आइसिंग मॉडल: Difference between revisions
| Line 2: | Line 2: | ||
{{Statistical mechanics|cTopic=Models}} | {{Statistical mechanics|cTopic=Models}} | ||
ईईज़िंग मॉडल (जर्मन उच्चारण: [iːzɪŋ]) (या लेन्ज़-आइज़िंग मॉडल या इस्सिंग-लेनज़ मॉडल), जिसका नाम भौतिकविदों अर्नस्ट इस्सिंग और विल्हेम लेन्ज़ के नाम पर रखा गया है, सांख्यिकीय यांत्रिकी में लोह-चुंबकत्व का एक गणितीय मॉडल है। मॉडल में असतत चर होते हैं जो परमाणु "प्रचक्रण" के चुंबकीय द्विध्रुवीय क्षणों का प्रतिनिधित्व करते हैं जो दो स्थितियों (+1 या -1) में से एक में हो सकते हैं। प्रचक्रण (स्पिन) को एक रेखाचित्र में व्यवस्थित किया जाता है, सामान्य रूप से लैटिस (जहां स्थानीय संरचना सभी दिशाओं में समय-समय पर | ईईज़िंग मॉडल (जर्मन उच्चारण: [iːzɪŋ]) (या लेन्ज़-आइज़िंग मॉडल या इस्सिंग-लेनज़ मॉडल), जिसका नाम भौतिकविदों अर्नस्ट इस्सिंग और विल्हेम लेन्ज़ के नाम पर रखा गया है, सांख्यिकीय यांत्रिकी में लोह-चुंबकत्व का एक गणितीय मॉडल है। मॉडल में असतत चर होते हैं जो परमाणु "प्रचक्रण" के चुंबकीय द्विध्रुवीय क्षणों का प्रतिनिधित्व करते हैं जो दो स्थितियों (+1 या -1) में से एक में हो सकते हैं। प्रचक्रण (स्पिन) को एक रेखाचित्र में व्यवस्थित किया जाता है, सामान्य रूप से लैटिस (जहां स्थानीय संरचना सभी दिशाओं में समय-समय पर पुनरावृत्त करती है), जिससे प्रत्येक प्रचक्रण अपने प्रतिवेशों के साथ संपर्क कर सके। प्रतिवेशी प्रचक्रण जो सहमत हैं उनमें असहमत होने वालों की तुलना में कम ऊर्जा होती है; प्रणाली सबसे कम ऊर्जा की ओर जाता है लेकिन ऊष्मा इस प्रवृत्ति को विक्षुब्ध करती है, इस प्रकार विभिन्न संरचनात्मक चरणों की संभावना उत्पन्न करती है। मॉडल वास्तविकता के सरलीकृत मॉडल के रूप में प्रावस्था संक्रमण की पहचान की स्वीकृति देता है। प्रावस्था संक्रमण दिखाने के लिए द्वि-आयामी वर्ग-लैटिस आइसिंग मॉडल सबसे सरल सांख्यिकीय मॉडल में से एक है।<ref>See {{harvtxt|Gallavotti|1999}}, Chapters VI-VII.</ref> | ||
ईज़िंग मॉडल का आविष्कार भौतिक विज्ञानी विल्हेम लेन्ज़ (1920) द्वारा किया गया था, जिन्होंने इसे अपने छात्र अर्न्स्ट इस्सिंग को एक समस्या के रूप में दिया था। एक आयामी ईज़िंग मॉडल को ईज़िंग (1925) ने अकेले 1924 की अपनी अभिधारणा में संशोधन किया था;<ref>[http://www.hs-augsburg.de/~harsch/anglica/Chronology/20thC/Ising/isi_fm00.html Ernst Ising, ''Contribution to the Theory of Ferromagnetism'']</ref> इसका कोई प्रावस्था संक्रमण नहीं है। द्वि-आयामी वर्ग-लैटिस ईज़िंग मॉडल बहुत कठिन है और लार्स ऑनसेगर (1944) द्वारा केवल एक विश्लेषणात्मक विवरण दिया गया था। यह सामान्य रूप से [[स्थानांतरण-मैट्रिक्स विधि]] द्वारा संशोधन किया जाता है, हालांकि [[क्वांटम क्षेत्र सिद्धांत]] से संबंधित विभिन्न दृष्टिकोण सम्मिलित हैं। | ईज़िंग मॉडल का आविष्कार भौतिक विज्ञानी विल्हेम लेन्ज़ (1920) द्वारा किया गया था, जिन्होंने इसे अपने छात्र अर्न्स्ट इस्सिंग को एक समस्या के रूप में दिया था। एक आयामी ईज़िंग मॉडल को ईज़िंग (1925) ने अकेले 1924 की अपनी अभिधारणा में संशोधन किया था;<ref>[http://www.hs-augsburg.de/~harsch/anglica/Chronology/20thC/Ising/isi_fm00.html Ernst Ising, ''Contribution to the Theory of Ferromagnetism'']</ref> इसका कोई प्रावस्था संक्रमण नहीं है। द्वि-आयामी वर्ग-लैटिस ईज़िंग मॉडल बहुत कठिन है और लार्स ऑनसेगर (1944) द्वारा केवल एक विश्लेषणात्मक विवरण दिया गया था। यह सामान्य रूप से [[स्थानांतरण-मैट्रिक्स विधि]] द्वारा संशोधन किया जाता है, हालांकि [[क्वांटम क्षेत्र सिद्धांत]] से संबंधित विभिन्न दृष्टिकोण सम्मिलित हैं। | ||
| Line 8: | Line 8: | ||
चार से अधिक आयामों में, ईज़िंग मॉडल के प्रावस्था संक्रमण को [[माध्य-क्षेत्र सिद्धांत]] द्वारा वर्णित किया गया है। 1970 के दशक के उत्तरार्ध में विभिन्न ट्री सांस्थिति के संबंध में अधिक आयामों के लिए ईज़िंग मॉडल का भी पता लगाया गया, जो जो शून्य-क्षेत्र समय-स्वतंत्र बर्थ (1981) मॉडल के परिशुद्ध समाधान के रूप में यादृच्छिक शाखाओं के अनुपात के संवृत केली ट्री के लिए और इस तरह ट्री शाखाओं के अंदर यादृच्छिक रूप से बड़ी आयामीता का पता लगाया गया था। इस मॉडल के समाधान ने गैर-लुप्त होने वाली लंबी दूरी और निकटतम-प्रतिवेशी प्रचक्रण-प्रचक्रण सहसंबंधों के साथ एक नया, असामान्य प्रावस्था संक्रमण व्यवहार प्रदर्शित किया, जो इसके संभावित अनुप्रयोगों में से एक के रूप में बड़े तंत्रिका नेटवर्क के लिए प्रासंगिक माना जाता है। | चार से अधिक आयामों में, ईज़िंग मॉडल के प्रावस्था संक्रमण को [[माध्य-क्षेत्र सिद्धांत]] द्वारा वर्णित किया गया है। 1970 के दशक के उत्तरार्ध में विभिन्न ट्री सांस्थिति के संबंध में अधिक आयामों के लिए ईज़िंग मॉडल का भी पता लगाया गया, जो जो शून्य-क्षेत्र समय-स्वतंत्र बर्थ (1981) मॉडल के परिशुद्ध समाधान के रूप में यादृच्छिक शाखाओं के अनुपात के संवृत केली ट्री के लिए और इस तरह ट्री शाखाओं के अंदर यादृच्छिक रूप से बड़ी आयामीता का पता लगाया गया था। इस मॉडल के समाधान ने गैर-लुप्त होने वाली लंबी दूरी और निकटतम-प्रतिवेशी प्रचक्रण-प्रचक्रण सहसंबंधों के साथ एक नया, असामान्य प्रावस्था संक्रमण व्यवहार प्रदर्शित किया, जो इसके संभावित अनुप्रयोगों में से एक के रूप में बड़े तंत्रिका नेटवर्क के लिए प्रासंगिक माना जाता है। | ||
बाहरी क्षेत्र के बिना ईज़िंग समस्या को समतुल्य रूप से एक रेखाचित्र (असतत गणित) अधिकतम | बाहरी क्षेत्र के बिना ईज़िंग समस्या को समतुल्य रूप से एक रेखाचित्र (असतत गणित) अधिकतम विभाजन (मैक्स-विभाजन) समस्या के रूप में निर्मित किया जा सकता है जिसे संयोजी अनुकूलन के माध्यम से संशोधन किया जा सकता है। | ||
== परिभाषा == | == परिभाषा == | ||
| Line 22: | Line 22: | ||
: <math>Z_\beta = \sum_\sigma e^{-\beta H(\sigma)}</math> | : <math>Z_\beta = \sum_\sigma e^{-\beta H(\sigma)}</math> | ||
विभाजन फलन (सांख्यिकीय यांत्रिकी) है। फलन के लिए स्पिन की संख्या (देखने योग्य), <math>f</math> द्वारा इंगित करता है | |||
: <math>\langle f \rangle_\beta = \sum_\sigma f(\sigma) P_\beta(\sigma)</math> | : <math>\langle f \rangle_\beta = \sum_\sigma f(\sigma) P_\beta(\sigma)</math> | ||
<math>f</math> की अपेक्षा (माध्य) | <math>f</math> की अपेक्षा (माध्य) मान। | ||
अभिविन्यास संभावनाएं <math>P_{\beta}(\sigma)</math> संभाव्यता का प्रतिनिधित्व करते हैं कि (संतुलन में) | अभिविन्यास संभावनाएं <math>P_{\beta}(\sigma)</math> संभाव्यता का प्रतिनिधित्व करते हैं कि (संतुलन में) प्रणाली अभिविन्यास <math>\sigma</math> के साथ एक अवस्था में है | ||
=== विचार-विमर्श === | === विचार-विमर्श === | ||
| Line 35: | Line 35: | ||
: <math>J_{ij} = 0</math>, प्रचक्रण गैर-सहभागी हैं। | : <math>J_{ij} = 0</math>, प्रचक्रण गैर-सहभागी हैं। | ||
प्रणाली को लोह चुंबकीय या प्रतिलोहचुंबकीय कहा जाता है यदि सभी पारस्परिक क्रिया लोह चुंबकीय हैं या सभी प्रतिलोहचुंबकीय हैं। मूल ईज़िंग मॉडल लोह चुंबकीय थे, और यह अभी भी प्रायः माना जाता है कि ईज़िंग मॉडल का अर्थ लोह चुंबकीय ईज़िंग मॉडल है। | |||
लोह चुंबकीय आइसिंग मॉडल में, प्रचक्रण को संरेखित करने का विचार होता है: अभिविन्यास जिसमें आसन्न प्रचक्रण समान संकेत के होते हैं, जिसमे उच्च संभावना होती है। प्रतिलोहचुंबकीय मॉडल में, आसन्न स्पिनों में विपरीत संकेत होते हैं। | लोह चुंबकीय आइसिंग मॉडल में, प्रचक्रण को संरेखित करने का विचार होता है: अभिविन्यास जिसमें आसन्न प्रचक्रण समान संकेत के होते हैं, जिसमे उच्च संभावना होती है। प्रतिलोहचुंबकीय मॉडल में, आसन्न स्पिनों में विपरीत संकेत होते हैं। | ||
| Line 48: | Line 48: | ||
: <math>H(\sigma) = -\sum_{\langle i~j\rangle} J_{ij} \sigma_i \sigma_j.</math> | : <math>H(\sigma) = -\sum_{\langle i~j\rangle} J_{ij} \sigma_i \sigma_j.</math> | ||
जब बाहरी क्षेत्र | जब बाहरी क्षेत्र प्रत्येक जगह शून्य h = 0 होता है, आइसिंग मॉडल सभी लैटिस भागों में प्रचक्रण के मान को स्विच करने के अंतर्गत सममित होता है; अशून्य क्षेत्र इस समरूपता को विभाजित करता है। | ||
अन्य सामान्य सरलीकरण यह मान लेना है कि सभी निकटतम प्रतिवेशी ⟨ij⟩ की अंतःक्रिया सामर्थ्य समान है। तब हम Λ में सभी जोड़े i, j के लिए ''J<sub>ij</sub>'' = ''J'' स्थापित कर सकते हैं। इस स्थिति में हैमिल्टनियन को अधिक सरल बनाया गया है | अन्य सामान्य सरलीकरण यह मान लेना है कि सभी निकटतम प्रतिवेशी ⟨ij⟩ की अंतःक्रिया सामर्थ्य समान है। तब हम Λ में सभी जोड़े i, j के लिए ''J<sub>ij</sub>'' = ''J'' स्थापित कर सकते हैं। इस स्थिति में हैमिल्टनियन को अधिक सरल बनाया गया है | ||
| Line 55: | Line 55: | ||
=== रेखाचित्र से संयोजन (असतत गणित) अधिकतम | === रेखाचित्र से संयोजन (असतत गणित) अधिकतम विभाजन === | ||
शीर्ष (रेखाचित्र सिद्धांत) का एक उपसमुच्चय S एक भारित अप्रत्यक्ष रेखाचित्र G का V(G) समुच्चय करता है जो S में रेखाचित्र G का एक | शीर्ष (रेखाचित्र सिद्धांत) का एक उपसमुच्चय S एक भारित अप्रत्यक्ष रेखाचित्र G का V(G) समुच्चय करता है जो S में रेखाचित्र G का एक विभाजन निर्धारित करता है और इसका [[पूरक ग्राफ|पूरक रेखाचित्र]] उपसमुच्चय G\S है। विभाजन का आकार S और G\S के बीच कोर के भार का योग है। अधिकतम विभाजन आकार कम से कम किसी अन्य विभाजन के आकार का होता है, जो अलग-अलग S होता है। | ||
रेखाचित्र G पर बाहरी क्षेत्र के बिना ईज़िंग मॉडल के लिए, हैमिल्टनियन रेखाचित्र कोर E(G) पर निम्नलिखित योग बन जाता है। | रेखाचित्र G पर बाहरी क्षेत्र के बिना ईज़िंग मॉडल के लिए, हैमिल्टनियन रेखाचित्र कोर E(G) पर निम्नलिखित योग बन जाता है। | ||
| Line 62: | Line 62: | ||
<math>H(\sigma) = -\sum_{ij\in E(G)} J_{ij}\sigma_i\sigma_j</math>. | <math>H(\sigma) = -\sum_{ij\in E(G)} J_{ij}\sigma_i\sigma_j</math>. | ||
यहाँ रेखाचित्र का प्रत्येक शीर्ष i एक प्रचक्रण भाग है जो एक प्रचक्रण मान <math>\sigma_i = \pm 1 </math> लेती है। एक दिया गया प्रचक्रण विन्यास <math>\sigma</math> शीर्षों के समुच्चय को विभाजित करता है <math>V(G)</math> में दो <math>\sigma</math> आश्रित उपसमुच्चय, प्रचक्रित <math>V^+</math> और नीचे प्रचक्रण वाले <math>V^-</math> हम <math>\delta(V^+)</math> द्वारा निरूपित करते हैं और <math>\sigma</math> कोर का आश्रित समुच्चय जो दो पूरक शीर्ष <math>V^+</math> और <math>V^-</math>उपसमुच्चय को जोड़ता है अतः <math>\left|\delta(V^+)\right|</math> | यहाँ रेखाचित्र का प्रत्येक शीर्ष i एक प्रचक्रण भाग है जो एक प्रचक्रण मान <math>\sigma_i = \pm 1 </math> लेती है। एक दिया गया प्रचक्रण विन्यास <math>\sigma</math> शीर्षों के समुच्चय को विभाजित करता है <math>V(G)</math> में दो <math>\sigma</math> आश्रित उपसमुच्चय, प्रचक्रित <math>V^+</math> और नीचे प्रचक्रण वाले <math>V^-</math> हम <math>\delta(V^+)</math> द्वारा निरूपित करते हैं और <math>\sigma</math> कोर का आश्रित समुच्चय जो दो पूरक शीर्ष <math>V^+</math> और <math>V^-</math>उपसमुच्चय को जोड़ता है अतः <math>\left|\delta(V^+)\right|</math> विभाजन का <math>\delta(V^+)</math> आकार अनिर्दिष्ट रेखाचित्र के लिए भारित अप्रत्यक्ष रेखाचित्र G को इस रूप में परिभाषित किया जा सकता है | ||
<math>\left|\delta(V^+)\right|=\frac12\sum_{ij\in \delta(V^+)} W_{ij}</math>, | <math>\left|\delta(V^+)\right|=\frac12\sum_{ij\in \delta(V^+)} W_{ij}</math>, | ||
| Line 75: | Line 75: | ||
\end{align}</math> | \end{align}</math> | ||
जहां पहले पद में समग्र योग <math>\sigma</math> निर्भर नहीं करता है इसका तात्पर्य है कि <math>H(\sigma)</math> में <math>\sigma</math> कम करना <math>\sum_{ij\in \delta(V^+)} J_{ij}</math> कम करने के बराबर है। कोर के भार को परिभाषित करना <math>W_{ij}=-J_{ij}</math> इस प्रकार किसी बाहरी क्षेत्र के बिना ईज़िंग समस्या को रेखाचित्र अधिकतम- | जहां पहले पद में समग्र योग <math>\sigma</math> निर्भर नहीं करता है इसका तात्पर्य है कि <math>H(\sigma)</math> में <math>\sigma</math> कम करना <math>\sum_{ij\in \delta(V^+)} J_{ij}</math> कम करने के बराबर है। कोर के भार को परिभाषित करना <math>W_{ij}=-J_{ij}</math> इस प्रकार किसी बाहरी क्षेत्र के बिना ईज़िंग समस्या को रेखाचित्र अधिकतम-विभाजन समस्या में बदल देता है<ref name=":0">{{Cite journal|last1=Barahona|first1=Francisco|last2=Grötschel|first2=Martin|last3=Jünger|first3=Michael|last4=Reinelt|first4=Gerhard|date=1988|title=सांख्यिकीय भौतिकी और सर्किट लेआउट डिजाइन के संयोजन अनुकूलन का एक अनुप्रयोग|journal=Operations Research|volume=36|issue=3|pages=493–513|issn=0030-364X|jstor=170992|doi=10.1287/opre.36.3.493}}</ref> विभाजन आकार <math>\left|\delta(V^+)\right|</math> को अधिकतम करना, जो इस्सिंग हैमिल्टनियन से निम्नानुसार संबंधित है, | ||
<math>H(\sigma) = \sum_{ij \in E(G)} W_{ij} - 4 \left|\delta(V^+)\right|.</math> | <math>H(\sigma) = \sum_{ij \in E(G)} W_{ij} - 4 \left|\delta(V^+)\right|.</math> | ||
| Line 89: | Line 89: | ||
== मूल गुण और इतिहास == | == मूल गुण और इतिहास == | ||
[[File:Ising-tartan.png|thumb|right| | [[File:Ising-tartan.png|thumb|right|आयामी आइसिंग मॉडल के अनुवाद-अपरिवर्तनीय संभाव्यता माप का दृश्य]]ईज़िंग मॉडल का सबसे अधिक अध्ययन किया गया स्थिति d-आयाम लैटिस पर अनुवाद अपरिवर्तनीय लोह चुंबकीय शून्य क्षेत्र मॉडल है, अर्थात् जिसका नाम Λ = 'Z'<sup>d</sup> , J<sub>''ij''</sub>= 1, h = 0 है। | ||
=== | === आयाम में कोई प्रावस्था संक्रमण नहीं === | ||
अपने 1924 के पीएचडी अभिधारणा में, ईज़िंग ने | अपने 1924 के पीएचडी अभिधारणा में, ईज़िंग ने d = 1 स्थिति के लिए मॉडल को संशोधन किया, जिसे एक रैखिक क्षैतिज लैटिस के रूप में माना जा सकता है जहां प्रत्येक भाग केवल अपने बाएं और दाएं प्रतिवेशी के साथ परस्पर क्रिया करती है। आयाम में, समाधान प्रावस्था संक्रमण को स्वीकार नहीं करता है।<ref>{{Cite journal |url=http://users-phys.au.dk/fogedby/statphysII/no-PT-in-1D.pdf |title=Solving the 3d Ising Model with the Conformal Bootstrap II. C -Minimization and Precise Critical Exponents |journal=Journal of Statistical Physics |volume=157 |issue=4–5 |pages=869–914 |last1=El-Showk |first1=Sheer |last2=Paulos |first2=Miguel F. |last3=Poland |first3=David |last4=Rychkov |first4=Slava |last5=Simmons-Duffin |first5=David |last6=Vichi |first6=Alessandro |year=2014 |doi=10.1007/s10955-014-1042-7 |arxiv=1403.4545 |access-date=2013-04-21 |archive-url=https://web.archive.org/web/20140407154639/http://users-phys.au.dk/fogedby/statphysII/no-PT-in-1D.pdf |archive-date=2014-04-07 |url-status=dead |bibcode=2014JSP...157..869E|s2cid=119627708 }}</ref> अर्थात्, किसी भी धनात्मक β के लिए, पारस्परिक संबंध ⟨σ<sub>''i''</sub>σ<sub>''j''</sub>⟩ |i − j| में चरघातांकी रूप से क्षय होता है: | ||
: <math>\langle \sigma_i \sigma_j \rangle_\beta \leq C \exp\big(-c(\beta) |i - j|\big),</math> | : <math>\langle \sigma_i \sigma_j \rangle_\beta \leq C \exp\big(-c(\beta) |i - j|\big),</math> | ||
| Line 98: | Line 98: | ||
=== प्रावस्था संक्रमण और दो आयामों में परिशुद्ध समाधान === | === प्रावस्था संक्रमण और दो आयामों में परिशुद्ध समाधान === | ||
ईज़िंग मॉडल एक [[आदेशित चरण]] और एक [[अव्यवस्थित चरण]] के बीच 2 आयामों या अधिक में एक प्रावस्था संक्रमण से गुजरता है। अर्थात्, | ईज़िंग मॉडल एक [[आदेशित चरण|क्रमित चरण]] और एक [[अव्यवस्थित चरण]] के बीच 2 आयामों या अधिक में एक प्रावस्था संक्रमण से गुजरता है। अर्थात्, प्रणाली छोटे β के लिए अव्यवस्थित है, जबकि बड़े β के लिए प्रणाली लोह चुंबकीय क्रम प्रदर्शित करता है: | ||
: <math>\langle \sigma_i \sigma_j \rangle_\beta \geq c(\beta) > 0.</math> | : <math>\langle \sigma_i \sigma_j \rangle_\beta \geq c(\beta) > 0.</math> | ||
यह पहली बार 1936 में [[रुडोल्फ पीयरल्स]] द्वारा सिद्ध किया गया था,<ref>{{Cite journal |doi=10.1017/S0305004100019174 |title=ईज़िंग के फेरोमैग्नेटिज़्म के मॉडल पर|journal=Mathematical Proceedings of the Cambridge Philosophical Society |volume=32 |issue=3 |pages=477 |year=1936 |last1=Peierls |first1=R. |last2=Born |first2=M. |bibcode=1936PCPS...32..477P|s2cid=122630492 }}</ref> जिसे अब | यह पहली बार 1936 में [[रुडोल्फ पीयरल्स]] द्वारा सिद्ध किया गया था,<ref>{{Cite journal |doi=10.1017/S0305004100019174 |title=ईज़िंग के फेरोमैग्नेटिज़्म के मॉडल पर|journal=Mathematical Proceedings of the Cambridge Philosophical Society |volume=32 |issue=3 |pages=477 |year=1936 |last1=Peierls |first1=R. |last2=Born |first2=M. |bibcode=1936PCPS...32..477P|s2cid=122630492 }}</ref> जिसे अब पीयरल्स तर्क कहा जाता है। | ||
बिना चुंबकीय क्षेत्र वाले द्वि-आयामी वर्ग लैटिस पर ईज़िंग मॉडल को विश्लेषणात्मक रूप से संशोधन किया गया | लार्स ऑनसेगर (1944) द्वारा बिना किसी चुंबकीय क्षेत्र वाले द्वि-आयामी वर्ग लैटिस पर ईज़िंग मॉडल को विश्लेषणात्मक रूप से संशोधन किया गया था। कि ईज़िंग मॉडल के पारस्परिक संबंध फलन और [[थर्मोडायनामिक मुक्त ऊर्जा|ऊष्मप्रवैगिकी मुक्त ऊर्जा]] एक गैर-बाधित लैटिस फ़र्मियन द्वारा निर्धारित की जाती है। ऑनसेजर ने 1949 में 2-आयामी मॉडल के लिए [[सहज चुंबकीयकरण|स्वतःप्रवर्तित चुंबकीयकरण]] के सूत्र की घोषणा की, लेकिन कोई व्युत्पत्ति नहीं दी। {{harvtxt|यांग|1952}} ने इस सूत्र का पहला प्रकाशित प्रमाण दिया, फ्रेडहोम निर्धारकों के लिए एक ज़ेगो सीमा प्रमेय का उपयोग करते हुए, 1951 में ऑनसेगर स्ज़ेगो द्वारा सिद्ध किया गया।<ref name="Montroll 1963 pages=308-309">{{harvnb|Montroll|Potts|Ward|1963|pages=308–309}}</ref> | ||
=== [[सहसंबंध असमानता]]एं === | === [[सहसंबंध असमानता|पारस्परिक संबंध असमानता]]एं === | ||
ईज़िंग प्रचक्रण सहसंबंधों (सामान्य लैटिस संरचनाओं के लिए) के लिए कई | ईज़िंग प्रचक्रण सहसंबंधों (सामान्य लैटिस संरचनाओं के लिए) के लिए कई पारस्परिक संबंध असमानताओं को दृढ़ता से प्राप्त किया गया है,जिसने गणितज्ञों को ईज़िंग मॉडल को संपर्क विच्छेद महत्व दोनों का अध्ययन करने में सक्षम बनाया। | ||
==== ग्रिफ़िथ असमानता ==== | ==== ग्रिफ़िथ असमानता ==== | ||
{{Main| | {{Main|ग्रिफ़िथ असमानता}} | ||
प्रचक्रण के किसी भी उपसमुच्चय को देखते हुए <math>\sigma_A</math> और <math>\sigma_B</math> लैटिस पर, निम्नलिखित असमानता रखती है, | प्रचक्रण के किसी भी उपसमुच्चय को देखते हुए <math>\sigma_A</math> और <math>\sigma_B</math> लैटिस पर, निम्नलिखित असमानता रखती है, | ||
<math>\langle \sigma_A \sigma_B \rangle \geq \langle \sigma_A \rangle \langle \sigma_B \rangle</math>, | <math>\langle \sigma_A \sigma_B \rangle \geq \langle \sigma_A \rangle \langle \sigma_B \rangle</math>, | ||
जिसका अर्थ है कि ईज़िंग | जिसका अर्थ है कि ईज़िंग लोह-चुंबक पर प्रचक्रण धनात्मक रूप से सहसंबद्ध हैं। इसका एक तात्कालिक अनुप्रयोग यह है कि प्रचक्रण के किसी भी समुच्चय का चुंबकीयकरण <math>\langle \sigma_A \rangle</math> युग्मन स्थिरांक <math>J_B</math> के किसी भी समुच्चय के संबंध में बढ़ रहा है। | ||
==== साइमन-लिब असमानता ==== | ==== साइमन-लिब असमानता ==== | ||
साइमन-लीब असमानता<ref>{{Cite journal |last=Simon |first=Barry |date=1980-10-01 |title=सहसंबंध असमानताएं और फेरोमैग्नेट्स में सहसंबंधों का क्षय|url=https://doi.org/10.1007/BF01982711 |journal=Communications in Mathematical Physics |language=en |volume=77 |issue=2 |pages=111–126 |doi=10.1007/BF01982711 |bibcode=1980CMaPh..77..111S |s2cid=17543488 |issn=1432-0916}}</ref> बताता है कि किसी भी समुच्चय | साइमन-लीब असमानता<ref>{{Cite journal |last=Simon |first=Barry |date=1980-10-01 |title=सहसंबंध असमानताएं और फेरोमैग्नेट्स में सहसंबंधों का क्षय|url=https://doi.org/10.1007/BF01982711 |journal=Communications in Mathematical Physics |language=en |volume=77 |issue=2 |pages=111–126 |doi=10.1007/BF01982711 |bibcode=1980CMaPh..77..111S |s2cid=17543488 |issn=1432-0916}}</ref> बताता है कि किसी भी समुच्चय <math>S</math> के लिए <math>x</math> से <math>y</math> असंबद्ध कर रहा है (उदाहरण के साथ एक बॉक्स की सीमा <math>x</math> बॉक्स के अंदर और <math>y</math> बाहरी है), | ||
<math>\langle \sigma_x \sigma_y \rangle \leq \sum_{z\in S} \langle \sigma_x \sigma_z \rangle \langle \sigma_z \sigma_y \rangle</math>. | <math>\langle \sigma_x \sigma_y \rangle \leq \sum_{z\in S} \langle \sigma_x \sigma_z \rangle \langle \sigma_z \sigma_y \rangle</math>. | ||
| Line 127: | Line 127: | ||
==== एफकेजी असमानता ==== | ==== एफकेजी असमानता ==== | ||
{{Main|FKG inequality}} | {{Main|FKG inequality}} | ||
यह असमानता पहले एक प्रकार के यादृच्छिक क्लस्टर मॉडल के लिए सिद्ध होती है। इसका उपयोग | यह असमानता पहले एक प्रकार के यादृच्छिक क्लस्टर मॉडल के लिए सिद्ध होती है। इसका उपयोग अन्त:स्रवण तर्कों (जिसमें एक विशेष स्थिति के रूप में ईज़िंग मॉडल सम्मिलित है) का उपयोग करके समतलीय [[पॉट्स मॉडल]] के महत्वपूर्ण तापमान को निर्धारित करने के लिए किया जाता है।<ref>{{Cite journal |last1=Beffara |first1=Vincent |last2=Duminil-Copin |first2=Hugo |date=2012-08-01 |title=The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1 |url=https://doi.org/10.1007/s00440-011-0353-8 |journal=Probability Theory and Related Fields |language=en |volume=153 |issue=3 |pages=511–542 |doi=10.1007/s00440-011-0353-8 |s2cid=55391558 |issn=1432-2064}}</ref> | ||
== ऐतिहासिक महत्व == | == ऐतिहासिक महत्व == | ||
परमाणुवाद के समर्थन में [[डेमोक्रिटस]] के तर्कों में से एक यह था कि परमाणु स्वाभाविक रूप से सामग्रियों में देखी गई | परमाणुवाद के समर्थन में [[डेमोक्रिटस]] के तर्कों में से एक यह था कि परमाणु स्वाभाविक रूप से सामग्रियों में देखी गई तीव्र प्रवस्था सीमाओं की व्याख्या करते हैं{{citation needed|date=July 2014}}, जैसे कि जब बर्फ पिघल कर पानी बन जाती है या पानी भाप बन जाता है। उनका विचार था कि परमाणु-पैमाने के गुणों में छोटे परिवर्तन से समग्र व्यवहार में बड़े परिवर्तन होंगे। दूसरों का मानना था कि पदार्थ स्वाभाविक रूप से निरंतर है, परमाणु नहीं है, और यह कि पदार्थ के बड़े पैमाने के गुण मौलिक परमाणु गुणों के लिए कम करने योग्य नहीं हैं। | ||
जबकि रासायनिक बंधन के नियमों ने उन्नीसवीं शताब्दी के रसायनज्ञों को यह स्पष्ट कर दिया था कि परमाणु वास्तविक थे, भौतिकविदों के बीच | जबकि रासायनिक बंधन के नियमों ने उन्नीसवीं शताब्दी के रसायनज्ञों को यह स्पष्ट कर दिया था कि परमाणु वास्तविक थे, भौतिकविदों के बीच तर्क बीसवीं शताब्दी के प्रारंभ में अच्छी तरह से प्रकाशित रही। एटमिस्ट्स, विशेष रूप से [[जेम्स क्लर्क मैक्सवेल]] और [[लुडविग बोल्ट्जमैन]] ने हैमिल्टन के न्यूटन के नियमों को बड़ी प्रणालियों पर प्रयुक्त किया, और पाया कि परमाणुओं के सांख्यिकीय यांत्रिकी कमरे के तापमान गैसों का सही वर्णन करते हैं। लेकिन उत्कृष्ट सांख्यिकीय यांत्रिकी ने तरल और ठोस के सभी गुणों का विवरण नहीं दिया, न ही कम तापमान पर गैसों का विवरण दिया। | ||
एक बार आधुनिक [[क्वांटम यांत्रिकी]] | एक बार आधुनिक [[क्वांटम यांत्रिकी]] निर्मित हो जाने के बाद, परमाणुवाद प्रयोग के साथ संघर्ष में नहीं था, लेकिन इससे सांख्यिकीय यांत्रिकी की सार्वभौमिक स्वीकृति नहीं हुई, जो परमाणुवाद से आगे निकल गई। [[योशिय्याह विलार्ड गिब्स]] ने यांत्रिकी के नियमों से ऊष्मप्रवैगिकी के नियमों को पुन: उत्पन्न करने के लिए एक पूर्ण औपचारिकता प्रदान की थी। लेकिन 19वीं शताब्दी से कई दोषपूर्ण तर्क बच गए, जब सांख्यिकीय यांत्रिकी को संदिग्ध माना जाता था। अंतर्ज्ञान में त्रुटि अधिकतम इस तथ्य से उत्पन्न हुई है कि एक अनंत सांख्यिकीय प्रणाली की सीमा में कई शून्य-एक नियम (बहुविकल्पी) हैं। शून्य-एक नियम जो परिमित प्रणालियों में अनुपस्थित हैं: डेमोक्रिटस की अपेक्षा के अनुसार, पैरामीटर में एक अतिसूक्ष्म परिवर्तन समग्र, समग्र व्यवहार में बड़े अंतर उत्पन्न कर सकता है। | ||
=== परिमित मात्रा में कोई प्रावस्था संक्रमण === | ==== परिमित मात्रा में कोई प्रावस्था संक्रमण नहीं ==== | ||
बीसवीं शताब्दी के प्रारम्भिक भाग में, कुछ लोगों का मानना था कि निम्नलिखित तर्क के आधार पर | बीसवीं शताब्दी के प्रारम्भिक भाग में, कुछ लोगों का मानना था कि निम्नलिखित तर्क के आधार पर विभाजन फलन (सांख्यिकीय यांत्रिकी) कभी भी एक प्रावस्था संक्रमण का वर्णन नहीं कर सकता: | ||
# | # विभाजन फलन सभी विन्यासों पर ''e''<sup>−β''E''</sup> का योग है। | ||
# चरघातांकी फलन | # चरघातांकी फलन प्रत्येक स्थान पर β के फलन के रूप में विश्लेषणात्मक फलन है। | ||
# [[विश्लेषणात्मक कार्य]] | # [[विश्लेषणात्मक कार्य|विश्लेषणात्मक]] फलनों का योग एक विश्लेषणात्मक फलन है। | ||
यह तर्क घातांकों के परिमित योग के लिए काम करता है, और सही | यह तर्क घातांकों के परिमित योग के लिए काम करता है, और सही रूप से स्थापित करता है कि परिमित आकार की प्रणाली की मुक्त ऊर्जा में कोई विलक्षणता नहीं है। उन प्रणालियों के लिए जो ऊष्मप्रवैगिकी सीमा में हैं (अर्थात, अनंत प्रणालियों के लिए) अनंत राशि विलक्षणता को उत्पन्न कर सकती है। ऊष्मप्रवैगिकी सीमा का अभिसरण तीव्र है, ताकि चरण व्यवहार पहले से ही अपेक्षाकृत छोटी लैटिस पर स्पष्ट हो, तथापि प्रणाली के परिमित आकार से विलक्षणताओं को सामान्य कर दिया गया हो। | ||
इसे सबसे पहले रुडोल्फ पेयर्ल्स ने ईजिंग मॉडल में स्थापित किया था। | इसे सबसे पहले रुडोल्फ पेयर्ल्स ने ईजिंग मॉडल में स्थापित किया था। | ||
=== | === पीयरल बिंदुक === | ||
लेन्ज़ और ईज़िंग द्वारा ईज़िंग मॉडल का निर्माण करने के तुरंत बाद, पीयरल्स स्पष्ट रूप से यह दिखाने में सक्षम थे कि एक प्रावस्था संक्रमण दो आयामों में होता है। | लेन्ज़ और ईज़िंग द्वारा ईज़िंग मॉडल का निर्माण करने के तुरंत बाद, पीयरल्स स्पष्ट रूप से यह दिखाने में सक्षम थे कि एक प्रावस्था संक्रमण दो आयामों में होता है। | ||
ऐसा करने के लिए, उन्होंने उच्च-तापमान और निम्न-तापमान सीमा की तुलना की। अनंत तापमान (β = 0) पर सभी विन्यासों की समान संभावना होती है। प्रत्येक प्रचक्रण किसी भी अन्य से पूरी तरह से स्वतंत्र है, और यदि अनंत तापमान पर सामान्य अभिविन्यास | ऐसा करने के लिए, उन्होंने उच्च-तापमान और निम्न-तापमान सीमा की तुलना की। अनंत तापमान (β = 0) पर सभी विन्यासों की समान संभावना होती है। प्रत्येक प्रचक्रण किसी भी अन्य से पूरी तरह से स्वतंत्र है, और यदि अनंत तापमान पर सामान्य अभिविन्यास आलेखित किए जाते हैं ताकि धन/ऋण को काले और सफेद द्वारा दर्शाया जा सके, तो वे दूरदर्शन [[शोर (वीडियो)|(वीडियो)]] की तरह दिखते हैं। उच्च, लेकिन अनंत तापमान के लिए नहीं, प्रतिवेशी स्थितियों के बीच छोटे-छोटे पारस्परिक संबंध होते हैं, बर्फ थोड़ी सी जम जाती है, लेकिन स्क्रीन अव्यवस्थित रूप से दिखती रहती है, और काले या सफेद रंग की कोई अधिकता नहीं होती है। | ||
अधिकता का एक मात्रात्मक माप चुंबकीयकरण है, जो प्रचक्रण का औसत | अधिकता का एक मात्रात्मक माप चुंबकीयकरण है, जो प्रचक्रण का औसत मान है: | ||
: <math>M = \frac{1}{N} \sum_{i=1}^N \sigma_i.</math> | : <math>M = \frac{1}{N} \sum_{i=1}^N \sigma_i.</math> | ||
पूर्व अनुभाग में तर्क के अनुरूप कल्पित तर्क यह स्थापित करता है कि ईज़िंग मॉडल में चुंबकीयकरण सदैव शून्य होता है। | |||
# प्रचक्रण के | # प्रचक्रण के प्रत्येक अभिविन्यास में अभिविन्यास के बराबर ऊर्जा होती है, जिसमें सभी प्रचक्रण प्रतिवर्त होते हैं। | ||
# इसलिए चुंबकत्व M के साथ प्रत्येक विन्यास के लिए समान संभाव्यता के साथ चुंबकत्व -M के साथ विन्यास होता है। | # इसलिए चुंबकत्व M के साथ प्रत्येक विन्यास के लिए समान संभाव्यता के साथ चुंबकत्व -M के साथ विन्यास होता है। | ||
# इसलिए | # इसलिए प्रणाली को चुंबकीयकरण M के साथ अभिविन्यास में समान मात्रा में समय क्षीण करना चाहिए जैसा कि चुंबकीयकरण -M के साथ होता है। | ||
# तो औसत चुंबकीयकरण ( | # तो औसत चुंबकीयकरण (प्रत्येक समय) शून्य है। | ||
पहले की तरह, यह केवल यह | पहले की तरह, यह केवल यह प्रमाणित करता है कि औसत चुंबकीयकरण किसी भी सीमित मात्रा में शून्य है। अनंत प्रणाली के लिए, अस्थिरता एक गैर-शून्य संभाव्यता के साथ अधिकतम धनात्मक अवस्था से अधिकतम शून्य से प्रणाली को आघात में सक्षम नहीं हो सकता है। | ||
