मार्टेंसाईट: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
[[Image:Martensite.jpg|thumb|200px|AISI 4140 स्टील में मार्टेंसाइट]]
[[Image:Martensite.jpg|thumb|200px|AISI 4140 स्टील में मार्टेंसाइट]]
[[Image:Steel 035 water quenched.png|thumb|200px|0.35% कार्बन स्टील, 870 डिग्री सेल्सियस से पानी से बुझाया गया]]
[[Image:Steel 035 water quenched.png|thumb|200px|0.35% कार्बन स्टील, 870 डिग्री सेल्सियस से पानी से बुझाया गया]]




Line 19: Line 20:
0-0.6% कार्बन वाले स्टील के लिए, मार्टेंसाइट में लथ का रूप होता है और इसे लैथ मार्टेंसाइट कहा जाता है। 1% से अधिक कार्बन वाले स्टील के लिए, यह प्लेट जैसी संरचना का निर्माण करेगा जिसे प्लेट मार्टेंसाइट कहा जाता है। उन दो प्रतिशत के बीच, अनाज की भौतिक उपस्थिति दोनों का मिश्रण है। मार्टेंसाइट की ताकत कम हो जाती है क्योंकि बरकरार ऑस्टेनाइट की मात्रा बढ़ जाती है। यदि शीतलन दर महत्वपूर्ण शीतलन दर की तुलना में धीमी है, तो कुछ मात्रा में पर्लाइट बनेगा, अनाज की सीमाओं से शुरू होकर एमएस तापमान तक पहुंचने तक अनाज में बढ़ेगा, फिर शेष ऑस्टेनाइट लगभग आधी गति से मार्टेंसाइट में बदल जाता है। स्टील में ध्वनि की।   
0-0.6% कार्बन वाले स्टील के लिए, मार्टेंसाइट में लथ का रूप होता है और इसे लैथ मार्टेंसाइट कहा जाता है। 1% से अधिक कार्बन वाले स्टील के लिए, यह प्लेट जैसी संरचना का निर्माण करेगा जिसे प्लेट मार्टेंसाइट कहा जाता है। उन दो प्रतिशत के बीच, अनाज की भौतिक उपस्थिति दोनों का मिश्रण है। मार्टेंसाइट की ताकत कम हो जाती है क्योंकि बरकरार ऑस्टेनाइट की मात्रा बढ़ जाती है। यदि शीतलन दर महत्वपूर्ण शीतलन दर की तुलना में धीमी है, तो कुछ मात्रा में पर्लाइट बनेगा, अनाज की सीमाओं से शुरू होकर एमएस तापमान तक पहुंचने तक अनाज में बढ़ेगा, फिर शेष ऑस्टेनाइट लगभग आधी गति से मार्टेंसाइट में बदल जाता है। स्टील में ध्वनि की।   


