुलम के पलटने के समय का ग्राफ
File:DPLE.jpg
अराजकता गति प्रदर्शित करने वाले दोहरे पेंडुलम का लंबा प्रदर्शन (एलईडी के साथ ट्रैक किया गया)

डबल पेंडुलम अराजकता गति से गुजरता है, और प्रारंभिक स्थितियों पर संवेदनशील निर्भरता दिखाता है। दाईं ओर की छवि पेंडुलम के पलटने से पहले बीता हुआ समय दिखाती है, जब आराम से छोड़ा जाता है तो प्रारंभिक स्थिति के कार्य के रूप में। यहाँ, का प्रारंभिक मूल्य θ1 के साथ पर्वतमाला है x-दिशा -3.14 से 3.14 तक। प्रारंभिक मान θ2 के साथ पर्वतमाला है y-दिशा, -3.14 से 3.14 तक। प्रत्येक पिक्सेल का रंग इंगित करता है कि क्या कोई पेंडुलम भीतर फ़्लिप करता है:

  • (काला)
  • (लाल)
  • (हरा)
  • (नीला) या
  • (बैंगनी)।
File:Demonstrating Chaos with a Double Pendulum.gif
लगभग समान प्रारंभिक स्थितियों के साथ तीन डबल पेंडुलम प्रणाली की अराजकता प्रकृति को प्रदर्शित करते हुए समय के साथ अलग हो जाते हैं।

प्रारंभिक स्थितियाँ जो भीतर एक फ्लिप की ओर नहीं ले जाती हैं सफेद प्लॉट किए गए हैं।

केंद्रीय सफेद क्षेत्र की सीमा को निम्नलिखित वक्र के साथ ऊर्जा संरक्षण द्वारा परिभाषित किया गया है:

इस वक्र द्वारा परिभाषित क्षेत्र के भीतर, अर्थात यदि

तब किसी भी पेंडुलम के लिए फ्लिप करना ऊर्जावान रूप से असंभव है। इस क्षेत्र के बाहर, पेंडुलम फ़्लिप कर सकता है, लेकिन यह निर्धारित करना एक जटिल प्रश्न है कि यह कब फ़्लिप करेगा। वितरित द्रव्यमान के साथ दो छड़ों के बजाय दो बिंदु द्रव्यमानों से बने दोहरे पेंडुलम के लिए समान व्यवहार देखा जाता है।[2] एक प्राकृतिक उत्तेजना आवृत्ति की कमी ने इमारतों में ट्यून्ड मास डैम्पर का उपयोग किया है, जहां इमारत ही प्राथमिक उलटा पेंडुलम है, और डबल पेंडुलम को पूरा करने के लिए एक माध्यमिक द्रव्यमान जुड़ा हुआ है।

यह भी देखें

टिप्पणियाँ

  1. Levien, R. B.; Tan, S. M. (1993). "Double Pendulum: An experiment in chaos". American Journal of Physics. 61 (11): 1038. Bibcode:1993AmJPh..61.1038L. doi:10.1119/1.17335.
  2. Alex Small, Sample Final Project: One Signature of Chaos in the Double Pendulum, (2013). A report produced as an example for students. Includes a derivation of the equations of motion, and a comparison between the double pendulum with 2 point masses and the double pendulum with 2 rods.


संदर्भ


बाहरी संबंध