बहुत अधिक तापमान के लिए, चुंबकीयकरण शून्य होता है, क्योंकि यह अनंत तापमान पर होता है। इसे देखने के लिए, ध्यान दें कि यदि प्रचक्रण | बहुत अधिक तापमान के लिए, चुंबकीयकरण शून्य होता है, क्योंकि यह अनंत तापमान पर होता है। इसे देखने के लिए, ध्यान दें कि यदि प्रचक्रण A में प्रचक्रण B के साथ केवल एक छोटा पारस्परिक संबंध ε है, और B केवल C के साथ दुर्बल रूप से सहसंबंधित है, लेकिन C अन्यथा A से स्वतंत्र है, A और C के पारस्परिक संबंध की मात्रा ε<sup>2 की तरह हो जाती है दूरी L द्वारा अलग किए गए दो चक्रो के लिए, पारस्परिक संबंध की मात्रा ε<sup>''L''</sup> के रूप में हो जाती है, लेकिन यदि एक से अधिक पथ हैं जिनके द्वारा पारस्परिक संबंध संचरण कर सकते हैं, तो यह राशि पथों की संख्या से बढ़ जाती है। | ||
d विमाओं में एक वर्गाकार जालक पर लंबाई L के पथों की संख्या है | d विमाओं में एक वर्गाकार जालक(लैटिस) पर लंबाई L के पथों की संख्या है | ||
: <math>N(L) = (2d)^L,</math> | : <math>N(L) = (2d)^L,</math> | ||
चूंकि प्रत्येक चरण पर कहां जाना है इसके लिए 2d विकल्प हैं। | चूंकि प्रत्येक चरण पर कहां जाना है इसके लिए 2d विकल्प हैं। | ||
समग्र | समग्र पारस्परिक संबंध पर एक सीमा को दो बिंदुओं को जोड़ने वाले सभी पथों के योग द्वारा पारस्परिक संबंध में योगदान द्वारा दिया जाता है, जो कि लंबाई L के सभी पथों के योग द्वारा ऊपर से विभाजित होता है | ||
: <math>\sum_L (2d)^L \varepsilon^L,</math> | : <math>\sum_L (2d)^L \varepsilon^L,</math> | ||
जो ε छोटा होने पर शून्य हो जाता है। | जो ε छोटा होने पर शून्य हो जाता है। | ||
कम तापमान (β ≫ 1) पर विन्यास निम्नतम-ऊर्जा विन्यास के पास होता है, वह जहां सभी प्रचक्रण | कम तापमान (β ≫ 1) पर विन्यास निम्नतम-ऊर्जा विन्यास के पास होता है, वह जहां सभी प्रचक्रण धनात्मक या सभी प्रचक्रण ऋणात्मक होते हैं। पीयरल्स ने पूछा कि क्या यह कम तापमान पर सांख्यिकीय रूप से संभव है, सभी प्रचक्रण ऋणात्मक से प्रारंभ होकर, उस स्थिति में अस्थिरता करना जहां अधिकांश प्रचक्रण धनात्मक हैं। ऐसा होने के लिए, धनात्मक प्रचक्रण की बूंदों को धनात्मक स्थिति बनाने के लिए जमने में सक्षम होना चाहिए। | ||
ऋणात्मक परिप्रेक्ष्य में धनात्मक प्रचक्रण की एक छोटी बूंद की ऊर्जा बिन्दुक L की परिधि के समानुपाती होती है, जहां धनात्मक प्रचक्रण और ऋणात्मक प्रचक्रण एक दूसरे के प्रतिवेशी होते हैं। परिमाप L वाली छोटी बूंद के लिए, क्षेत्रफल (L − 2)/2 (सीधी रेखा) और (L/4)<sup>2</sup> (वर्गाकार बॉक्स) के बीच कहीं है। एक छोटी बूंद को प्रस्तुत करने की संभाव्यता कीमत का कारक ''e''<sup>−β''L''</sup> है, लेकिन यह परिधि L के साथ बूंदों की समग्र संख्या से गुणा किए गए विभाजन फलन में योगदान देता है, जो लंबाई L के पथों की समग्र संख्या से कम है: | |||
: <math>N(L) < 4^{2L}.</math> | : <math>N(L) < 4^{2L}.</math> | ||
ताकि बूंदों से समग्र प्रचक्रण योगदान, यहां तक कि प्रत्येक भाग को एक अलग बूंद रखने की स्वीकृति देकर, ऊपर से घिरा हुआ है | ताकि बूंदों से समग्र प्रचक्रण योगदान, यहां तक कि प्रत्येक भाग को एक अलग बूंद रखने की स्वीकृति देकर, ऊपर से घिरा हुआ है | ||
: <math>\sum_L L^2 4^{2L} e^{-4\beta L},</math> | : <math>\sum_L L^2 4^{2L} e^{-4\beta L},</math> | ||
जो बड़े β पर शून्य हो जाता है। पर्याप्त रूप से बड़े β के लिए, यह घातीय रूप से लंबे | जो बड़े β पर शून्य हो जाता है। पर्याप्त रूप से बड़े β के लिए, यह घातीय रूप से लंबे कुंडलन को दबा देता है, ताकि वे उत्पन्न न हो सकें, और चुंबकीयकरण -1 से बहुत अधिक अस्थिरता नहीं करता है। | ||
इसलिए | इसलिए पीयरल्स ने स्थापित किया कि ईज़िंग मॉडल में चुंबकीयकरण अंततः [[सुपरसेलेक्शन सेक्टर|अधि- प्रवरण क्षेत्रों]] को परिभाषित करता है, पृथक किए गए प्रक्षेत्र परिमित अस्थिरता से जुड़े नहीं होते हैं। | ||
=== क्रेमर्स-वनियर द्वैत === | === क्रेमर्स-वनियर द्वैत === | ||
{{main| | {{main|क्रेमर्स-वनियर द्वैत}} | ||
क्रेमर्स और वेनियर यह दिखाने में सक्षम थे कि मॉडल का उच्च तापमान विस्तार और निम्न तापमान विस्तार मुक्त ऊर्जा के समग्र पुनर्विक्रय के बराबर है। इसने द्वि-आयामी मॉडल में चरण-संक्रमण बिंदु को परिशुद्ध रूप से निर्धारित करने की स्वीकृति दी (इस धारणा के अंतर्गत कि एक अद्वितीय महत्वपूर्ण बिंदु है)। | क्रेमर्स और वेनियर यह दिखाने में सक्षम थे कि मॉडल का उच्च तापमान विस्तार और निम्न तापमान विस्तार मुक्त ऊर्जा के समग्र पुनर्विक्रय के बराबर है। इसने द्वि-आयामी मॉडल में चरण-संक्रमण बिंदु को परिशुद्ध रूप से निर्धारित करने की स्वीकृति दी (इस धारणा के अंतर्गत कि एक अद्वितीय महत्वपूर्ण बिंदु है)। | ||
=== यांग-ली | === यांग-ली शून्य === | ||
{{main| | {{main| ली-यांग प्रमेय}} | ||
ऑनसेजर के समाधान के बाद, यांग और ली ने उस तरीके की जांच की जिसमें तापमान महत्वपूर्ण तापमान तक पहुंचने पर | |||
ऑनसेजर के समाधान के बाद, यांग और ली ने उस तरीके की जांच की जिसमें तापमान महत्वपूर्ण तापमान तक पहुंचने पर विभाजन फलन विशिष्ट हो जाता है। | |||
== संख्यात्मक अनुकरण के लिए मोंटे कार्लो तरीके == | == संख्यात्मक अनुकरण के लिए मोंटे कार्लो तरीके == | ||
[[File:Ising quench b10.gif|framed| | [[File:Ising quench b10.gif|framed|यादृच्छिक विन्यास से प्रारंभ करते हुए प्रतिवर्त तापमान β=10 के साथ एक द्वि-आयामी वर्ग लैटिस (500 × 500) पर एक ईज़िंग प्रणाली शमन]] | ||
=== परिभाषाएं === | === परिभाषाएं === | ||
यदि | यदि प्रणाली में कई अवस्था हैं तो ईज़िंग मॉडल प्रायः संख्यात्मक रूप से मूल्यांकन करना कठिन हो सकता है। इसके साथ एक ईज़िंग मॉडल पर विचार करें | ||
: L = |Λ|: लैटिस पर भागों की समग्र संख्या, | : L = |Λ|: लैटिस पर भागों की समग्र संख्या, | ||
: σ<sub>''j''</sub> ∈ {−1, +1}: लैटिस पर एक व्यक्तिगत प्रचक्रण भाग, | : σ<sub>''j''</sub> ∈ {−1, +1}: लैटिस पर एक व्यक्तिगत प्रचक्रण भाग, J = 1, ..., L, | ||
: | : SS ∈ {−1, +1}<sup>L</sup>: प्रणाली की स्थिति। | ||
चूंकि प्रत्येक प्रचक्रण भाग में ±1 प्रचक्रण है, इसलिए 2 | चूंकि प्रत्येक प्रचक्रण भाग में ±1 प्रचक्रण है, इसलिए ''2<sup>L</sup>'' विभिन्न अवस्था हैं,जो संभव हैं।<ref name = "Newman">{{cite book |last1=Newman |first1=M.E.J. |last2=Barkema |first2=G.T. |title=सांख्यिकीय भौतिकी में मोंटे कार्लो के तरीके|publisher=Clarendon Press |year=1999 |isbn=9780198517979 }}</ref> यह मोंटे कार्लो विधियों का उपयोग करके ईज़िंग मॉडल को अनुकरण करने के कारण को प्रेरित करता है।<ref name="Newman" /> | ||
मोंटे कार्लो विधियों का उपयोग करते समय सामान्य रूप से मॉडल की ऊर्जा का प्रतिनिधित्व करने के लिए [[हैमिल्टनियन यांत्रिकी]] का उपयोग किया जाता है | मोंटे कार्लो विधियों का उपयोग करते समय सामान्य रूप से मॉडल की ऊर्जा का प्रतिनिधित्व करने के लिए [[हैमिल्टनियन यांत्रिकी]] का उपयोग किया जाता है | ||
: <math>H(\sigma) = -J \sum_{\langle i~j\rangle} \sigma_i \sigma_j - h \sum_j \sigma_j.</math> | : <math>H(\sigma) = -J \sum_{\langle i~j\rangle} \sigma_i \sigma_j - h \sum_j \sigma_j.</math> | ||
इसके अतिरिक्त, हैमिल्टनियन को शून्य बाहरी क्षेत्र | इसके अतिरिक्त, हैमिल्टनियन को शून्य बाहरी क्षेत्र h मानकर और सरल किया जाता है, क्योंकि मॉडल का उपयोग करके संशोधन किए जाने वाले कई प्रश्नों का उत्तर बाहरी क्षेत्र की अनुपस्थिति में दिया जा सकता है। यह हमें अवस्था σ के लिए निम्नलिखित ऊर्जा समीकरण की ओर ले जाता है: | ||
: <math>H(\sigma) = -J \sum_{\langle i~j\rangle} \sigma_i \sigma_j.</math> | : <math>H(\sigma) = -J \sum_{\langle i~j\rangle} \sigma_i \sigma_j.</math> | ||
इस हैमिल्टनियन को देखते हुए, किसी दिए गए तापमान पर विशिष्ट ताप या चुंबक के चुंबकीयकरण | इस हैमिल्टनियन को देखते हुए, किसी दिए गए तापमान पर विशिष्ट ताप या चुंबक के चुंबकीयकरण जैसे संबंध की मात्रा की गणना की जा सकती है।<ref name="Newman" /> | ||
=== | === मेट्रोपोलिस (विलायत) एल्गोरिथम === | ||
==== | ==== संक्षिप्त विवरण ==== | ||
मेट्रोपोलिस-हेस्टिंग्स एल्गोरिथ्म ईज़िंग मॉडल अनुमानों की गणना करने के लिए सबसे अधिक | मेट्रोपोलिस-हेस्टिंग्स एल्गोरिथ्म ईज़िंग मॉडल अनुमानों की गणना करने के लिए सबसे अधिक उपयोग किया जाने वाला मोंटे कार्लो एल्गोरिथम है।<ref name="Newman" /> एल्गोरिथम पहले चयन संभावनाओं g (μ, ν) को चयन करता है, जो इस संभावना का प्रतिनिधित्व करता है कि अवस्था ν को एल्गोरिथम द्वारा सभी अवस्थाओ में से चयन किया गया है, यह देखते हुए कि एक अवस्था μ में है। यह तब स्वीकृति संभावनाओं A (μ, ν) का उपयोग करता है ताकि [[विस्तृत संतुलन]] संतुष्ट हो। यदि नई स्थिति ν को स्वीकार कर लिया जाता है, तो हम उस स्थिति में चले जाते हैं और एक नए अवस्था का चयन करने और इसे स्वीकार करने का निर्णय लेने के साथ पुनरावृत्त की जाती हैं। यदि ν स्वीकार नहीं किया जाता है तो हम μ में रहते हैं। यह प्रक्रिया तब तक पुनरावृत्त की जाती है जब तक कि कुछ रोक मानदंड पूरा नहीं हो जाता है, जो ईज़िंग मॉडल के लिए प्रायः तब होता है जब लैटिस लोह चुंबकीय हो जाती है, जिसका अर्थ है कि सभी स्थल समान दिशा में इंगित करती हैं।<ref name="Newman" /> | ||
एल्गोरिथ्म को | एल्गोरिथ्म को प्रयुक्त करते समय, यह सुनिश्चित करना चाहिए कि g (μ, ν) का चयन इस तरह किया जाता है कि [[ ergodicity | अभ्यतिप्रायता]] पूरी हो जाती है। तापीय संतुलन में एक प्रणाली की ऊर्जा केवल एक छोटी सी सीमा के अंदर अस्थिरता करती है।<ref name="Newman" /> यह एकल-प्रचक्रण-प्रतिवर्त गतिकी की अवधारणा के पीछे की प्रेरणा है, जिसमें कहा गया है कि प्रत्येक संक्रमण में, हम लैटिस पर केवल एक प्रचक्रण भाग को बदल देंगे।<ref name="Newman" /> इसके अतिरिक्त, एकल-प्रचक्रण-प्रतिवर्त गतिकी का उपयोग करके, एक समय में दो अवस्थाओ के बीच भिन्न होने वाली प्रत्येक भाग को प्रतिवर्त करके किसी भी अवस्था से किसी भी अन्य अवस्था में प्राप्त किया जा सकता है। | ||
वर्तमान अवस्था की ऊर्जा के बीच परिवर्तन की अधिकतम मात्रा, H<sub>μ</sub> और किसी भी संभावित नए अवस्था की ऊर्जा | वर्तमान अवस्था की ऊर्जा के बीच परिवर्तन की अधिकतम मात्रा, H<sub>μ</sub> और किसी भी संभावित नए अवस्था की ऊर्जा H<sub>ν</sub> (एकल-प्रचक्रण-प्रतिवर्त गतिकी का उपयोग करके) प्रचक्रण के बीच 2J है जिसे हम नए अवस्था में जाने के लिए प्रतिवर्त चयन करते हैं और वह प्रचक्रण का प्रतिवेशी है।<ref name="Newman" /> इस प्रकार, 1d आइसिंग मॉडल में, जहां प्रत्येक भाग के दो प्रतिवेशी (बाएं और दाएं) हैं, ऊर्जा में अधिकतम अंतर 4J होगा। | ||
मान लीजिए C 'लैटिस समन्वय संख्या' का प्रतिनिधित्व करते हैं जो किसी भी लैटिस स्थल के निकटतम प्रतिवेशों की संख्या है।। हम मानते हैं कि आवधिक सीमा स्थितियों के कारण सभी भागों के प्रतिवेशों की संख्या समान है।<ref name="Newman" /> यह ध्यान रखना महत्वपूर्ण है कि मेट्रोपोलिस-हेस्टिंग्स एल्गोरिथम अत्यधिक मंद होने के कारण महत्वपूर्ण बिंदु के आसपास अच्छा प्रदर्शन नहीं करता है। सिस्टम के महत्वपूर्ण घातांक निर्धारित करने के लिए महत्वपूर्ण बिंदु के पास मॉडल को हल करने के लिए मल्टीग्रिड विधियों, निडरमेयर के एल्गोरिदम, स्वेनडेन-वांग एल्गोरिदम, या वोल्फ एल्गोरिदम जैसी अन्य तकनीकों की आवश्यकता होती है। | |||
इन एल्गोरिदम को | इन एल्गोरिदम को प्रयुक्त करने वाले मुक्त स्रोत पैकेज उपलब्ध हैं।<ref>{{Cite web|title=उदाहरण के लिए, SquareIsingModel.jl (जूलिया में)।|website=[[GitHub]] |date=28 June 2022 |url=https://github.com/cossio/SquareIsingModel.jl|url-status=live}}</ref> | ||
==== विशिष्टता ==== | ==== विशिष्टता ==== | ||
विशेष रूप से ईज़िंग मॉडल के लिए और | विशेष रूप से ईज़िंग मॉडल के लिए और एकल-प्रचक्रण-प्रतिवर्त गतिकी का उपयोग करके, निम्नलिखित को स्थापित किया जा सकता है। | ||
चूँकि लैटिस पर L समग्र | चूँकि लैटिस पर L समग्र स्थल हैं, एकल-प्रचक्रण-प्रतिवर्त का उपयोग करके हम दूसरे अवस्था में संक्रमण करते हैं, हम देख सकते हैं कि हमारे वर्तमान अवस्था μ से समग्र L नए अवस्था ν हैं। एल्गोरिथ्म मानता है कि चयन संभावनाएं L अवस्थाओ g(μ, ν) = 1/L के बराबर हैं। विस्तृत संतुलन हमें बताता है कि निम्नलिखित समीकरण धारण करना चाहिए: | ||
: <math>\frac{P(\mu, \nu)}{P(\nu, \mu)} = | : <math>\frac{P(\mu, \nu)}{P(\nu, \mu)} = | ||
| Line 238: | Line 239: | ||
: <math>\frac{A(\mu, \nu)}{A(\nu, \mu)} = e^{-\beta(H_\nu - H_\mu)}.</math> | : <math>\frac{A(\mu, \nu)}{A(\nu, \mu)} = e^{-\beta(H_\nu - H_\mu)}.</math> | ||
यदि | यदि ''H''<sub>ν</sub> > ''H''<sub>μ</sub>, तब A(ν, μ) > A(μ, ν). मेट्रोपोलिस A(μ, ν) या A(ν, μ) के बड़े को 1 पर स्थापित करता है। इस तर्क से स्वीकृति एल्गोरिथम है:<ref name="Newman" /> | ||
: <math>A(\mu, \nu) = \begin{cases} | : <math>A(\mu, \nu) = \begin{cases} | ||
| Line 245: | Line 246: | ||
\end{cases}</math> | \end{cases}</math> | ||
एल्गोरिथ्म का मूल रूप इस प्रकार है: | एल्गोरिथ्म का मूल रूप इस प्रकार है: | ||
# चयन प्रायिकता g(μ, ν) का उपयोग करके प्रचक्रण भाग | # चयन प्रायिकता g(μ, ν) का उपयोग करके प्रचक्रण भाग चयन करे और इस प्रचक्रण से जुड़ी ऊर्जा में योगदान की गणना करें। | ||
# प्रचक्रण के | # प्रचक्रण के मान को प्रतिवर्त करे और नए योगदान की गणना करें। | ||
# यदि नई ऊर्जा कम है, तो | # यदि नई ऊर्जा कम है, तो प्रतिवर्त मान रखें। | ||
#नई ऊर्जा ज्यादा हो तो संभावना के | #नई ऊर्जा ज्यादा हो तो संभावना के <math>e^{-\beta(H_\nu - H_\mu)}</math>साथ ही रखे | ||
# | #पुनरावृत्ति। | ||
ऊर्जा में परिवर्तन H<sub>ν</sub> | ऊर्जा में परिवर्तन ''H''<sub>ν</sub> − ''H''<sub>μ</sub> केवल प्रचक्रण और उसके निकटतम रेखाचित्र प्रतिवेशों के मान पर निर्भर करता है। इसलिए यदि रेखाचित्र बहुत अधिक जुड़ा हुआ नहीं है, तो एल्गोरिथम तीव्र है। यह प्रक्रिया अंततः वितरण से एक चयन का उत्पादन करेगी। | ||
=== [[मार्कोव श्रृंखला]] के रूप में ईज़िंग मॉडल को देखना === | === [[मार्कोव श्रृंखला]] के रूप में ईज़िंग मॉडल को देखना === | ||
ईज़िंग मॉडल को मार्कोव श्रृंखला के रूप में देखना संभव है, तत्काल संभावना पी के रूप में<sub>β</sub>(ν) भविष्य की अवस्था में संक्रमण का ν केवल वर्तमान अवस्था μ पर निर्भर करता है। मेट्रोपोलिस एल्गोरिदम वास्तव में [[मार्कोव चेन मोंटे कार्लो]] सिमुलेशन का एक संस्करण है, और चूंकि हम मेट्रोपोलिस एल्गोरिदम में | ईज़िंग मॉडल को मार्कोव श्रृंखला के रूप में देखना संभव है, तत्काल संभावना पी के रूप में<sub>β</sub>(ν) भविष्य की अवस्था में संक्रमण का ν केवल वर्तमान अवस्था μ पर निर्भर करता है। मेट्रोपोलिस एल्गोरिदम वास्तव में [[मार्कोव चेन मोंटे कार्लो]] सिमुलेशन का एक संस्करण है, और चूंकि हम मेट्रोपोलिस एल्गोरिदम में एकल-प्रचक्रण-प्रतिवर्त गतिशीलता का उपयोग करते हैं, इसलिए प्रत्येक अवस्था को एल अन्य अवस्थाओ के लिंक के रूप में देखा जा सकता है, जहां प्रत्येक संक्रमण फ़्लिपिंग से मेल खाता है विपरीत मान के लिए एकल प्रचक्रण भाग।<ref>{{cite journal |last=Teif |first=Vladimir B.|title=जीन विनियमन में डीएनए-प्रोटीन-दवा बंधन की गणना करने के लिए सामान्य स्थानांतरण मैट्रिक्स औपचारिकता|journal=Nucleic Acids Res. |year=2007 |volume=35 |issue=11 |pages=e80 |doi=10.1093/nar/gkm268 |pmid=17526526 |pmc=1920246}}</ref> इसके अतिरिक्त, चूंकि ऊर्जा समीकरण एच<sub>σ</sub> परिवर्तन केवल निकटतम-प्रतिवेशी संपर्क सामर्थ्य पर निर्भर करता है जे, ईज़िंग मॉडल और इसके वेरिएंट जैसे [[सजनाजद मॉडल]] को एक संपर्क प्रक्रिया (गणित) के एक रूप के रूप में देखा जा सकता है #मत गतिकी के लिए वोटर मॉडल। | ||
== एक आयाम == | == एक आयाम == | ||
ऊष्मप्रवैगिकी सीमा तब तक सम्मिलित रहती है जब तक अंतःक्रियात्मक क्षय होता है <math>J_{ij} \sim |i - j|^{-\alpha}</math> α> 1 के साथ।<ref name="Ruelle">{{cite book |first=David |last=Ruelle |title=Statistical Mechanics: Rigorous Results |url=https://books.google.com/books?id=2HPVCgAAQBAJ&pg=PR4 |date=1999 |publisher=World Scientific |isbn=978-981-4495-00-4 |orig-year=1969}}</ref> | ऊष्मप्रवैगिकी सीमा तब तक सम्मिलित रहती है जब तक अंतःक्रियात्मक क्षय होता है <math>J_{ij} \sim |i - j|^{-\alpha}</math> α> 1 के साथ।<ref name="Ruelle">{{cite book |first=David |last=Ruelle |title=Statistical Mechanics: Rigorous Results |url=https://books.google.com/books?id=2HPVCgAAQBAJ&pg=PR4 |date=1999 |publisher=World Scientific |isbn=978-981-4495-00-4 |orig-year=1969}}</ref> | ||
* लोह चुंबकीय पारस्परिक क्रिया के स्थिति में <math>J_{ij} \sim |i - j|^{-\alpha} </math> 1 < α < 2 के साथ, डायसन ने पदानुक्रमित स्थिति के साथ तुलना करके | * लोह चुंबकीय पारस्परिक क्रिया के स्थिति में <math>J_{ij} \sim |i - j|^{-\alpha} </math> 1 < α < 2 के साथ, डायसन ने पदानुक्रमित स्थिति के साथ तुलना करके प्रमाणित किया कि छोटे पर्याप्त तापमान पर प्रावस्था संक्रमण होता है।<ref>{{cite journal |last=Dyson |first=F. J. |title=एक आयामी आइसिंग फेरोमैग्नेट में चरण-संक्रमण का अस्तित्व|journal=Comm. Math. Phys. |year=1969 |volume=12 |issue=2 |pages=91–107 |doi=10.1007/BF01645907 |bibcode = 1969CMaPh..12...91D |s2cid=122117175 |url=http://projecteuclid.org/euclid.cmp/1103841344 }}</ref> | ||
* लोह चुंबकीय पारस्परिक क्रिया के स्थिति में <math>J_{ij} \sim |i - j|^{-2}</math>, फ्रॉलीच और स्पेंसर ने | * लोह चुंबकीय पारस्परिक क्रिया के स्थिति में <math>J_{ij} \sim |i - j|^{-2}</math>, फ्रॉलीच और स्पेंसर ने प्रमाणित किया कि छोटे पर्याप्त तापमान पर (पदानुक्रमित स्थिति के विपरीत) प्रावस्था संक्रमण होता है।<ref>{{cite journal |last1=Fröhlich |first1=J. |last2=Spencer |first2=T. |title=The phase transition in the one-dimensional Ising model with 1/''r''<sup>2</sup> interaction energy |journal=Comm. Math. Phys. |year=1982 |volume=84 |issue=1 |doi=10.1007/BF01208373 |pages=87–101 |bibcode = 1982CMaPh..84...87F |s2cid=122722140 |url=http://projecteuclid.org/euclid.cmp/1103921047 }}</ref> | ||
* संपर्क के स्थिति में <math>J_{ij} \sim |i - j|^{-\alpha}</math> Α > 2 (जिसमें परिमित-श्रेणी की अंतःक्रियाओं का मामला सम्मिलित है) के साथ, किसी भी धनात्मक तापमान (अर्थात परिमित β) पर कोई प्रावस्था संक्रमण नहीं होता है, क्योंकि ऊष्मप्रवैगिकी मुक्त ऊर्जा ऊष्मप्रवैगिकी मापदंडों में विश्लेषणात्मक होती है।<ref name="Ruelle"/>* निकटतम प्रतिवेशी की संपर्क के स्थिति में, ई. इसिंग ने मॉडल का एक परिशुद्ध समाधान प्रदान किया। किसी भी धनात्मक तापमान (अर्थात परिमित β) पर मुक्त ऊर्जा ऊष्मप्रवैगिकी मापदंडों में विश्लेषणात्मक होती है, और छोटा दो-बिंदु प्रचक्रण | * संपर्क के स्थिति में <math>J_{ij} \sim |i - j|^{-\alpha}</math> Α > 2 (जिसमें परिमित-श्रेणी की अंतःक्रियाओं का मामला सम्मिलित है) के साथ, किसी भी धनात्मक तापमान (अर्थात परिमित β) पर कोई प्रावस्था संक्रमण नहीं होता है, क्योंकि ऊष्मप्रवैगिकी मुक्त ऊर्जा ऊष्मप्रवैगिकी मापदंडों में विश्लेषणात्मक होती है।<ref name="Ruelle"/>* निकटतम प्रतिवेशी की संपर्क के स्थिति में, ई. इसिंग ने मॉडल का एक परिशुद्ध समाधान प्रदान किया। किसी भी धनात्मक तापमान (अर्थात परिमित β) पर मुक्त ऊर्जा ऊष्मप्रवैगिकी मापदंडों में विश्लेषणात्मक होती है, और छोटा दो-बिंदु प्रचक्रण पारस्परिक संबंध तेजी से तेजी से घटता है। शून्य तापमान (अर्थात अनंत β) पर, एक दूसरे क्रम का प्रावस्था संक्रमण होता है: मुक्त ऊर्जा अनंत होती है, और दो-बिंदु प्रचक्रण पारस्परिक संबंध को छोटा कर दिया जाता है (निरंतर रहता है)। इसलिए, T = 0 इस स्थिति का महत्वपूर्ण तापमान है। अनुमाप परिवर्तन सूत्र संतुष्ट हैं।<ref>{{citation | last1=Baxter | first1=Rodney J. | title=Exactly solved models in statistical mechanics | url=http://tpsrv.anu.edu.au/Members/baxter/book | url-status=dead | publisher=Academic Press Inc. [Harcourt Brace Jovanovich Publishers] | location=London | isbn=978-0-12-083180-7 | mr=690578 | year=1982 | access-date=2009-10-25 | archive-date=2012-03-20 | archive-url=https://web.archive.org/web/20120320064257/http://tpsrv.anu.edu.au/Members/baxter/book }}</ref> | ||
| Line 266: | Line 267: | ||
निकटतम प्रतिवेशी स्थिति में (आवधिक या मुक्त सीमा शर्तों के साथ) एक परिशुद्ध समाधान उपलब्ध है। आवधिक सीमा शर्तों के साथ एल भागों की लैटिस पर एक आयामी आइसिंग मॉडल का हैमिल्टनियन है | निकटतम प्रतिवेशी स्थिति में (आवधिक या मुक्त सीमा शर्तों के साथ) एक परिशुद्ध समाधान उपलब्ध है। आवधिक सीमा शर्तों के साथ एल भागों की लैटिस पर एक आयामी आइसिंग मॉडल का हैमिल्टनियन है | ||
: <math>H(\sigma) = -J \sum_{i=1,\ldots,L-1} \sigma_i \sigma_{i+1} - h \sum_i \sigma_i,</math> | : <math>H(\sigma) = -J \sum_{i=1,\ldots,L-1} \sigma_i \sigma_{i+1} - h \sum_i \sigma_i,</math> | ||
जहाँ J और h कोई भी संख्या हो सकती है, क्योंकि इस सरलीकृत स्थिति में J निकटतम प्रतिवेशों के बीच परस्पर क्रिया सामर्थ्य का प्रतिनिधित्व करने वाला एक स्थिरांक है और h लैटिस स्थलों पर | जहाँ J और h कोई भी संख्या हो सकती है, क्योंकि इस सरलीकृत स्थिति में J निकटतम प्रतिवेशों के बीच परस्पर क्रिया सामर्थ्य का प्रतिनिधित्व करने वाला एक स्थिरांक है और h लैटिस स्थलों पर प्रयुक्त होने वाला निरंतर बाहरी चुंबकीय क्षेत्र है। फिर | ||
ऊष्मप्रवैगिकी मुक्त ऊर्जा है | ऊष्मप्रवैगिकी मुक्त ऊर्जा है | ||
: <math>f(\beta, h) = -\lim_{L \to \infty} \frac{1}{\beta L} \ln Z(\beta) = -\frac{1}{\beta} \ln\left(e^{\beta J} \cosh \beta h + \sqrt{e^{2\beta J}(\sinh\beta h)^2 + e^{-2\beta J}}\right), | : <math>f(\beta, h) = -\lim_{L \to \infty} \frac{1}{\beta L} \ln Z(\beta) = -\frac{1}{\beta} \ln\left(e^{\beta J} \cosh \beta h + \sqrt{e^{2\beta J}(\sinh\beta h)^2 + e^{-2\beta J}}\right), | ||
</math> | </math> | ||
और प्रचक्रण-प्रचक्रण | और प्रचक्रण-प्रचक्रण पारस्परिक संबंध (अर्थात सहप्रसरण) है | ||
: <math>\langle\sigma_i \sigma_j\rangle - \langle\sigma_i\rangle \langle\sigma_j\rangle = C(\beta) e^{-c(\beta)|i - j|},</math> | : <math>\langle\sigma_i \sigma_j\rangle - \langle\sigma_i\rangle \langle\sigma_j\rangle = C(\beta) e^{-c(\beta)|i - j|},</math> | ||
जहां C(β) और c(β) T > 0 के लिए धनात्मक कार्य हैं। T → 0 के लिए, हालांकि, व्युत्क्रम | जहां C(β) और c(β) T > 0 के लिए धनात्मक कार्य हैं। T → 0 के लिए, हालांकि, व्युत्क्रम पारस्परिक संबंध लंबाई c(β) गायब हो जाती है। | ||
== प्रमाण == | == प्रमाण == | ||
| Line 291: | Line 292: | ||
इसलिए जैसे ही T ≠ 0 होता है, इसका चरघातांकी क्षय होता है; लेकिन T = 0 के लिए, अर्थात β → ∞ की सीमा में कोई क्षय नहीं है। | इसलिए जैसे ही T ≠ 0 होता है, इसका चरघातांकी क्षय होता है; लेकिन T = 0 के लिए, अर्थात β → ∞ की सीमा में कोई क्षय नहीं है। | ||
यदि h ≠ 0 हमें स्थानांतरण मैट्रिक्स विधि की आवश्यकता है। आवधिक सीमा स्थितियों के स्थिति में निम्नलिखित है। | यदि h ≠ 0 हमें स्थानांतरण मैट्रिक्स विधि की आवश्यकता है। आवधिक सीमा स्थितियों के स्थिति में निम्नलिखित है। विभाजन कार्य है | ||
: <math>Z(\beta) = \sum_{\sigma_1,\ldots,\sigma_L} e^{\beta h \sigma_1} e^{\beta J\sigma_1\sigma_2} e^{\beta h \sigma_2} e^{\beta J\sigma_2\sigma_3} \cdots e^{\beta h \sigma_L} e^{\beta J\sigma_L\sigma_1} = \sum_{\sigma_1,\ldots,\sigma_L} V_{\sigma_1,\sigma_2} V_{\sigma_2,\sigma_3} \cdots V_{\sigma_L,\sigma_1}.</math> | : <math>Z(\beta) = \sum_{\sigma_1,\ldots,\sigma_L} e^{\beta h \sigma_1} e^{\beta J\sigma_1\sigma_2} e^{\beta h \sigma_2} e^{\beta J\sigma_2\sigma_3} \cdots e^{\beta h \sigma_L} e^{\beta J\sigma_L\sigma_1} = \sum_{\sigma_1,\ldots,\sigma_L} V_{\sigma_1,\sigma_2} V_{\sigma_2,\sigma_3} \cdots V_{\sigma_L,\sigma_1}.</math> | ||
गुणांक <math>V_{\sigma, \sigma'}</math> एक मैट्रिक्स की प्रविष्टियों के रूप में देखा जा सकता है। अलग-अलग संभावित विकल्प हैं: एक सुविधाजनक (क्योंकि मैट्रिक्स सममित है) है | गुणांक <math>V_{\sigma, \sigma'}</math> एक मैट्रिक्स की प्रविष्टियों के रूप में देखा जा सकता है। अलग-अलग संभावित विकल्प हैं: एक सुविधाजनक (क्योंकि मैट्रिक्स सममित है) है | ||
| Line 309: | Line 310: | ||
निम्नतम अवस्था की ऊर्जा -JL होती है, जब सभी चक्रण समान होते हैं। किसी भी अन्य अभिविन्यास के लिए, अतिरिक्त ऊर्जा 2J गुणा के बराबर होती है जो अभिविन्यास को बाएं से दाएं स्कैन करते समय सामने आने वाले साइन परिवर्तनों की संख्या होती है। | निम्नतम अवस्था की ऊर्जा -JL होती है, जब सभी चक्रण समान होते हैं। किसी भी अन्य अभिविन्यास के लिए, अतिरिक्त ऊर्जा 2J गुणा के बराबर होती है जो अभिविन्यास को बाएं से दाएं स्कैन करते समय सामने आने वाले साइन परिवर्तनों की संख्या होती है। | ||
यदि हम किसी विन्यास में साइन परिवर्तन की संख्या को k के रूप में निर्दिष्ट करते हैं, तो निम्नतम ऊर्जा अवस्था से ऊर्जा में अंतर 2k है। चूँकि ऊर्जा | यदि हम किसी विन्यास में साइन परिवर्तन की संख्या को k के रूप में निर्दिष्ट करते हैं, तो निम्नतम ऊर्जा अवस्था से ऊर्जा में अंतर 2k है। चूँकि ऊर्जा प्रतिवर्त की संख्या में योज्य है, प्रत्येक स्थिति में प्रचक्रण-प्रतिवर्त होने की प्रायिकता p स्वतंत्र है। एक नहीं मिलने की संभावना के लिए एक प्रतिवर्त खोजने की संभावना का अनुपात बोल्ट्जमान कारक है: | ||
: <math>\frac{p}{1 - p} = e^{-2\beta J}.</math> | : <math>\frac{p}{1 - p} = e^{-2\beta J}.</math> | ||
समस्या को स्वतंत्र पक्षपाती सिक्का उछालने के लिए कम किया गया है। यह अनिवार्य रूप से गणितीय विवरण को पूरा करता है। | समस्या को स्वतंत्र पक्षपाती सिक्का उछालने के लिए कम किया गया है। यह अनिवार्य रूप से गणितीय विवरण को पूरा करता है। | ||
स्वतंत्र टॉस के संदर्भ में विवरण से, लंबी लाइनों के मॉडल के आंकड़ों को समझा जा सकता है। रेखा | स्वतंत्र टॉस के संदर्भ में विवरण से, लंबी लाइनों के मॉडल के आंकड़ों को समझा जा सकता है। रेखा प्रक्षेत्र में विभाजित होती है। प्रत्येक प्रक्षेत्र औसत लंबाई ऍक्स्प (2β) का है। एक प्रक्षेत्र की लंबाई चरघातांकी रूप से वितरित की जाती है, क्योंकि किसी भी कदम पर एक प्रतिवर्त का सामना करने की निरंतर संभावना होती है। प्रक्षेत्र कभी भी अनंत नहीं बनते, इसलिए एक लंबी प्रणाली कभी चुम्बकित नहीं होती है। प्रत्येक चरण एक प्रचक्रण और उसके प्रतिवेशी के बीच पारस्परिक संबंध को p के समानुपातिक रूप से कम करता है, इसलिए पारस्परिक संबंध तेजी से गिरते हैं। | ||
: <math>\langle S_i S_j \rangle \propto e^{-p|i-j|}.</math> | : <math>\langle S_i S_j \rangle \propto e^{-p|i-j|}.</math> | ||
विभाजन फलन (सांख्यिकीय यांत्रिकी) अभिविन्यास की मात्रा है, प्रत्येक अभिविन्यास को उसके बोल्टज़मान भार से भारित किया जाता है। चूंकि प्रत्येक अभिविन्यास को साइन-चेंज द्वारा वर्णित किया गया है, इसलिए विभाजन फलन फ़ैक्टराइज़ करता है: | |||
: <math>Z = \sum_{\text{configs}} e^{\sum_k S_k} = \prod_k (1 + p ) = (1 + p)^L.</math> | : <math>Z = \sum_{\text{configs}} e^{\sum_k S_k} = \prod_k (1 + p ) = (1 + p)^L.</math> | ||
| Line 330: | Line 331: | ||
: <math>H(\sigma) = -J \sum_{i=1,\ldots,L} \sigma_i^z \sigma_{i+1}^z - h \sum_i \sigma_i^x.</math> | : <math>H(\sigma) = -J \sum_{i=1,\ldots,L} \sigma_i^z \sigma_{i+1}^z - h \sum_i \sigma_i^x.</math> | ||