कुछ मिश्र धातु इस्पात में, स्टील को एम पर काम करके मार्टेंसाइट बनाया जा सकता है<sub>s</sub> एम से नीचे शमन करके तापमान<sub>s</sub> और फिर मूल के 20% से 40% के बीच क्रॉस सेक्शन क्षेत्र को कम करने के लिए प्लास्टिक विरूपण द्वारा काम करना। प्रक्रिया 10 तक अव्यवस्था घनत्व पैदा करती है<sup>13</sup>/सेमी<sup>2</sup>अव्यवस्थाओं की बड़ी संख्या, अवक्षेपों के साथ मिलकर, जो जगह-जगह अव्यवस्थाओं की उत्पत्ति और पिन करती है, एक बहुत कठोर स्टील का उत्पादन करती है। इस संपत्ति का उपयोग अक्सर कड़े सिरेमिक जैसे कि [[येट्रिया-स्थिर जिरकोनिया]] और विशेष स्टील्स जैसे टीआरआईपी स्टील्स में किया जाता है। इस प्रकार, मार्टेंसाइट तापीय रूप से प्रेरित या तनाव प्रेरित हो सकता है।<ref name="A.Q. Khan, University of Leuven, Belgium" /><ref name="Verhoeven">{{cite book|last=Verhoeven|first=John D.|title=गैर-धातुकर्मवादी के लिए इस्पात धातुकर्म|year=2007|publisher=American Society for Metals|isbn=9780871708588|pages=26–31}}</ref>
कुछ मिश्र धातु इस्पात में मार्टेंससाइट का निर्माण एमएस तापमान पर एमएस से नीचे तक शमन करके और उसके बाद मूल के 20% से 40% के बीच क्रॉस सेक्शन क्षेत्र को कम करने के लिए प्लास्टिक की विकृतियों के द्वारा एमएस तापमान पर इस्पात की प्रक्रिया द्वारा किया जा सकता है। इस प्रक्रिया में अव्यवस्था के घनत्व 10<sup>13</sup>/cm<sup>2</sup> तक हो जाते हैं। अव्यवस्थाओं की बड़ी संख्या, अवक्षेपों के साथ मिलकर, जो जगह-जगह अव्यवस्थाओं की उत्पत्ति और पिन करती है, एक बहुत कठोर स्टील का उत्पादन करती है। इस संपत्ति का उपयोग अक्सर कड़े सिरेमिक जैसे कि [[येट्रिया-स्टेबलाइज्ड जिरकोनिया]] और विशेष स्टील्स जैसे टीआरआईपी स्टील्स में किया जाता है। इस प्रकार, मार्टेंसाइट तापीय रूप से प्रेरित या तनाव प्रेरित हो सकता है।<ref name="A.Q. Khan, University of Leuven, Belgium" /><ref name="Verhoeven">{{cite book|last=Verhoeven|first=John D.|title=गैर-धातुकर्मवादी के लिए इस्पात धातुकर्म|year=2007|publisher=American Society for Metals|isbn=9780871708588|pages=26–31}}</ref>  
मार्टेंसाइट चरण के विकास के लिए बहुत कम तापीय [[सक्रियण ऊर्जा]] की आवश्यकता होती है क्योंकि प्रक्रिया एक प्रसार रहित परिवर्तन है, जिसके परिणामस्वरूप परमाणु स्थितियों की सूक्ष्म लेकिन तेजी से पुनर्व्यवस्था होती है, और [[क्रायोजेनिक्स]] तापमान पर भी होने के लिए जाना जाता है।<ref name="A.Q. Khan, University of Leuven, Belgium" />मार्टेंसाइट में ऑस्टेनाइट की तुलना में कम घनत्व होता है, जिससे कि मार्टेंसिटिक परिवर्तन के परिणामस्वरूप मात्रा में सापेक्ष परिवर्तन होता है।<ref name="EM2">{{cite book|last=Ashby|first=Michael F.|author-link=M. F. Ashby|author2=David R. H. Jones|title=Engineering Materials 2 |orig-year=1986|edition=with corrections|year=1992|publisher=Pergamon Press|location=Oxford|isbn=0-08-032532-7}}</ref> आयतन परिवर्तन की तुलना में काफी अधिक महत्व विकृति (भौतिकी) का है, जिसका परिमाण लगभग 0.26 है और जो मार्टेंसाइट की प्लेटों के आकार को निर्धारित करता है।<ref name="EM3">{{cite book|last=Bhadeshia|first=H. K. D. H.|author-link=Harry Bhadeshia|title=क्रिस्टल की ज्यामिति|orig-year=2001|edition=with corrections|year=2001|publisher=Institute of Materials|location=London|isbn=0-904357-94-5}}</ref>
 