अनुप्रस्थ-क्षेत्र मॉडल J ~ h पर एक | अनुप्रस्थ-क्षेत्र मॉडल J ~ h पर एक क्रमित और अव्यवस्थित शासन के बीच एक प्रावस्था संक्रमण का अनुभव करता है। इसे पाउली मेट्रिसेस के मानचित्रण द्वारा दिखाया जा सकता है | ||
: <math>\sigma_n^z = \prod_{i=1}^n T_i^x,</math> | : <math>\sigma_n^z = \prod_{i=1}^n T_i^x,</math> | ||
| Line 341: | Line 342: | ||
== दो आयाम == | == दो आयाम == | ||
* लोह चुंबकीय स्थिति में एक प्रावस्था संक्रमण होता है। कम तापमान पर, पीयरल्स तर्क निकटतम प्रतिवेशी स्थिति के लिए धनात्मक चुंबकीयकरण | * लोह चुंबकीय स्थिति में एक प्रावस्था संक्रमण होता है। कम तापमान पर, पीयरल्स तर्क निकटतम प्रतिवेशी स्थिति के लिए धनात्मक चुंबकीयकरण प्रमाणित करता है और फिर [[ग्रिफ़िथ असमानता]] द्वारा, जब लंबी दूरी की संपर्क भी जोड़ दी जाती है। इस बीच, उच्च तापमान पर, [[क्लस्टर विस्तार]] ऊष्मप्रवैगिकी कार्यों की विश्लेषणात्मकता देता है। | ||
* निकटतम-प्रतिवेशी स्थिति में, लैटिस पर मुक्त fermions के साथ मॉडल के तुल्यता के माध्यम से, मुक्त ऊर्जा की गणना ऑनसेगर द्वारा की गई थी। प्रचक्रण-प्रचक्रण | * निकटतम-प्रतिवेशी स्थिति में, लैटिस पर मुक्त fermions के साथ मॉडल के तुल्यता के माध्यम से, मुक्त ऊर्जा की गणना ऑनसेगर द्वारा की गई थी। प्रचक्रण-प्रचक्रण पारस्परिक संबंध कार्यों की गणना मैककॉय और वू द्वारा की गई थी। | ||
=== ऑनसेजर का परिशुद्ध समाधान === | === ऑनसेजर का परिशुद्ध समाधान === | ||
| Line 358: | Line 359: | ||
==== स्थानांतरण मैट्रिक्स ==== | ==== स्थानांतरण मैट्रिक्स ==== | ||
क्वांटम यांत्रिकी के साथ समानता से प्रारंभ करें। दीर्घ आवधिक जालक पर ईज़िंग मॉडल में एक | क्वांटम यांत्रिकी के साथ समानता से प्रारंभ करें। दीर्घ आवधिक जालक पर ईज़िंग मॉडल में एक विभाजन कार्य होता है | ||
:<math>\sum_{\{S\}} \exp\biggl(\sum_{ij} S_{i,j} \left( S_{i,j+1} + S_{i+1,j} \right)\biggr).</math> | :<math>\sum_{\{S\}} \exp\biggl(\sum_{ij} S_{i,j} \left( S_{i,j+1} + S_{i+1,j} \right)\biggr).</math> | ||
i दिशा को स्थान के रूप में और j दिशा को समय के रूप में सोचें। यह उन सभी मूल्यों पर एक स्वतंत्र योग है जो प्रचक्रण | i दिशा को स्थान के रूप में और j दिशा को समय के रूप में सोचें। यह उन सभी मूल्यों पर एक स्वतंत्र योग है जो प्रचक्रण प्रत्येक बार स्लाइस में ले सकते हैं। यह एक प्रकार का [[पथ अभिन्न सूत्रीकरण]] है, यह सभी प्रचक्रण इतिहासों का योग है। | ||
एक पाथ इंटीग्रल को हैमिल्टन के विकास के रूप में फिर से लिखा जा सकता है। समय टी और समय टी + Δt के बीच एकात्मक घूर्णन करके समय के माध्यम से हैमिल्टनियन कदम: | एक पाथ इंटीग्रल को हैमिल्टन के विकास के रूप में फिर से लिखा जा सकता है। समय टी और समय टी + Δt के बीच एकात्मक घूर्णन करके समय के माध्यम से हैमिल्टनियन कदम: | ||
| Line 370: | Line 371: | ||
जहां N टाइम स्लाइस की संख्या है। सभी रास्तों का योग मैट्रिसेस के उत्पाद द्वारा दिया जाता है, प्रत्येक मैट्रिक्स तत्व एक स्लाइस से दूसरे में संक्रमण की संभावना है। | जहां N टाइम स्लाइस की संख्या है। सभी रास्तों का योग मैट्रिसेस के उत्पाद द्वारा दिया जाता है, प्रत्येक मैट्रिक्स तत्व एक स्लाइस से दूसरे में संक्रमण की संभावना है। | ||
इसी तरह, कोई भी सभी | इसी तरह, कोई भी सभी विभाजन फलन अभिविन्यास के योग को स्लाइस में विभाजित कर सकता है, जहां प्रत्येक स्लाइस समय 1 पर एक-आयामी अभिविन्यास है। यह ट्रांसफर-मैट्रिक्स विधि को परिभाषित करता है: | ||
:<math>T_{C_1 C_2}.</math> | :<math>T_{C_1 C_2}.</math> | ||
प्रत्येक स्लाइस में अभिविन्यास प्रचक्रण का एक आयामी संग्रह है। प्रत्येक समय स्लाइस में, टी में प्रचक्रण के दो विन्यासों के बीच मैट्रिक्स तत्व होते हैं, एक तत्काल भविष्य में और एक तत्काल अतीत में। ये दो विन्यास हैं सी<sub>1</sub> और सी<sub>2</sub>, और वे सभी एक आयामी प्रचक्रण विन्यास हैं। हम सदिश स्थान के बारे में सोच सकते हैं कि T इनमें से सभी जटिल रैखिक संयोजनों के रूप में कार्य करता है। क्वांटम मैकेनिकल नोटेशन का उपयोग करना: | प्रत्येक स्लाइस में अभिविन्यास प्रचक्रण का एक आयामी संग्रह है। प्रत्येक समय स्लाइस में, टी में प्रचक्रण के दो विन्यासों के बीच मैट्रिक्स तत्व होते हैं, एक तत्काल भविष्य में और एक तत्काल अतीत में। ये दो विन्यास हैं सी<sub>1</sub> और सी<sub>2</sub>, और वे सभी एक आयामी प्रचक्रण विन्यास हैं। हम सदिश स्थान के बारे में सोच सकते हैं कि T इनमें से सभी जटिल रैखिक संयोजनों के रूप में कार्य करता है। क्वांटम मैकेनिकल नोटेशन का उपयोग करना: | ||
| Line 376: | Line 377: | ||
जहां प्रत्येक आधार वेक्टर <math>|S\rangle</math> एक आयामी ईज़िंग मॉडल का प्रचक्रण अभिविन्यास है। | जहां प्रत्येक आधार वेक्टर <math>|S\rangle</math> एक आयामी ईज़िंग मॉडल का प्रचक्रण अभिविन्यास है। | ||
हैमिल्टनियन की तरह, स्थानांतरण मैट्रिक्स अवस्थाओ के सभी रैखिक संयोजनों पर कार्य करता है। | हैमिल्टनियन की तरह, स्थानांतरण मैट्रिक्स अवस्थाओ के सभी रैखिक संयोजनों पर कार्य करता है। विभाजन फलन T का एक मैट्रिक्स फलन है, जिसे सभी इतिहासों पर [[ट्रेस (रैखिक बीजगणित)]] द्वारा परिभाषित किया गया है जो N चरणों के बाद मूल अभिविन्यास पर वापस आते हैं: | ||
:<math>Z= \mathrm{tr}(T^N).</math> | :<math>Z= \mathrm{tr}(T^N).</math> | ||
चूंकि यह एक मैट्रिक्स समीकरण है, इसका मूल्यांकन किसी भी आधार पर किया जा सकता है। इसलिए यदि हम मैट्रिक्स T को विकर्ण कर सकते हैं, तो हम Z पा सकते हैं। | चूंकि यह एक मैट्रिक्स समीकरण है, इसका मूल्यांकन किसी भी आधार पर किया जा सकता है। इसलिए यदि हम मैट्रिक्स T को विकर्ण कर सकते हैं, तो हम Z पा सकते हैं। | ||
==== पाउली मैट्रिसेस के संदर्भ में ==== | ==== पाउली मैट्रिसेस के संदर्भ में ==== | ||
एक स्लाइस पर अभिविन्यास के प्रत्येक पिछले/भविष्य के जोड़े के लिए | एक स्लाइस पर अभिविन्यास के प्रत्येक पिछले/भविष्य के जोड़े के लिए विभाजन फलन में योगदान दो शब्दों का योग है। पिछले स्लाइस में प्रचक्रण प्रतिवर्त की संख्या है और अतीत और भविष्य के स्लाइस के बीच प्रचक्रण प्रतिवर्त की संख्या है। अभिविन्यास पर एक ऑपरेटर को परिभाषित करें जो प्रचक्रण को भाग i पर प्रतिवर्त करता है: | ||
:<math>\sigma^x_i.</math> | :<math>\sigma^x_i.</math> | ||
सामान्य ईज़िंग आधार में, पिछले विन्यासों के किसी भी रैखिक संयोजन पर कार्य करते हुए, यह समान रैखिक संयोजन का उत्पादन करता है, लेकिन प्रत्येक आधार वेक्टर | सामान्य ईज़िंग आधार में, पिछले विन्यासों के किसी भी रैखिक संयोजन पर कार्य करते हुए, यह समान रैखिक संयोजन का उत्पादन करता है, लेकिन प्रत्येक आधार वेक्टर प्रतिवर्त की स्थिति i पर प्रचक्रण के साथ। | ||
एक दूसरे ऑपरेटर को परिभाषित करें जो स्थिति i पर प्रचक्रण के अनुसार आधार वेक्टर को +1 और -1 से गुणा करता है: | एक दूसरे ऑपरेटर को परिभाषित करें जो स्थिति i पर प्रचक्रण के अनुसार आधार वेक्टर को +1 और -1 से गुणा करता है: | ||
| Line 392: | Line 393: | ||
:<math>\sum_i A \sigma^x_i + B \sigma^z_i \sigma^z_{i+1}</math> | :<math>\sum_i A \sigma^x_i + B \sigma^z_i \sigma^z_{i+1}</math> | ||
जहां ए और बी स्थिरांक हैं जिन्हें | जहां ए और बी स्थिरांक हैं जिन्हें विभाजन फलन को पुन: उत्पन्न करने के लिए निर्धारित किया जाना है। व्याख्या यह है कि इस स्लाइस पर सांख्यिकीय अभिविन्यास स्लाइस में प्रचक्रण प्रतिवर्त की संख्या के अनुसार योगदान देता है, और क्या स्थिति में प्रचक्रण प्रतिवर्त किया गया है या नहीं। | ||
====प्रचक्रण | ====प्रचक्रण प्रतिवर्त क्रिएशन एंड एनिहिलेशन ऑपरेटर्स==== | ||
जैसे एक आयामी स्थिति में, हम प्रचक्रण से प्रचक्रण- | जैसे एक आयामी स्थिति में, हम प्रचक्रण से प्रचक्रण-प्रतिवर्त पर ध्यान देंगे। द<sup>z</sup> टी में शब्द प्रचक्रण प्रतिवर्त की संख्या की गणना करता है, जिसे हम प्रचक्रण-प्रतिवर्त निर्माण और विलोपन ऑपरेटरों के संदर्भ में लिख सकते हैं: | ||
:<math> \sum C \psi^\dagger_i \psi_i. \,</math> | :<math> \sum C \psi^\dagger_i \psi_i. \,</math> | ||
पहला शब्द एक चक्कर लगाता है, इसलिए आधार के आधार पर इसे या तो बताएं: | पहला शब्द एक चक्कर लगाता है, इसलिए आधार के आधार पर इसे या तो बताएं: | ||
#प्रचक्रण- | #प्रचक्रण-प्रतिवर्त को एक यूनिट दाईं ओर ले जाता है | ||
#प्रचक्रण- | #प्रचक्रण-प्रतिवर्त को एक यूनिट बाईं ओर ले जाता है | ||
# प्रतिवेशी भागों पर दो प्रचक्रण- | # प्रतिवेशी भागों पर दो प्रचक्रण-प्रतिवर्त बनाता है | ||
# प्रतिवेशी भागों पर दो प्रचक्रण- | # प्रतिवेशी भागों पर दो प्रचक्रण-प्रतिवर्त को नष्ट करता है। | ||
निर्माण और विनाश ऑपरेटरों के संदर्भ में इसे लिखना: | निर्माण और विनाश ऑपरेटरों के संदर्भ में इसे लिखना: | ||
| Line 411: | Line 412: | ||
==== स्वतःस्फूर्त चुम्बकत्व के लिए ऑनसेजर का सूत्र ==== | ==== स्वतःस्फूर्त चुम्बकत्व के लिए ऑनसेजर का सूत्र ==== | ||
ऑनसेजर ने 1948 में दो अलग-अलग सम्मेलनों में स्क्वायर लैटिस पर द्वि-आयामी आइसिंग | ऑनसेजर ने 1948 में दो अलग-अलग सम्मेलनों में स्क्वायर लैटिस पर द्वि-आयामी आइसिंग लोह-चुंबक के सहज चुंबकीयकरण एम के लिए निम्नलिखित अभिव्यक्ति की घोषणा की, हालांकि सबूत के बिना<ref name="Montroll 1963 pages=308-309"/>:<math>M = \left(1 - \left[\sinh 2\beta J_1 \sinh 2\beta J_2\right]^{-2}\right)^{\frac{1}{8}}</math> | ||
जहाँ <math>J_1</math> और <math>J_2</math> क्षैतिज और ऊर्ध्वाधर अंतःक्रियात्मक ऊर्जा हैं। | जहाँ <math>J_1</math> और <math>J_2</math> क्षैतिज और ऊर्ध्वाधर अंतःक्रियात्मक ऊर्जा हैं। | ||
एक पूर्ण व्युत्पत्ति केवल 1951 में किसके द्वारा दी गई थी {{harvtxt|Yang|1952}} ट्रांसफर मैट्रिक्स ईजेनवेल्यूज की एक सीमित प्रक्रिया का उपयोग करना। बाद में 1963 में मॉन्ट्रोल, पॉट्स और वार्ड द्वारा प्रमाण को बहुत सरल बना दिया गया<ref name="Montroll 1963 pages=308-309"/> | एक पूर्ण व्युत्पत्ति केवल 1951 में किसके द्वारा दी गई थी {{harvtxt|Yang|1952}} ट्रांसफर मैट्रिक्स ईजेनवेल्यूज की एक सीमित प्रक्रिया का उपयोग करना। बाद में 1963 में मॉन्ट्रोल, पॉट्स और वार्ड द्वारा प्रमाण को बहुत सरल बना दिया गया<ref name="Montroll 1963 pages=308-309"/>पारस्परिक संबंध कार्यों की सीमा के रूप में चुंबकत्व का इलाज करके टोप्लिट्ज निर्धारकों के लिए गैबोर स्ज़ेगो|ज़ेगो के स्ज़ेगो सीमा प्रमेय का उपयोग करना। | ||
=== न्यूनतम मॉडल === | === न्यूनतम मॉडल === | ||
{{main|Two-dimensional critical Ising model}} | {{main|Two-dimensional critical Ising model}} | ||
महत्वपूर्ण बिंदु पर, द्वि-आयामी आइसिंग मॉडल एक [[द्वि-आयामी अनुरूप क्षेत्र सिद्धांत]] है। प्रचक्रण और ऊर्जा | महत्वपूर्ण बिंदु पर, द्वि-आयामी आइसिंग मॉडल एक [[द्वि-आयामी अनुरूप क्षेत्र सिद्धांत]] है। प्रचक्रण और ऊर्जा पारस्परिक संबंध कार्यों को [[न्यूनतम मॉडल (भौतिकी)]] द्वारा वर्णित किया गया है, जिसे बिल्कुल संशोधन किया गया है। | ||
== तीन आयाम == | == तीन आयाम == | ||
| Line 427: | Line 428: | ||
=== प्रावस्था संक्रमण === | === प्रावस्था संक्रमण === | ||
तीन में दो आयामों में, पियरल का तर्क दर्शाता है कि एक प्रावस्था संक्रमण है। इस प्रावस्था संक्रमण को कठोर रूप से निरंतर जाना जाता है (इस अर्थ में कि | तीन में दो आयामों में, पियरल का तर्क दर्शाता है कि एक प्रावस्था संक्रमण है। इस प्रावस्था संक्रमण को कठोर रूप से निरंतर जाना जाता है (इस अर्थ में कि पारस्परिक संबंध की लंबाई अलग हो जाती है और चुंबकीयकरण शून्य हो जाता है), और इसे [[ महत्वपूर्ण बिंदु (थर्मोडायनामिक्स) ]] कहा जाता है। यह माना जाता है कि महत्वपूर्ण बिंदु को विल्सन-कडानॉफ़ पुनर्सामान्यीकरण समूह परिवर्तन के एक पुनर्सामान्यीकरण समूह निश्चित बिंदु द्वारा वर्णित किया जा सकता है। यह भी माना जाता है कि प्रावस्था संक्रमण को त्रि-आयामी एकात्मक अनुरूप क्षेत्र सिद्धांत द्वारा वर्णित किया जा सकता है, जैसा कि मेट्रोपोलिस-हेस्टिंग्स एल्गोरिथम सिमुलेशन द्वारा प्रमाणित है,<ref>{{Cite journal|last1=Billó|first1=M.|last2=Caselle|first2=M.|last3=Gaiotto|first3=D.|last4=Gliozzi|first4=F.|last5=Meineri|first5=M.|last6=others|date=2013|title=Line defects in the 3d Ising model|journal=JHEP|volume=1307|issue=7|pages=055|arxiv=1304.4110|bibcode=2013JHEP...07..055B|doi=10.1007/JHEP07(2013)055|s2cid=119226610}}</ref><ref>{{Cite journal|last1=Cosme|first1=Catarina|last2=Lopes|first2=J. M. Viana Parente|last3=Penedones|first3=Joao|date=2015|title=Conformal symmetry of the critical 3D Ising model inside a sphere|journal=Journal of High Energy Physics|volume=2015|issue=8|pages=22|arxiv=1503.02011|bibcode=2015JHEP...08..022C|doi=10.1007/JHEP08(2015)022|s2cid=53710971}}</ref> क्वांटम मॉडल में परिशुद्ध विकर्णीकरण परिणाम,<ref>{{Cite arXiv |last1=Zhu |first1=Wei |last2=Han |first2=Chao |last3=Huffman |first3=Emilie |last4=Hofmann |first4=Johannes S. |last5=He |first5=Yin-Chen |date=2022-10-24 |title=Uncovering conformal symmetry in the 3D Ising transition: State-operator correspondence from a fuzzy sphere regularization |class=cond-mat.stat-mech |eprint=2210.13482}}</ref> और क्वांटम क्षेत्र सैद्धांतिक तर्क।<ref>{{Cite journal|last1=Delamotte|first1=Bertrand|last2=Tissier|first2=Matthieu|last3=Wschebor|first3=Nicolás|year=2016|title=स्केल इनवेरियन का तात्पर्य त्रि-आयामी ईज़िंग मॉडल के लिए अनुरूप इनवेरियन से है|journal=Physical Review E|volume=93|issue=12144|pages=012144|arxiv=1501.01776|bibcode=2016PhRvE..93a2144D|doi=10.1103/PhysRevE.93.012144|pmid=26871060|s2cid=14538564}}</ref> यद्यपि पुनर्सामान्यीकरण समूह चित्र या अनुरूप क्षेत्र सिद्धांत चित्र को कठोर रूप से स्थापित करना एक खुली समस्या है, सैद्धांतिक भौतिकविदों ने प्रावस्था संक्रमण के महत्वपूर्ण घातांकों की गणना करने के लिए इन दो विधियों का उपयोग किया है, जो प्रयोगों और मोंटे कार्लो सिमुलेशन से सहमत हैं। | ||
त्रि-आयामी आइसिंग महत्वपूर्ण बिंदु का वर्णन करने वाला यह अनुरूप क्षेत्र सिद्धांत, [[अनुरूप बूटस्ट्रैप]] की विधि का उपयोग करके सक्रिय जांच के अधीन है।<ref>{{Cite journal|last1=El-Showk|first1=Sheer|last2=Paulos|first2=Miguel F.|last3=Poland|first3=David|last4=Rychkov|first4=Slava|last5=Simmons-Duffin|first5=David|last6=Vichi|first6=Alessandro|date=2012|title=Solving the 3D Ising Model with the Conformal Bootstrap|journal=Phys. Rev.|volume=D86|issue=2|pages=025022|arxiv=1203.6064|bibcode=2012PhRvD..86b5022E|doi=10.1103/PhysRevD.86.025022|s2cid=39692193}}</ref><ref name="cmin">{{Cite journal|last1=El-Showk|first1=Sheer|last2=Paulos|first2=Miguel F.|last3=Poland|first3=David|last4=Rychkov|first4=Slava|last5=Simmons-Duffin|first5=David|last6=Vichi|first6=Alessandro|date=2014|title=Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents|journal=Journal of Statistical Physics|volume=157|issue=4–5|pages=869–914|arxiv=1403.4545|bibcode=2014JSP...157..869E|doi=10.1007/s10955-014-1042-7|s2cid=119627708}}</ref><ref name="SDPB">{{Cite journal|last=Simmons-Duffin|first=David|date=2015|title=अनुरूप बूटस्ट्रैप के लिए एक अर्ध-निश्चित प्रोग्राम सॉल्वर|journal=Journal of High Energy Physics|volume=2015|issue=6|pages=174|arxiv=1502.02033|bibcode=2015JHEP...06..174S|doi=10.1007/JHEP06(2015)174|issn=1029-8479|s2cid=35625559}}</ref><ref name="Kadanoff">{{cite journal |last=Kadanoff|first=Leo P.|date=April 30, 2014|title=Deep Understanding Achieved on the 3d Ising Model|url=http://www.condmatjournalclub.org/?p=2384|url-status=dead|archive-url=https://web.archive.org/web/20150722062827/http://www.condmatjournalclub.org/?p=2384|archive-date=July 22, 2015|access-date=July 19, 2015|journal=Journal Club for Condensed Matter Physics}}</ref> यह विधि वर्तमान में महत्वपूर्ण सिद्धांत की संरचना के बारे में सबसे परिशुद्ध जानकारी देती है (देखें [[महत्वपूर्ण घातांक]] ईज़िंग)। | त्रि-आयामी आइसिंग महत्वपूर्ण बिंदु का वर्णन करने वाला यह अनुरूप क्षेत्र सिद्धांत, [[अनुरूप बूटस्ट्रैप]] की विधि का उपयोग करके सक्रिय जांच के अधीन है।<ref>{{Cite journal|last1=El-Showk|first1=Sheer|last2=Paulos|first2=Miguel F.|last3=Poland|first3=David|last4=Rychkov|first4=Slava|last5=Simmons-Duffin|first5=David|last6=Vichi|first6=Alessandro|date=2012|title=Solving the 3D Ising Model with the Conformal Bootstrap|journal=Phys. Rev.|volume=D86|issue=2|pages=025022|arxiv=1203.6064|bibcode=2012PhRvD..86b5022E|doi=10.1103/PhysRevD.86.025022|s2cid=39692193}}</ref><ref name="cmin">{{Cite journal|last1=El-Showk|first1=Sheer|last2=Paulos|first2=Miguel F.|last3=Poland|first3=David|last4=Rychkov|first4=Slava|last5=Simmons-Duffin|first5=David|last6=Vichi|first6=Alessandro|date=2014|title=Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents|journal=Journal of Statistical Physics|volume=157|issue=4–5|pages=869–914|arxiv=1403.4545|bibcode=2014JSP...157..869E|doi=10.1007/s10955-014-1042-7|s2cid=119627708}}</ref><ref name="SDPB">{{Cite journal|last=Simmons-Duffin|first=David|date=2015|title=अनुरूप बूटस्ट्रैप के लिए एक अर्ध-निश्चित प्रोग्राम सॉल्वर|journal=Journal of High Energy Physics|volume=2015|issue=6|pages=174|arxiv=1502.02033|bibcode=2015JHEP...06..174S|doi=10.1007/JHEP06(2015)174|issn=1029-8479|s2cid=35625559}}</ref><ref name="Kadanoff">{{cite journal |last=Kadanoff|first=Leo P.|date=April 30, 2014|title=Deep Understanding Achieved on the 3d Ising Model|url=http://www.condmatjournalclub.org/?p=2384|url-status=dead|archive-url=https://web.archive.org/web/20150722062827/http://www.condmatjournalclub.org/?p=2384|archive-date=July 22, 2015|access-date=July 19, 2015|journal=Journal Club for Condensed Matter Physics}}</ref> यह विधि वर्तमान में महत्वपूर्ण सिद्धांत की संरचना के बारे में सबसे परिशुद्ध जानकारी देती है (देखें [[महत्वपूर्ण घातांक]] ईज़िंग)। | ||
=== सामान्य प्रचक्रण ग्लास मॉडल === के लिए इस्त्राइल का एनपी-पूर्णता परिणाम | === सामान्य प्रचक्रण ग्लास मॉडल === के लिए इस्त्राइल का एनपी-पूर्णता परिणाम | ||
सन् 2000 में, [[सांडिया राष्ट्रीय प्रयोगशालाएँ]] के [[सोरिन इज़राइल]] ने | सन् 2000 में, [[सांडिया राष्ट्रीय प्रयोगशालाएँ]] के [[सोरिन इज़राइल]] ने प्रमाणित किया कि गैर-[[nonplanar]] जालक पर प्रचक्रण ग्लास आइसिंग मॉडल एनपी-पूर्णता|एनपी-पूर्ण है। यही है, पी ≠ एनपी मानते हुए, सामान्य प्रचक्रण ग्लास आइसिंग मॉडल केवल [[प्लेनर ग्राफ|प्लेनर रेखाचित्र]] स्थितियो में ही संशोधन करने योग्य है, इसलिए आयामों के लिए समाधान जो दो भी अधिक जटिल हैं।<ref>{{cite journal |last=Cipra |first=Barry A. |year=2000 |title=आइसिंग मॉडल एनपी-पूर्ण है|url=https://archive.siam.org/pdf/news/654.pdf |journal=SIAM News |volume=33 |issue=6}}</ref> इस्त्राइल का नतीजा केवल प्रचक्रण ग्लास मॉडल को स्थानिक रूप से अलग-अलग कपलिंग के साथ चिंतित करता है, और ईज़िंग के मूल लोह चुंबकीय मॉडल के बारे में समान कपलिंग के बारे में कुछ नहीं बताता है। | ||
== चार आयाम और ऊपर == | == चार आयाम और ऊपर == | ||
किसी भी आयाम में, ईज़िंग मॉडल को स्थानीय रूप से भिन्न माध्य क्षेत्र द्वारा उत्पादक रूप से वर्णित किया जा सकता है। क्षेत्र को एक बड़े क्षेत्र में औसत प्रचक्रण | किसी भी आयाम में, ईज़िंग मॉडल को स्थानीय रूप से भिन्न माध्य क्षेत्र द्वारा उत्पादक रूप से वर्णित किया जा सकता है। क्षेत्र को एक बड़े क्षेत्र में औसत प्रचक्रण मान के रूप में परिभाषित किया गया है, लेकिन इतना बड़ा नहीं है कि पूरे प्रणाली को सम्मिलित किया जा सके। क्षेत्र में अभी भी बिंदु से बिंदु तक धीमी भिन्नताएं हैं, क्योंकि औसत मात्रा चलती है। क्षेत्र में ये अस्थिरता अनंत प्रणाली सीमा में एक सतत क्षेत्र सिद्धांत द्वारा वर्णित हैं। | ||
=== स्थानीय क्षेत्र === | === स्थानीय क्षेत्र === | ||
फ़ील्ड एच को प्रचक्रण वेरिएबल के लंबे तरंग दैर्ध्य फूरियर घटकों के रूप में परिभाषित किया गया है, इस सीमा में कि तरंग दैर्ध्य लंबे हैं। लंबी तरंगदैर्घ्य का औसत निकालने के कई तरीके हैं, यह इस बात पर निर्भर करता है कि उच्च तरंगदैर्घ्य को कैसे काटा जाता है। विवरण बहुत महत्वपूर्ण नहीं हैं, क्योंकि लक्ष्य एच के आंकड़े खोजना है न कि प्रचक्रण। एक बार एच में | फ़ील्ड एच को प्रचक्रण वेरिएबल के लंबे तरंग दैर्ध्य फूरियर घटकों के रूप में परिभाषित किया गया है, इस सीमा में कि तरंग दैर्ध्य लंबे हैं। लंबी तरंगदैर्घ्य का औसत निकालने के कई तरीके हैं, यह इस बात पर निर्भर करता है कि उच्च तरंगदैर्घ्य को कैसे काटा जाता है। विवरण बहुत महत्वपूर्ण नहीं हैं, क्योंकि लक्ष्य एच के आंकड़े खोजना है न कि प्रचक्रण। एक बार एच में पारस्परिक संबंध ज्ञात हो जाने के बाद, प्रचक्रण के बीच लंबी दूरी के संबंध एच में लंबी दूरी के पारस्परिक संबंध के समानुपाती होंगे। | ||
धीरे-धीरे बदलते क्षेत्र एच के किसी भी | धीरे-धीरे बदलते क्षेत्र एच के किसी भी मान के लिए, मुक्त ऊर्जा (लॉग-प्रायिकता) एच और उसके ग्रेडियेंट का एक स्थानीय विश्लेषणात्मक कार्य है। मुक्त ऊर्जा F(H) को सभी आइसिंग विन्यासों के योग के रूप में परिभाषित किया गया है जो लंबी तरंग दैर्ध्य क्षेत्र के अनुरूप हैं। चूँकि H एक स्थूल विवरण है, H के प्रत्येक मान के अनुरूप कई Ising विन्यास हैं, जब तक कि मैच के लिए बहुत अधिक सटीकता की आवश्यकता नहीं है। | ||
चूँकि किसी भी क्षेत्र में प्रचक्रण के मूल्यों की अनुमत सीमा केवल उस क्षेत्र से एक औसत आयतन के अंदर H के मूल्यों पर निर्भर करती है, प्रत्येक क्षेत्र से मुक्त ऊर्जा योगदान केवल वहाँ और प्रतिवेशी क्षेत्रों में H के मान पर निर्भर करता है। तो एफ स्थानीय योगदान के सभी क्षेत्रों पर एक योग है, जो केवल एच और उसके डेरिवेटिव पर निर्भर करता है। | चूँकि किसी भी क्षेत्र में प्रचक्रण के मूल्यों की अनुमत सीमा केवल उस क्षेत्र से एक औसत आयतन के अंदर H के मूल्यों पर निर्भर करती है, प्रत्येक क्षेत्र से मुक्त ऊर्जा योगदान केवल वहाँ और प्रतिवेशी क्षेत्रों में H के मान पर निर्भर करता है। तो एफ स्थानीय योगदान के सभी क्षेत्रों पर एक योग है, जो केवल एच और उसके डेरिवेटिव पर निर्भर करता है। | ||
| Line 447: | Line 448: | ||
:<math>\beta F = \int d^dx \left[ A H^2 + \sum_{i=1}^d Z_i (\partial_i H)^2 + \lambda H^4 +\cdots \right].</math> | :<math>\beta F = \int d^dx \left[ A H^2 + \sum_{i=1}^d Z_i (\partial_i H)^2 + \lambda H^4 +\cdots \right].</math> | ||
एक चौकोर लैटिस पर, समरूपता गारंटी देती है कि गुणांक Z<sub>i</sub>व्युत्पन्न शर्तों के सभी बराबर हैं। लेकिन एक अनिसोट्रोपिक आइसिंग मॉडल के लिए भी, जहां Z<sub>i</sub>{{'}अलग-अलग दिशाओं में अलग-अलग हैं, एच में | एक चौकोर लैटिस पर, समरूपता गारंटी देती है कि गुणांक Z<sub>i</sub>व्युत्पन्न शर्तों के सभी बराबर हैं। लेकिन एक अनिसोट्रोपिक आइसिंग मॉडल के लिए भी, जहां Z<sub>i</sub><nowiki>{{'}अलग-अलग दिशाओं में अलग-अलग हैं, एच में अस्थिरता एक समन्वय प्रणाली में आइसोट्रोपिक हैं जहां अंतरिक्ष की अलग-अलग दिशाओं को फिर से बढ़ाया जाता है।</nowiki> | ||
किसी भी लैटिस पर, व्युत्पन्न शब्द | किसी भी लैटिस पर, व्युत्पन्न शब्द | ||
| Line 459: | Line 460: | ||
:<math>\langle H(x_1) H(x_2)\cdots H(x_n) \rangle = { \int DH \, P(H) H(x_1) H(x_2) \cdots H(x_n) \over \int DH \, P(H) }.</math> | :<math>\langle H(x_1) H(x_2)\cdots H(x_n) \rangle = { \int DH \, P(H) H(x_1) H(x_2) \cdots H(x_n) \over \int DH \, P(H) }.</math> | ||
इस अभिव्यक्ति में भाजक को | इस अभिव्यक्ति में भाजक को विभाजन फलन कहा जाता है, और एच के सभी संभावित मूल्यों पर अभिन्न एक सांख्यिकीय पथ अभिन्न है। यह प्रचक्रण के सभी लंबे तरंग दैर्ध्य फूरियर घटकों पर एच के सभी मूल्यों पर ऍक्स्प (βF) को एकीकृत करता है। F क्षेत्र H के लिए एक यूक्लिडियन लैग्रेंजियन है, इस और स्केलर क्षेत्र के क्वांटम क्षेत्र सिद्धांत के बीच एकमात्र अंतर यह है कि सभी व्युत्पन्न शब्द एक धनात्मक संकेत के साथ प्रवेश करते हैं, और i का कोई समग्र कारक नहीं है। | ||
:<math>Z = \int DH \, e^{ - \int d^dx \left[ A H^2 + Z |\nabla H|^2 + \lambda H^4 \right]}</math> | :<math>Z = \int DH \, e^{ - \int d^dx \left[ A H^2 + Z |\nabla H|^2 + \lambda H^4 \right]}</math> | ||
| Line 467: | Line 468: | ||
F के रूप का उपयोग यह अनुमान लगाने के लिए किया जा सकता है कि आयामी विश्लेषण द्वारा कौन से शब्द सबसे महत्वपूर्ण हैं। आयामी विश्लेषण पूरी तरह से सीधा नहीं है, क्योंकि एच के अनुमाप परिवर्तन को निर्धारित करने की आवश्यकता है। | F के रूप का उपयोग यह अनुमान लगाने के लिए किया जा सकता है कि आयामी विश्लेषण द्वारा कौन से शब्द सबसे महत्वपूर्ण हैं। आयामी विश्लेषण पूरी तरह से सीधा नहीं है, क्योंकि एच के अनुमाप परिवर्तन को निर्धारित करने की आवश्यकता है। | ||
सामान्य स्थिति में, एच के लिए अनुमाप परिवर्तन | सामान्य स्थिति में, एच के लिए अनुमाप परिवर्तन नियम चुनना आसान है, क्योंकि योगदान देने वाला एकमात्र शब्द पहला है, | ||
:<math>F = \int d^dx \, A H^2.</math> | :<math>F = \int d^dx \, A H^2.</math> | ||
यह शब्द सबसे महत्वपूर्ण है, लेकिन यह तुच्छ व्यवहार देता है। मुक्त ऊर्जा का यह रूप अल्ट्रालोकल है, जिसका अर्थ है कि यह प्रत्येक बिंदु से एक स्वतंत्र योगदान का योग है। यह एक आयामी आइसिंग मॉडल में प्रचक्रण- | यह शब्द सबसे महत्वपूर्ण है, लेकिन यह तुच्छ व्यवहार देता है। मुक्त ऊर्जा का यह रूप अल्ट्रालोकल है, जिसका अर्थ है कि यह प्रत्येक बिंदु से एक स्वतंत्र योगदान का योग है। यह एक आयामी आइसिंग मॉडल में प्रचक्रण-प्रतिवर्त की तरह है। किसी भी बिंदु पर एच का प्रत्येक मान किसी अन्य बिंदु पर मान से पूरी तरह स्वतंत्र रूप से अस्थिरता करता है। | ||
गुणांक ए को अवशोषित करने के लिए क्षेत्र के पैमाने को फिर से परिभाषित किया जा सकता है, और फिर यह स्पष्ट है कि ए केवल | गुणांक ए को अवशोषित करने के लिए क्षेत्र के पैमाने को फिर से परिभाषित किया जा सकता है, और फिर यह स्पष्ट है कि ए केवल अस्थिरता के समग्र पैमाने को निर्धारित करता है। अल्ट्रालोकल मॉडल ईज़िंग मॉडल के लंबे तरंग दैर्ध्य उच्च तापमान व्यवहार का वर्णन करता है, क्योंकि इस सीमा में अस्थिरता औसत बिंदु से बिंदु तक स्वतंत्र होते हैं। | ||
महत्वपूर्ण बिंदु खोजने के लिए, तापमान कम करें। जैसे-जैसे तापमान नीचे जाता है, H में | महत्वपूर्ण बिंदु खोजने के लिए, तापमान कम करें। जैसे-जैसे तापमान नीचे जाता है, H में अस्थिरता बढ़ता जाता है क्योंकि अस्थिरता अधिक सहसंबद्ध होते हैं। इसका तात्पर्य यह है कि बड़ी संख्या में प्रचक्रण का औसत इतनी जल्दी छोटा नहीं हो जाता है जैसे कि वे असंबद्ध हों, क्योंकि वे समान होते हैं। यह इकाइयों की प्रणाली में ए को कम करने के अनुरूप है जहां एच ए को अवशोषित नहीं करता है। प्रावस्था संक्रमण केवल तभी हो सकता है जब एफ में सबलीडिंग शर्तों में योगदान हो सकता है, लेकिन चूंकि पहली अवधि लंबी दूरी पर हावी होती है, इसलिए गुणांक ए को शून्य पर ट्यून किया जाना चाहिए . यह महत्वपूर्ण बिंदु का स्थान है: | ||
:<math>F= \int d^dx \left[ t H^2 + \lambda H^4 + Z (\nabla H)^2 \right],</math> | :<math>F= \int d^dx \left[ t H^2 + \lambda H^4 + Z (\nabla H)^2 \right],</math> | ||
| Line 482: | Line 483: | ||
=== चुंबकीयकरण === | === चुंबकीयकरण === | ||
चुंबकीयकरण खोजने के लिए, एच के अनुमाप परिवर्तन को ठीक करें ताकि λ एक हो। अब क्षेत्र H का आयाम -d/4 है, ताकि H<sup>4</sup>डी<sup>d</sup>x आयाम रहित है, और Z का आयाम 2 − d/2 है। इस अनुमाप परिवर्तन में, ढाल शब्द केवल | चुंबकीयकरण खोजने के लिए, एच के अनुमाप परिवर्तन को ठीक करें ताकि λ एक हो। अब क्षेत्र H का आयाम -d/4 है, ताकि H<sup>4</sup>डी<sup>d</sup>x आयाम रहित है, और Z का आयाम 2 − d/2 है। इस अनुमाप परिवर्तन में, ढाल शब्द केवल d ≤ 4 के लिए लंबी दूरी पर महत्वपूर्ण है। चार आयामों से ऊपर, लंबी तरंग दैर्ध्य पर, समग्र चुंबकीयकरण केवल अल्ट्रालोकल शर्तों से प्रभावित होता है। | ||
एक सूक्ष्म बिंदु है। क्षेत्र एच सांख्यिकीय रूप से | एक सूक्ष्म बिंदु है। क्षेत्र एच सांख्यिकीय रूप से अस्थिरता कर रहा है, और अस्थिरता टी के शून्य बिंदु को स्थानांतरित कर सकता है। यह देखने के लिए कि कैसे, एच पर विचार करें<sup>4</sup> निम्न तरीके से विभाजित करें: | ||
:<math>H(x)^4 = -\langle H(x)^2\rangle^2 + 2\langle H(x)^2\rangle H(x)^2 + \left(H(x)^2 - \langle H(x)^2\rangle\right)^2</math> | :<math>H(x)^4 = -\langle H(x)^2\rangle^2 + 2\langle H(x)^2\rangle H(x)^2 + \left(H(x)^2 - \langle H(x)^2\rangle\right)^2</math> | ||
| Line 494: | Line 495: | ||
टी <0 के लिए, न्यूनतम टी के वर्गमूल के आनुपातिक एच पर हैं। तो लन्दौ का तबाही सिद्धांत तर्क 5 से बड़े आयामों में सही है। 5 से अधिक आयामों में चुंबकीयकरण प्रतिपादक माध्य-क्षेत्र मान के बराबर है। | टी <0 के लिए, न्यूनतम टी के वर्गमूल के आनुपातिक एच पर हैं। तो लन्दौ का तबाही सिद्धांत तर्क 5 से बड़े आयामों में सही है। 5 से अधिक आयामों में चुंबकीयकरण प्रतिपादक माध्य-क्षेत्र मान के बराबर है। | ||
जब टी ऋणात्मक होता है, तो नए न्यूनतम के | जब टी ऋणात्मक होता है, तो नए न्यूनतम के अस्थिरता को एक नए धनात्मक द्विघात गुणांक द्वारा वर्णित किया जाता है। चूंकि यह शब्द सदैव हावी रहता है, संक्रमण के नीचे के तापमान पर अस्थिरता फिर से लंबी दूरी पर अल्ट्रालोकल हो जाता है। | ||
=== | === अस्थिरता === | ||
अस्थिरता के व्यवहार का पता लगाने के लिए, ग्रेडिएंट टर्म को ठीक करने के लिए फ़ील्ड को फिर से स्केल करें। फिर फ़ील्ड का लंबाई अनुमाप परिवर्तन आयाम 1 − d/2 है। अब क्षेत्र में सभी तापमानों पर निरंतर द्विघात स्थानिक अस्थिरता होता है। H का पैमाना आयाम<sup>2</sup> पद 2 है, जबकि H का पैमाना आयाम<sup>4</sup> पद 4 − d है। d <4 के लिए, एच<sup>4</sup> पद का धनात्मक पैमाना आयाम है। 4 से अधिक आयामों में इसका ऋणात्मक पैमाना आयाम है। | |||
यह एक आवश्यक अंतर है। 4 से अधिक आयामों में, ग्रेडिएंट टर्म के पैमाने को ठीक करने का अर्थ है कि H का गुणांक<sup>4</sup> शब्द लंबी और लंबी तरंग दैर्ध्य में कम और कम महत्वपूर्ण होता है। जिस आयाम पर गैर-चतुर्भुज योगदान योगदान करना | यह एक आवश्यक अंतर है। 4 से अधिक आयामों में, ग्रेडिएंट टर्म के पैमाने को ठीक करने का अर्थ है कि H का गुणांक<sup>4</sup> शब्द लंबी और लंबी तरंग दैर्ध्य में कम और कम महत्वपूर्ण होता है। जिस आयाम पर गैर-चतुर्भुज योगदान योगदान करना प्रारंभ करते हैं उसे महत्वपूर्ण आयाम के रूप में जाना जाता है। ईज़िंग मॉडल में, महत्वपूर्ण आयाम 4 है। | ||
4 से ऊपर के आयामों में, महत्वपूर्ण | 4 से ऊपर के आयामों में, महत्वपूर्ण अस्थिरता लंबी तरंग दैर्ध्य पर विशुद्ध रूप से द्विघात मुक्त ऊर्जा द्वारा वर्णित हैं। इसका तात्पर्य यह है कि पारस्परिक संबंध कार्य गॉसियन वितरण औसत के रूप में सभी गणना योग्य हैं: | ||
:<math>\langle S(x)S(y)\rangle \propto \langle H(x)H(y)\rangle = G(x-y) = \int {dk \over (2\pi)^d} { e^{ik(x-y)}\over k^2 + t }</math> | :<math>\langle S(x)S(y)\rangle \propto \langle H(x)H(y)\rangle = G(x-y) = \int {dk \over (2\pi)^d} { e^{ik(x-y)}\over k^2 + t }</math> | ||
मान्य जब x−y बड़ा हो। फलन G(x− y) प्रसारक के काल्पनिक समय के लिए विश्लेषणात्मक निरंतरता है, क्योंकि मुक्त ऊर्जा मुक्त अदिश क्षेत्र के लिए क्वांटम क्षेत्र क्रिया की विश्लेषणात्मक निरंतरता है। आयाम 5 और उच्चतर के लिए, लंबी दूरी पर अन्य सभी | मान्य जब x−y बड़ा हो। फलन G(x− y) प्रसारक के काल्पनिक समय के लिए विश्लेषणात्मक निरंतरता है, क्योंकि मुक्त ऊर्जा मुक्त अदिश क्षेत्र के लिए क्वांटम क्षेत्र क्रिया की विश्लेषणात्मक निरंतरता है। आयाम 5 और उच्चतर के लिए, लंबी दूरी पर अन्य सभी पारस्परिक संबंध कार्य एस-मैट्रिक्स#विक के प्रमेय द्वारा निर्धारित किए जाते हैं|विक के प्रमेय। ± सममिति द्वारा सभी विषम क्षण शून्य हैं। सम क्षण प्रत्येक जोड़ी के लिए G(x− y) के उत्पाद के जोड़े में सभी विभाजनों का योग है। | ||
:<math>\langle S(x_1) S(x_2) \cdots S(x_{2n})\rangle = C^n \sum G(x_{i1},x_{j1}) G(x_{i2},x_{j2}) \ldots G(x_{in},x_{jn})</math> | :<math>\langle S(x_1) S(x_2) \cdots S(x_{2n})\rangle = C^n \sum G(x_{i1},x_{j1}) G(x_{i2},x_{j2}) \ldots G(x_{in},x_{jn})</math> | ||
| Line 510: | Line 511: | ||
=== महत्वपूर्ण दो-बिंदु फलन === | === महत्वपूर्ण दो-बिंदु फलन === | ||
जी के रूप को निर्धारित करने के लिए, विचार करें कि पथ अभिन्न में क्षेत्र मुक्त ऊर्जा को अलग करके गति के | जी के रूप को निर्धारित करने के लिए, विचार करें कि पथ अभिन्न में क्षेत्र मुक्त ऊर्जा को अलग करके गति के उत्कृष्ट समीकरणों का पालन करते हैं: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
| Line 516: | Line 517: | ||
\rightarrow {} && \nabla^2 G(x) + tG(x) &= 0 | \rightarrow {} && \nabla^2 G(x) + tG(x) &= 0 | ||
\end{align}</math> | \end{align}</math> | ||
यह केवल गैर-संयोगी बिंदुओं पर मान्य है, क्योंकि जब बिंदु टकराते हैं तो H के | यह केवल गैर-संयोगी बिंदुओं पर मान्य है, क्योंकि जब बिंदु टकराते हैं तो H के पारस्परिक संबंध एकवचन होते हैं। एच गति के उत्कृष्ट समीकरणों का उसी कारण से पालन करता है जिस कारण से क्वांटम मैकेनिकल ऑपरेटर उनका पालन करते हैं - इसके अस्थिरता को एक पथ अभिन्न द्वारा परिभाषित किया जाता है। | ||
महत्वपूर्ण बिंदु t = 0 पर, यह लाप्लास का समीकरण है, जिसे गॉसियन सतह | इलेक्ट्रोस्टैटिक्स से गॉस की विधि द्वारा संशोधन किया जा सकता है। विद्युत क्षेत्र के अनुरूप को परिभाषित कीजिए | महत्वपूर्ण बिंदु t = 0 पर, यह लाप्लास का समीकरण है, जिसे गॉसियन सतह | इलेक्ट्रोस्टैटिक्स से गॉस की विधि द्वारा संशोधन किया जा सकता है। विद्युत क्षेत्र के अनुरूप को परिभाषित कीजिए | ||
| Line 536: | Line 537: | ||
=== जी (आर) महत्वपूर्ण बिंदु से दूर === | === जी (आर) महत्वपूर्ण बिंदु से दूर === | ||
जब टी शून्य के बराबर नहीं होता है, ताकि एच महत्वपूर्ण से थोड़ा दूर तापमान पर | जब टी शून्य के बराबर नहीं होता है, ताकि एच महत्वपूर्ण से थोड़ा दूर तापमान पर अस्थिरता कर रहा हो, दो बिंदु फलन लंबी दूरी पर घटता है। यह जिस समीकरण का पालन करता है वह बदल जाता है: | ||
:<math>\nabla^2 G + t G = 0 \to {1 \over r^{d - 1}} {d \over dr} \left( r^{d-1} {dG \over dr} \right) + t G(r) = 0</math> | :<math>\nabla^2 G + t G = 0 \to {1 \over r^{d - 1}} {d \over dr} \left( r^{d-1} {dG \over dr} \right) + t G(r) = 0</math> | ||
| Line 559: | Line 560: | ||
=== सिमांजिक बहुलक व्याख्या === | === सिमांजिक बहुलक व्याख्या === | ||
रैंडम वॉक के साथ यात्रा करने वाले निश्चित आकार के क्वांटा के रूप में सहसंबंधों की व्याख्या यह समझने का एक तरीका देती है कि एच का महत्वपूर्ण आयाम क्यों है<sup>4</sup> इंटरेक्शन 4 है। H शब्द<sup>4</sup> को किसी भी बिंदु पर यादृच्छिक वॉकर के घनत्व के वर्ग के रूप में माना जा सकता है। इस तरह के एक शब्द के लिए परिमित क्रम | रैंडम वॉक के साथ यात्रा करने वाले निश्चित आकार के क्वांटा के रूप में सहसंबंधों की व्याख्या यह समझने का एक तरीका देती है कि एच का महत्वपूर्ण आयाम क्यों है<sup>4</sup> इंटरेक्शन 4 है। H शब्द<sup>4</sup> को किसी भी बिंदु पर यादृच्छिक वॉकर के घनत्व के वर्ग के रूप में माना जा सकता है। इस तरह के एक शब्द के लिए परिमित क्रम पारस्परिक संबंध कार्यों को बदलने के लिए, जो अस्थिरता वाले वातावरण में केवल कुछ नए यादृच्छिक चलने का परिचय देते हैं, नए पथों को प्रतिच्छेद करना चाहिए। अन्यथा, घनत्व का वर्ग घनत्व के समानुपाती होता है और केवल H को स्थानांतरित करता है<sup>2</sup> एक स्थिरांक द्वारा गुणांक। लेकिन यादृच्छिक चलने की प्रतिच्छेदन संभावना आयाम पर निर्भर करती है, और 4 से अधिक आयाम में यादृच्छिक चलना प्रतिच्छेद नहीं करता है। | ||
एक साधारण रैंडम वॉक का [[भग्न आयाम|फ्रैक्टल आयाम]] 2 है। पथ को कवर करने के लिए आवश्यक ε आकार की गेंदों की संख्या ε के रूप में बढ़ती है<sup>-2</सुप>. फ्रैक्टल आयाम 2 की दो वस्तुएं केवल आयाम 4 या उससे कम के स्थान में उचित संभावना के साथ प्रतिच्छेद करेंगी, वही स्थिति जो विमानों की एक सामान्य जोड़ी के लिए होती है। [[कर्ट सिमांजिक]] ने तर्क दिया कि इसका तात्पर्य है कि 4 से अधिक आयामों में महत्वपूर्ण ईज़िंग | एक साधारण रैंडम वॉक का [[भग्न आयाम|फ्रैक्टल आयाम]] 2 है। पथ को कवर करने के लिए आवश्यक ε आकार की गेंदों की संख्या ε के रूप में बढ़ती है<sup>-2</सुप>. फ्रैक्टल आयाम 2 की दो वस्तुएं केवल आयाम 4 या उससे कम के स्थान में उचित संभावना के साथ प्रतिच्छेद करेंगी, वही स्थिति जो विमानों की एक सामान्य जोड़ी के लिए होती है। [[कर्ट सिमांजिक]] ने तर्क दिया कि इसका तात्पर्य है कि 4 से अधिक आयामों में महत्वपूर्ण ईज़िंग अस्थिरता को एक मुक्त क्षेत्र द्वारा वर्णित किया जाना चाहिए। यह तर्क अंततः एक गणितीय प्रमाण बन गया। | ||
===4 − ε आयाम – पुनर्सामान्यीकरण समूह=== | ===4 − ε आयाम – पुनर्सामान्यीकरण समूह=== | ||
चार आयामों में ईज़िंग मॉडल को | चार आयामों में ईज़िंग मॉडल को अस्थिरता वाले क्षेत्र द्वारा वर्णित किया गया है, लेकिन अब अस्थिरता परस्पर क्रिया कर रहे हैं। बहुलक प्रतिनिधित्व में, यादृच्छिक चालों के चौराहे मामूली रूप से संभव हैं। क्वांटम क्षेत्र की निरंतरता में, क्वांटा परस्पर क्रिया करता है। | ||
किसी भी क्षेत्र विन्यास H की प्रायिकता का ऋणात्मक लघुगणक ऊष्मागतिकी मुक्त ऊर्जा फलन है | किसी भी क्षेत्र विन्यास H की प्रायिकता का ऋणात्मक लघुगणक ऊष्मागतिकी मुक्त ऊर्जा फलन है | ||
:<math>F= \int d^4 x \left[ {Z \over 2} |\nabla H|^2 + {t\over 2} H^2 + {\lambda \over 4!} H^4 \right] \,</math> | :<math>F= \int d^4 x \left[ {Z \over 2} |\nabla H|^2 + {t\over 2} H^2 + {\lambda \over 4!} H^4 \right] \,</math> | ||
गति के समीकरणों को सरल बनाने के लिए संख्यात्मक कारक हैं। लक्ष्य सांख्यिकीय | गति के समीकरणों को सरल बनाने के लिए संख्यात्मक कारक हैं। लक्ष्य सांख्यिकीय अस्थिरता को समझना है। किसी भी अन्य गैर-द्विघात पथ अभिन्न की तरह, पारस्परिक संबंध कार्यों में एक [[फेनमैन आरेख]] होता है, जैसे कण यादृच्छिक चाल के साथ यात्रा करते हैं, विभाजित होते हैं और शिखर पर फिर से जुड़ते हैं। परस्पर क्रिया सामर्थ्य को उत्कृष्ट रूप से आयाम रहित मात्रा λ द्वारा पैरामीट्रिज किया जाता है। | ||
हालांकि आयामी विश्लेषण से पता चलता है कि λ और Z दोनों ही आयाम रहित हैं, यह भ्रामक है। लंबी तरंग दैर्ध्य सांख्यिकीय | हालांकि आयामी विश्लेषण से पता चलता है कि λ और Z दोनों ही आयाम रहित हैं, यह भ्रामक है। लंबी तरंग दैर्ध्य सांख्यिकीय अस्थिरता बिल्कुल पैमाने पर अपरिवर्तनीय नहीं होते हैं, और जब अंतःक्रिया सामर्थ्य गायब हो जाती है तो केवल स्केल अपरिवर्तनीय हो जाती है। | ||
इसका कारण यह है कि H को परिभाषित करने के लिए कटऑफ का उपयोग किया जाता है, और कटऑफ सबसे कम तरंग दैर्ध्य को परिभाषित करता है। कटऑफ के पास तरंग दैर्ध्य में एच का | इसका कारण यह है कि H को परिभाषित करने के लिए कटऑफ का उपयोग किया जाता है, और कटऑफ सबसे कम तरंग दैर्ध्य को परिभाषित करता है। कटऑफ के पास तरंग दैर्ध्य में एच का अस्थिरता लंबी-तरंग दैर्ध्य में अस्थिरता को प्रभावित कर सकता है। यदि प्रणाली को कटऑफ के साथ स्केल किया जाता है, तो पैरामीटर आयामी विश्लेषण द्वारा स्केल किए जाएंगे, लेकिन फिर पैरामीटर की तुलना व्यवहार की तुलना नहीं करती है क्योंकि रीस्केल किए गए प्रणाली में अधिक मोड होते हैं। यदि प्रणाली को इस तरह से बदला जाता है कि शॉर्ट वेवलेंथ कटऑफ स्थिर रहता है, तो लॉन्ग-वेवलेंथ के अस्थिरता को संशोधित किया जाता है। | ||
==== विल्सन पुनर्सामान्यीकरण ==== | ==== विल्सन पुनर्सामान्यीकरण ==== | ||
अनुमाप परिवर्तन का अध्ययन करने का एक त्वरित अनुमानी तरीका एक बिंदु λ पर H तरंगों को काटना है। λ से बड़े wavenumbers वाले H के फूरियर मोड में | अनुमाप परिवर्तन का अध्ययन करने का एक त्वरित अनुमानी तरीका एक बिंदु λ पर H तरंगों को काटना है। λ से बड़े wavenumbers वाले H के फूरियर मोड में अस्थिरता की स्वीकृति नहीं है। लंबाई का पुनर्विक्रय जो पूरे प्रणाली को छोटा बनाता है, सभी तरंगों को बढ़ाता है, और कुछ अस्थिरता को कटऑफ से ऊपर ले जाता है। | ||
पुराने कटऑफ़ को पुनर्स्थापित करने के लिए, उन सभी तरंगों पर आंशिक एकीकरण करें जो वर्जित हुआ करते थे, लेकिन अब | पुराने कटऑफ़ को पुनर्स्थापित करने के लिए, उन सभी तरंगों पर आंशिक एकीकरण करें जो वर्जित हुआ करते थे, लेकिन अब अस्थिरता कर रहे हैं। फेनमैन आरेखों में, वेवनंबर k पर एक अस्थिरता मोड पर एकीकरण, व्युत्क्रम प्रसारक के एक कारक के साथ जोड़े में एक पारस्परिक संबंध फलन में संवेग k ले जाने वाली रेखाओं को जोड़ता है। | ||
रीस्केलिंग के अंतर्गत, जब | रीस्केलिंग के अंतर्गत, जब प्रणाली (1+b) के एक कारक से सिकुड़ जाता है, तो t गुणांक एक कारक (1+b) से बढ़ जाता है।<sup>2</sup> विमीय विश्लेषण द्वारा। अत्यल्प b के लिए t में परिवर्तन 2bt है। अन्य दो गुणांक विमाहीन हैं और बिल्कुल नहीं बदलते हैं। | ||
एकीकरण के निम्नतम क्रम के प्रभाव की गणना गति के समीकरणों से की जा सकती है: | एकीकरण के निम्नतम क्रम के प्रभाव की गणना गति के समीकरणों से की जा सकती है: | ||
:<math>\nabla^2 H + t H = - {\lambda \over 6} H^3.</math> | :<math>\nabla^2 H + t H = - {\lambda \over 6} H^3.</math> | ||
यह समीकरण अन्य सम्मिलन से दूर किसी भी | यह समीकरण अन्य सम्मिलन से दूर किसी भी पारस्परिक संबंध फलन के अंदर एक पहचान है। मोड को Λ <k <(1+b)Λ के साथ एकीकृत करने के बाद, यह थोड़ी अलग पहचान होगी। | ||
चूंकि समीकरण के रूप को संरक्षित किया जाएगा, गुणांक में परिवर्तन का पता लगाने के लिए एच में परिवर्तन का विश्लेषण करना पर्याप्त है<sup>3</sup> अवधि। फेनमैन आरेख विस्तार में, एच<sup>3</sup> एक | चूंकि समीकरण के रूप को संरक्षित किया जाएगा, गुणांक में परिवर्तन का पता लगाने के लिए एच में परिवर्तन का विश्लेषण करना पर्याप्त है<sup>3</sup> अवधि। फेनमैन आरेख विस्तार में, एच<sup>3</sup> एक पारस्परिक संबंध फलन में एक पारस्परिक संबंध के अंदर तीन लटकती हुई रेखाएं हैं। बड़ी तरंग संख्या k पर उनमें से दो को मिलाने से H में परिवर्तन होता है<sup>3</sup> एक लटकती हुई रेखा के साथ, H के समानुपाती: | ||
:<math>\delta H^3 = 3H \int_{\Lambda<|k|<(1 + b)\Lambda} {d^4k \over (2\pi)^4} {1\over (k^2 + t)}</math> | :<math>\delta H^3 = 3H \int_{\Lambda<|k|<(1 + b)\Lambda} {d^4k \over (2\pi)^4} {1\over (k^2 + t)}</math> | ||
| Line 602: | Line 603: | ||
इसलिए t को पुनर्विक्रय किया जाता है, लेकिन इसका आयाम [[विषम आयाम]] है, इसे λ के मान के आनुपातिक राशि से बदल दिया जाता है। | इसलिए t को पुनर्विक्रय किया जाता है, लेकिन इसका आयाम [[विषम आयाम]] है, इसे λ के मान के आनुपातिक राशि से बदल दिया जाता है। | ||
लेकिन λ भी बदलता है। λ में बदलाव के लिए लाइनों को विभाजित करने और फिर जल्दी से जुड़ने पर विचार करने की आवश्यकता है। सबसे कम | लेकिन λ भी बदलता है। λ में बदलाव के लिए लाइनों को विभाजित करने और फिर जल्दी से जुड़ने पर विचार करने की आवश्यकता है। सबसे कम क्रम प्रक्रिया वह है जहां एच से तीन पंक्तियों में से एक है<sup>3</sup> तीन में विभाजित हो जाता है, जो समान शीर्ष से अन्य पंक्तियों में से एक के साथ शीघ्रता से जुड़ जाता है। शीर्ष पर सुधार है | ||
:<math>\delta \lambda = - {3 \lambda^2 \over 2} \int_k dk {1 \over (k^2 + t)^2} = -{3\lambda^2 \over 2} b</math> | :<math>\delta \lambda = - {3 \lambda^2 \over 2} \int_k dk {1 \over (k^2 + t)^2} = -{3\lambda^2 \over 2} b</math> | ||
| Line 621: | Line 622: | ||
====विल्सन-फिशर निश्चित बिंदु ==== | ====विल्सन-फिशर निश्चित बिंदु ==== | ||
चार-आयामी सिद्धांत से | चार-आयामी सिद्धांत से प्रारंभ होने वाले तीन आयामों की जांच करना संभव होना चाहिए, क्योंकि यादृच्छिक चलने की प्रतिच्छेदन संभावनाएं अंतरिक्ष की आयामता पर लगातार निर्भर करती हैं। फेनमैन रेखाचित्र की भाषा में, आयाम बदलने पर युग्मन बहुत अधिक नहीं बदलता है। | ||
आयाम 4 से दूर रहने की प्रक्रिया पूरी तरह से परिभाषित नहीं है कि यह कैसे करना है। प्रिस्क्रिप्शन केवल आरेखों पर अच्छी तरह से परिभाषित किया गया है। यह आयाम 4 में श्विंगर प्रतिनिधित्व को आयाम 4 में श्विंगर प्रतिनिधित्व के साथ प्रतिस्थापित करता है − ε द्वारा परिभाषित: | आयाम 4 से दूर रहने की प्रक्रिया पूरी तरह से परिभाषित नहीं है कि यह कैसे करना है। प्रिस्क्रिप्शन केवल आरेखों पर अच्छी तरह से परिभाषित किया गया है। यह आयाम 4 में श्विंगर प्रतिनिधित्व को आयाम 4 में श्विंगर प्रतिनिधित्व के साथ प्रतिस्थापित करता है − ε द्वारा परिभाषित: | ||
| Line 644: | Line 645: | ||
पूरी तरह से जुड़े हुए रेखाचित्र पर ईज़िंग मॉडल के व्यवहार को माध्य-क्षेत्र सिद्धांत द्वारा पूरी तरह से समझा जा सकता है। इस प्रकार का विवरण अति-उच्च-आयामी वर्गाकार जालियों के लिए उपयुक्त है, क्योंकि तब प्रत्येक स्थल के पास बहुत बड़ी संख्या में प्रतिवेशी होते हैं। | पूरी तरह से जुड़े हुए रेखाचित्र पर ईज़िंग मॉडल के व्यवहार को माध्य-क्षेत्र सिद्धांत द्वारा पूरी तरह से समझा जा सकता है। इस प्रकार का विवरण अति-उच्च-आयामी वर्गाकार जालियों के लिए उपयुक्त है, क्योंकि तब प्रत्येक स्थल के पास बहुत बड़ी संख्या में प्रतिवेशी होते हैं। | ||
विचार यह है कि यदि प्रत्येक प्रचक्रण बड़ी संख्या में प्रचक्रण से जुड़ा है, तो केवल + प्रचक्रण से - प्रचक्रण का औसत अनुपात महत्वपूर्ण है, क्योंकि इस माध्य के बारे में | विचार यह है कि यदि प्रत्येक प्रचक्रण बड़ी संख्या में प्रचक्रण से जुड़ा है, तो केवल + प्रचक्रण से - प्रचक्रण का औसत अनुपात महत्वपूर्ण है, क्योंकि इस माध्य के बारे में अस्थिरता छोटा होगा। मीन फील्ड एच प्रचक्रण का औसत अंश है जो + ऋणात्मक प्रचक्रण का औसत अंश है जो − है। [[औसत क्षेत्र]] H में एक प्रचक्रण को प्रतिवर्त करने की ऊर्जा कीमत ± 2JNH है। कारक N को अवशोषित करने के लिए J को फिर से परिभाषित करना सुविधाजनक है, ताकि सीमा N → ∞ सुचारू हो। नए J के संदर्भ में, प्रचक्रण को प्रतिवर्त करने की ऊर्जा कीमत ±2JH है। | ||
यह ऊर्जा | यह ऊर्जा कीमत प्रचक्रण के + होने की प्रायिकता p और प्रचक्रण के 1−p होने की संभावना − का अनुपात देती है। यह अनुपात Boltzmann कारक है: | ||
:<math>{p\over 1-p} = e^{2\beta JH}</math> | :<math>{p\over 1-p} = e^{2\beta JH}</math> | ||
ताकि | ताकि | ||
| Line 654: | Line 655: | ||
इस समीकरण के समाधान संभावित सुसंगत माध्य क्षेत्र हैं। βJ < 1 के लिए H = 0 पर केवल समान समाधान है। β के बड़े मूल्यों के लिए तीन समाधान हैं, और H = 0 पर समाधान अस्थिर है। | इस समीकरण के समाधान संभावित सुसंगत माध्य क्षेत्र हैं। βJ < 1 के लिए H = 0 पर केवल समान समाधान है। β के बड़े मूल्यों के लिए तीन समाधान हैं, और H = 0 पर समाधान अस्थिर है। | ||
अस्थिरता का अर्थ है कि माध्य क्षेत्र को शून्य से थोड़ा ऊपर बढ़ाना प्रचक्रण के एक सांख्यिकीय अंश का उत्पादन करता है जो + है जो माध्य क्षेत्र के मान से बड़ा है। तो एक माध्य क्षेत्र जो शून्य से ऊपर | अस्थिरता का अर्थ है कि माध्य क्षेत्र को शून्य से थोड़ा ऊपर बढ़ाना प्रचक्रण के एक सांख्यिकीय अंश का उत्पादन करता है जो + है जो माध्य क्षेत्र के मान से बड़ा है। तो एक माध्य क्षेत्र जो शून्य से ऊपर अस्थिरता करता है, अन्य भी अधिक माध्य क्षेत्र उत्पन्न करेगा, और अंततः स्थिर समाधान पर स्थिर हो जाएगा। इसका तात्पर्य यह है कि महत्वपूर्ण मान βJ = 1 से नीचे के तापमान के लिए मीन-फील्ड आइसिंग मॉडल बड़े एन की सीमा में एक प्रावस्था संक्रमण से गुजरता है। | ||
महत्वपूर्ण तापमान से ऊपर, एच में | महत्वपूर्ण तापमान से ऊपर, एच में अस्थिरता कम हो जाता है क्योंकि माध्य क्षेत्र अस्थिरता को शून्य क्षेत्र में पुनर्स्थापित करता है। महत्वपूर्ण तापमान के नीचे, माध्य क्षेत्र को एक नए संतुलन मान पर ले जाया जाता है, जो समीकरण के लिए धनात्मक एच या ऋणात्मक एच समाधान है। | ||
βJ = 1 + ε के लिए, महत्वपूर्ण तापमान के ठीक नीचे, H के मान की गणना अतिशयोक्तिपूर्ण स्पर्शरेखा के टेलर विस्तार से की जा सकती है: | βJ = 1 + ε के लिए, महत्वपूर्ण तापमान के ठीक नीचे, H के मान की गणना अतिशयोक्तिपूर्ण स्पर्शरेखा के टेलर विस्तार से की जा सकती है: | ||
| Line 662: | Line 663: | ||
एच = 0 पर अस्थिर समाधान को छोड़ने के लिए एच द्वारा विभाजित, स्थिर समाधान हैं: | एच = 0 पर अस्थिर समाधान को छोड़ने के लिए एच द्वारा विभाजित, स्थिर समाधान हैं: | ||
:<math>H = \sqrt{3\varepsilon}</math> | :<math>H = \sqrt{3\varepsilon}</math> | ||
तापमान में परिवर्तन के वर्गमूल के रूप में सहज चुंबकीयकरण एच महत्वपूर्ण बिंदु के पास बढ़ता है। यह सच है जब भी एच की गणना एक विश्लेषणात्मक समीकरण के समाधान से की जा सकती है जो धनात्मक और ऋणात्मक मूल्यों के बीच सममित है, जिससे [[लेव लैंडौ]] को संदेह हुआ कि सभी आयामों में सभी प्रकार के चरण संक्रमणों को इस | तापमान में परिवर्तन के वर्गमूल के रूप में सहज चुंबकीयकरण एच महत्वपूर्ण बिंदु के पास बढ़ता है। यह सच है जब भी एच की गणना एक विश्लेषणात्मक समीकरण के समाधान से की जा सकती है जो धनात्मक और ऋणात्मक मूल्यों के बीच सममित है, जिससे [[लेव लैंडौ]] को संदेह हुआ कि सभी आयामों में सभी प्रकार के चरण संक्रमणों को इस नियम का पालन करना चाहिए। | ||
माध्य-क्षेत्र प्रतिपादक [[सार्वभौमिकता (गतिशील प्रणाली)]] है क्योंकि विश्लेषणात्मक समीकरणों के समाधान के चरित्र में परिवर्तन | माध्य-क्षेत्र प्रतिपादक [[सार्वभौमिकता (गतिशील प्रणाली)]] है क्योंकि विश्लेषणात्मक समीकरणों के समाधान के चरित्र में परिवर्तन सदैव टेलर श्रृंखला में आपदा सिद्धांत द्वारा वर्णित किया जाता है, जो एक बहुपद समीकरण है। समरूपता के अनुसार, H के समीकरण में दाहिनी ओर केवल H की विषम शक्तियाँ होनी चाहिए। β को बदलने से केवल गुणांकों में आसानी से परिवर्तन होना चाहिए। संक्रमण तब होता है जब दाहिनी ओर H का गुणांक 1 होता है। संक्रमण के पास: | ||
:<math>H = {\partial (\beta F) \over \partial h} = (1+A\varepsilon) H + B H^3 + \cdots</math> | :<math>H = {\partial (\beta F) \over \partial h} = (1+A\varepsilon) H + B H^3 + \cdots</math> | ||
जो कुछ भी ए और बी हैं, जब तक उनमें से कोई भी शून्य पर ट्यून नहीं किया जाता है, सहज चुंबकीयकरण ε के वर्गमूल के रूप में बढ़ेगा। यह तर्क केवल तभी विफल हो सकता है जब मुक्त ऊर्जा βF या तो गैर-विश्लेषणात्मक या गैर-जेनेरिक हो, जहां संक्रमण होता है। | जो कुछ भी ए और बी हैं, जब तक उनमें से कोई भी शून्य पर ट्यून नहीं किया जाता है, सहज चुंबकीयकरण ε के वर्गमूल के रूप में बढ़ेगा। यह तर्क केवल तभी विफल हो सकता है जब मुक्त ऊर्जा βF या तो गैर-विश्लेषणात्मक या गैर-जेनेरिक हो, जहां संक्रमण होता है। | ||
| Line 679: | Line 680: | ||
तीन आयामों में, क्षेत्र सिद्धांत से अनुगामी श्रृंखला एक युग्मन स्थिरांक λ में एक विस्तार है जो विशेष रूप से छोटा नहीं है। निश्चित बिंदु पर युग्मन का प्रभावी आकार कण पथों के शाखाकरण कारक से एक है, इसलिए विस्तार पैरामीटर लगभग 1/3 है। दो आयामों में, पर्टुरबेटिव एक्सपेंशन पैरामीटर 2/3 है। | तीन आयामों में, क्षेत्र सिद्धांत से अनुगामी श्रृंखला एक युग्मन स्थिरांक λ में एक विस्तार है जो विशेष रूप से छोटा नहीं है। निश्चित बिंदु पर युग्मन का प्रभावी आकार कण पथों के शाखाकरण कारक से एक है, इसलिए विस्तार पैरामीटर लगभग 1/3 है। दो आयामों में, पर्टुरबेटिव एक्सपेंशन पैरामीटर 2/3 है। | ||
लेकिन एक औसत क्षेत्र में जाने के बिना, रीनॉर्मलाइजेशन को सीधे स्पिन्स पर उत्पादक रूप से | लेकिन एक औसत क्षेत्र में जाने के बिना, रीनॉर्मलाइजेशन को सीधे स्पिन्स पर उत्पादक रूप से प्रयुक्त किया जा सकता है। ऐतिहासिक रूप से, यह दृष्टिकोण [[लियो कडनॉफ़]] के कारण है और पर्टुरेटिव ε विस्तार से पहले का है। | ||
कपलिंग में एक प्रवाह उत्पन्न करते हुए, लैटिस प्रचक्रण को पुनरावृत्त रूप से एकीकृत करने का विचार है। लेकिन अब कपलिंग लैटिस ऊर्जा गुणांक हैं। तथ्य यह है कि एक निरंतर विवरण सम्मिलित है, यह गारंटी देता है कि यह पुनरावृत्ति एक निश्चित बिंदु पर अभिसरण करेगी जब तापमान को गंभीरता से ट्यून किया जाएगा। | कपलिंग में एक प्रवाह उत्पन्न करते हुए, लैटिस प्रचक्रण को पुनरावृत्त रूप से एकीकृत करने का विचार है। लेकिन अब कपलिंग लैटिस ऊर्जा गुणांक हैं। तथ्य यह है कि एक निरंतर विवरण सम्मिलित है, यह गारंटी देता है कि यह पुनरावृत्ति एक निश्चित बिंदु पर अभिसरण करेगी जब तापमान को गंभीरता से ट्यून किया जाएगा। | ||
| Line 688: | Line 689: | ||
अनुवाद निश्चरता से, जे<sub>ij</sub>केवल आई-जे का एक कार्य है। आकस्मिक घूर्णी समरूपता के द्वारा, बड़े पैमाने पर i और j इसका आकार केवल द्वि-आयामी वेक्टर i − j के परिमाण पर निर्भर करता है। उच्च क्रम गुणांक भी समान रूप से प्रतिबंधित हैं। | अनुवाद निश्चरता से, जे<sub>ij</sub>केवल आई-जे का एक कार्य है। आकस्मिक घूर्णी समरूपता के द्वारा, बड़े पैमाने पर i और j इसका आकार केवल द्वि-आयामी वेक्टर i − j के परिमाण पर निर्भर करता है। उच्च क्रम गुणांक भी समान रूप से प्रतिबंधित हैं। | ||
पुनर्सामान्यीकरण पुनरावृत्ति लैटिस को दो भागों में विभाजित करता है - सम चक्रण और विषम चक्रण। विषम प्रचक्रण विषम-चेकरबोर्ड लैटिस पदों पर रहते हैं, और सम-चेकरबोर्ड पर भी। जब प्रचक्रण को स्थिति (i,j) द्वारा अनुक्रमित किया जाता है, तो विषम | पुनर्सामान्यीकरण पुनरावृत्ति लैटिस को दो भागों में विभाजित करता है - सम चक्रण और विषम चक्रण। विषम प्रचक्रण विषम-चेकरबोर्ड लैटिस पदों पर रहते हैं, और सम-चेकरबोर्ड पर भी। जब प्रचक्रण को स्थिति (i,j) द्वारा अनुक्रमित किया जाता है, तो विषम स्थल i+j विषम वाली होती हैं और सम स्थल i+j सम वाली होती हैं, और सम स्थल केवल विषम भागों से जुड़ी होती हैं। | ||
विषम प्रचक्रण के दो संभावित मानों को दोनों संभावित मानों के योग द्वारा एकीकृत किया जाएगा। यह नए समायोजित कपलिंग के साथ, शेष समान प्रचक्रण के लिए एक नया मुक्त ऊर्जा कार्य उत्पन्न करेगा। यहां तक कि प्रचक्रण फिर से लैटिस में हैं, कुल्हाड़ियों को पुराने के लिए 45 डिग्री पर झुकाया गया है। | विषम प्रचक्रण के दो संभावित मानों को दोनों संभावित मानों के योग द्वारा एकीकृत किया जाएगा। यह नए समायोजित कपलिंग के साथ, शेष समान प्रचक्रण के लिए एक नया मुक्त ऊर्जा कार्य उत्पन्न करेगा। यहां तक कि प्रचक्रण फिर से लैटिस में हैं, कुल्हाड़ियों को पुराने के लिए 45 डिग्री पर झुकाया गया है। प्रणाली को अनरोटेट करना पुराने अभिविन्यास को पुनर्स्थापित करता है, लेकिन नए पैरामीटर के साथ। ये पैरामीटर दूरी पर प्रचक्रण के बीच की संपर्क का वर्णन करते हैं <math>\scriptstyle \sqrt{2}</math> बड़ा। | ||
ईज़िंग मॉडल से | ईज़िंग मॉडल से प्रारंभ होकर और इस पुनरावृत्ति को दोहराते हुए अंततः सभी कपलिंग बदल जाते हैं। जब तापमान महत्वपूर्ण तापमान से अधिक होता है, तो युग्मन शून्य हो जाएगा, क्योंकि बड़ी दूरी पर प्रचक्रण असंबद्ध होते हैं। लेकिन जब तापमान महत्वपूर्ण होता है, तो सभी आदेशों पर प्रचक्रण को जोड़ने वाले अशून्य गुणांक होंगे। केवल पहले कुछ शब्दों पर विचार करके प्रवाह का अनुमान लगाया जा सकता है। जब अधिक शब्द सम्मिलित किए जाते हैं तो यह छोटा प्रवाह महत्वपूर्ण घातांकों के लिए बेहतर और बेहतर सन्निकटन उत्पन्न करेगा। | ||
सबसे सरल सन्निकटन केवल सामान्य J शब्द रखना है, और बाकी सब कुछ त्याग देना है। यह ε विस्तार में λ के निश्चित बिंदु पर टी में प्रवाह के समान जे में एक प्रवाह उत्पन्न करेगा। | सबसे सरल सन्निकटन केवल सामान्य J शब्द रखना है, और बाकी सब कुछ त्याग देना है। यह ε विस्तार में λ के निश्चित बिंदु पर टी में प्रवाह के समान जे में एक प्रवाह उत्पन्न करेगा। | ||
J में परिवर्तन ज्ञात करने के लिए, एक विषम स्थल के चार प्रतिवेशों पर विचार करें। ये एकमात्र प्रचक्रण हैं जो इसके साथ परस्पर क्रिया करते हैं। विषम स्थान पर प्रचक्रण के दो मानों के योग से | J में परिवर्तन ज्ञात करने के लिए, एक विषम स्थल के चार प्रतिवेशों पर विचार करें। ये एकमात्र प्रचक्रण हैं जो इसके साथ परस्पर क्रिया करते हैं। विषम स्थान पर प्रचक्रण के दो मानों के योग से विभाजन फलन में गुणात्मक योगदान है: | ||