लौह-कार्बन प्रणाली के संतुलन [[चरण आरेख]] में मार्टेंसाइट नहीं दिखाया गया है क्योंकि यह एक संतुलन चरण नहीं है। संतुलन चरण धीमी शीतलन दर से बनते हैं जो प्रसार के लिए पर्याप्त समय की अनुमति देते हैं, जबकि मार्टेंसाइट आमतौर पर बहुत अधिक शीतलन दर से बनता है। चूंकि रासायनिक प्रक्रियाएं (संतुलन की प्राप्ति) उच्च तापमान पर तेज होती हैं, इसलिए गर्मी के प्रयोग से मार्टेंसाइट आसानी से नष्ट हो जाता है। इस प्रक्रिया को टेम्परिंग (धातुकर्म) कहा जाता है। कुछ मिश्रधातुओं में, [[टंगस्टन]] जैसे तत्वों को जोड़कर प्रभाव को कम किया जाता है जो सीमेंटाइट न्यूक्लिएशन में हस्तक्षेप करते हैं, लेकिन अधिक बार नहीं, न्यूक्लिएशन को तनाव दूर करने के लिए आगे बढ़ने की अनुमति दी जाती है। चूंकि शमन को नियंत्रित करना मुश्किल हो सकता है, कई स्टील्स को मार्टेंसाइट की अधिकता पैदा करने के लिए बुझाया जाता है, फिर धीरे-धीरे इसकी एकाग्रता को कम करने के लिए टेम्पर्ड किया जाता है जब तक कि वांछित आवेदन के लिए पसंदीदा संरचना प्राप्त नहीं हो जाती। मार्टेंसाइट की सुई जैसी सूक्ष्म संरचना सामग्री के भंगुर व्यवहार की ओर ले जाती है। बहुत अधिक मार्टेंसाइट स्टील [[भंगुरता]] छोड़ देता है; बहुत कम इसे नरम छोड़ देता है।  
मार्टेनसाइट चरण के विकास के लिए बहुत कम तापीय [[सक्रियता ऊर्जा]] की आवश्यकता होती है क्योंकि यह प्रक्रिया एक विसारक रूपांतरण है जिसके परिणामस्वरूप परमाणु स्थितियों की सूक्ष्म लेकिन तीव्र पुनर्व्यवस्था होती है और [[क्रायोजेनिक]] तापमान पर भी पाई जाती है।<ref name="A.Q. Khan, University of Leuven, Belgium" /> मार्टेनसाइट का घनत्व ऑस्टैनाइट की तुलना में कम होता है, जिससे ज्ञात रूपांतरण के परिणामस्वरूप आयतन में सापेक्ष परिवर्तन होता है।<ref name="EM2">{{cite book|last=Ashby|first=Michael F.|author-link=M. F. Ashby|author2=David R. H. Jones|title=Engineering Materials 2 |orig-year=1986|edition=with corrections|year=1992|publisher=Pergamon Press|location=Oxford|isbn=0-08-032532-7}}</ref> आयतन परिवर्तन की अपेक्षा इस कतरनी किस्म का कहीं अधिक महत्व है जिसका आकार लगभग 0.26 होता है और जो मार्टिनेज की प्लेटों का आकार निर्धारित करती है।<ref name="EM3">{{cite book|last=Bhadeshia|first=H. K. D. H.|author-link=Harry Bhadeshia|title=क्रिस्टल की ज्यामिति|orig-year=2001|edition=with corrections|year=2001|publisher=Institute of Materials|location=London|isbn=0-904357-94-5}}</ref>
 
मार्टिनेसाइट आयरन-कार्बन तंत्र के संतुलन प्रावस्था आरेख में नहीं दिखाया गया है क्योंकि यह एक संतुलन चरण नहीं है। संतुलन प्रावस्था धीमी शीतलन दर द्वारा निर्मित होती है जो विसरण के लिए पर्याप्त समय प्रदान करती है जबकि मार्टेनसाइट सामान्यतः बहुत उच्च शीतलन दर द्वारा निर्मित होती है। चूंकि रासायनिक प्रक्रियाएं (संतुलन की प्राप्ति) उच्च तापमान पर जल्दी बढ़ जाती हैं अतः मार्टेनसाइट को ऊष्मा के प्रयोग द्वारा आसानी से नष्ट कर दिया जाता है। इस प्रक्रिया को टेम्परिंग कहा जाता है। कुछ मिश्र धातुओं में टंगस्टन जैसे तत्वों को जोड़कर प्रभाव कम किया जाता है, जो सैमेटाइट न्यूक्लेएशन में बाधा डालते हैं, लेकिन अधिकतर नहीं, न्यूक्लेएशन को तनाव कम करने के लिए आगे बढ़ने दिया जाता है। चूंकि शमन को नियंत्रित करना मुश्किल हो सकता है, कई स्टील्स को मार्टिनेसाइट की अधिकता पैदा करने के लिए बुझाया जाता है, फिर धीरे-धीरे इसकी एकाग्रता को कम करने के लिए टेम्पर्ड किया जाता है जब तक कि वांछित आवेदन के लिए पसंदीदा संरचना प्राप्त नहीं हो जाती। मार्टिनेसाइट की सुई जैसी सूक्ष्म संरचना सामग्री के भंगुर व्यवहार की ओर ले जाती है। बहुत अधिक मार्टिनेसाइट स्टील भंगुर छोड़ देता है; बहुत कम इसे नरम छोड़ देता है।    


[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]

Revision as of 16:49, 27 March 2023

AISI 4140 स्टील में मार्टेंसाइट
0.35% कार्बन स्टील, 870 डिग्री सेल्सियस से पानी से बुझाया गया


मार्टेंसाइट इस्पात क्रिस्टलीय संरचना का एक बहुत ही कठोर रूप है। इसका नाम जर्मन मेटलर्जिस्ट एडॉल्फ मार्टेंस के नाम पर रखा गया है। समानता से यह शब्द किसी भी क्रिस्टल संरचना का भी उल्लेख कर सकता है जो प्रसार रहित परिवर्तन द्वारा बनाई गई है।[1]