:<math> e^{J (N_+ - N_-)} + e^{J (N_- - N_+)} = 2 \cosh(J[N_+ - N_-])</math> | :<math> e^{J (N_+ - N_-)} + e^{J (N_- - N_+)} = 2 \cosh(J[N_+ - N_-])</math> | ||
जहां एन<sub>±</sub> प्रतिवेशों की संख्या है जो ± हैं। 2 के कारक को अनदेखा करते हुए, इस विषम स्थान से मुक्त ऊर्जा योगदान है: | जहां एन<sub>±</sub> प्रतिवेशों की संख्या है जो ± हैं। 2 के कारक को अनदेखा करते हुए, इस विषम स्थान से मुक्त ऊर्जा योगदान है: | ||
| Line 702: | Line 703: | ||
इसमें अपेक्षित रूप से निकटतम प्रतिवेशी और अगले-निकटतम प्रतिवेशी पारस्परिक क्रिया सम्मिलित हैं, लेकिन एक चार-प्रचक्रण पारस्परिक क्रिया भी सम्मिलित है जिसे छोड़ दिया जाना है। निकटतम प्रतिवेशी पारस्परिक क्रिया को कम करने के लिए, विचार करें कि सभी स्पिनों के बीच समान और समान संख्या + और - के बीच ऊर्जा का अंतर है: | इसमें अपेक्षित रूप से निकटतम प्रतिवेशी और अगले-निकटतम प्रतिवेशी पारस्परिक क्रिया सम्मिलित हैं, लेकिन एक चार-प्रचक्रण पारस्परिक क्रिया भी सम्मिलित है जिसे छोड़ दिया जाना है। निकटतम प्रतिवेशी पारस्परिक क्रिया को कम करने के लिए, विचार करें कि सभी स्पिनों के बीच समान और समान संख्या + और - के बीच ऊर्जा का अंतर है: | ||
:<math> \Delta F = \ln(\cosh[4J]).</math> | :<math> \Delta F = \ln(\cosh[4J]).</math> | ||
निकटतम प्रतिवेशी कपलिंग से, सभी स्पिनों के बराबर और कंपित स्पिनों के बीच ऊर्जा का अंतर 8J है। सभी चक्रणों के बीच ऊर्जा का अंतर बराबर और स्थिर लेकिन शुद्ध शून्य चक्रण 4J है। चार-प्रचक्रण अंतःक्रियाओं को अनदेखा करते हुए, इन दो ऊर्जाओं का औसत या 6J एक उचित ट्रंकेशन है। चूंकि प्रत्येक लिंक दो विषम चक्करों में योगदान देगा, पिछले एक के साथ तुलना करने का सही | निकटतम प्रतिवेशी कपलिंग से, सभी स्पिनों के बराबर और कंपित स्पिनों के बीच ऊर्जा का अंतर 8J है। सभी चक्रणों के बीच ऊर्जा का अंतर बराबर और स्थिर लेकिन शुद्ध शून्य चक्रण 4J है। चार-प्रचक्रण अंतःक्रियाओं को अनदेखा करते हुए, इन दो ऊर्जाओं का औसत या 6J एक उचित ट्रंकेशन है। चूंकि प्रत्येक लिंक दो विषम चक्करों में योगदान देगा, पिछले एक के साथ तुलना करने का सही मान आधा है: | ||
:<math>3J' = \ln(\cosh[4J]).</math> | :<math>3J' = \ln(\cosh[4J]).</math> | ||
छोटे जे के लिए, यह जल्दी से शून्य युग्मन में प्रवाहित होता है। बड़े कपलिंग के लिए बड़े जे का प्रवाह। चुंबकीयकरण एक्सपोनेंट निश्चित बिंदु पर समीकरण की ढलान से निर्धारित होता है। | छोटे जे के लिए, यह जल्दी से शून्य युग्मन में प्रवाहित होता है। बड़े कपलिंग के लिए बड़े जे का प्रवाह। चुंबकीयकरण एक्सपोनेंट निश्चित बिंदु पर समीकरण की ढलान से निर्धारित होता है। | ||
| Line 713: | Line 714: | ||
मॉडल के लिए मूल प्रेरणा लोह-चुंबकत्व की घटना थी। लोहा चुंबकीय है; एक बार चुम्बकित होने के बाद यह किसी भी परमाणु समय की तुलना में लंबे समय तक चुम्बकित रहता है। | मॉडल के लिए मूल प्रेरणा लोह-चुंबकत्व की घटना थी। लोहा चुंबकीय है; एक बार चुम्बकित होने के बाद यह किसी भी परमाणु समय की तुलना में लंबे समय तक चुम्बकित रहता है। | ||
19वीं शताब्दी में, यह सोचा गया था कि चुंबकीय क्षेत्र पदार्थ में धाराओं के कारण होते हैं, और आंद्रे-मैरी एम्पीयर | एम्पीयर ने माना कि स्थायी चुम्बक स्थायी परमाणु धाराओं के कारण होते हैं। | 19वीं शताब्दी में, यह सोचा गया था कि चुंबकीय क्षेत्र पदार्थ में धाराओं के कारण होते हैं, और आंद्रे-मैरी एम्पीयर | एम्पीयर ने माना कि स्थायी चुम्बक स्थायी परमाणु धाराओं के कारण होते हैं। उत्कृष्ट आवेशित कणों की गति हालांकि स्थायी धाराओं की व्याख्या नहीं कर सकती, जैसा कि [[जोसेफ लारमोर]] द्वारा दिखाया गया है। लोह-चुंबकत्व होने के लिए, परमाणुओं में स्थायी चुंबकीय क्षण होने चाहिए जो उत्कृष्ट आवेशों की गति के कारण नहीं होते हैं। | ||
एक बार इलेक्ट्रॉन के चक्रण की खोज हो जाने के बाद, यह स्पष्ट हो गया था कि चुम्बकत्व समान दिशा में उन्मुख सभी इलेक्ट्रॉन प्रचक्रणों की एक बड़ी संख्या के कारण होना चाहिए। यह पूछना स्वाभाविक था कि इलेक्ट्रॉनों के प्रचक्रण कैसे होते हैं, सभी जानते हैं कि किस दिशा में इंगित करना है, क्योंकि चुंबक के एक तरफ के इलेक्ट्रॉन दूसरी तरफ के इलेक्ट्रॉनों के साथ सीधे संपर्क नहीं करते हैं। वे केवल अपने प्रतिवेशों को प्रभावित कर सकते हैं। ईज़िंग मॉडल को यह जांचने के लिए डिज़ाइन किया गया था कि क्या इलेक्ट्रॉन प्रचक्रण का एक बड़ा अंश केवल स्थानीय बलों का उपयोग करके उसी दिशा में उन्मुख हो सकता है। | एक बार इलेक्ट्रॉन के चक्रण की खोज हो जाने के बाद, यह स्पष्ट हो गया था कि चुम्बकत्व समान दिशा में उन्मुख सभी इलेक्ट्रॉन प्रचक्रणों की एक बड़ी संख्या के कारण होना चाहिए। यह पूछना स्वाभाविक था कि इलेक्ट्रॉनों के प्रचक्रण कैसे होते हैं, सभी जानते हैं कि किस दिशा में इंगित करना है, क्योंकि चुंबक के एक तरफ के इलेक्ट्रॉन दूसरी तरफ के इलेक्ट्रॉनों के साथ सीधे संपर्क नहीं करते हैं। वे केवल अपने प्रतिवेशों को प्रभावित कर सकते हैं। ईज़िंग मॉडल को यह जांचने के लिए डिज़ाइन किया गया था कि क्या इलेक्ट्रॉन प्रचक्रण का एक बड़ा अंश केवल स्थानीय बलों का उपयोग करके उसी दिशा में उन्मुख हो सकता है। | ||
| Line 722: | Line 723: | ||
एक मोटे मॉडल के लिए अंतरिक्ष-समय को लैटिस बनाना है और कल्पना करना है कि प्रत्येक स्थिति में या तो एक परमाणु होता है या नहीं। अभिविन्यास का स्थान स्वतंत्र बिट्स बी का है<sub>i</sub>, जहां स्थिति के आधार पर प्रत्येक बिट या तो 0 या 1 है या नहीं। एक आकर्षक अन्योन्यक्रिया पास के दो परमाणुओं की ऊर्जा को कम कर देती है। यदि आकर्षण केवल निकटतम प्रतिवेशों के बीच है, तो ऊर्जा -4JB से कम हो जाती है<sub>''i''</sub>B<sub>''j''</sub> प्रत्येक कब्जे वाले प्रतिवेशी जोड़े के लिए। | एक मोटे मॉडल के लिए अंतरिक्ष-समय को लैटिस बनाना है और कल्पना करना है कि प्रत्येक स्थिति में या तो एक परमाणु होता है या नहीं। अभिविन्यास का स्थान स्वतंत्र बिट्स बी का है<sub>i</sub>, जहां स्थिति के आधार पर प्रत्येक बिट या तो 0 या 1 है या नहीं। एक आकर्षक अन्योन्यक्रिया पास के दो परमाणुओं की ऊर्जा को कम कर देती है। यदि आकर्षण केवल निकटतम प्रतिवेशों के बीच है, तो ऊर्जा -4JB से कम हो जाती है<sub>''i''</sub>B<sub>''j''</sub> प्रत्येक कब्जे वाले प्रतिवेशी जोड़े के लिए। | ||
[[रासायनिक क्षमता]] को जोड़कर परमाणुओं के घनत्व को नियंत्रित किया जा सकता है, जो कि अन्य परमाणु जोड़ने के लिए गुणक संभाव्यता | [[रासायनिक क्षमता]] को जोड़कर परमाणुओं के घनत्व को नियंत्रित किया जा सकता है, जो कि अन्य परमाणु जोड़ने के लिए गुणक संभाव्यता कीमत है। संभाव्यता में एक गुणक कारक को लघुगणक - ऊर्जा में एक योगात्मक शब्द के रूप में पुनर्व्याख्या की जा सकती है। एन परमाणुओं के साथ एक विन्यास की अतिरिक्त ऊर्जा μN द्वारा बदल दी जाती है। अन्य परमाणु की प्रायिकता कीमत exp(−βμ) का गुणनखंड है। | ||
तो लैटिस गैस की ऊर्जा है: | तो लैटिस गैस की ऊर्जा है: | ||
| Line 741: | Line 742: | ||
:<math>E= - \tfrac{1}{2} \sum_{ij} J_{ij} S_i S_j - \sum_i h_i S_i</math> | :<math>E= - \tfrac{1}{2} \sum_{ij} J_{ij} S_i S_j - \sum_i h_i S_i</math> | ||
जहाँ <math>J_{ij}</math> प्रतिवेशों तक ही सीमित नहीं हैं। ध्यान दें कि ईज़िंग मॉडल के इस सामान्यीकरण को कभी-कभी सांख्यिकी में द्विघात घातीय बाइनरी वितरण कहा जाता है। | जहाँ <math>J_{ij}</math> प्रतिवेशों तक ही सीमित नहीं हैं। ध्यान दें कि ईज़िंग मॉडल के इस सामान्यीकरण को कभी-कभी सांख्यिकी में द्विघात घातीय बाइनरी वितरण कहा जाता है। | ||
यह ऊर्जा कार्य केवल एक | यह ऊर्जा कार्य केवल एक मान वाले प्रचक्रण के लिए और समान मान वाले प्रचक्रण की एक जोड़ी के लिए संभाव्यता पूर्वाग्रहों का परिचय देता है। उच्च क्रम के पारस्परिक संबंध गुणकों द्वारा अप्रतिबंधित हैं। इस वितरण से नमूना किए गए एक गतिविधि विभाजन को कंप्यूटर में स्टोर करने के लिए बिट्स की सबसे बड़ी संख्या की आवश्यकता होती है, सबसे कुशल कोडिंग योजना में, समान औसत गतिविधि और जोड़ीदार सहसंबंधों के साथ किसी अन्य वितरण की तुलना में। इसका तात्पर्य यह है कि ईज़िंग मॉडल किसी भी प्रणाली के लिए प्रासंगिक हैं जो बिट्स द्वारा वर्णित हैं जो यथासंभव यादृच्छिक हैं, जोड़ीदार सहसंबंधों पर बाधाओं और 1s की औसत संख्या के साथ, जो प्रायः भौतिक और सामाजिक विज्ञान दोनों में होता है। | ||
=== [[स्पिन चश्मा|प्रचक्रण चश्मा]] === | === [[स्पिन चश्मा|प्रचक्रण चश्मा]] === | ||
आइसिंग मॉडल के साथ तथाकथित प्रचक्रण ग्लास का भी सामान्य हैमिल्टनियन द्वारा वर्णन किया जा सकता है | आइसिंग मॉडल के साथ तथाकथित प्रचक्रण ग्लास का भी सामान्य हैमिल्टनियन द्वारा वर्णन किया जा सकता है | ||
<math>\hat H=-\frac{1}{2}\,\sum J_{i,k}\,S_i\,S_k,</math> | <math>\hat H=-\frac{1}{2}\,\sum J_{i,k}\,S_i\,S_k,</math> | ||
जहां एस-वैरिएबल्स ईज़िंग प्रचक्रण का वर्णन करते हैं, जबकि जे<sub>i,k</sub>एक यादृच्छिक वितरण से लिया जाता है। प्रचक्रण ग्लास के लिए एक विशिष्ट वितरण संभाव्यता पी के साथ प्रतिलोहचुंबकीय बॉन्ड और प्रायिकता 1 − पी के साथ लोह चुंबकीय बॉन्ड | जहां एस-वैरिएबल्स ईज़िंग प्रचक्रण का वर्णन करते हैं, जबकि जे<sub>i,k</sub>एक यादृच्छिक वितरण से लिया जाता है। प्रचक्रण ग्लास के लिए एक विशिष्ट वितरण संभाव्यता पी के साथ प्रतिलोहचुंबकीय बॉन्ड और प्रायिकता 1 − पी के साथ लोह चुंबकीय बॉन्ड चयन करता है। तापीय अस्थिरता की उपस्थिति में भी ये बंधन स्थिर रहते हैं या बुझ जाते हैं। जब p = 0 हमारे पास मूल आइसिंग मॉडल होता है। यह प्रणाली अपने आप में रुचि की पात्र है; विशेष रूप से एक में गैर-एर्गोडिक गुण होते हैं जो अजीब विश्राम व्यवहार की ओर ले जाते हैं। संबंधित बॉन्ड और भाग डाइल्यूट ईज़िंग मॉडल द्वारा भी बहुत ध्यान आकर्षित किया गया है, विशेष रूप से दो आयामों में, जो पेचीदा महत्वपूर्ण व्यवहार की ओर ले जाता है।<ref>{{Citation|author= J-S Wang, [[Walter Selke|W Selke]], VB Andreichenko, and VS Dotsenko| title= The critical behaviour of the two-dimensional dilute model|journal= Physica A|volume= 164| issue= 2| pages= 221–239 |year= 1990|doi=10.1016/0378-4371(90)90196-Y|bibcode = 1990PhyA..164..221W }}</ref> | ||
| Line 755: | Line 756: | ||
=== केली ट्री सांस्थिति और बड़े तंत्रिका नेटवर्क === | === केली ट्री सांस्थिति और बड़े तंत्रिका नेटवर्क === | ||
[[File:Cayley Tree Branch with Branching Ratio = 2.jpg|thumb|शाखाओं के अनुपात के साथ एक विवृत केली ट्री या शाखा = 2 और k उत्पादन]] | |||
बड़े के लिए संभावित प्रासंगिकता वाले एक ईज़िंग मॉडल की जांच करने के लिए (उदाहरण के लिए <math>10^4</math> या <math>10^5</math> परस्पर क्रिया प्रति नोड) तंत्रिका जाल, 1979 में क्रिज़न के सुझाव पर, {{harvtxt|Barth|1981}} शून्य-बाहरी चुंबकीय क्षेत्र (ऊष्मप्रवैगिकी सीमा में) के तरीकों को प्रयुक्त करके बंद केली ट्री (व्यवस्थित रूप से बड़े ब्रांचिंग अनुपात के साथ) पर ईज़िंग मॉडल की मुक्त ऊर्जा के लिए परिशुद्ध विश्लेषणात्मक अभिव्यक्ति प्राप्त की। {{harvtxt|Glasser|1970}} और {{harvtxt|Jellito|1979}} | |||
बड़े के लिए संभावित प्रासंगिकता वाले एक ईज़िंग मॉडल की जांच करने के लिए (उदाहरण के लिए <math>10^4</math> या <math>10^5</math> परस्पर क्रिया प्रति नोड) तंत्रिका जाल, 1979 में क्रिज़न के सुझाव पर, {{harvtxt|Barth|1981}} शून्य-बाहरी चुंबकीय क्षेत्र (ऊष्मप्रवैगिकी सीमा में) के तरीकों को | [[File:Closed Cayley Tree with Branching Ratio = 4.jpg|alt= |thumb|शाखाओं के अनुपात = 4 के साथ एक संवृत केली ट्री (पीढ़ियों के k, k-1, और k = 1 के लिए केवल कार्यस्थल (एक पंक्ति के रूप में अतिव्यापी) सम्मिलित ट्री के लिए दिखाई जाती हैं)]] | ||
<math>-\beta f = \ln 2 + \frac{2\gamma}{(\gamma+1)}\ln (\cosh J) + \frac{\gamma(\gamma-1)}{(\gamma+1)}\sum_{i=2}^z\frac{1}{\gamma^i}\ln J_i (\tau) </math> | |||
जहां <math>\gamma</math> एक यादृच्छिक शाखाकरण अनुपात (2 से अधिक या उसके बराबर), टी ≡ है <math>tanh J</math>, <math>\tau</math> ≡ <math>t^2</math>, जे ≡ <math>\beta\epsilon</math> (साथ <math>\epsilon</math> निकटतम-प्रतिवेशी अंतःक्रियात्मक ऊर्जा का प्रतिनिधित्व करते हैं) और प्रत्येक ट्री शाखाओं में k (→ ∞ ऊष्मप्रवैगिकी सीमा में) पीढ़ियाँ हैं (बंद ट्री वास्तुकला को दिए गए बंद केली ट्री आरेख में दिखाया गया है।) अंतिम शब्द में योग। समान रूप से और तेजी से अभिसरण करने के लिए दिखाया जा सकता है (अर्थात z → ∞ के लिए, यह परिमित रहता है) एक सतत और नीरस कार्य उत्पन्न करता है, जो कि स्थापित करता है <math>\gamma</math> 2 से अधिक या उसके बराबर, मुक्त ऊर्जा तापमान T का एक सतत कार्य है। मुक्त ऊर्जा के आगे के विश्लेषण से संकेत मिलता है कि यह महत्वपूर्ण तापमान पर एक असामान्य असंतत पहला व्युत्पन्न प्रदर्शित करता है ({{harvtxt|Krizan|Barth|Glasser|1983}}, {{harvtxt|Glasser|Goldberg|1983}}.) | |||
ट्री पर भागों (सामान्य रूप से, एम और एन) के बीच प्रचक्रण-प्रचक्रण | ट्री पर भागों (सामान्य रूप से, एम और एन) के बीच प्रचक्रण-प्रचक्रण पारस्परिक संबंध को कोने (जैसे ए और ए, इसका प्रतिबिंब), उनके संबंधित प्रतिवेशी भागों (जैसे बी और इसके) पर विचार करने पर एक संक्रमण बिंदु पाया गया। परावर्तन), और दो वृक्षों (जैसे A और B) के शीर्ष और निचले चरम शीर्षों से सटे स्थलों के बीच, जैसा कि इससे निर्धारित किया जा सकता है | ||
<math>\langle s_m s_n \rangle = {Z_N}^{-1}(0,T)[cosh J]^{N_b}2^N\sum_{l=1}^z g_{mn}(l)t^l</math> | <math>\langle s_m s_n \rangle = {Z_N}^{-1}(0,T)[cosh J]^{N_b}2^N\sum_{l=1}^z g_{mn}(l)t^l</math> | ||
जहाँ <math>N_b</math> बांड की संख्या के बराबर है, <math>g_{mn}(l)t^l</math> मध्यवर्ती भागों के साथ विषम शीर्षों के लिए गिने जाने वाले रेखाचित्र की संख्या है (विस्तृत गणना के लिए उद्धृत कार्यप्रणाली और संदर्भ देखें), <math>2^N</math> द्वि-मूल्यवान प्रचक्रण संभावनाओं और | जहाँ <math>N_b</math> बांड की संख्या के बराबर है, <math>g_{mn}(l)t^l</math> मध्यवर्ती भागों के साथ विषम शीर्षों के लिए गिने जाने वाले रेखाचित्र की संख्या है (विस्तृत गणना के लिए उद्धृत कार्यप्रणाली और संदर्भ देखें), <math>2^N</math> द्वि-मूल्यवान प्रचक्रण संभावनाओं और विभाजन फलन से उत्पन्न बहुलता है <math>{Z_N}</math> से लिया गया है <math>\sum_{\{s\}}e^{-\beta H}</math>. (टिप्पणी: <math>s_i </math> इस खंड में संदर्भित साहित्य के अनुरूप है और इसके समकक्ष है <math>S_i</math> या <math>\sigma_i</math> ऊपर और पिछले अनुभागों में उपयोग किया गया; इसका मान है <math>\pm 1 </math>।) महत्वपूर्ण तापमान <math>T_C</math> द्वारा दिया गया है | ||
<math>T_C = \frac{2\epsilon}{k_B[ln(\sqrt \gamma+1) - ln(\sqrt \gamma-1)]}</math>. | <math>T_C = \frac{2\epsilon}{k_B[ln(\sqrt \gamma+1) - ln(\sqrt \gamma-1)]}</math>. | ||
इस मॉडल के लिए महत्वपूर्ण तापमान केवल शाखाओं के अनुपात से निर्धारित होता है <math>\gamma</math> और भाग-टू-भाग पारस्परिक क्रिया एनर्जी <math>\epsilon</math>, एक ऐसा तथ्य जिसका तंत्रिका संरचना बनाम इसके कार्य से जुड़ा प्रत्यक्ष प्रभाव हो सकता है (इसमें यह संपर्क की ऊर्जा और इसके संक्रमणकालीन व्यवहार को शाखाओं में बांटने के अनुपात से संबंधित है।) उदाहरण के लिए, नींद के बीच तंत्रिका नेटवर्क की गतिविधियों के संक्रमण व्यवहार के बीच संबंध और जाग्रत अवस्थाएँ (जो प्रचक्रण-प्रचक्रण प्रकार के प्रावस्था संक्रमण के साथ सहसंबद्ध हो सकती हैं) तंत्रिका अंतर्संबंध में परिवर्तन के संदर्भ में (<math>\gamma</math>) और/या प्रतिवेशी-से-प्रतिवेशी पारस्परिक क्रिया (<math>\epsilon</math>), समय के साथ, इस तरह की घटना में आगे की प्रायोगिक जांच के लिए सुझाया गया एक संभावित तरीका है। किसी भी स्थिति में, इस ईज़िंग मॉडल के लिए यह स्थापित किया गया था कि "लंबी दूरी के | इस मॉडल के लिए महत्वपूर्ण तापमान केवल शाखाओं के अनुपात से निर्धारित होता है <math>\gamma</math> और भाग-टू-भाग पारस्परिक क्रिया एनर्जी <math>\epsilon</math>, एक ऐसा तथ्य जिसका तंत्रिका संरचना बनाम इसके कार्य से जुड़ा प्रत्यक्ष प्रभाव हो सकता है (इसमें यह संपर्क की ऊर्जा और इसके संक्रमणकालीन व्यवहार को शाखाओं में बांटने के अनुपात से संबंधित है।) उदाहरण के लिए, नींद के बीच तंत्रिका नेटवर्क की गतिविधियों के संक्रमण व्यवहार के बीच संबंध और जाग्रत अवस्थाएँ (जो प्रचक्रण-प्रचक्रण प्रकार के प्रावस्था संक्रमण के साथ सहसंबद्ध हो सकती हैं) तंत्रिका अंतर्संबंध में परिवर्तन के संदर्भ में (<math>\gamma</math>) और/या प्रतिवेशी-से-प्रतिवेशी पारस्परिक क्रिया (<math>\epsilon</math>), समय के साथ, इस तरह की घटना में आगे की प्रायोगिक जांच के लिए सुझाया गया एक संभावित तरीका है। किसी भी स्थिति में, इस ईज़िंग मॉडल के लिए यह स्थापित किया गया था कि "लंबी दूरी के पारस्परिक संबंध की स्थिरता बढ़ने के साथ बढ़ती है <math>\gamma</math> या बढ़ रहा है <math>\epsilon</math>।” | ||
इस सांस्थिति के लिए, प्रचक्रण-प्रचक्रण | इस सांस्थिति के लिए, प्रचक्रण-प्रचक्रण पारस्परिक संबंध चरम शीर्षों और केंद्रीय स्थलों के बीच शून्य पाया गया, जहां दो ट्री (या शाखाएं) जुड़े हुए हैं (अर्थात ए और व्यक्तिगत रूप से सी, d, या ई के बीच)। यह व्यवहार है इस तथ्य के कारण समझाया गया है कि, जैसे-जैसे k बढ़ता है, लिंक की संख्या तेजी से बढ़ती है (चरम कोने के बीच) और इसलिए तथापि प्रचक्रण सहसंबंधों में योगदान तेजी से घटता है, चरम शीर्ष (ए) जैसी भागों के बीच पारस्परिक संबंध जुड़े हुए ट्री में एक ट्री और चरम शीर्ष (ए) परिमित (महत्वपूर्ण तापमान से ऊपर) रहता है। (ए स्तर के साथ), "क्लस्टर" माना जाता है जो फायरिंग के सिंक्रनाइज़ेशन को प्रदर्शित करता है। | ||
तुलना के रूप में अन्य | तुलना के रूप में अन्य उत्कृष्ट नेटवर्क मॉडल की समीक्षा के आधार पर, एक बंद केली ट्री पर ईज़िंग मॉडल को गैर-लुप्त होने वाले प्रचक्रण-प्रचक्रण सहसंबंधों के साथ स्थानीय और लंबी दूरी की भागों को प्रदर्शित करने वाला पहला उत्कृष्ट सांख्यिकीय यांत्रिक मॉडल होना निर्धारित किया गया था, जबकि समान समय में मध्यवर्ती भागों को शून्य पारस्परिक संबंध के साथ प्रदर्शित करना, जो वास्तव में इसके विचार के समय बड़े तंत्रिका नेटवर्क के लिए एक प्रासंगिक मामला था। मॉडल का व्यवहार किसी अन्य अपसारी-अभिसरण वृक्ष भौतिक (या जैविक) प्रणाली के लिए भी प्रासंगिक है, जो ईज़िंग-प्रकार की संपर्क के साथ एक बंद केली ट्री सांस्थिति प्रदर्शित करता है। इस सांस्थिति को नजरअंदाज नहीं किया जाना चाहिए क्योंकि ईज़िंग मॉडल के लिए इसका व्यवहार परिशुद्ध रूप से संशोधन किया गया है, और संभवतः प्रकृति ने अपने डिजाइनों के कई स्तरों पर ऐसी सरल समरूपता का लाभ उठाने का एक तरीका खोज लिया होगा। | ||
{{harvtxt|Barth|1981}} प्रारंभिक तौर पर (1) | {{harvtxt|Barth|1981}} प्रारंभिक तौर पर (1) उत्कृष्ट बड़े तंत्रिका नेटवर्क मॉडल (समान युग्मित डाइवर्जेंट-अभिसरण सांस्थिति के साथ) (2) एक अंतर्निहित सांख्यिकीय क्वांटम मैकेनिकल मॉडल (सांस्थिति से स्वतंत्र और मौलिक क्वांटम अवस्थाओ में दृढ़ता के साथ) के बीच अंतर्संबंधों की संभावना पर ध्यान दिया गया: | ||
{{Blockquote| | {{Blockquote|संवृत केली ट्री मॉडल से प्राप्त सबसे महत्वपूर्ण परिणाम में मध्यवर्ती-श्रेणी के सहसंबंध की अनुपस्थिति में लंबी दूरी के सहसंबंध की घटना सम्मिलित है। यह परिणाम अन्य उत्कृष्ट मॉडलों द्वारा प्रदर्शित नहीं किया गया है। इस घटना के लिए आवेग संचरण के उत्कृष्ट दृष्टिकोण की विफलता को कई जांचकर्ताओं (रिकियार्डी और उमेज़ावा, 1967, होक्यो 1972, स्टुअर्ट, ताकाहाशी और उमेज़ावा 1978, 1979) द्वारा उद्धृत किया गया है, जो एक बहुत ही महत्वपूर्ण आधार पर मौलिक रूप से नई मान्यताओं को स्वीकृत करने के लिए पर्याप्त है। मौलिक स्तर और मस्तिष्क संविभाग के अंदर क्वांटम सहकारी मोड के स्थिति का सुझाव दिया है ... इसके अतिरिक्त, यह ध्यान रखना दिलचस्प है कि (मॉडलिंग) ... गोल्डस्टोन कण या बोसोन (उमेज़ावा, एट अल के अनुसार) ... मस्तिष्क संविभाग के अंदर, लंबे समय तक प्रदर्शित करता है।|author=|title=|source=}} | ||
प्रारम्भिक न्यूरोफिज़िसिस्ट (जैसे उमेज़ावा, क्रिज़न, बार्थ, आदि) के बीच यह एक स्वाभाविक और आम धारणा थी कि | प्रारम्भिक न्यूरोफिज़िसिस्ट (जैसे उमेज़ावा, क्रिज़न, बार्थ, आदि) के बीच यह एक स्वाभाविक और आम धारणा थी कि उत्कृष्ट तंत्रिका मॉडल (सांख्यिकीय यांत्रिक स्वरूपों वाले लोगों सहित) को एक दिन क्वांटम भौतिकी (क्वांटम सांख्यिकीय स्वरूपों के साथ) के साथ एकीकृत करना होगा। इसी तरह संभव्यता रसायन विज्ञान के प्रक्षेत्र ने ऐतिहासिक रूप से खुद को क्वांटम रसायन विज्ञान के माध्यम से क्वांटम भौतिकी में एकीकृत किया है। | ||
समय-निर्भर स्थिति और बाहरी क्षेत्र की स्थिति के साथ-साथ अंतर्निहित क्वांटम घटकों और उनके भौतिकी के साथ अंतर्संबंधों को समझने के उद्देश्य से सैद्धांतिक प्रयासों सहित, बंद केली के ट्री के लिए ब्याज की कई अतिरिक्त सांख्यिकीय यांत्रिक समस्याओं का समाधान किया जाना बाकी है। | समय-निर्भर स्थिति और बाहरी क्षेत्र की स्थिति के साथ-साथ अंतर्निहित क्वांटम घटकों और उनके भौतिकी के साथ अंतर्संबंधों को समझने के उद्देश्य से सैद्धांतिक प्रयासों सहित, बंद केली के ट्री के लिए ब्याज की कई अतिरिक्त सांख्यिकीय यांत्रिक समस्याओं का समाधान किया जाना बाकी है। | ||
Revision as of 11:40, 23 March 2023
| Statistical mechanics |
|---|
ईईज़िंग मॉडल (जर्मन उच्चारण: [iːzɪŋ]) (या लेन्ज़-आइज़िंग मॉडल या इस्सिंग-लेनज़ मॉडल), जिसका नाम भौतिकविदों अर्नस्ट इस्सिंग और विल्हेम लेन्ज़ के नाम पर रखा गया है, सांख्यिकीय यांत्रिकी में लोह-चुंबकत्व का एक गणितीय मॉडल है। मॉडल में असतत चर होते हैं जो परमाणु "प्रचक्रण" के चुंबकीय द्विध्रुवीय क्षणों का प्रतिनिधित्व करते हैं जो दो स्थितियों (+1 या -1) में से एक में हो सकते हैं। प्रचक्रण (स्पिन) को एक रेखाचित्र में व्यवस्थित किया जाता है, सामान्य रूप से लैटिस (जहां स्थानीय संरचना सभी दिशाओं में समय-समय पर पुनरावृत्त करती है), जिससे प्रत्येक प्रचक्रण अपने प्रतिवेशों के साथ संपर्क कर सके। प्रतिवेशी प्रचक्रण जो सहमत हैं उनमें असहमत होने वालों की तुलना में कम ऊर्जा होती है; प्रणाली सबसे कम ऊर्जा की ओर जाता है लेकिन ऊष्मा इस प्रवृत्ति को विक्षुब्ध करती है, इस प्रकार विभिन्न संरचनात्मक चरणों की संभावना उत्पन्न करती है। मॉडल वास्तविकता के सरलीकृत मॉडल के रूप में प्रावस्था संक्रमण की पहचान की स्वीकृति देता है। प्रावस्था संक्रमण दिखाने के लिए द्वि-आयामी वर्ग-लैटिस आइसिंग मॉडल सबसे सरल सांख्यिकीय मॉडल में से एक है।[1]
ईज़िंग मॉडल का आविष्कार भौतिक विज्ञानी विल्हेम लेन्ज़ (1920) द्वारा किया गया था, जिन्होंने इसे अपने छात्र अर्न्स्ट इस्सिंग को एक समस्या के रूप में दिया था। एक आयामी ईज़िंग मॉडल को ईज़िंग (1925) ने अकेले 1924 की अपनी अभिधारणा में संशोधन किया था;[2] इसका कोई प्रावस्था संक्रमण नहीं है। द्वि-आयामी वर्ग-लैटिस ईज़िंग मॉडल बहुत कठिन है और लार्स ऑनसेगर (1944) द्वारा केवल एक विश्लेषणात्मक विवरण दिया गया था। यह सामान्य रूप से स्थानांतरण-मैट्रिक्स विधि द्वारा संशोधन किया जाता है, हालांकि क्वांटम क्षेत्र सिद्धांत से संबंधित विभिन्न दृष्टिकोण सम्मिलित हैं।
चार से अधिक आयामों में, ईज़िंग मॉडल के प्रावस्था संक्रमण को माध्य-क्षेत्र सिद्धांत द्वारा वर्णित किया गया है। 1970 के दशक के उत्तरार्ध में विभिन्न ट्री सांस्थिति के संबंध में अधिक आयामों के लिए ईज़िंग मॉडल का भी पता लगाया गया, जो जो शून्य-क्षेत्र समय-स्वतंत्र बर्थ (1981) मॉडल के परिशुद्ध समाधान के रूप में यादृच्छिक शाखाओं के अनुपात के संवृत केली ट्री के लिए और इस तरह ट्री शाखाओं के अंदर यादृच्छिक रूप से बड़ी आयामीता का पता लगाया गया था। इस मॉडल के समाधान ने गैर-लुप्त होने वाली लंबी दूरी और निकटतम-प्रतिवेशी प्रचक्रण-प्रचक्रण सहसंबंधों के साथ एक नया, असामान्य प्रावस्था संक्रमण व्यवहार प्रदर्शित किया, जो इसके संभावित अनुप्रयोगों में से एक के रूप में बड़े तंत्रिका नेटवर्क के लिए प्रासंगिक माना जाता है।
बाहरी क्षेत्र के बिना ईज़िंग समस्या को समतुल्य रूप से एक रेखाचित्र (असतत गणित) अधिकतम विभाजन (मैक्स-विभाजन) समस्या के रूप में निर्मित किया जा सकता है जिसे संयोजी अनुकूलन के माध्यम से संशोधन किया जा सकता है।
परिभाषा
लैटिस भागों के समुच्चय , पर विचार करें, प्रत्येक आसन्न भागों के समुच्चय के साथ (जैसे एक रेखाचित्र (असतत गणित)) एक बनाने -आयामी लैटिस का निर्माण करता है। प्रत्येक लैटिस भाग के लिए एक असतत चर है जैसे कि , भाग के प्रचक्रण का प्रतिनिधित्व करता है। प्रचक्रण विन्यास, प्रत्येक लैटिस भाग के लिए प्रचक्रण मान का एक निर्दिष्टीकरण है।
किसी भी दो आसन्न भागों के लिए अंतःक्रिया होती है। साथ ही एक भाग बाहरी चुंबकीय क्षेत्र है। जो इसके साथ परस्पर क्रिया करता है। विन्यास की ऊर्जा हैमिल्टनीय फलन द्वारा दी गई है
जहां पहला योग आसन्न प्रचक्रण के जोड़े पर है (प्रत्येक जोड़ी को एक बार गिना जाता है)। संकेतन भागों को इंगित करता है कि भाग और निकटतम प्रतिवेशी हैं। चुंबकीय क्षण द्वारा दिया जाता है ध्यान दें कि उपरोक्त हैमिल्टनियन के दूसरे पद में संकेत वास्तव में धनात्मक होना चाहिए क्योंकि इलेक्ट्रॉन का चुंबकीय क्षण इसके प्रचक्रण के समानांतर है, लेकिन ऋणात्मक पद पारंपरिक रूप से प्रयोग किया जाता है।[3] अभिविन्यास की संभावना बोल्ट्जमैन वितरण द्वारा व्युत्क्रम तापमान के साथ दी गई है:
जहाँ , और सामान्यीकरण स्थिरांक
विभाजन फलन (सांख्यिकीय यांत्रिकी) है। फलन के लिए स्पिन की संख्या (देखने योग्य), द्वारा इंगित करता है
की अपेक्षा (माध्य) मान।
अभिविन्यास संभावनाएं संभाव्यता का प्रतिनिधित्व करते हैं कि (संतुलन में) प्रणाली अभिविन्यास के साथ एक अवस्था में है
विचार-विमर्श
हैमिल्टनियन फलन के प्रत्येक पद पर ऋण चिह्न पारंपरिक है। इस चिह्न व्यवहार का उपयोग करते हुए, ईज़िंग मॉडल को यदि, किसी युग्म i, j के लिए अन्योन्यक्रिया के चिह्न के अनुसार वर्गीकृत किया जा सकता है:
- , पारस्परिक क्रिया को लौह-चुंबकीय कहा जाता है,
- , पारस्परिक क्रिया को प्रति-लौहचुंबकीय कहा जाता है,
- , प्रचक्रण गैर-सहभागी हैं।
प्रणाली को लोह चुंबकीय या प्रतिलोहचुंबकीय कहा जाता है यदि सभी पारस्परिक क्रिया लोह चुंबकीय हैं या सभी प्रतिलोहचुंबकीय हैं। मूल ईज़िंग मॉडल लोह चुंबकीय थे, और यह अभी भी प्रायः माना जाता है कि ईज़िंग मॉडल का अर्थ लोह चुंबकीय ईज़िंग मॉडल है।
लोह चुंबकीय आइसिंग मॉडल में, प्रचक्रण को संरेखित करने का विचार होता है: अभिविन्यास जिसमें आसन्न प्रचक्रण समान संकेत के होते हैं, जिसमे उच्च संभावना होती है। प्रतिलोहचुंबकीय मॉडल में, आसन्न स्पिनों में विपरीत संकेत होते हैं।
H(σ) की चिह्न समागम यह भी बताती है कि प्रचक्रण भाग j बाहरी क्षेत्र के साथ कैसे परस्पर क्रिया करती है। अर्थात्, प्रचक्रण भाग बाहरी क्षेत्र के साथ पंक्तिबद्ध करना चाहती है। यदि:
- , प्रचक्रण भाग j धनात्मक दिशा में पंक्तिबद्ध करना चाहता है,
- , प्रचक्रण भाग j ऋणात्मक दिशा में पंक्तिबद्ध करना चाहता है,
- , प्रचक्रण भाग पर कोई बाहरी प्रभाव नहीं पड़ता है।
सरलीकरण
आइसिंग मॉडल की प्रायः लैटिस के साथ परस्पर क्रिया करने वाले बाहरी क्षेत्र के बिना जांच की जाती है, अर्थात लैटिस Λ में सभी j के लिए h = 0 है। इस सरलीकरण का उपयोग करते हुए हैमिल्टनियन बन जाता है
जब बाहरी क्षेत्र प्रत्येक जगह शून्य h = 0 होता है, आइसिंग मॉडल सभी लैटिस भागों में प्रचक्रण के मान को स्विच करने के अंतर्गत सममित होता है; अशून्य क्षेत्र इस समरूपता को विभाजित करता है।
अन्य सामान्य सरलीकरण यह मान लेना है कि सभी निकटतम प्रतिवेशी ⟨ij⟩ की अंतःक्रिया सामर्थ्य समान है। तब हम Λ में सभी जोड़े i, j के लिए Jij = J स्थापित कर सकते हैं। इस स्थिति में हैमिल्टनियन को अधिक सरल बनाया गया है
रेखाचित्र से संयोजन (असतत गणित) अधिकतम विभाजन
शीर्ष (रेखाचित्र सिद्धांत) का एक उपसमुच्चय S एक भारित अप्रत्यक्ष रेखाचित्र G का V(G) समुच्चय करता है जो S में रेखाचित्र G का एक विभाजन निर्धारित करता है और इसका पूरक रेखाचित्र उपसमुच्चय G\S है। विभाजन का आकार S और G\S के बीच कोर के भार का योग है। अधिकतम विभाजन आकार कम से कम किसी अन्य विभाजन के आकार का होता है, जो अलग-अलग S होता है।
रेखाचित्र G पर बाहरी क्षेत्र के बिना ईज़िंग मॉडल के लिए, हैमिल्टनियन रेखाचित्र कोर E(G) पर निम्नलिखित योग बन जाता है।
.