गुण

मार्टेंसाइट कार्बन स्टील्स में इतनी उच्च दर पर आयरन के द्रुत शीतलन (शमन) द्वारा निर्मित होती है कि कार्बन परमाणुओं के पास क्रिस्टल संरचना में पर्याप्त मात्रा में विसरित होने के लिए समय नहीं होता ताकि सिमेटाइट (Fe3C) का निर्माण हो सके। ऑस्टेनाइट गामा-चरण लोहा (γ-Fe) है, जो लोहे और मिश्र धातु तत्वों का एक ठोस समाधान है। शमन के परिणामस्वरूप मुख-केंद्रित घन ऑस्टेनाइट अत्यधिक तनावपूर्ण शरीर-केन्द्रित चतुष्कोणीय रूप में परिणत हो जाता है जिसे मार्टेनसाइट कहते हैं जो कि कार्बन से अत्यधिक संक्रमित हो जाती है। अपरूपण विकृति जिसके परिणामस्वरूप बड़ी संख्या में अव्यवस्थाएं उत्पन्न होती हैं, जो स्टील्स का एक प्राथमिक सुदृढ़ीकरण तंत्र है। पर्लिटिक स्टील की उच्चतम कठोरता 400 ब्रिनेल है, जबकि मार्टेंसाइट 700 ब्रिनेल प्राप्त कर सकता है।[2]

मार्टेंसिक प्रतिक्रिया शीतलन के दौरान शुरू होती है जब ऑस्टेनाइट मार्टेंसाइट प्रारंभ तापमान (एमएस) तक पहुंचता है, और मूल ऑस्टेनाइट यांत्रिक रूप से अस्थिर हो जाता है। जब नमूना शांत होता है, तब ऑस्टेनाइट का अधिकाधिक बड़ा प्रतिशत ऑस्टेनाइट मार्टेनसाइट पर बदलता है जब तक कि निम्न रूपांतरण तापमान एमएफ तक नहीं पहुंचा जाता है, जिस समय यह रूपांतरण पूर्ण हो जाता है।[1]

एक यूटेटेटोइड स्टील (0.76% सी ) के लिए, 6 और 10% ऑस्टेनाइट के बीच, जिसे बनाए रखा ऑस्टेनाइट कहा जाता है, रहेगा। बनाए रखा ऑस्टेनाइट का प्रतिशत 0.6% सी स्टील से कम के लिए नगण्य से बढ़ता है, 0.95% सी पर 13% बनाए रखा ऑस्टेनाइट और 1.4% कार्बन स्टील के लिए 30-47% ऑस्टेनाइट बनाए रखा जाता है। मार्टेंसाइट बनाने के लिए बहुत तेजी से शमन आवश्यक है। पतली धारा के एक यूटेक्टाइड कार्बन स्टील के लिए, यदि शमन 750 डिग्री सेल्सियस से शुरू होता है और 450 डिग्री सेल्सियस पर समाप्त होता है तो 0.7 सेकंड में होता है (430 °C/s की दर से) कोई पर्लाइट नहीं बनेगा, और स्टील थोड़ी मात्रा में बरकरार ऑस्टेनाइट के साथ मार्टेंसिटिक होगा।[2]

0-0.6% कार्बन वाले स्टील के लिए, मार्टेंसाइट में लथ का रूप होता है और इसे लैथ मार्टेंसाइट कहा जाता है। 1% से अधिक कार्बन वाले स्टील के लिए, यह प्लेट जैसी संरचना का निर्माण करेगा जिसे प्लेट मार्टेंसाइट कहा जाता है। उन दो प्रतिशत के बीच, अनाज की भौतिक उपस्थिति दोनों का मिश्रण है। मार्टेंसाइट की ताकत कम हो जाती है क्योंकि बरकरार ऑस्टेनाइट की मात्रा बढ़ जाती है। यदि शीतलन दर महत्वपूर्ण शीतलन दर की तुलना में धीमी है, तो कुछ मात्रा में पर्लाइट बनेगा, अनाज की सीमाओं से शुरू होकर एमएस तापमान तक पहुंचने तक अनाज में बढ़ेगा, फिर शेष ऑस्टेनाइट लगभग आधी गति से मार्टेंसाइट में बदल जाता है। स्टील में ध्वनि की।