यहाँ रेखाचित्र का प्रत्येक शीर्ष i एक प्रचक्रण भाग है जो एक प्रचक्रण मान लेती है। एक दिया गया प्रचक्रण विन्यास शीर्षों के समुच्चय को विभाजित करता है में दो आश्रित उपसमुच्चय, प्रचक्रित और नीचे प्रचक्रण वाले हम द्वारा निरूपित करते हैं और कोर का आश्रित समुच्चय जो दो पूरक शीर्ष और उपसमुच्चय को जोड़ता है अतः विभाजन का आकार अनिर्दिष्ट रेखाचित्र के लिए भारित अप्रत्यक्ष रेखाचित्र G को इस रूप में परिभाषित किया जा सकता है
,
जहाँ कोर के भार को दर्शाता है और अनुमाप परिवर्तन 1/2 समान भार की दोहरी गणना के लिए समतुल्य करने के लिए प्रस्तुत किया गया है
सर्वसमिका
जहां पहले पद में समग्र योग निर्भर नहीं करता है इसका तात्पर्य है कि में कम करना कम करने के बराबर है। कोर के भार को परिभाषित करना इस प्रकार किसी बाहरी क्षेत्र के बिना ईज़िंग समस्या को रेखाचित्र अधिकतम-विभाजन समस्या में बदल देता है[4] विभाजन आकार को अधिकतम करना, जो इस्सिंग हैमिल्टनियन से निम्नानुसार संबंधित है,
प्रश्न
इस मॉडल के बारे में पूछने के लिए महत्वपूर्ण संख्या में सांख्यिकीय प्रश्न बड़ी संख्या में प्रचक्रण की सीमा में हैं:
- विशिष्ट विन्यास में, अधिकांश प्रचक्रण +1 या -1 हैं, या क्या वे समान रूप से विभाजित हैं?
- यदि किसी दिए गए स्थान i पर प्रचक्रण 1 है, तो क्या संभावना है कि स्थिति j पर प्रचक्रण भी 1 है?
- यदि β बदल दिया गया है, तो क्या कोई प्रावस्था संक्रमण है?
- लैटिस Λ पर, +1 चक्रणों के एक बड़े समूह के आकार का फ्रैक्टल आयाम क्या है?
मूल गुण और इतिहास
ईज़िंग मॉडल का सबसे अधिक अध्ययन किया गया स्थिति d-आयाम लैटिस पर अनुवाद अपरिवर्तनीय लोह चुंबकीय शून्य क्षेत्र मॉडल है, अर्थात् जिसका नाम Λ = 'Z'd , Jij= 1, h = 0 है।
आयाम में कोई प्रावस्था संक्रमण नहीं
अपने 1924 के पीएचडी अभिधारणा में, ईज़िंग ने d = 1 स्थिति के लिए मॉडल को संशोधन किया, जिसे एक रैखिक क्षैतिज लैटिस के रूप में माना जा सकता है जहां प्रत्येक भाग केवल अपने बाएं और दाएं प्रतिवेशी के साथ परस्पर क्रिया करती है। आयाम में, समाधान प्रावस्था संक्रमण को स्वीकार नहीं करता है।[5] अर्थात्, किसी भी धनात्मक β के लिए, पारस्परिक संबंध ⟨σiσj⟩ |i − j| में चरघातांकी रूप से क्षय होता है:
और व्यवस्था अव्यवस्थित है। इस परिणाम के आधार पर उन्होंने गलत निष्कर्ष निकाला[citation needed] कि यह मॉडल किसी भी आयाम में चरण व्यवहार प्रदर्शित नहीं करता है।
प्रावस्था संक्रमण और दो आयामों में परिशुद्ध समाधान
ईज़िंग मॉडल एक क्रमित चरण और एक अव्यवस्थित चरण के बीच 2 आयामों या अधिक में एक प्रावस्था संक्रमण से गुजरता है। अर्थात्, प्रणाली छोटे β के लिए अव्यवस्थित है, जबकि बड़े β के लिए प्रणाली लोह चुंबकीय क्रम प्रदर्शित करता है:
यह पहली बार 1936 में रुडोल्फ पीयरल्स द्वारा सिद्ध किया गया था,[6] जिसे अब पीयरल्स तर्क कहा जाता है।
लार्स ऑनसेगर (1944) द्वारा बिना किसी चुंबकीय क्षेत्र वाले द्वि-आयामी वर्ग लैटिस पर ईज़िंग मॉडल को विश्लेषणात्मक रूप से संशोधन किया गया था। कि ईज़िंग मॉडल के पारस्परिक संबंध फलन और ऊष्मप्रवैगिकी मुक्त ऊर्जा एक गैर-बाधित लैटिस फ़र्मियन द्वारा निर्धारित की जाती है। ऑनसेजर ने 1949 में 2-आयामी मॉडल के लिए स्वतःप्रवर्तित चुंबकीयकरण के सूत्र की घोषणा की, लेकिन कोई व्युत्पत्ति नहीं दी। यांग (1952) ने इस सूत्र का पहला प्रकाशित प्रमाण दिया, फ्रेडहोम निर्धारकों के लिए एक ज़ेगो सीमा प्रमेय का उपयोग करते हुए, 1951 में ऑनसेगर स्ज़ेगो द्वारा सिद्ध किया गया।[7]
पारस्परिक संबंध असमानताएं
ईज़िंग प्रचक्रण सहसंबंधों (सामान्य लैटिस संरचनाओं के लिए) के लिए कई पारस्परिक संबंध असमानताओं को दृढ़ता से प्राप्त किया गया है,जिसने गणितज्ञों को ईज़िंग मॉडल को संपर्क विच्छेद महत्व दोनों का अध्ययन करने में सक्षम बनाया।
ग्रिफ़िथ असमानता
प्रचक्रण के किसी भी उपसमुच्चय को देखते हुए और लैटिस पर, निम्नलिखित असमानता रखती है,
,
जिसका अर्थ है कि ईज़िंग लोह-चुंबक पर प्रचक्रण धनात्मक रूप से सहसंबद्ध हैं। इसका एक तात्कालिक अनुप्रयोग यह है कि प्रचक्रण के किसी भी समुच्चय का चुंबकीयकरण युग्मन स्थिरांक के किसी भी समुच्चय के संबंध में बढ़ रहा है।
साइमन-लिब असमानता
साइमन-लीब असमानता[8] बताता है कि किसी भी समुच्चय के लिए से असंबद्ध कर रहा है (उदाहरण के साथ एक बॉक्स की सीमा बॉक्स के अंदर और बाहरी है),
.
इस असमानता का उपयोग ईज़िंग मॉडल के लिए प्रावस्था संक्रमण की तीव्रता को स्थापित करने के लिए किया जा सकता है।[9]
एफकेजी असमानता
यह असमानता पहले एक प्रकार के यादृच्छिक क्लस्टर मॉडल के लिए सिद्ध होती है। इसका उपयोग अन्त:स्रवण तर्कों (जिसमें एक विशेष स्थिति के रूप में ईज़िंग मॉडल सम्मिलित है) का उपयोग करके समतलीय पॉट्स मॉडल के महत्वपूर्ण तापमान को निर्धारित करने के लिए किया जाता है।[10]
ऐतिहासिक महत्व
परमाणुवाद के समर्थन में डेमोक्रिटस के तर्कों में से एक यह था कि परमाणु स्वाभाविक रूप से सामग्रियों में देखी गई तीव्र प्रवस्था सीमाओं की व्याख्या करते हैं[citation needed], जैसे कि जब बर्फ पिघल कर पानी बन जाती है या पानी भाप बन जाता है। उनका विचार था कि परमाणु-पैमाने के गुणों में छोटे परिवर्तन से समग्र व्यवहार में बड़े परिवर्तन होंगे। दूसरों का मानना था कि पदार्थ स्वाभाविक रूप से निरंतर है, परमाणु नहीं है, और यह कि पदार्थ के बड़े पैमाने के गुण मौलिक परमाणु गुणों के लिए कम करने योग्य नहीं हैं।
जबकि रासायनिक बंधन के नियमों ने उन्नीसवीं शताब्दी के रसायनज्ञों को यह स्पष्ट कर दिया था कि परमाणु वास्तविक थे, भौतिकविदों के बीच तर्क बीसवीं शताब्दी के प्रारंभ में अच्छी तरह से प्रकाशित रही। एटमिस्ट्स, विशेष रूप से जेम्स क्लर्क मैक्सवेल और लुडविग बोल्ट्जमैन ने हैमिल्टन के न्यूटन के नियमों को बड़ी प्रणालियों पर प्रयुक्त किया, और पाया कि परमाणुओं के सांख्यिकीय यांत्रिकी कमरे के तापमान गैसों का सही वर्णन करते हैं। लेकिन उत्कृष्ट सांख्यिकीय यांत्रिकी ने तरल और ठोस के सभी गुणों का विवरण नहीं दिया, न ही कम तापमान पर गैसों का विवरण दिया।
एक बार आधुनिक क्वांटम यांत्रिकी निर्मित हो जाने के बाद, परमाणुवाद प्रयोग के साथ संघर्ष में नहीं था, लेकिन इससे सांख्यिकीय यांत्रिकी की सार्वभौमिक स्वीकृति नहीं हुई, जो परमाणुवाद से आगे निकल गई। योशिय्याह विलार्ड गिब्स ने यांत्रिकी के नियमों से ऊष्मप्रवैगिकी के नियमों को पुन: उत्पन्न करने के लिए एक पूर्ण औपचारिकता प्रदान की थी। लेकिन 19वीं शताब्दी से कई दोषपूर्ण तर्क बच गए, जब सांख्यिकीय यांत्रिकी को संदिग्ध माना जाता था। अंतर्ज्ञान में त्रुटि अधिकतम इस तथ्य से उत्पन्न हुई है कि एक अनंत सांख्यिकीय प्रणाली की सीमा में कई शून्य-एक नियम (बहुविकल्पी) हैं। शून्य-एक नियम जो परिमित प्रणालियों में अनुपस्थित हैं: डेमोक्रिटस की अपेक्षा के अनुसार, पैरामीटर में एक अतिसूक्ष्म परिवर्तन समग्र, समग्र व्यवहार में बड़े अंतर उत्पन्न कर सकता है।
परिमित मात्रा में कोई प्रावस्था संक्रमण नहीं
बीसवीं शताब्दी के प्रारम्भिक भाग में, कुछ लोगों का मानना था कि निम्नलिखित तर्क के आधार पर विभाजन फलन (सांख्यिकीय यांत्रिकी) कभी भी एक प्रावस्था संक्रमण का वर्णन नहीं कर सकता:
- विभाजन फलन सभी विन्यासों पर e−βE का योग है।
- चरघातांकी फलन प्रत्येक स्थान पर β के फलन के रूप में विश्लेषणात्मक फलन है।
- विश्लेषणात्मक फलनों का योग एक विश्लेषणात्मक फलन है।
यह तर्क घातांकों के परिमित योग के लिए काम करता है, और सही रूप से स्थापित करता है कि परिमित आकार की प्रणाली की मुक्त ऊर्जा में कोई विलक्षणता नहीं है। उन प्रणालियों के लिए जो ऊष्मप्रवैगिकी सीमा में हैं (अर्थात, अनंत प्रणालियों के लिए) अनंत राशि विलक्षणता को उत्पन्न कर सकती है। ऊष्मप्रवैगिकी सीमा का अभिसरण तीव्र है, ताकि चरण व्यवहार पहले से ही अपेक्षाकृत छोटी लैटिस पर स्पष्ट हो, तथापि प्रणाली के परिमित आकार से विलक्षणताओं को सामान्य कर दिया गया हो।
इसे सबसे पहले रुडोल्फ पेयर्ल्स ने ईजिंग मॉडल में स्थापित किया था।
पीयरल बिंदुक
लेन्ज़ और ईज़िंग द्वारा ईज़िंग मॉडल का निर्माण करने के तुरंत बाद, पीयरल्स स्पष्ट रूप से यह दिखाने में सक्षम थे कि एक प्रावस्था संक्रमण दो आयामों में होता है।
ऐसा करने के लिए, उन्होंने उच्च-तापमान और निम्न-तापमान सीमा की तुलना की। अनंत तापमान (β = 0) पर सभी विन्यासों की समान संभावना होती है। प्रत्येक प्रचक्रण किसी भी अन्य से पूरी तरह से स्वतंत्र है, और यदि अनंत तापमान पर सामान्य अभिविन्यास आलेखित किए जाते हैं ताकि धन/ऋण को काले और सफेद द्वारा दर्शाया जा सके, तो वे दूरदर्शन (वीडियो) की तरह दिखते हैं। उच्च, लेकिन अनंत तापमान के लिए नहीं, प्रतिवेशी स्थितियों के बीच छोटे-छोटे पारस्परिक संबंध होते हैं, बर्फ थोड़ी सी जम जाती है, लेकिन स्क्रीन अव्यवस्थित रूप से दिखती रहती है, और काले या सफेद रंग की कोई अधिकता नहीं होती है।
अधिकता का एक मात्रात्मक माप चुंबकीयकरण है, जो प्रचक्रण का औसत मान है:
पूर्व अनुभाग में तर्क के अनुरूप कल्पित तर्क यह स्थापित करता है कि ईज़िंग मॉडल में चुंबकीयकरण सदैव शून्य होता है।
- प्रचक्रण के प्रत्येक अभिविन्यास में अभिविन्यास के बराबर ऊर्जा होती है, जिसमें सभी प्रचक्रण प्रतिवर्त होते हैं।
- इसलिए चुंबकत्व M के साथ प्रत्येक विन्यास के लिए समान संभाव्यता के साथ चुंबकत्व -M के साथ विन्यास होता है।
- इसलिए प्रणाली को चुंबकीयकरण M के साथ अभिविन्यास में समान मात्रा में समय क्षीण करना चाहिए जैसा कि चुंबकीयकरण -M के साथ होता है।
- तो औसत चुंबकीयकरण (प्रत्येक समय) शून्य है।
पहले की तरह, यह केवल यह प्रमाणित करता है कि औसत चुंबकीयकरण किसी भी सीमित मात्रा में शून्य है। अनंत प्रणाली के लिए, अस्थिरता एक गैर-शून्य संभाव्यता के साथ अधिकतम धनात्मक अवस्था से अधिकतम शून्य से प्रणाली को आघात में सक्षम नहीं हो सकता है।
बहुत अधिक तापमान के लिए, चुंबकीयकरण शून्य होता है, क्योंकि यह अनंत तापमान पर होता है। इसे देखने के लिए, ध्यान दें कि यदि प्रचक्रण A में प्रचक्रण B के साथ केवल एक छोटा पारस्परिक संबंध ε है, और B केवल C के साथ दुर्बल रूप से सहसंबंधित है, लेकिन C अन्यथा A से स्वतंत्र है, A और C के पारस्परिक संबंध की मात्रा ε2 की तरह हो जाती है दूरी L द्वारा अलग किए गए दो चक्रो के लिए, पारस्परिक संबंध की मात्रा εL के रूप में हो जाती है, लेकिन यदि एक से अधिक पथ हैं जिनके द्वारा पारस्परिक संबंध संचरण कर सकते हैं, तो यह राशि पथों की संख्या से बढ़ जाती है।
d विमाओं में एक वर्गाकार जालक(लैटिस) पर लंबाई L के पथों की संख्या है
चूंकि प्रत्येक चरण पर कहां जाना है इसके लिए 2d विकल्प हैं।
समग्र पारस्परिक संबंध पर एक सीमा को दो बिंदुओं को जोड़ने वाले सभी पथों के योग द्वारा पारस्परिक संबंध में योगदान द्वारा दिया जाता है, जो कि लंबाई L के सभी पथों के योग द्वारा ऊपर से विभाजित होता है
जो ε छोटा होने पर शून्य हो जाता है।
कम तापमान (β ≫ 1) पर विन्यास निम्नतम-ऊर्जा विन्यास के पास होता है, वह जहां सभी प्रचक्रण धनात्मक या सभी प्रचक्रण ऋणात्मक होते हैं। पीयरल्स ने पूछा कि क्या यह कम तापमान पर सांख्यिकीय रूप से संभव है, सभी प्रचक्रण ऋणात्मक से प्रारंभ होकर, उस स्थिति में अस्थिरता करना जहां अधिकांश प्रचक्रण धनात्मक हैं। ऐसा होने के लिए, धनात्मक प्रचक्रण की बूंदों को धनात्मक स्थिति बनाने के लिए जमने में सक्षम होना चाहिए।
ऋणात्मक परिप्रेक्ष्य में धनात्मक प्रचक्रण की एक छोटी बूंद की ऊर्जा बिन्दुक L की परिधि के समानुपाती होती है, जहां धनात्मक प्रचक्रण और ऋणात्मक प्रचक्रण एक दूसरे के प्रतिवेशी होते हैं। परिमाप L वाली छोटी बूंद के लिए, क्षेत्रफल (L − 2)/2 (सीधी रेखा) और (L/4)2 (वर्गाकार बॉक्स) के बीच कहीं है। एक छोटी बूंद को प्रस्तुत करने की संभाव्यता कीमत का कारक e−βL है, लेकिन यह परिधि L के साथ बूंदों की समग्र संख्या से गुणा किए गए विभाजन फलन में योगदान देता है, जो लंबाई L के पथों की समग्र संख्या से कम है:
ताकि बूंदों से समग्र प्रचक्रण योगदान, यहां तक कि प्रत्येक भाग को एक अलग बूंद रखने की स्वीकृति देकर, ऊपर से घिरा हुआ है
जो बड़े β पर शून्य हो जाता है। पर्याप्त रूप से बड़े β के लिए, यह घातीय रूप से लंबे कुंडलन को दबा देता है, ताकि वे उत्पन्न न हो सकें, और चुंबकीयकरण -1 से बहुत अधिक अस्थिरता नहीं करता है।
इसलिए पीयरल्स ने स्थापित किया कि ईज़िंग मॉडल में चुंबकीयकरण अंततः अधि- प्रवरण क्षेत्रों को परिभाषित करता है, पृथक किए गए प्रक्षेत्र परिमित अस्थिरता से जुड़े नहीं होते हैं।
क्रेमर्स-वनियर द्वैत
क्रेमर्स और वेनियर यह दिखाने में सक्षम थे कि मॉडल का उच्च तापमान विस्तार और निम्न तापमान विस्तार मुक्त ऊर्जा के समग्र पुनर्विक्रय के बराबर है। इसने द्वि-आयामी मॉडल में चरण-संक्रमण बिंदु को परिशुद्ध रूप से निर्धारित करने की स्वीकृति दी (इस धारणा के अंतर्गत कि एक अद्वितीय महत्वपूर्ण बिंदु है)।
यांग-ली शून्य
ऑनसेजर के समाधान के बाद, यांग और ली ने उस तरीके की जांच की जिसमें तापमान महत्वपूर्ण तापमान तक पहुंचने पर विभाजन फलन विशिष्ट हो जाता है।
संख्यात्मक अनुकरण के लिए मोंटे कार्लो तरीके
परिभाषाएं
यदि प्रणाली में कई अवस्था हैं तो ईज़िंग मॉडल प्रायः संख्यात्मक रूप से मूल्यांकन करना कठिन हो सकता है। इसके साथ एक ईज़िंग मॉडल पर विचार करें
- L = |Λ|: लैटिस पर भागों की समग्र संख्या,
- σj ∈ {−1, +1}: लैटिस पर एक व्यक्तिगत प्रचक्रण भाग, J = 1, ..., L,
- SS ∈ {−1, +1}L: प्रणाली की स्थिति।
चूंकि प्रत्येक प्रचक्रण भाग में ±1 प्रचक्रण है, इसलिए 2L विभिन्न अवस्था हैं,जो संभव हैं।[11] यह मोंटे कार्लो विधियों का उपयोग करके ईज़िंग मॉडल को अनुकरण करने के कारण को प्रेरित करता है।[11]
मोंटे कार्लो विधियों का उपयोग करते समय सामान्य रूप से मॉडल की ऊर्जा का प्रतिनिधित्व करने के लिए हैमिल्टनियन यांत्रिकी का उपयोग किया जाता है
इसके अतिरिक्त, हैमिल्टनियन को शून्य बाहरी क्षेत्र h मानकर और सरल किया जाता है, क्योंकि मॉडल का उपयोग करके संशोधन किए जाने वाले कई प्रश्नों का उत्तर बाहरी क्षेत्र की अनुपस्थिति में दिया जा सकता है। यह हमें अवस्था σ के लिए निम्नलिखित ऊर्जा समीकरण की ओर ले जाता है:
इस हैमिल्टनियन को देखते हुए, किसी दिए गए तापमान पर विशिष्ट ताप या चुंबक के चुंबकीयकरण जैसे संबंध की मात्रा की गणना की जा सकती है।[11]
मेट्रोपोलिस (विलायत) एल्गोरिथम
संक्षिप्त विवरण
मेट्रोपोलिस-हेस्टिंग्स एल्गोरिथ्म ईज़िंग मॉडल अनुमानों की गणना करने के लिए सबसे अधिक उपयोग किया जाने वाला मोंटे कार्लो एल्गोरिथम है।[11] एल्गोरिथम पहले चयन संभावनाओं g (μ, ν) को चयन करता है, जो इस संभावना का प्रतिनिधित्व करता है कि अवस्था ν को एल्गोरिथम द्वारा सभी अवस्थाओ में से चयन किया गया है, यह देखते हुए कि एक अवस्था μ में है। यह तब स्वीकृति संभावनाओं A (μ, ν) का उपयोग करता है ताकि विस्तृत संतुलन संतुष्ट हो। यदि नई स्थिति ν को स्वीकार कर लिया जाता है, तो हम उस स्थिति में चले जाते हैं और एक नए अवस्था का चयन करने और इसे स्वीकार करने का निर्णय लेने के साथ पुनरावृत्त की जाती हैं। यदि ν स्वीकार नहीं किया जाता है तो हम μ में रहते हैं। यह प्रक्रिया तब तक पुनरावृत्त की जाती है जब तक कि कुछ रोक मानदंड पूरा नहीं हो जाता है, जो ईज़िंग मॉडल के लिए प्रायः तब होता है जब लैटिस लोह चुंबकीय हो जाती है, जिसका अर्थ है कि सभी स्थल समान दिशा में इंगित करती हैं।[11]
एल्गोरिथ्म को प्रयुक्त करते समय, यह सुनिश्चित करना चाहिए कि g (μ, ν) का चयन इस तरह किया जाता है कि अभ्यतिप्रायता पूरी हो जाती है। तापीय संतुलन में एक प्रणाली की ऊर्जा केवल एक छोटी सी सीमा के अंदर अस्थिरता करती है।[11] यह एकल-प्रचक्रण-प्रतिवर्त गतिकी की अवधारणा के पीछे की प्रेरणा है, जिसमें कहा गया है कि प्रत्येक संक्रमण में, हम लैटिस पर केवल एक प्रचक्रण भाग को बदल देंगे।[11] इसके अतिरिक्त, एकल-प्रचक्रण-प्रतिवर्त गतिकी का उपयोग करके, एक समय में दो अवस्थाओ के बीच भिन्न होने वाली प्रत्येक भाग को प्रतिवर्त करके किसी भी अवस्था से किसी भी अन्य अवस्था में प्राप्त किया जा सकता है।
वर्तमान अवस्था की ऊर्जा के बीच परिवर्तन की अधिकतम मात्रा, Hμ और किसी भी संभावित नए अवस्था की ऊर्जा Hν (एकल-प्रचक्रण-प्रतिवर्त गतिकी का उपयोग करके) प्रचक्रण के बीच 2J है जिसे हम नए अवस्था में जाने के लिए प्रतिवर्त चयन करते हैं और वह प्रचक्रण का प्रतिवेशी है।[11] इस प्रकार, 1d आइसिंग मॉडल में, जहां प्रत्येक भाग के दो प्रतिवेशी (बाएं और दाएं) हैं, ऊर्जा में अधिकतम अंतर 4J होगा।
मान लीजिए C 'लैटिस समन्वय संख्या' का प्रतिनिधित्व करते हैं जो किसी भी लैटिस स्थल के निकटतम प्रतिवेशों की संख्या है।। हम मानते हैं कि आवधिक सीमा स्थितियों के कारण सभी भागों के प्रतिवेशों की संख्या समान है।[11] यह ध्यान रखना महत्वपूर्ण है कि मेट्रोपोलिस-हेस्टिंग्स एल्गोरिथम अत्यधिक मंद होने के कारण महत्वपूर्ण बिंदु के आसपास अच्छा प्रदर्शन नहीं करता है। सिस्टम के महत्वपूर्ण घातांक निर्धारित करने के लिए महत्वपूर्ण बिंदु के पास मॉडल को हल करने के लिए मल्टीग्रिड विधियों, निडरमेयर के एल्गोरिदम, स्वेनडेन-वांग एल्गोरिदम, या वोल्फ एल्गोरिदम जैसी अन्य तकनीकों की आवश्यकता होती है।
इन एल्गोरिदम को प्रयुक्त करने वाले मुक्त स्रोत पैकेज उपलब्ध हैं।[12]
विशिष्टता
विशेष रूप से ईज़िंग मॉडल के लिए और एकल-प्रचक्रण-प्रतिवर्त गतिकी का उपयोग करके, निम्नलिखित को स्थापित किया जा सकता है।
चूँकि लैटिस पर L समग्र स्थल हैं, एकल-प्रचक्रण-प्रतिवर्त का उपयोग करके हम दूसरे अवस्था में संक्रमण करते हैं, हम देख सकते हैं कि हमारे वर्तमान अवस्था μ से समग्र L नए अवस्था ν हैं। एल्गोरिथ्म मानता है कि चयन संभावनाएं L अवस्थाओ g(μ, ν) = 1/L के बराबर हैं। विस्तृत संतुलन हमें बताता है कि निम्नलिखित समीकरण धारण करना चाहिए:
इस प्रकार, हम अपने एल्गोरिथ्म को संतुष्ट करने के लिए स्वीकृति संभावना का चयन करना चाहते हैं
यदि Hν > Hμ, तब A(ν, μ) > A(μ, ν). मेट्रोपोलिस A(μ, ν) या A(ν, μ) के बड़े को 1 पर स्थापित करता है। इस तर्क से स्वीकृति एल्गोरिथम है:[11]
एल्गोरिथ्म का मूल रूप इस प्रकार है:
- चयन प्रायिकता g(μ, ν) का उपयोग करके प्रचक्रण भाग चयन करे और इस प्रचक्रण से जुड़ी ऊर्जा में योगदान की गणना करें।
- प्रचक्रण के मान को प्रतिवर्त करे और नए योगदान की गणना करें।
- यदि नई ऊर्जा कम है, तो प्रतिवर्त मान रखें।
- नई ऊर्जा ज्यादा हो तो संभावना के साथ ही रखे
- पुनरावृत्ति।
ऊर्जा में परिवर्तन Hν − Hμ केवल प्रचक्रण और उसके निकटतम रेखाचित्र प्रतिवेशों के मान पर निर्भर करता है। इसलिए यदि रेखाचित्र बहुत अधिक जुड़ा हुआ नहीं है, तो एल्गोरिथम तीव्र है। यह प्रक्रिया अंततः वितरण से एक चयन का उत्पादन करेगी।
मार्कोव श्रृंखला के रूप में ईज़िंग मॉडल को देखना
ईज़िंग मॉडल को मार्कोव श्रृंखला के रूप में देखना संभव है, तत्काल संभावना पी के रूप मेंβ(ν) भविष्य की अवस्था में संक्रमण का ν केवल वर्तमान अवस्था μ पर निर्भर करता है। मेट्रोपोलिस एल्गोरिदम वास्तव में मार्कोव चेन मोंटे कार्लो सिमुलेशन का एक संस्करण है, और चूंकि हम मेट्रोपोलिस एल्गोरिदम में एकल-प्रचक्रण-प्रतिवर्त गतिशीलता का उपयोग करते हैं, इसलिए प्रत्येक अवस्था को एल अन्य अवस्थाओ के लिंक के रूप में देखा जा सकता है, जहां प्रत्येक संक्रमण फ़्लिपिंग से मेल खाता है विपरीत मान के लिए एकल प्रचक्रण भाग।[13] इसके अतिरिक्त, चूंकि ऊर्जा समीकरण एचσ परिवर्तन केवल निकटतम-प्रतिवेशी संपर्क सामर्थ्य पर निर्भर करता है जे, ईज़िंग मॉडल और इसके वेरिएंट जैसे सजनाजद मॉडल को एक संपर्क प्रक्रिया (गणित) के एक रूप के रूप में देखा जा सकता है #मत गतिकी के लिए वोटर मॉडल।
एक आयाम
ऊष्मप्रवैगिकी सीमा तब तक सम्मिलित रहती है जब तक अंतःक्रियात्मक क्षय होता है α> 1 के साथ।[14]
- लोह चुंबकीय पारस्परिक क्रिया के स्थिति में 1 < α < 2 के साथ, डायसन ने पदानुक्रमित स्थिति के साथ तुलना करके प्रमाणित किया कि छोटे पर्याप्त तापमान पर प्रावस्था संक्रमण होता है।[15]
- लोह चुंबकीय पारस्परिक क्रिया के स्थिति में , फ्रॉलीच और स्पेंसर ने प्रमाणित किया कि छोटे पर्याप्त तापमान पर (पदानुक्रमित स्थिति के विपरीत) प्रावस्था संक्रमण होता है।[16]
- संपर्क के स्थिति में Α > 2 (जिसमें परिमित-श्रेणी की अंतःक्रियाओं का मामला सम्मिलित है) के साथ, किसी भी धनात्मक तापमान (अर्थात परिमित β) पर कोई प्रावस्था संक्रमण नहीं होता है, क्योंकि ऊष्मप्रवैगिकी मुक्त ऊर्जा ऊष्मप्रवैगिकी मापदंडों में विश्लेषणात्मक होती है।[14]* निकटतम प्रतिवेशी की संपर्क के स्थिति में, ई. इसिंग ने मॉडल का एक परिशुद्ध समाधान प्रदान किया। किसी भी धनात्मक तापमान (अर्थात परिमित β) पर मुक्त ऊर्जा ऊष्मप्रवैगिकी मापदंडों में विश्लेषणात्मक होती है, और छोटा दो-बिंदु प्रचक्रण पारस्परिक संबंध तेजी से तेजी से घटता है। शून्य तापमान (अर्थात अनंत β) पर, एक दूसरे क्रम का प्रावस्था संक्रमण होता है: मुक्त ऊर्जा अनंत होती है, और दो-बिंदु प्रचक्रण पारस्परिक संबंध को छोटा कर दिया जाता है (निरंतर रहता है)। इसलिए, T = 0 इस स्थिति का महत्वपूर्ण तापमान है। अनुमाप परिवर्तन सूत्र संतुष्ट हैं।[17]
इसिंग का परिशुद्ध समाधान
निकटतम प्रतिवेशी स्थिति में (आवधिक या मुक्त सीमा शर्तों के साथ) एक परिशुद्ध समाधान उपलब्ध है। आवधिक सीमा शर्तों के साथ एल भागों की लैटिस पर एक आयामी आइसिंग मॉडल का हैमिल्टनियन है
जहाँ J और h कोई भी संख्या हो सकती है, क्योंकि इस सरलीकृत स्थिति में J निकटतम प्रतिवेशों के बीच परस्पर क्रिया सामर्थ्य का प्रतिनिधित्व करने वाला एक स्थिरांक है और h लैटिस स्थलों पर प्रयुक्त होने वाला निरंतर बाहरी चुंबकीय क्षेत्र है। फिर ऊष्मप्रवैगिकी मुक्त ऊर्जा है
और प्रचक्रण-प्रचक्रण पारस्परिक संबंध (अर्थात सहप्रसरण) है
जहां C(β) और c(β) T > 0 के लिए धनात्मक कार्य हैं। T → 0 के लिए, हालांकि, व्युत्क्रम पारस्परिक संबंध लंबाई c(β) गायब हो जाती है।
प्रमाण
इस परिणाम का प्रमाण एक साधारण संगणना है।
यदि h = 0, मुक्त सीमा स्थिति के स्थिति में मुक्त ऊर्जा प्राप्त करना बहुत आसान है, अर्थात जब
तब मॉडल चर के परिवर्तन के अंतर्गत गुणनखंड करता है
यह देता है
इसलिए, मुक्त ऊर्जा है
चर के समान परिवर्तन के साथ
इसलिए जैसे ही T ≠ 0 होता है, इसका चरघातांकी क्षय होता है; लेकिन T = 0 के लिए, अर्थात β → ∞ की सीमा में कोई क्षय नहीं है।
यदि h ≠ 0 हमें स्थानांतरण मैट्रिक्स विधि की आवश्यकता है। आवधिक सीमा स्थितियों के स्थिति में निम्नलिखित है। विभाजन कार्य है
गुणांक एक मैट्रिक्स की प्रविष्टियों के रूप में देखा जा सकता है। अलग-अलग संभावित विकल्प हैं: एक सुविधाजनक (क्योंकि मैट्रिक्स सममित है) है
या
मैट्रिक्स औपचारिकता में
जहां एल1 V का उच्चतम eigenvalue है, जबकि λ2 अन्य eigenvalue है:
और | λ2| < एल1. यह मुक्त ऊर्जा का सूत्र देता है।
टिप्पणियाँ
निम्नतम अवस्था की ऊर्जा -JL होती है, जब सभी चक्रण समान होते हैं। किसी भी अन्य अभिविन्यास के लिए, अतिरिक्त ऊर्जा 2J गुणा के बराबर होती है जो अभिविन्यास को बाएं से दाएं स्कैन करते समय सामने आने वाले साइन परिवर्तनों की संख्या होती है।
यदि हम किसी विन्यास में साइन परिवर्तन की संख्या को k के रूप में निर्दिष्ट करते हैं, तो निम्नतम ऊर्जा अवस्था से ऊर्जा में अंतर 2k है। चूँकि ऊर्जा प्रतिवर्त की संख्या में योज्य है, प्रत्येक स्थिति में प्रचक्रण-प्रतिवर्त होने की प्रायिकता p स्वतंत्र है। एक नहीं मिलने की संभावना के लिए एक प्रतिवर्त खोजने की संभावना का अनुपात बोल्ट्जमान कारक है:
समस्या को स्वतंत्र पक्षपाती सिक्का उछालने के लिए कम किया गया है। यह अनिवार्य रूप से गणितीय विवरण को पूरा करता है।
स्वतंत्र टॉस के संदर्भ में विवरण से, लंबी लाइनों के मॉडल के आंकड़ों को समझा जा सकता है। रेखा प्रक्षेत्र में विभाजित होती है। प्रत्येक प्रक्षेत्र औसत लंबाई ऍक्स्प (2β) का है। एक प्रक्षेत्र की लंबाई चरघातांकी रूप से वितरित की जाती है, क्योंकि किसी भी कदम पर एक प्रतिवर्त का सामना करने की निरंतर संभावना होती है। प्रक्षेत्र कभी भी अनंत नहीं बनते, इसलिए एक लंबी प्रणाली कभी चुम्बकित नहीं होती है। प्रत्येक चरण एक प्रचक्रण और उसके प्रतिवेशी के बीच पारस्परिक संबंध को p के समानुपातिक रूप से कम करता है, इसलिए पारस्परिक संबंध तेजी से गिरते हैं।
विभाजन फलन (सांख्यिकीय यांत्रिकी) अभिविन्यास की मात्रा है, प्रत्येक अभिविन्यास को उसके बोल्टज़मान भार से भारित किया जाता है। चूंकि प्रत्येक अभिविन्यास को साइन-चेंज द्वारा वर्णित किया गया है, इसलिए विभाजन फलन फ़ैक्टराइज़ करता है:
L द्वारा विभाजित लघुगणक मुक्त ऊर्जा घनत्व है:
जो β = ∞ से दूर विश्लेषणात्मक कार्य है। एक प्रावस्था संक्रमण का संकेत एक गैर-विश्लेषणात्मक मुक्त ऊर्जा है, इसलिए एक-आयामी मॉडल में प्रावस्था संक्रमण नहीं होता है।
अनुप्रस्थ क्षेत्र के साथ एक आयामी समाधान
प्रचक्रण के क्वांटम यांत्रिक विवरण का उपयोग करके इस्सिंग हैमिल्टनियन को व्यक्त करने के लिए, हम प्रचक्रण चर को उनके संबंधित पाउली मेट्रिसेस से बदल देते हैं। हालांकि, चुंबकीय क्षेत्र की दिशा के आधार पर, हम अनुप्रस्थ-क्षेत्र या अनुदैर्ध्य-क्षेत्र हैमिल्टनियन बना सकते हैं। ट्रांसवर्स-फील्ड आइसिंग मॉडल | ट्रांसवर्स-फील्ड हैमिल्टनियन द्वारा दिया गया है
अनुप्रस्थ-क्षेत्र मॉडल J ~ h पर एक क्रमित और अव्यवस्थित शासन के बीच एक प्रावस्था संक्रमण का अनुभव करता है। इसे पाउली मेट्रिसेस के मानचित्रण द्वारा दिखाया जा सकता है
इस परिवर्तन-के-आधार मैट्रिसेस के संदर्भ में हैमिल्टनियन को फिर से लिखने पर, हम प्राप्त करते हैं
चूँकि h और J की भूमिकाओं को बदल दिया जाता है, हैमिल्टनियन J = h पर एक संक्रमण से गुजरता है।[18]
दो आयाम
- लोह चुंबकीय स्थिति में एक प्रावस्था संक्रमण होता है। कम तापमान पर, पीयरल्स तर्क निकटतम प्रतिवेशी स्थिति के लिए धनात्मक चुंबकीयकरण प्रमाणित करता है और फिर ग्रिफ़िथ असमानता द्वारा, जब लंबी दूरी की संपर्क भी जोड़ दी जाती है। इस बीच, उच्च तापमान पर, क्लस्टर विस्तार ऊष्मप्रवैगिकी कार्यों की विश्लेषणात्मकता देता है।
- निकटतम-प्रतिवेशी स्थिति में, लैटिस पर मुक्त fermions के साथ मॉडल के तुल्यता के माध्यम से, मुक्त ऊर्जा की गणना ऑनसेगर द्वारा की गई थी। प्रचक्रण-प्रचक्रण पारस्परिक संबंध कार्यों की गणना मैककॉय और वू द्वारा की गई थी।
ऑनसेजर का परिशुद्ध समाधान
Onsager (1944) चुंबकीय क्षेत्र के अनिसोट्रोपिक वर्ग लैटिस पर ईज़िंग मॉडल की मुक्त ऊर्जा के लिए निम्नलिखित विश्लेषणात्मक अभिव्यक्ति प्राप्त की ऊष्मप्रवैगिकी सीमा में तापमान और क्षैतिज और ऊर्ध्वाधर संपर्क ऊर्जा के एक फलन के रूप में और , क्रमश
मुक्त ऊर्जा के लिए इस अभिव्यक्ति से, मॉडल के सभी ऊष्मप्रवैगिकी कार्यों की गणना उपयुक्त व्युत्पन्न का उपयोग करके की जा सकती है। 2डी ईज़िंग मॉडल एक धनात्मक तापमान पर एक सतत प्रावस्था संक्रमण प्रदर्शित करने वाला पहला मॉडल था। यह तापमान पर होता है जो समीकरण को संशोधन करता है
आइसोट्रोपिक स्थिति में जब क्षैतिज और ऊर्ध्वाधर संपर्क ऊर्जा बराबर होती है , महत्वपूर्ण तापमान निम्न बिन्दु पर होता है
जब अंतःक्रिया ऊर्जा , दोनों ऋणात्मक हैं, ईज़िंग मॉडल एक एंटीफेरोमैग्नेट बन जाता है। चूँकि चौकोर लैटिस अनिर्दिष्ट है, यह चुंबकीय क्षेत्र में इस परिवर्तन के अंतर्गत अपरिवर्तनीय है , इसलिए मुक्त ऊर्जा और महत्वपूर्ण तापमान प्रतिलोहचुंबकीय स्थिति के लिए समान हैं। त्रिकोणीय लैटिस के लिए, जो द्वि-पक्षीय नहीं है, लोह चुंबकीय और प्रतिलोहचुंबकीय आइसिंग मॉडल विशेष रूप से अलग व्यवहार करते हैं।
स्थानांतरण मैट्रिक्स
क्वांटम यांत्रिकी के साथ समानता से प्रारंभ करें। दीर्घ आवधिक जालक पर ईज़िंग मॉडल में एक विभाजन कार्य होता है
i दिशा को स्थान के रूप में और j दिशा को समय के रूप में सोचें। यह उन सभी मूल्यों पर एक स्वतंत्र योग है जो प्रचक्रण प्रत्येक बार स्लाइस में ले सकते हैं। यह एक प्रकार का पथ अभिन्न सूत्रीकरण है, यह सभी प्रचक्रण इतिहासों का योग है।
एक पाथ इंटीग्रल को हैमिल्टन के विकास के रूप में फिर से लिखा जा सकता है। समय टी और समय टी + Δt के बीच एकात्मक घूर्णन करके समय के माध्यम से हैमिल्टनियन कदम:
यू मैट्रिसेस का उत्पाद, एक के बाद एक, समग्र समय विकास ऑपरेटर है, जो कि पथ अभिन्न है जिसके साथ हमने शुरुआत की थी।
जहां N टाइम स्लाइस की संख्या है। सभी रास्तों का योग मैट्रिसेस के उत्पाद द्वारा दिया जाता है, प्रत्येक मैट्रिक्स तत्व एक स्लाइस से दूसरे में संक्रमण की संभावना है।
इसी तरह, कोई भी सभी विभाजन फलन अभिविन्यास के योग को स्लाइस में विभाजित कर सकता है, जहां प्रत्येक स्लाइस समय 1 पर एक-आयामी अभिविन्यास है। यह ट्रांसफर-मैट्रिक्स विधि को परिभाषित करता है:
प्रत्येक स्लाइस में अभिविन्यास प्रचक्रण का एक आयामी संग्रह है। प्रत्येक समय स्लाइस में, टी में प्रचक्रण के दो विन्यासों के बीच मैट्रिक्स तत्व होते हैं, एक तत्काल भविष्य में और एक तत्काल अतीत में। ये दो विन्यास हैं सी1 और सी2, और वे सभी एक आयामी प्रचक्रण विन्यास हैं। हम सदिश स्थान के बारे में सोच सकते हैं कि T इनमें से सभी जटिल रैखिक संयोजनों के रूप में कार्य करता है। क्वांटम मैकेनिकल नोटेशन का उपयोग करना:
जहां प्रत्येक आधार वेक्टर एक आयामी ईज़िंग मॉडल का प्रचक्रण अभिविन्यास है।
हैमिल्टनियन की तरह, स्थानांतरण मैट्रिक्स अवस्थाओ के सभी रैखिक संयोजनों पर कार्य करता है। विभाजन फलन T का एक मैट्रिक्स फलन है, जिसे सभी इतिहासों पर ट्रेस (रैखिक बीजगणित) द्वारा परिभाषित किया गया है जो N चरणों के बाद मूल अभिविन्यास पर वापस आते हैं:
चूंकि यह एक मैट्रिक्स समीकरण है, इसका मूल्यांकन किसी भी आधार पर किया जा सकता है। इसलिए यदि हम मैट्रिक्स T को विकर्ण कर सकते हैं, तो हम Z पा सकते हैं।
पाउली मैट्रिसेस के संदर्भ में
एक स्लाइस पर अभिविन्यास के प्रत्येक पिछले/भविष्य के जोड़े के लिए विभाजन फलन में योगदान दो शब्दों का योग है। पिछले स्लाइस में प्रचक्रण प्रतिवर्त की संख्या है और अतीत और भविष्य के स्लाइस के बीच प्रचक्रण प्रतिवर्त की संख्या है। अभिविन्यास पर एक ऑपरेटर को परिभाषित करें जो प्रचक्रण को भाग i पर प्रतिवर्त करता है:
सामान्य ईज़िंग आधार में, पिछले विन्यासों के किसी भी रैखिक संयोजन पर कार्य करते हुए, यह समान रैखिक संयोजन का उत्पादन करता है, लेकिन प्रत्येक आधार वेक्टर प्रतिवर्त की स्थिति i पर प्रचक्रण के साथ।
एक दूसरे ऑपरेटर को परिभाषित करें जो स्थिति i पर प्रचक्रण के अनुसार आधार वेक्टर को +1 और -1 से गुणा करता है:
T को इनके संदर्भ में लिखा जा सकता है:
जहां ए और बी स्थिरांक हैं जिन्हें विभाजन फलन को पुन: उत्पन्न करने के लिए निर्धारित किया जाना है। व्याख्या यह है कि इस स्लाइस पर सांख्यिकीय अभिविन्यास स्लाइस में प्रचक्रण प्रतिवर्त की संख्या के अनुसार योगदान देता है, और क्या स्थिति में प्रचक्रण प्रतिवर्त किया गया है या नहीं।
प्रचक्रण प्रतिवर्त क्रिएशन एंड एनिहिलेशन ऑपरेटर्स
जैसे एक आयामी स्थिति में, हम प्रचक्रण से प्रचक्रण-प्रतिवर्त पर ध्यान देंगे। दz टी में शब्द प्रचक्रण प्रतिवर्त की संख्या की गणना करता है, जिसे हम प्रचक्रण-प्रतिवर्त निर्माण और विलोपन ऑपरेटरों के संदर्भ में लिख सकते हैं:
पहला शब्द एक चक्कर लगाता है, इसलिए आधार के आधार पर इसे या तो बताएं:
- प्रचक्रण-प्रतिवर्त को एक यूनिट दाईं ओर ले जाता है
- प्रचक्रण-प्रतिवर्त को एक यूनिट बाईं ओर ले जाता है
- प्रतिवेशी भागों पर दो प्रचक्रण-प्रतिवर्त बनाता है
- प्रतिवेशी भागों पर दो प्रचक्रण-प्रतिवर्त को नष्ट करता है।
निर्माण और विनाश ऑपरेटरों के संदर्भ में इसे लिखना:
निरंतर गुणांकों पर ध्यान न दें, और फ़ॉर्म पर ध्यान केंद्रित करें। वे सभी द्विघात हैं। चूंकि गुणांक स्थिर हैं, इसका तात्पर्य है कि टी मैट्रिक्स को फूरियर रूपांतरण द्वारा विकर्ण किया जा सकता है।
विकर्णीकरण करने से ऑनसेजर मुक्त ऊर्जा उत्पन्न होती है।
स्वतःस्फूर्त चुम्बकत्व के लिए ऑनसेजर का सूत्र
ऑनसेजर ने 1948 में दो अलग-अलग सम्मेलनों में स्क्वायर लैटिस पर द्वि-आयामी आइसिंग लोह-चुंबक के सहज चुंबकीयकरण एम के लिए निम्नलिखित अभिव्यक्ति की घोषणा की, हालांकि सबूत के बिना[7]: जहाँ और क्षैतिज और ऊर्ध्वाधर अंतःक्रियात्मक ऊर्जा हैं।
एक पूर्ण व्युत्पत्ति केवल 1951 में किसके द्वारा दी गई थी Yang (1952) ट्रांसफर मैट्रिक्स ईजेनवेल्यूज की एक सीमित प्रक्रिया का उपयोग करना। बाद में 1963 में मॉन्ट्रोल, पॉट्स और वार्ड द्वारा प्रमाण को बहुत सरल बना दिया गया[7]पारस्परिक संबंध कार्यों की सीमा के रूप में चुंबकत्व का इलाज करके टोप्लिट्ज निर्धारकों के लिए गैबोर स्ज़ेगो|ज़ेगो के स्ज़ेगो सीमा प्रमेय का उपयोग करना।
न्यूनतम मॉडल
महत्वपूर्ण बिंदु पर, द्वि-आयामी आइसिंग मॉडल एक द्वि-आयामी अनुरूप क्षेत्र सिद्धांत है। प्रचक्रण और ऊर्जा पारस्परिक संबंध कार्यों को न्यूनतम मॉडल (भौतिकी) द्वारा वर्णित किया गया है, जिसे बिल्कुल संशोधन किया गया है।
तीन आयाम
तीन के रूप में दो आयामों में, ईज़िंग मॉडल का सबसे अधिक अध्ययन किया गया मामला शून्य चुंबकीय क्षेत्र में निकटतम-प्रतिवेशी युग्मन के साथ क्यूबिक लैटिस पर अनुवाद-अपरिवर्तनीय मॉडल है। कई सिद्धांतकारों ने कई दशकों तक एक विश्लेषणात्मक त्रि-आयामी समाधान की खोज की, जो द्वि-आयामी स्थिति में ऑनसेजर के समाधान के अनुरूप होगा।[19] [20] ऐसा कोई समाधान अब तक नहीं मिला है, हालांकि इस बात का कोई प्रमाण नहीं है कि यह सम्मिलित नहीं हो सकता है।
तीन आयामों में, ईज़िंग मॉडल को अलेक्जेंडर मार्कोविच पॉलाकोव और व्लादिमीर डॉट्सेंको द्वारा गैर-अंतःक्रियात्मक फ़र्मोनिक स्ट्रिंग्स के संदर्भ में एक प्रतिनिधित्व दिखाया गया था। यह निर्माण लैटिस पर किया गया है, और सातत्य सीमा, विशेष रूप से महत्वपूर्ण बिंदु का वर्णन अज्ञात है।
प्रावस्था संक्रमण
तीन में दो आयामों में, पियरल का तर्क दर्शाता है कि एक प्रावस्था संक्रमण है। इस प्रावस्था संक्रमण को कठोर रूप से निरंतर जाना जाता है (इस अर्थ में कि पारस्परिक संबंध की लंबाई अलग हो जाती है और चुंबकीयकरण शून्य हो जाता है), और इसे महत्वपूर्ण बिंदु (थर्मोडायनामिक्स) कहा जाता है। यह माना जाता है कि महत्वपूर्ण बिंदु को विल्सन-कडानॉफ़ पुनर्सामान्यीकरण समूह परिवर्तन के एक पुनर्सामान्यीकरण समूह निश्चित बिंदु द्वारा वर्णित किया जा सकता है। यह भी माना जाता है कि प्रावस्था संक्रमण को त्रि-आयामी एकात्मक अनुरूप क्षेत्र सिद्धांत द्वारा वर्णित किया जा सकता है, जैसा कि मेट्रोपोलिस-हेस्टिंग्स एल्गोरिथम सिमुलेशन द्वारा प्रमाणित है,[21][22] क्वांटम मॉडल में परिशुद्ध विकर्णीकरण परिणाम,[23] और क्वांटम क्षेत्र सैद्धांतिक तर्क।[24] यद्यपि पुनर्सामान्यीकरण समूह चित्र या अनुरूप क्षेत्र सिद्धांत चित्र को कठोर रूप से स्थापित करना एक खुली समस्या है, सैद्धांतिक भौतिकविदों ने प्रावस्था संक्रमण के महत्वपूर्ण घातांकों की गणना करने के लिए इन दो विधियों का उपयोग किया है, जो प्रयोगों और मोंटे कार्लो सिमुलेशन से सहमत हैं।
त्रि-आयामी आइसिंग महत्वपूर्ण बिंदु का वर्णन करने वाला यह अनुरूप क्षेत्र सिद्धांत, अनुरूप बूटस्ट्रैप की विधि का उपयोग करके सक्रिय जांच के अधीन है।[25][26][27][28] यह विधि वर्तमान में महत्वपूर्ण सिद्धांत की संरचना के बारे में सबसे परिशुद्ध जानकारी देती है (देखें महत्वपूर्ण घातांक ईज़िंग)।
=== सामान्य प्रचक्रण ग्लास मॉडल === के लिए इस्त्राइल का एनपी-पूर्णता परिणाम सन् 2000 में, सांडिया राष्ट्रीय प्रयोगशालाएँ के सोरिन इज़राइल ने प्रमाणित किया कि गैर-nonplanar जालक पर प्रचक्रण ग्लास आइसिंग मॉडल एनपी-पूर्णता|एनपी-पूर्ण है। यही है, पी ≠ एनपी मानते हुए, सामान्य प्रचक्रण ग्लास आइसिंग मॉडल केवल प्लेनर रेखाचित्र स्थितियो में ही संशोधन करने योग्य है, इसलिए आयामों के लिए समाधान जो दो भी अधिक जटिल हैं।[29] इस्त्राइल का नतीजा केवल प्रचक्रण ग्लास मॉडल को स्थानिक रूप से अलग-अलग कपलिंग के साथ चिंतित करता है, और ईज़िंग के मूल लोह चुंबकीय मॉडल के बारे में समान कपलिंग के बारे में कुछ नहीं बताता है।
चार आयाम और ऊपर
किसी भी आयाम में, ईज़िंग मॉडल को स्थानीय रूप से भिन्न माध्य क्षेत्र द्वारा उत्पादक रूप से वर्णित किया जा सकता है। क्षेत्र को एक बड़े क्षेत्र में औसत प्रचक्रण मान के रूप में परिभाषित किया गया है, लेकिन इतना बड़ा नहीं है कि पूरे प्रणाली को सम्मिलित किया जा सके। क्षेत्र में अभी भी बिंदु से बिंदु तक धीमी भिन्नताएं हैं, क्योंकि औसत मात्रा चलती है। क्षेत्र में ये अस्थिरता अनंत प्रणाली सीमा में एक सतत क्षेत्र सिद्धांत द्वारा वर्णित हैं।
स्थानीय क्षेत्र
फ़ील्ड एच को प्रचक्रण वेरिएबल के लंबे तरंग दैर्ध्य फूरियर घटकों के रूप में परिभाषित किया गया है, इस सीमा में कि तरंग दैर्ध्य लंबे हैं। लंबी तरंगदैर्घ्य का औसत निकालने के कई तरीके हैं, यह इस बात पर निर्भर करता है कि उच्च तरंगदैर्घ्य को कैसे काटा जाता है। विवरण बहुत महत्वपूर्ण नहीं हैं, क्योंकि लक्ष्य एच के आंकड़े खोजना है न कि प्रचक्रण। एक बार एच में पारस्परिक संबंध ज्ञात हो जाने के बाद, प्रचक्रण के बीच लंबी दूरी के संबंध एच में लंबी दूरी के पारस्परिक संबंध के समानुपाती होंगे।
धीरे-धीरे बदलते क्षेत्र एच के किसी भी मान के लिए, मुक्त ऊर्जा (लॉग-प्रायिकता) एच और उसके ग्रेडियेंट का एक स्थानीय विश्लेषणात्मक कार्य है। मुक्त ऊर्जा F(H) को सभी आइसिंग विन्यासों के योग के रूप में परिभाषित किया गया है जो लंबी तरंग दैर्ध्य क्षेत्र के अनुरूप हैं। चूँकि H एक स्थूल विवरण है, H के प्रत्येक मान के अनुरूप कई Ising विन्यास हैं, जब तक कि मैच के लिए बहुत अधिक सटीकता की आवश्यकता नहीं है।
चूँकि किसी भी क्षेत्र में प्रचक्रण के मूल्यों की अनुमत सीमा केवल उस क्षेत्र से एक औसत आयतन के अंदर H के मूल्यों पर निर्भर करती है, प्रत्येक क्षेत्र से मुक्त ऊर्जा योगदान केवल वहाँ और प्रतिवेशी क्षेत्रों में H के मान पर निर्भर करता है। तो एफ स्थानीय योगदान के सभी क्षेत्रों पर एक योग है, जो केवल एच और उसके डेरिवेटिव पर निर्भर करता है।
H में समरूपता के द्वारा, केवल शक्तियाँ भी योगदान करती हैं। एक वर्ग लैटिस पर प्रतिबिंब समरूपता से, केवल ढाल की शक्तियां भी योगदान करती हैं। मुक्त ऊर्जा में पहले कुछ शब्द लिखना:
एक चौकोर लैटिस पर, समरूपता गारंटी देती है कि गुणांक Ziव्युत्पन्न शर्तों के सभी बराबर हैं। लेकिन एक अनिसोट्रोपिक आइसिंग मॉडल के लिए भी, जहां Zi{{'}अलग-अलग दिशाओं में अलग-अलग हैं, एच में अस्थिरता एक समन्वय प्रणाली में आइसोट्रोपिक हैं जहां अंतरिक्ष की अलग-अलग दिशाओं को फिर से बढ़ाया जाता है।
किसी भी लैटिस पर, व्युत्पन्न शब्द
एक धनात्मक निश्चित द्विघात रूप है, और अंतरिक्ष के लिए मीट्रिक को परिभाषित करने के लिए इस्तेमाल किया जा सकता है। तो कोई भी ट्रांसलेशनली इनवेरिएंट ईज़िंग मॉडल Z बनाने वाले निर्देशांक में लंबी दूरी पर घूर्णी रूप से अपरिवर्तनीय हैij= घij. घूर्णी समरूपता अनायास ही बड़ी दूरी पर उभर आती है क्योंकि बहुत कम क्रम की शर्तें नहीं हैं। उच्च क्रम के बहु-महत्वपूर्ण बिंदुओं पर, यह आकस्मिक समरूपता खो जाती है।
चूंकि βF धीरे-धीरे स्थानिक रूप से भिन्न क्षेत्र का एक कार्य है, किसी भी क्षेत्र विन्यास की संभावना है:
एच शर्तों के किसी भी उत्पाद का सांख्यिकीय औसत बराबर है:
इस अभिव्यक्ति में भाजक को विभाजन फलन कहा जाता है, और एच के सभी संभावित मूल्यों पर अभिन्न एक सांख्यिकीय पथ अभिन्न है। यह प्रचक्रण के सभी लंबे तरंग दैर्ध्य फूरियर घटकों पर एच के सभी मूल्यों पर ऍक्स्प (βF) को एकीकृत करता है। F क्षेत्र H के लिए एक यूक्लिडियन लैग्रेंजियन है, इस और स्केलर क्षेत्र के क्वांटम क्षेत्र सिद्धांत के बीच एकमात्र अंतर यह है कि सभी व्युत्पन्न शब्द एक धनात्मक संकेत के साथ प्रवेश करते हैं, और i का कोई समग्र कारक नहीं है।
आयामी विश्लेषण
F के रूप का उपयोग यह अनुमान लगाने के लिए किया जा सकता है कि आयामी विश्लेषण द्वारा कौन से शब्द सबसे महत्वपूर्ण हैं। आयामी विश्लेषण पूरी तरह से सीधा नहीं है, क्योंकि एच के अनुमाप परिवर्तन को निर्धारित करने की आवश्यकता है।
सामान्य स्थिति में, एच के लिए अनुमाप परिवर्तन नियम चुनना आसान है, क्योंकि योगदान देने वाला एकमात्र शब्द पहला है,
यह शब्द सबसे महत्वपूर्ण है, लेकिन यह तुच्छ व्यवहार देता है। मुक्त ऊर्जा का यह रूप अल्ट्रालोकल है, जिसका अर्थ है कि यह प्रत्येक बिंदु से एक स्वतंत्र योगदान का योग है। यह एक आयामी आइसिंग मॉडल में प्रचक्रण-प्रतिवर्त की तरह है। किसी भी बिंदु पर एच का प्रत्येक मान किसी अन्य बिंदु पर मान से पूरी तरह स्वतंत्र रूप से अस्थिरता करता है।
गुणांक ए को अवशोषित करने के लिए क्षेत्र के पैमाने को फिर से परिभाषित किया जा सकता है, और फिर यह स्पष्ट है कि ए केवल अस्थिरता के समग्र पैमाने को निर्धारित करता है। अल्ट्रालोकल मॉडल ईज़िंग मॉडल के लंबे तरंग दैर्ध्य उच्च तापमान व्यवहार का वर्णन करता है, क्योंकि इस सीमा में अस्थिरता औसत बिंदु से बिंदु तक स्वतंत्र होते हैं।
महत्वपूर्ण बिंदु खोजने के लिए, तापमान कम करें। जैसे-जैसे तापमान नीचे जाता है, H में अस्थिरता बढ़ता जाता है क्योंकि अस्थिरता अधिक सहसंबद्ध होते हैं। इसका तात्पर्य यह है कि बड़ी संख्या में प्रचक्रण का औसत इतनी जल्दी छोटा नहीं हो जाता है जैसे कि वे असंबद्ध हों, क्योंकि वे समान होते हैं। यह इकाइयों की प्रणाली में ए को कम करने के अनुरूप है जहां एच ए को अवशोषित नहीं करता है। प्रावस्था संक्रमण केवल तभी हो सकता है जब एफ में सबलीडिंग शर्तों में योगदान हो सकता है, लेकिन चूंकि पहली अवधि लंबी दूरी पर हावी होती है, इसलिए गुणांक ए को शून्य पर ट्यून किया जाना चाहिए . यह महत्वपूर्ण बिंदु का स्थान है:
जहाँ t एक प्राचल है जो संक्रमण के समय शून्य से होकर जाता है।
चूंकि टी गायब हो रहा है, इस शब्द का उपयोग करके क्षेत्र के पैमाने को ठीक करने से अन्य शर्तों को उड़ा दिया जाता है। एक बार टी छोटा हो जाने पर, एच के गुणांक को ठीक करने के लिए क्षेत्र के पैमाने को या तो समुच्चय किया जा सकता है4 पद या (∇H)2 टर्म टू 1।
चुंबकीयकरण
चुंबकीयकरण खोजने के लिए, एच के अनुमाप परिवर्तन को ठीक करें ताकि λ एक हो। अब क्षेत्र H का आयाम -d/4 है, ताकि H4डीdx आयाम रहित है, और Z का आयाम 2 − d/2 है। इस अनुमाप परिवर्तन में, ढाल शब्द केवल d ≤ 4 के लिए लंबी दूरी पर महत्वपूर्ण है। चार आयामों से ऊपर, लंबी तरंग दैर्ध्य पर, समग्र चुंबकीयकरण केवल अल्ट्रालोकल शर्तों से प्रभावित होता है।
एक सूक्ष्म बिंदु है। क्षेत्र एच सांख्यिकीय रूप से अस्थिरता कर रहा है, और अस्थिरता टी के शून्य बिंदु को स्थानांतरित कर सकता है। यह देखने के लिए कि कैसे, एच पर विचार करें4 निम्न तरीके से विभाजित करें:
पहला कार्यकाल मुक्त ऊर्जा के लिए एक निरंतर योगदान है, और इसे अनदेखा किया जा सकता है। दूसरा कार्यकाल टी में एक परिमित बदलाव है। तीसरी अवधि एक मात्रा है जो लंबी दूरी पर शून्य हो जाती है। इसका तात्पर्य यह है कि आयामी विश्लेषण द्वारा टी के अनुमाप परिवर्तन का विश्लेषण करते समय, यह स्थानांतरित टी है जो महत्वपूर्ण है। यह ऐतिहासिक रूप से बहुत भ्रमित करने वाला था, क्योंकि किसी परिमित λ पर t में बदलाव परिमित है, लेकिन संक्रमण t के पास बहुत छोटा है। टी में आंशिक परिवर्तन बहुत बड़ा है, और इकाइयों में जहां टी निश्चित है, बदलाव अनंत दिखता है।
चुम्बकीयकरण मुक्त ऊर्जा के न्यूनतम पर है, और यह एक विश्लेषणात्मक समीकरण है। स्थानांतरित टी के संदर्भ में,
टी <0 के लिए, न्यूनतम टी के वर्गमूल के आनुपातिक एच पर हैं। तो लन्दौ का तबाही सिद्धांत तर्क 5 से बड़े आयामों में सही है। 5 से अधिक आयामों में चुंबकीयकरण प्रतिपादक माध्य-क्षेत्र मान के बराबर है।
जब टी ऋणात्मक होता है, तो नए न्यूनतम के अस्थिरता को एक नए धनात्मक द्विघात गुणांक द्वारा वर्णित किया जाता है। चूंकि यह शब्द सदैव हावी रहता है, संक्रमण के नीचे के तापमान पर अस्थिरता फिर से लंबी दूरी पर अल्ट्रालोकल हो जाता है।
अस्थिरता
अस्थिरता के व्यवहार का पता लगाने के लिए, ग्रेडिएंट टर्म को ठीक करने के लिए फ़ील्ड को फिर से स्केल करें। फिर फ़ील्ड का लंबाई अनुमाप परिवर्तन आयाम 1 − d/2 है। अब क्षेत्र में सभी तापमानों पर निरंतर द्विघात स्थानिक अस्थिरता होता है। H का पैमाना आयाम2 पद 2 है, जबकि H का पैमाना आयाम4 पद 4 − d है। d <4 के लिए, एच4 पद का धनात्मक पैमाना आयाम है। 4 से अधिक आयामों में इसका ऋणात्मक पैमाना आयाम है।
यह एक आवश्यक अंतर है। 4 से अधिक आयामों में, ग्रेडिएंट टर्म के पैमाने को ठीक करने का अर्थ है कि H का गुणांक4 शब्द लंबी और लंबी तरंग दैर्ध्य में कम और कम महत्वपूर्ण होता है। जिस आयाम पर गैर-चतुर्भुज योगदान योगदान करना प्रारंभ करते हैं उसे महत्वपूर्ण आयाम के रूप में जाना जाता है। ईज़िंग मॉडल में, महत्वपूर्ण आयाम 4 है।
4 से ऊपर के आयामों में, महत्वपूर्ण अस्थिरता लंबी तरंग दैर्ध्य पर विशुद्ध रूप से द्विघात मुक्त ऊर्जा द्वारा वर्णित हैं। इसका तात्पर्य यह है कि पारस्परिक संबंध कार्य गॉसियन वितरण औसत के रूप में सभी गणना योग्य हैं:
मान्य जब x−y बड़ा हो। फलन G(x− y) प्रसारक के काल्पनिक समय के लिए विश्लेषणात्मक निरंतरता है, क्योंकि मुक्त ऊर्जा मुक्त अदिश क्षेत्र के लिए क्वांटम क्षेत्र क्रिया की विश्लेषणात्मक निरंतरता है। आयाम 5 और उच्चतर के लिए, लंबी दूरी पर अन्य सभी पारस्परिक संबंध कार्य एस-मैट्रिक्स#विक के प्रमेय द्वारा निर्धारित किए जाते हैं|विक के प्रमेय। ± सममिति द्वारा सभी विषम क्षण शून्य हैं। सम क्षण प्रत्येक जोड़ी के लिए G(x− y) के उत्पाद के जोड़े में सभी विभाजनों का योग है।
जहाँ C आनुपातिकता स्थिरांक है। इसलिए G को जानना ही काफी है। यह क्षेत्र के सभी बहुबिंदु सहसंबंधों को निर्धारित करता है।
महत्वपूर्ण दो-बिंदु फलन
जी के रूप को निर्धारित करने के लिए, विचार करें कि पथ अभिन्न में क्षेत्र मुक्त ऊर्जा को अलग करके गति के उत्कृष्ट समीकरणों का पालन करते हैं:
यह केवल गैर-संयोगी बिंदुओं पर मान्य है, क्योंकि जब बिंदु टकराते हैं तो H के पारस्परिक संबंध एकवचन होते हैं। एच गति के उत्कृष्ट समीकरणों का उसी कारण से पालन करता है जिस कारण से क्वांटम मैकेनिकल ऑपरेटर उनका पालन करते हैं - इसके अस्थिरता को एक पथ अभिन्न द्वारा परिभाषित किया जाता है।
महत्वपूर्ण बिंदु t = 0 पर, यह लाप्लास का समीकरण है, जिसे गॉसियन सतह | इलेक्ट्रोस्टैटिक्स से गॉस की विधि द्वारा संशोधन किया जा सकता है। विद्युत क्षेत्र के अनुरूप को परिभाषित कीजिए
उत्पत्ति से दूर:
चूँकि G d आयामों में गोलाकार रूप से सममित है, और E, G का रेडियल ग्रेडिएंट है। एक बड़े d − 1 आयामी क्षेत्र पर एकीकरण,
यह देता है:
और जी को आर के संबंध में एकीकृत करके पाया जा सकता है।
निरंतर सी क्षेत्र के समग्र सामान्यीकरण को ठीक करता है।
जी (आर) महत्वपूर्ण बिंदु से दूर
जब टी शून्य के बराबर नहीं होता है, ताकि एच महत्वपूर्ण से थोड़ा दूर तापमान पर अस्थिरता कर रहा हो, दो बिंदु फलन लंबी दूरी पर घटता है। यह जिस समीकरण का पालन करता है वह बदल जाता है:
आर के साथ तुलना में छोटा है , समाधान ठीक उसी तरह से विचलन करता है जैसे महत्वपूर्ण स्थिति में होता है, लेकिन लंबी दूरी के व्यवहार को संशोधित किया जाता है।
यह देखने के लिए कि कैसे, क्वांटम फील्ड सिद्धांत के संदर्भ में श्विंगर द्वारा प्रस्तुत किए गए इंटीग्रल के रूप में दो बिंदु फलन का प्रतिनिधित्व करना सुविधाजनक है:
यह जी है, क्योंकि इस इंटीग्रल का फूरियर रूपांतरण आसान है। प्रत्येक निश्चित τ योगदान x में एक गॉसियन है, जिसका फूरियर रूपांतरण k में पारस्परिक चौड़ाई का अन्य गॉसियन है।
यह संकारक ∇ का व्युत्क्रम है2 − t k-स्पेस में, k-स्पेस में यूनिट फलन पर कार्य करता है, जो मूल में स्थानीयकृत डेल्टा फलन स्रोत का फूरियर रूपांतरण है। तो यह जी के समान समीकरण को उसी सीमा शर्तों के साथ संतुष्ट करता है जो 0 पर विचलन की ताकत निर्धारित करता है।
उचित समय τ पर अभिन्न प्रतिनिधित्व की व्याख्या यह है कि दो बिंदु फलन सभी यादृच्छिक चलने वाले पथों का योग है जो समय τ के साथ स्थिति 0 को स्थिति x से जोड़ता है। स्थिति x पर समय τ पर इन रास्तों का घनत्व गॉसियन है, लेकिन यादृच्छिक वॉकर टी के समानुपाती स्थिर दर पर गायब हो जाते हैं ताकि समय पर गॉसियन एक कारक द्वारा ऊंचाई में कम हो जाए जो लगातार तेजी से घटता है। क्वांटम क्षेत्र सिद्धांत के संदर्भ में, ये एक औपचारिकता में सापेक्षिक रूप से स्थानीयकृत क्वांटा के मार्ग हैं जो व्यक्तिगत कणों के पथ का अनुसरण करते हैं। शुद्ध सांख्यिकीय संदर्भ में, ये पथ अभी भी गणितीय पत्राचार द्वारा क्वांटम क्षेत्रों के साथ दिखाई देते हैं, लेकिन उनकी व्याख्या सीधे कम भौतिक है।
अभिन्न प्रतिनिधित्व तुरंत दिखाता है कि जी (आर) धनात्मक है, क्योंकि यह धनात्मक गॉसियन के भारित योग के रूप में दर्शाया गया है। यह बड़े आर पर क्षय की दर भी देता है, क्योंकि यादृच्छिक चलने के लिए स्थिति τ तक पहुंचने का उचित समय आर है2 और इस समय में, गॉसियन ऊंचाई का क्षय हो गया है . इसलिए स्थिति r के लिए उपयुक्त क्षय कारक है .