कुछ मिश्र धातु इस्पात में मार्टेंससाइट का निर्माण एमएस तापमान पर एमएस से नीचे तक शमन करके और उसके बाद मूल के 20% से 40% के बीच क्रॉस सेक्शन क्षेत्र को कम करने के लिए प्लास्टिक की विकृतियों के द्वारा एमएस तापमान पर इस्पात की प्रक्रिया द्वारा किया जा सकता है। इस प्रक्रिया में अव्यवस्था के घनत्व 1013/cm2 तक हो जाते हैं। अव्यवस्थाओं की बड़ी संख्या, अवक्षेपों के साथ मिलकर, जो जगह-जगह अव्यवस्थाओं की उत्पत्ति और पिन करती है, एक बहुत कठोर स्टील का उत्पादन करती है। इस संपत्ति का उपयोग अक्सर कड़े सिरेमिक जैसे कि येट्रिया-स्टेबलाइज्ड जिरकोनिया और विशेष स्टील्स जैसे टीआरआईपी स्टील्स में किया जाता है। इस प्रकार, मार्टेंसाइट तापीय रूप से प्रेरित या तनाव प्रेरित हो सकता है।[1][3]

मार्टेनसाइट चरण के विकास के लिए बहुत कम तापीय सक्रियता ऊर्जा की आवश्यकता होती है क्योंकि यह प्रक्रिया एक विसारक रूपांतरण है जिसके परिणामस्वरूप परमाणु स्थितियों की सूक्ष्म लेकिन तीव्र पुनर्व्यवस्था होती है और क्रायोजेनिक तापमान पर भी पाई जाती है।[1] मार्टेनसाइट का घनत्व ऑस्टैनाइट की तुलना में कम होता है, जिससे ज्ञात रूपांतरण के परिणामस्वरूप आयतन में सापेक्ष परिवर्तन होता है।[4] आयतन परिवर्तन की अपेक्षा इस कतरनी किस्म का कहीं अधिक महत्व है जिसका आकार लगभग 0.26 होता है और जो मार्टिनेज की प्लेटों का आकार निर्धारित करती है।[5]

मार्टिनेसाइट आयरन-कार्बन तंत्र के संतुलन प्रावस्था आरेख में नहीं दिखाया गया है क्योंकि यह एक संतुलन चरण नहीं है। संतुलन प्रावस्था धीमी शीतलन दर द्वारा निर्मित होती है जो विसरण के लिए पर्याप्त समय प्रदान करती है जबकि मार्टेनसाइट सामान्यतः बहुत उच्च शीतलन दर द्वारा निर्मित होती है। चूंकि रासायनिक प्रक्रियाएं (संतुलन की प्राप्ति) उच्च तापमान पर जल्दी बढ़ जाती हैं अतः मार्टेनसाइट को ऊष्मा के प्रयोग द्वारा आसानी से नष्ट कर दिया जाता है। इस प्रक्रिया को टेम्परिंग कहा जाता है। कुछ मिश्र धातुओं में टंगस्टन जैसे तत्वों को जोड़कर प्रभाव कम किया जाता है, जो सैमेटाइट न्यूक्लेएशन में बाधा डालते हैं, लेकिन अधिकतर नहीं, न्यूक्लेएशन को तनाव कम करने के लिए आगे बढ़ने दिया जाता है। चूंकि शमन को नियंत्रित करना मुश्किल हो सकता है, कई स्टील्स को मार्टिनेसाइट की अधिकता पैदा करने के लिए बुझाया जाता है, फिर धीरे-धीरे इसकी एकाग्रता को कम करने के लिए टेम्पर्ड किया जाता है जब तक कि वांछित आवेदन के लिए पसंदीदा संरचना प्राप्त नहीं हो जाती। मार्टिनेसाइट की सुई जैसी सूक्ष्म संरचना सामग्री के भंगुर व्यवहार की ओर ले जाती है। बहुत अधिक मार्टिनेसाइट स्टील भंगुर छोड़ देता है; बहुत कम इसे नरम छोड़ देता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 Khan, Abdul Qadeer (March 1972) [1972], "3", The effect of morphology on the strength of copper-based martensites (in Deutsch and English), vol. 1 (1 ed.), Leuven, Belgium: A.Q. Khan, University of Leuven, Belgium, p. 300
  2. 2.0 2.1 Baumeister, Avallone, Baumeister (1978). "6". Marks' Standard Handbook for Mechanical Engineers, 8th ed. McGraw Hill. pp. 17, 18. ISBN 9780070041233.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Verhoeven, John D. (2007). गैर-धातुकर्मवादी के लिए इस्पात धातुकर्म. American Society for Metals. pp. 26–31. ISBN 9780871708588.
  4. Ashby, Michael F.; David R. H. Jones (1992) [1986]. Engineering Materials 2 (with corrections ed.). Oxford: Pergamon Press. ISBN 0-08-032532-7.
  5. Bhadeshia, H. K. D. H. (2001) [2001]. क्रिस्टल की ज्यामिति (with corrections ed.). London: Institute of Materials. ISBN 0-904357-94-5.


बाहरी संबंध