G(r) के लिए अनुमानी सन्निकटन है:
यह एक परिशुद्ध रूप नहीं है, सिवाय तीन आयामों के, जहां पथों के बीच अंतःक्रिया महत्वपूर्ण हो जाती है। उच्च आयामों में परिशुद्ध रूप बेसेल कार्यों के प्रकार हैं।
सिमांजिक बहुलक व्याख्या
रैंडम वॉक के साथ यात्रा करने वाले निश्चित आकार के क्वांटा के रूप में सहसंबंधों की व्याख्या यह समझने का एक तरीका देती है कि एच का महत्वपूर्ण आयाम क्यों है4 इंटरेक्शन 4 है। H शब्द4 को किसी भी बिंदु पर यादृच्छिक वॉकर के घनत्व के वर्ग के रूप में माना जा सकता है। इस तरह के एक शब्द के लिए परिमित क्रम पारस्परिक संबंध कार्यों को बदलने के लिए, जो अस्थिरता वाले वातावरण में केवल कुछ नए यादृच्छिक चलने का परिचय देते हैं, नए पथों को प्रतिच्छेद करना चाहिए। अन्यथा, घनत्व का वर्ग घनत्व के समानुपाती होता है और केवल H को स्थानांतरित करता है2 एक स्थिरांक द्वारा गुणांक। लेकिन यादृच्छिक चलने की प्रतिच्छेदन संभावना आयाम पर निर्भर करती है, और 4 से अधिक आयाम में यादृच्छिक चलना प्रतिच्छेद नहीं करता है।
एक साधारण रैंडम वॉक का फ्रैक्टल आयाम 2 है। पथ को कवर करने के लिए आवश्यक ε आकार की गेंदों की संख्या ε के रूप में बढ़ती है-2</सुप>. फ्रैक्टल आयाम 2 की दो वस्तुएं केवल आयाम 4 या उससे कम के स्थान में उचित संभावना के साथ प्रतिच्छेद करेंगी, वही स्थिति जो विमानों की एक सामान्य जोड़ी के लिए होती है। कर्ट सिमांजिक ने तर्क दिया कि इसका तात्पर्य है कि 4 से अधिक आयामों में महत्वपूर्ण ईज़िंग अस्थिरता को एक मुक्त क्षेत्र द्वारा वर्णित किया जाना चाहिए। यह तर्क अंततः एक गणितीय प्रमाण बन गया।
4 − ε आयाम – पुनर्सामान्यीकरण समूह
चार आयामों में ईज़िंग मॉडल को अस्थिरता वाले क्षेत्र द्वारा वर्णित किया गया है, लेकिन अब अस्थिरता परस्पर क्रिया कर रहे हैं। बहुलक प्रतिनिधित्व में, यादृच्छिक चालों के चौराहे मामूली रूप से संभव हैं। क्वांटम क्षेत्र की निरंतरता में, क्वांटा परस्पर क्रिया करता है।
किसी भी क्षेत्र विन्यास H की प्रायिकता का ऋणात्मक लघुगणक ऊष्मागतिकी मुक्त ऊर्जा फलन है
गति के समीकरणों को सरल बनाने के लिए संख्यात्मक कारक हैं। लक्ष्य सांख्यिकीय अस्थिरता को समझना है। किसी भी अन्य गैर-द्विघात पथ अभिन्न की तरह, पारस्परिक संबंध कार्यों में एक फेनमैन आरेख होता है, जैसे कण यादृच्छिक चाल के साथ यात्रा करते हैं, विभाजित होते हैं और शिखर पर फिर से जुड़ते हैं। परस्पर क्रिया सामर्थ्य को उत्कृष्ट रूप से आयाम रहित मात्रा λ द्वारा पैरामीट्रिज किया जाता है।
हालांकि आयामी विश्लेषण से पता चलता है कि λ और Z दोनों ही आयाम रहित हैं, यह भ्रामक है। लंबी तरंग दैर्ध्य सांख्यिकीय अस्थिरता बिल्कुल पैमाने पर अपरिवर्तनीय नहीं होते हैं, और जब अंतःक्रिया सामर्थ्य गायब हो जाती है तो केवल स्केल अपरिवर्तनीय हो जाती है।
इसका कारण यह है कि H को परिभाषित करने के लिए कटऑफ का उपयोग किया जाता है, और कटऑफ सबसे कम तरंग दैर्ध्य को परिभाषित करता है। कटऑफ के पास तरंग दैर्ध्य में एच का अस्थिरता लंबी-तरंग दैर्ध्य में अस्थिरता को प्रभावित कर सकता है। यदि प्रणाली को कटऑफ के साथ स्केल किया जाता है, तो पैरामीटर आयामी विश्लेषण द्वारा स्केल किए जाएंगे, लेकिन फिर पैरामीटर की तुलना व्यवहार की तुलना नहीं करती है क्योंकि रीस्केल किए गए प्रणाली में अधिक मोड होते हैं। यदि प्रणाली को इस तरह से बदला जाता है कि शॉर्ट वेवलेंथ कटऑफ स्थिर रहता है, तो लॉन्ग-वेवलेंथ के अस्थिरता को संशोधित किया जाता है।
विल्सन पुनर्सामान्यीकरण
अनुमाप परिवर्तन का अध्ययन करने का एक त्वरित अनुमानी तरीका एक बिंदु λ पर H तरंगों को काटना है। λ से बड़े wavenumbers वाले H के फूरियर मोड में अस्थिरता की स्वीकृति नहीं है। लंबाई का पुनर्विक्रय जो पूरे प्रणाली को छोटा बनाता है, सभी तरंगों को बढ़ाता है, और कुछ अस्थिरता को कटऑफ से ऊपर ले जाता है।
पुराने कटऑफ़ को पुनर्स्थापित करने के लिए, उन सभी तरंगों पर आंशिक एकीकरण करें जो वर्जित हुआ करते थे, लेकिन अब अस्थिरता कर रहे हैं। फेनमैन आरेखों में, वेवनंबर k पर एक अस्थिरता मोड पर एकीकरण, व्युत्क्रम प्रसारक के एक कारक के साथ जोड़े में एक पारस्परिक संबंध फलन में संवेग k ले जाने वाली रेखाओं को जोड़ता है।
रीस्केलिंग के अंतर्गत, जब प्रणाली (1+b) के एक कारक से सिकुड़ जाता है, तो t गुणांक एक कारक (1+b) से बढ़ जाता है।2 विमीय विश्लेषण द्वारा। अत्यल्प b के लिए t में परिवर्तन 2bt है। अन्य दो गुणांक विमाहीन हैं और बिल्कुल नहीं बदलते हैं।
एकीकरण के निम्नतम क्रम के प्रभाव की गणना गति के समीकरणों से की जा सकती है:
यह समीकरण अन्य सम्मिलन से दूर किसी भी पारस्परिक संबंध फलन के अंदर एक पहचान है। मोड को Λ <k <(1+b)Λ के साथ एकीकृत करने के बाद, यह थोड़ी अलग पहचान होगी।
चूंकि समीकरण के रूप को संरक्षित किया जाएगा, गुणांक में परिवर्तन का पता लगाने के लिए एच में परिवर्तन का विश्लेषण करना पर्याप्त है3 अवधि। फेनमैन आरेख विस्तार में, एच3 एक पारस्परिक संबंध फलन में एक पारस्परिक संबंध के अंदर तीन लटकती हुई रेखाएं हैं। बड़ी तरंग संख्या k पर उनमें से दो को मिलाने से H में परिवर्तन होता है3 एक लटकती हुई रेखा के साथ, H के समानुपाती:
3 का कारक इस तथ्य से आता है कि लूप को तीन अलग-अलग तरीकों से बंद किया जा सकता है।
अभिन्न को दो भागों में विभाजित किया जाना चाहिए:
पहला भाग टी के समानुपाती नहीं है, और गति के समीकरण में इसे टी में निरंतर बदलाव से अवशोषित किया जा सकता है। यह इस तथ्य के कारण होता है कि एच3 पद का एक रेखीय भाग है। केवल दूसरा शब्द, जो टी से टी तक भिन्न होता है, महत्वपूर्ण अनुमाप परिवर्तन में योगदान देता है।
यह नया रेखीय शब्द बाईं ओर के पहले पद में जोड़ता है, t को t के समानुपातिक राशि से बदलता है। टी में समग्र परिवर्तन आयामी विश्लेषण से शब्द का योग है और ऑपरेटर उत्पाद विस्तार से यह दूसरा शब्द है:
इसलिए t को पुनर्विक्रय किया जाता है, लेकिन इसका आयाम विषम आयाम है, इसे λ के मान के आनुपातिक राशि से बदल दिया जाता है।
लेकिन λ भी बदलता है। λ में बदलाव के लिए लाइनों को विभाजित करने और फिर जल्दी से जुड़ने पर विचार करने की आवश्यकता है। सबसे कम क्रम प्रक्रिया वह है जहां एच से तीन पंक्तियों में से एक है3 तीन में विभाजित हो जाता है, जो समान शीर्ष से अन्य पंक्तियों में से एक के साथ शीघ्रता से जुड़ जाता है। शीर्ष पर सुधार है
संख्यात्मक कारक तीन गुना बड़ा है क्योंकि अनुबंध करने के लिए तीन नई लाइनों में से किसे चुनने में तीन का एक अतिरिक्त कारक है। इसलिए
ये दो समीकरण मिलकर पुनर्सामान्यीकरण समूह समीकरणों को चार आयामों में परिभाषित करते हैं:
गुणांक बी सूत्र द्वारा निर्धारित किया जाता है
और त्रिज्या λ के त्रि-आयामी क्षेत्र के क्षेत्र के आनुपातिक है, एकीकरण क्षेत्र की चौड़ाई bΛ Λ द्वारा विभाजित4:
अन्य आयामों में, निरंतर बी बदलता है, लेकिन वही स्थिरांक टी प्रवाह और युग्मन प्रवाह दोनों में दिखाई देता है। इसका कारण यह है कि एकल शीर्ष के साथ बंद लूप के t के संबंध में व्युत्पन्न दो शीर्षों वाला एक बंद लूप है। इसका तात्पर्य यह है कि युग्मन और टी के अनुमाप परिवर्तन के बीच एकमात्र अंतर जुड़ने और बंटने से संयोजन कारक है।
विल्सन-फिशर निश्चित बिंदु
चार-आयामी सिद्धांत से प्रारंभ होने वाले तीन आयामों की जांच करना संभव होना चाहिए, क्योंकि यादृच्छिक चलने की प्रतिच्छेदन संभावनाएं अंतरिक्ष की आयामता पर लगातार निर्भर करती हैं। फेनमैन रेखाचित्र की भाषा में, आयाम बदलने पर युग्मन बहुत अधिक नहीं बदलता है।
आयाम 4 से दूर रहने की प्रक्रिया पूरी तरह से परिभाषित नहीं है कि यह कैसे करना है। प्रिस्क्रिप्शन केवल आरेखों पर अच्छी तरह से परिभाषित किया गया है। यह आयाम 4 में श्विंगर प्रतिनिधित्व को आयाम 4 में श्विंगर प्रतिनिधित्व के साथ प्रतिस्थापित करता है − ε द्वारा परिभाषित:
आयाम 4 − ε में, युग्मन λ का धनात्मक पैमाना आयाम ε है, और इसे प्रवाह में जोड़ा जाना चाहिए।
गुणांक बी आयाम पर निर्भर है, लेकिन यह रद्द हो जाएगा। λ के लिए निश्चित बिंदु अब शून्य नहीं है, लेकिन पर:
जहां टी के स्केल आयाम को λB = ε/3 राशि से बदल दिया जाता है।
चुंबकीयकरण एक्सपोनेंट को आनुपातिक रूप से बदल दिया जाता है:
जो .333 3 आयामों (ε = 1) और .166 2 आयामों (ε = 2) में है। यह मापी गई घातांक .308 और ऑनसेजर दो आयामी घातांक .125 से बहुत दूर नहीं है।
अनंत आयाम - औसत क्षेत्र
पूरी तरह से जुड़े हुए रेखाचित्र पर ईज़िंग मॉडल के व्यवहार को माध्य-क्षेत्र सिद्धांत द्वारा पूरी तरह से समझा जा सकता है। इस प्रकार का विवरण अति-उच्च-आयामी वर्गाकार जालियों के लिए उपयुक्त है, क्योंकि तब प्रत्येक स्थल के पास बहुत बड़ी संख्या में प्रतिवेशी होते हैं।
विचार यह है कि यदि प्रत्येक प्रचक्रण बड़ी संख्या में प्रचक्रण से जुड़ा है, तो केवल + प्रचक्रण से - प्रचक्रण का औसत अनुपात महत्वपूर्ण है, क्योंकि इस माध्य के बारे में अस्थिरता छोटा होगा। मीन फील्ड एच प्रचक्रण का औसत अंश है जो + ऋणात्मक प्रचक्रण का औसत अंश है जो − है। औसत क्षेत्र H में एक प्रचक्रण को प्रतिवर्त करने की ऊर्जा कीमत ± 2JNH है। कारक N को अवशोषित करने के लिए J को फिर से परिभाषित करना सुविधाजनक है, ताकि सीमा N → ∞ सुचारू हो। नए J के संदर्भ में, प्रचक्रण को प्रतिवर्त करने की ऊर्जा कीमत ±2JH है।
यह ऊर्जा कीमत प्रचक्रण के + होने की प्रायिकता p और प्रचक्रण के 1−p होने की संभावना − का अनुपात देती है। यह अनुपात Boltzmann कारक है:
ताकि
प्रचक्रण का औसत मान 1 और -1 के औसत से p और 1− p भार के साथ दिया जाता है, इसलिए औसत मान 2p − 1 है। लेकिन यह औसत सभी प्रचक्रण के लिए समान है, और इसलिए H के बराबर है।
इस समीकरण के समाधान संभावित सुसंगत माध्य क्षेत्र हैं। βJ < 1 के लिए H = 0 पर केवल समान समाधान है। β के बड़े मूल्यों के लिए तीन समाधान हैं, और H = 0 पर समाधान अस्थिर है।
अस्थिरता का अर्थ है कि माध्य क्षेत्र को शून्य से थोड़ा ऊपर बढ़ाना प्रचक्रण के एक सांख्यिकीय अंश का उत्पादन करता है जो + है जो माध्य क्षेत्र के मान से बड़ा है। तो एक माध्य क्षेत्र जो शून्य से ऊपर अस्थिरता करता है, अन्य भी अधिक माध्य क्षेत्र उत्पन्न करेगा, और अंततः स्थिर समाधान पर स्थिर हो जाएगा। इसका तात्पर्य यह है कि महत्वपूर्ण मान βJ = 1 से नीचे के तापमान के लिए मीन-फील्ड आइसिंग मॉडल बड़े एन की सीमा में एक प्रावस्था संक्रमण से गुजरता है।
महत्वपूर्ण तापमान से ऊपर, एच में अस्थिरता कम हो जाता है क्योंकि माध्य क्षेत्र अस्थिरता को शून्य क्षेत्र में पुनर्स्थापित करता है। महत्वपूर्ण तापमान के नीचे, माध्य क्षेत्र को एक नए संतुलन मान पर ले जाया जाता है, जो समीकरण के लिए धनात्मक एच या ऋणात्मक एच समाधान है।
βJ = 1 + ε के लिए, महत्वपूर्ण तापमान के ठीक नीचे, H के मान की गणना अतिशयोक्तिपूर्ण स्पर्शरेखा के टेलर विस्तार से की जा सकती है:
एच = 0 पर अस्थिर समाधान को छोड़ने के लिए एच द्वारा विभाजित, स्थिर समाधान हैं:
तापमान में परिवर्तन के वर्गमूल के रूप में सहज चुंबकीयकरण एच महत्वपूर्ण बिंदु के पास बढ़ता है। यह सच है जब भी एच की गणना एक विश्लेषणात्मक समीकरण के समाधान से की जा सकती है जो धनात्मक और ऋणात्मक मूल्यों के बीच सममित है, जिससे लेव लैंडौ को संदेह हुआ कि सभी आयामों में सभी प्रकार के चरण संक्रमणों को इस नियम का पालन करना चाहिए।
माध्य-क्षेत्र प्रतिपादक सार्वभौमिकता (गतिशील प्रणाली) है क्योंकि विश्लेषणात्मक समीकरणों के समाधान के चरित्र में परिवर्तन सदैव टेलर श्रृंखला में आपदा सिद्धांत द्वारा वर्णित किया जाता है, जो एक बहुपद समीकरण है। समरूपता के अनुसार, H के समीकरण में दाहिनी ओर केवल H की विषम शक्तियाँ होनी चाहिए। β को बदलने से केवल गुणांकों में आसानी से परिवर्तन होना चाहिए। संक्रमण तब होता है जब दाहिनी ओर H का गुणांक 1 होता है। संक्रमण के पास:
जो कुछ भी ए और बी हैं, जब तक उनमें से कोई भी शून्य पर ट्यून नहीं किया जाता है, सहज चुंबकीयकरण ε के वर्गमूल के रूप में बढ़ेगा। यह तर्क केवल तभी विफल हो सकता है जब मुक्त ऊर्जा βF या तो गैर-विश्लेषणात्मक या गैर-जेनेरिक हो, जहां संक्रमण होता है।
लेकिन चुंबकीय प्रणालियों में सहज चुंबकीयकरण और महत्वपूर्ण बिंदु के पास गैसों में घनत्व बहुत परिशुद्ध रूप से मापा जाता है। तीन आयामों में घनत्व और चुंबकीयकरण में महत्वपूर्ण बिंदु के निकट तापमान पर समान सामर्थ्य-नियम निर्भरता होती है, लेकिन प्रयोगों से व्यवहार है:
एक्सपोनेंट भी सार्वभौमिक है, क्योंकि यह ईज़िंग मॉडल में प्रायोगिक चुंबक और गैस के समान है, लेकिन यह माध्य-क्षेत्र मान के बराबर नहीं है। यह बड़ा आश्चर्य था।
यह दो आयामों में भी सत्य है, जहाँ
लेकिन वहाँ यह कोई आश्चर्य की बात नहीं थी, क्योंकि इसकी भविष्यवाणी लार्स ऑनसेगर ने की थी।
निम्न आयाम – ब्लॉक प्रचक्रण
तीन आयामों में, क्षेत्र सिद्धांत से अनुगामी श्रृंखला एक युग्मन स्थिरांक λ में एक विस्तार है जो विशेष रूप से छोटा नहीं है। निश्चित बिंदु पर युग्मन का प्रभावी आकार कण पथों के शाखाकरण कारक से एक है, इसलिए विस्तार पैरामीटर लगभग 1/3 है। दो आयामों में, पर्टुरबेटिव एक्सपेंशन पैरामीटर 2/3 है।
लेकिन एक औसत क्षेत्र में जाने के बिना, रीनॉर्मलाइजेशन को सीधे स्पिन्स पर उत्पादक रूप से प्रयुक्त किया जा सकता है। ऐतिहासिक रूप से, यह दृष्टिकोण लियो कडनॉफ़ के कारण है और पर्टुरेटिव ε विस्तार से पहले का है।
कपलिंग में एक प्रवाह उत्पन्न करते हुए, लैटिस प्रचक्रण को पुनरावृत्त रूप से एकीकृत करने का विचार है। लेकिन अब कपलिंग लैटिस ऊर्जा गुणांक हैं। तथ्य यह है कि एक निरंतर विवरण सम्मिलित है, यह गारंटी देता है कि यह पुनरावृत्ति एक निश्चित बिंदु पर अभिसरण करेगी जब तापमान को गंभीरता से ट्यून किया जाएगा।
मिग्दल-कडानॉफ़ पुनर्सामान्यीकरण
संभावित उच्च क्रम की अंतःक्रियाओं की अनंत संख्या के साथ द्वि-आयामी आइसिंग मॉडल लिखें। प्रचक्रण प्रतिबिंब समरूपता रखने के लिए, केवल शक्तियां भी योगदान देती हैं:
अनुवाद निश्चरता से, जेijकेवल आई-जे का एक कार्य है। आकस्मिक घूर्णी समरूपता के द्वारा, बड़े पैमाने पर i और j इसका आकार केवल द्वि-आयामी वेक्टर i − j के परिमाण पर निर्भर करता है। उच्च क्रम गुणांक भी समान रूप से प्रतिबंधित हैं।
पुनर्सामान्यीकरण पुनरावृत्ति लैटिस को दो भागों में विभाजित करता है - सम चक्रण और विषम चक्रण। विषम प्रचक्रण विषम-चेकरबोर्ड लैटिस पदों पर रहते हैं, और सम-चेकरबोर्ड पर भी। जब प्रचक्रण को स्थिति (i,j) द्वारा अनुक्रमित किया जाता है, तो विषम स्थल i+j विषम वाली होती हैं और सम स्थल i+j सम वाली होती हैं, और सम स्थल केवल विषम भागों से जुड़ी होती हैं।
विषम प्रचक्रण के दो संभावित मानों को दोनों संभावित मानों के योग द्वारा एकीकृत किया जाएगा। यह नए समायोजित कपलिंग के साथ, शेष समान प्रचक्रण के लिए एक नया मुक्त ऊर्जा कार्य उत्पन्न करेगा। यहां तक कि प्रचक्रण फिर से लैटिस में हैं, कुल्हाड़ियों को पुराने के लिए 45 डिग्री पर झुकाया गया है। प्रणाली को अनरोटेट करना पुराने अभिविन्यास को पुनर्स्थापित करता है, लेकिन नए पैरामीटर के साथ। ये पैरामीटर दूरी पर प्रचक्रण के बीच की संपर्क का वर्णन करते हैं बड़ा।
ईज़िंग मॉडल से प्रारंभ होकर और इस पुनरावृत्ति को दोहराते हुए अंततः सभी कपलिंग बदल जाते हैं। जब तापमान महत्वपूर्ण तापमान से अधिक होता है, तो युग्मन शून्य हो जाएगा, क्योंकि बड़ी दूरी पर प्रचक्रण असंबद्ध होते हैं। लेकिन जब तापमान महत्वपूर्ण होता है, तो सभी आदेशों पर प्रचक्रण को जोड़ने वाले अशून्य गुणांक होंगे। केवल पहले कुछ शब्दों पर विचार करके प्रवाह का अनुमान लगाया जा सकता है। जब अधिक शब्द सम्मिलित किए जाते हैं तो यह छोटा प्रवाह महत्वपूर्ण घातांकों के लिए बेहतर और बेहतर सन्निकटन उत्पन्न करेगा।
सबसे सरल सन्निकटन केवल सामान्य J शब्द रखना है, और बाकी सब कुछ त्याग देना है। यह ε विस्तार में λ के निश्चित बिंदु पर टी में प्रवाह के समान जे में एक प्रवाह उत्पन्न करेगा।
J में परिवर्तन ज्ञात करने के लिए, एक विषम स्थल के चार प्रतिवेशों पर विचार करें। ये एकमात्र प्रचक्रण हैं जो इसके साथ परस्पर क्रिया करते हैं। विषम स्थान पर प्रचक्रण के दो मानों के योग से विभाजन फलन में गुणात्मक योगदान है:
जहां एन± प्रतिवेशों की संख्या है जो ± हैं। 2 के कारक को अनदेखा करते हुए, इस विषम स्थान से मुक्त ऊर्जा योगदान है:
इसमें अपेक्षित रूप से निकटतम प्रतिवेशी और अगले-निकटतम प्रतिवेशी पारस्परिक क्रिया सम्मिलित हैं, लेकिन एक चार-प्रचक्रण पारस्परिक क्रिया भी सम्मिलित है जिसे छोड़ दिया जाना है। निकटतम प्रतिवेशी पारस्परिक क्रिया को कम करने के लिए, विचार करें कि सभी स्पिनों के बीच समान और समान संख्या + और - के बीच ऊर्जा का अंतर है:
निकटतम प्रतिवेशी कपलिंग से, सभी स्पिनों के बराबर और कंपित स्पिनों के बीच ऊर्जा का अंतर 8J है। सभी चक्रणों के बीच ऊर्जा का अंतर बराबर और स्थिर लेकिन शुद्ध शून्य चक्रण 4J है। चार-प्रचक्रण अंतःक्रियाओं को अनदेखा करते हुए, इन दो ऊर्जाओं का औसत या 6J एक उचित ट्रंकेशन है। चूंकि प्रत्येक लिंक दो विषम चक्करों में योगदान देगा, पिछले एक के साथ तुलना करने का सही मान आधा है:
छोटे जे के लिए, यह जल्दी से शून्य युग्मन में प्रवाहित होता है। बड़े कपलिंग के लिए बड़े जे का प्रवाह। चुंबकीयकरण एक्सपोनेंट निश्चित बिंदु पर समीकरण की ढलान से निर्धारित होता है।
जब दो और तीन आयामों में कई शब्द सम्मिलित किए जाते हैं, तो इस पद्धति के वेरिएंट महत्वपूर्ण घातांक के लिए अच्छे संख्यात्मक अनुमान उत्पन्न करते हैं।
अनुप्रयोग
चुंबकत्व
मॉडल के लिए मूल प्रेरणा लोह-चुंबकत्व की घटना थी। लोहा चुंबकीय है; एक बार चुम्बकित होने के बाद यह किसी भी परमाणु समय की तुलना में लंबे समय तक चुम्बकित रहता है।
19वीं शताब्दी में, यह सोचा गया था कि चुंबकीय क्षेत्र पदार्थ में धाराओं के कारण होते हैं, और आंद्रे-मैरी एम्पीयर | एम्पीयर ने माना कि स्थायी चुम्बक स्थायी परमाणु धाराओं के कारण होते हैं। उत्कृष्ट आवेशित कणों की गति हालांकि स्थायी धाराओं की व्याख्या नहीं कर सकती, जैसा कि जोसेफ लारमोर द्वारा दिखाया गया है। लोह-चुंबकत्व होने के लिए, परमाणुओं में स्थायी चुंबकीय क्षण होने चाहिए जो उत्कृष्ट आवेशों की गति के कारण नहीं होते हैं।
एक बार इलेक्ट्रॉन के चक्रण की खोज हो जाने के बाद, यह स्पष्ट हो गया था कि चुम्बकत्व समान दिशा में उन्मुख सभी इलेक्ट्रॉन प्रचक्रणों की एक बड़ी संख्या के कारण होना चाहिए। यह पूछना स्वाभाविक था कि इलेक्ट्रॉनों के प्रचक्रण कैसे होते हैं, सभी जानते हैं कि किस दिशा में इंगित करना है, क्योंकि चुंबक के एक तरफ के इलेक्ट्रॉन दूसरी तरफ के इलेक्ट्रॉनों के साथ सीधे संपर्क नहीं करते हैं। वे केवल अपने प्रतिवेशों को प्रभावित कर सकते हैं। ईज़िंग मॉडल को यह जांचने के लिए डिज़ाइन किया गया था कि क्या इलेक्ट्रॉन प्रचक्रण का एक बड़ा अंश केवल स्थानीय बलों का उपयोग करके उसी दिशा में उन्मुख हो सकता है।
लैटिस गैस
ईज़िंग मॉडल को परमाणुओं की गति के लिए एक सांख्यिकीय मॉडल के रूप में पुनर्व्याख्या की जा सकती है। चूँकि गतिज ऊर्जा केवल संवेग पर निर्भर करती है न कि स्थिति पर, जबकि स्थितियों के आँकड़े केवल स्थितिज ऊर्जा पर निर्भर करते हैं, गैस का ऊष्मप्रवैगिकी केवल परमाणुओं के प्रत्येक विन्यास के लिए संभावित ऊर्जा पर निर्भर करता है।
एक मोटे मॉडल के लिए अंतरिक्ष-समय को लैटिस बनाना है और कल्पना करना है कि प्रत्येक स्थिति में या तो एक परमाणु होता है या नहीं। अभिविन्यास का स्थान स्वतंत्र बिट्स बी का हैi, जहां स्थिति के आधार पर प्रत्येक बिट या तो 0 या 1 है या नहीं। एक आकर्षक अन्योन्यक्रिया पास के दो परमाणुओं की ऊर्जा को कम कर देती है। यदि आकर्षण केवल निकटतम प्रतिवेशों के बीच है, तो ऊर्जा -4JB से कम हो जाती हैiBj प्रत्येक कब्जे वाले प्रतिवेशी जोड़े के लिए।
रासायनिक क्षमता को जोड़कर परमाणुओं के घनत्व को नियंत्रित किया जा सकता है, जो कि अन्य परमाणु जोड़ने के लिए गुणक संभाव्यता कीमत है। संभाव्यता में एक गुणक कारक को लघुगणक - ऊर्जा में एक योगात्मक शब्द के रूप में पुनर्व्याख्या की जा सकती है। एन परमाणुओं के साथ एक विन्यास की अतिरिक्त ऊर्जा μN द्वारा बदल दी जाती है। अन्य परमाणु की प्रायिकता कीमत exp(−βμ) का गुणनखंड है।
तो लैटिस गैस की ऊर्जा है:
प्रचक्रण के स्थिति में बिट्स को दोबारा लिखना,
लैटिस के लिए जहां प्रत्येक भाग में प्रतिवेशों की समान संख्या होती है, यह चुंबकीय क्षेत्र h = (zJ − μ)/2 के साथ आइसिंग मॉडल है, जहां z प्रतिवेशों की संख्या है।
जैविक प्रणालियों में, बाध्यकारी व्यवहारों की एक श्रृंखला को समझने के लिए लैटिस गैस मॉडल के संशोधित संस्करणों का उपयोग किया गया है। इनमें कोशिका की सतह में रिसेप्टर्स के लिए लिगैंड्स का बंधन सम्मिलित है,[30] फ्लैगेलर मोटर के लिए केमोटैक्सिस प्रोटीन का बंधन,[31] और डीएनए का संघनन।[32]
तंत्रिका विज्ञान
मस्तिष्क में न्यूरॉन्स की गतिविधि को सांख्यिकीय रूप से प्रतिरूपित किया जा सकता है। प्रत्येक न्यूरॉन किसी भी समय या तो सक्रिय + या निष्क्रिय - होता है। सक्रिय न्यूरॉन वे होते हैं जो किसी निश्चित समयावधि में अक्षतंतु के नीचे एक संभावित कार्रवाई भेजते हैं, और निष्क्रिय वे होते हैं जो ऐसा नहीं करते। क्योंकि किसी भी समय तंत्रिका गतिविधि को स्वतंत्र बिट्स द्वारा प्रतिरूपित किया जाता है, जे जे होपफील्ड ने सुझाव दिया कि एक गतिशील आइसिंग मॉडल एक तंत्रिका नेटवर्क को एक हॉपफील्ड नेट प्रदान करेगा जो सीखने में सक्षम है।[33] Jaynes के सामान्य दृष्टिकोण के बाद,[34][35] श्नाइडमैन, बेरी, सेगेव और बेलेक की हालिया व्याख्या,[36] यह है कि ईज़िंग मॉडल तंत्रिका कार्य के किसी भी मॉडल के लिए उपयोगी है, क्योंकि तंत्रिका गतिविधि के लिए एक सांख्यिकीय मॉडल को अधिकतम एन्ट्रापी के सिद्धांत का उपयोग करके चुना जाना चाहिए। न्यूरॉन्स के संग्रह को देखते हुए, एक सांख्यिकीय मॉडल जो प्रत्येक न्यूरॉन के लिए औसत फायरिंग दर को पुन: उत्पन्न कर सकता है, प्रत्येक न्यूरॉन के लिए लैग्रेंज गुणक प्रस्तुत करता है:
लेकिन इस मॉडल में प्रत्येक न्यूरॉन की गतिविधि सांख्यिकीय रूप से स्वतंत्र है। जोड़ी सहसंबंधों की स्वीकृति देने के लिए, जब एक न्यूरॉन दूसरे के साथ आग लगाने (या आग नहीं लगाने) के लिए जाता है, तो जोड़ी-वार लैग्रेंज मल्टीप्लायर प्रस्तुत करें:
जहाँ प्रतिवेशों तक ही सीमित नहीं हैं। ध्यान दें कि ईज़िंग मॉडल के इस सामान्यीकरण को कभी-कभी सांख्यिकी में द्विघात घातीय बाइनरी वितरण कहा जाता है। यह ऊर्जा कार्य केवल एक मान वाले प्रचक्रण के लिए और समान मान वाले प्रचक्रण की एक जोड़ी के लिए संभाव्यता पूर्वाग्रहों का परिचय देता है। उच्च क्रम के पारस्परिक संबंध गुणकों द्वारा अप्रतिबंधित हैं। इस वितरण से नमूना किए गए एक गतिविधि विभाजन को कंप्यूटर में स्टोर करने के लिए बिट्स की सबसे बड़ी संख्या की आवश्यकता होती है, सबसे कुशल कोडिंग योजना में, समान औसत गतिविधि और जोड़ीदार सहसंबंधों के साथ किसी अन्य वितरण की तुलना में। इसका तात्पर्य यह है कि ईज़िंग मॉडल किसी भी प्रणाली के लिए प्रासंगिक हैं जो बिट्स द्वारा वर्णित हैं जो यथासंभव यादृच्छिक हैं, जोड़ीदार सहसंबंधों पर बाधाओं और 1s की औसत संख्या के साथ, जो प्रायः भौतिक और सामाजिक विज्ञान दोनों में होता है।
प्रचक्रण चश्मा
आइसिंग मॉडल के साथ तथाकथित प्रचक्रण ग्लास का भी सामान्य हैमिल्टनियन द्वारा वर्णन किया जा सकता है जहां एस-वैरिएबल्स ईज़िंग प्रचक्रण का वर्णन करते हैं, जबकि जेi,kएक यादृच्छिक वितरण से लिया जाता है। प्रचक्रण ग्लास के लिए एक विशिष्ट वितरण संभाव्यता पी के साथ प्रतिलोहचुंबकीय बॉन्ड और प्रायिकता 1 − पी के साथ लोह चुंबकीय बॉन्ड चयन करता है। तापीय अस्थिरता की उपस्थिति में भी ये बंधन स्थिर रहते हैं या बुझ जाते हैं। जब p = 0 हमारे पास मूल आइसिंग मॉडल होता है। यह प्रणाली अपने आप में रुचि की पात्र है; विशेष रूप से एक में गैर-एर्गोडिक गुण होते हैं जो अजीब विश्राम व्यवहार की ओर ले जाते हैं। संबंधित बॉन्ड और भाग डाइल्यूट ईज़िंग मॉडल द्वारा भी बहुत ध्यान आकर्षित किया गया है, विशेष रूप से दो आयामों में, जो पेचीदा महत्वपूर्ण व्यवहार की ओर ले जाता है।[37]
समुद्री बर्फ
आइसिंग मॉडल का उपयोग करके 2डी पिघला हुआ तालाब सन्निकटन बनाए जा सकते हैं; समुद्री बर्फ स्थलाकृति डेटा परिणामों पर भारी पड़ता है। अवस्था चर एक साधारण 2D सन्निकटन के लिए द्विआधारी है, या तो पानी या बर्फ।[38]
केली ट्री सांस्थिति और बड़े तंत्रिका नेटवर्क
बड़े के लिए संभावित प्रासंगिकता वाले एक ईज़िंग मॉडल की जांच करने के लिए (उदाहरण के लिए या परस्पर क्रिया प्रति नोड) तंत्रिका जाल, 1979 में क्रिज़न के सुझाव पर, Barth (1981) शून्य-बाहरी चुंबकीय क्षेत्र (ऊष्मप्रवैगिकी सीमा में) के तरीकों को प्रयुक्त करके बंद केली ट्री (व्यवस्थित रूप से बड़े ब्रांचिंग अनुपात के साथ) पर ईज़िंग मॉडल की मुक्त ऊर्जा के लिए परिशुद्ध विश्लेषणात्मक अभिव्यक्ति प्राप्त की। Glasser (1970) और Jellito (1979)
जहां एक यादृच्छिक शाखाकरण अनुपात (2 से अधिक या उसके बराबर), टी ≡ है , ≡ , जे ≡ (साथ निकटतम-प्रतिवेशी अंतःक्रियात्मक ऊर्जा का प्रतिनिधित्व करते हैं) और प्रत्येक ट्री शाखाओं में k (→ ∞ ऊष्मप्रवैगिकी सीमा में) पीढ़ियाँ हैं (बंद ट्री वास्तुकला को दिए गए बंद केली ट्री आरेख में दिखाया गया है।) अंतिम शब्द में योग। समान रूप से और तेजी से अभिसरण करने के लिए दिखाया जा सकता है (अर्थात z → ∞ के लिए, यह परिमित रहता है) एक सतत और नीरस कार्य उत्पन्न करता है, जो कि स्थापित करता है 2 से अधिक या उसके बराबर, मुक्त ऊर्जा तापमान T का एक सतत कार्य है। मुक्त ऊर्जा के आगे के विश्लेषण से संकेत मिलता है कि यह महत्वपूर्ण तापमान पर एक असामान्य असंतत पहला व्युत्पन्न प्रदर्शित करता है (Krizan, Barth & Glasser (1983), Glasser & Goldberg (1983).)
ट्री पर भागों (सामान्य रूप से, एम और एन) के बीच प्रचक्रण-प्रचक्रण पारस्परिक संबंध को कोने (जैसे ए और ए, इसका प्रतिबिंब), उनके संबंधित प्रतिवेशी भागों (जैसे बी और इसके) पर विचार करने पर एक संक्रमण बिंदु पाया गया। परावर्तन), और दो वृक्षों (जैसे A और B) के शीर्ष और निचले चरम शीर्षों से सटे स्थलों के बीच, जैसा कि इससे निर्धारित किया जा सकता है
जहाँ बांड की संख्या के बराबर है, मध्यवर्ती भागों के साथ विषम शीर्षों के लिए गिने जाने वाले रेखाचित्र की संख्या है (विस्तृत गणना के लिए उद्धृत कार्यप्रणाली और संदर्भ देखें), द्वि-मूल्यवान प्रचक्रण संभावनाओं और विभाजन फलन से उत्पन्न बहुलता है से लिया गया है . (टिप्पणी: इस खंड में संदर्भित साहित्य के अनुरूप है और इसके समकक्ष है या ऊपर और पिछले अनुभागों में उपयोग किया गया; इसका मान है ।) महत्वपूर्ण तापमान द्वारा दिया गया है
.
इस मॉडल के लिए महत्वपूर्ण तापमान केवल शाखाओं के अनुपात से निर्धारित होता है और भाग-टू-भाग पारस्परिक क्रिया एनर्जी , एक ऐसा तथ्य जिसका तंत्रिका संरचना बनाम इसके कार्य से जुड़ा प्रत्यक्ष प्रभाव हो सकता है (इसमें यह संपर्क की ऊर्जा और इसके संक्रमणकालीन व्यवहार को शाखाओं में बांटने के अनुपात से संबंधित है।) उदाहरण के लिए, नींद के बीच तंत्रिका नेटवर्क की गतिविधियों के संक्रमण व्यवहार के बीच संबंध और जाग्रत अवस्थाएँ (जो प्रचक्रण-प्रचक्रण प्रकार के प्रावस्था संक्रमण के साथ सहसंबद्ध हो सकती हैं) तंत्रिका अंतर्संबंध में परिवर्तन के संदर्भ में () और/या प्रतिवेशी-से-प्रतिवेशी पारस्परिक क्रिया (), समय के साथ, इस तरह की घटना में आगे की प्रायोगिक जांच के लिए सुझाया गया एक संभावित तरीका है। किसी भी स्थिति में, इस ईज़िंग मॉडल के लिए यह स्थापित किया गया था कि "लंबी दूरी के पारस्परिक संबंध की स्थिरता बढ़ने के साथ बढ़ती है या बढ़ रहा है ।”
इस सांस्थिति के लिए, प्रचक्रण-प्रचक्रण पारस्परिक संबंध चरम शीर्षों और केंद्रीय स्थलों के बीच शून्य पाया गया, जहां दो ट्री (या शाखाएं) जुड़े हुए हैं (अर्थात ए और व्यक्तिगत रूप से सी, d, या ई के बीच)। यह व्यवहार है इस तथ्य के कारण समझाया गया है कि, जैसे-जैसे k बढ़ता है, लिंक की संख्या तेजी से बढ़ती है (चरम कोने के बीच) और इसलिए तथापि प्रचक्रण सहसंबंधों में योगदान तेजी से घटता है, चरम शीर्ष (ए) जैसी भागों के बीच पारस्परिक संबंध जुड़े हुए ट्री में एक ट्री और चरम शीर्ष (ए) परिमित (महत्वपूर्ण तापमान से ऊपर) रहता है। (ए स्तर के साथ), "क्लस्टर" माना जाता है जो फायरिंग के सिंक्रनाइज़ेशन को प्रदर्शित करता है।
तुलना के रूप में अन्य उत्कृष्ट नेटवर्क मॉडल की समीक्षा के आधार पर, एक बंद केली ट्री पर ईज़िंग मॉडल को गैर-लुप्त होने वाले प्रचक्रण-प्रचक्रण सहसंबंधों के साथ स्थानीय और लंबी दूरी की भागों को प्रदर्शित करने वाला पहला उत्कृष्ट सांख्यिकीय यांत्रिक मॉडल होना निर्धारित किया गया था, जबकि समान समय में मध्यवर्ती भागों को शून्य पारस्परिक संबंध के साथ प्रदर्शित करना, जो वास्तव में इसके विचार के समय बड़े तंत्रिका नेटवर्क के लिए एक प्रासंगिक मामला था। मॉडल का व्यवहार किसी अन्य अपसारी-अभिसरण वृक्ष भौतिक (या जैविक) प्रणाली के लिए भी प्रासंगिक है, जो ईज़िंग-प्रकार की संपर्क के साथ एक बंद केली ट्री सांस्थिति प्रदर्शित करता है। इस सांस्थिति को नजरअंदाज नहीं किया जाना चाहिए क्योंकि ईज़िंग मॉडल के लिए इसका व्यवहार परिशुद्ध रूप से संशोधन किया गया है, और संभवतः प्रकृति ने अपने डिजाइनों के कई स्तरों पर ऐसी सरल समरूपता का लाभ उठाने का एक तरीका खोज लिया होगा।
Barth (1981) प्रारंभिक तौर पर (1) उत्कृष्ट बड़े तंत्रिका नेटवर्क मॉडल (समान युग्मित डाइवर्जेंट-अभिसरण सांस्थिति के साथ) (2) एक अंतर्निहित सांख्यिकीय क्वांटम मैकेनिकल मॉडल (सांस्थिति से स्वतंत्र और मौलिक क्वांटम अवस्थाओ में दृढ़ता के साथ) के बीच अंतर्संबंधों की संभावना पर ध्यान दिया गया:
संवृत केली ट्री मॉडल से प्राप्त सबसे महत्वपूर्ण परिणाम में मध्यवर्ती-श्रेणी के सहसंबंध की अनुपस्थिति में लंबी दूरी के सहसंबंध की घटना सम्मिलित है। यह परिणाम अन्य उत्कृष्ट मॉडलों द्वारा प्रदर्शित नहीं किया गया है। इस घटना के लिए आवेग संचरण के उत्कृष्ट दृष्टिकोण की विफलता को कई जांचकर्ताओं (रिकियार्डी और उमेज़ावा, 1967, होक्यो 1972, स्टुअर्ट, ताकाहाशी और उमेज़ावा 1978, 1979) द्वारा उद्धृत किया गया है, जो एक बहुत ही महत्वपूर्ण आधार पर मौलिक रूप से नई मान्यताओं को स्वीकृत करने के लिए पर्याप्त है। मौलिक स्तर और मस्तिष्क संविभाग के अंदर क्वांटम सहकारी मोड के स्थिति का सुझाव दिया है ... इसके अतिरिक्त, यह ध्यान रखना दिलचस्प है कि (मॉडलिंग) ... गोल्डस्टोन कण या बोसोन (उमेज़ावा, एट अल के अनुसार) ... मस्तिष्क संविभाग के अंदर, लंबे समय तक प्रदर्शित करता है।
प्रारम्भिक न्यूरोफिज़िसिस्ट (जैसे उमेज़ावा, क्रिज़न, बार्थ, आदि) के बीच यह एक स्वाभाविक और आम धारणा थी कि उत्कृष्ट तंत्रिका मॉडल (सांख्यिकीय यांत्रिक स्वरूपों वाले लोगों सहित) को एक दिन क्वांटम भौतिकी (क्वांटम सांख्यिकीय स्वरूपों के साथ) के साथ एकीकृत करना होगा। इसी तरह संभव्यता रसायन विज्ञान के प्रक्षेत्र ने ऐतिहासिक रूप से खुद को क्वांटम रसायन विज्ञान के माध्यम से क्वांटम भौतिकी में एकीकृत किया है।
समय-निर्भर स्थिति और बाहरी क्षेत्र की स्थिति के साथ-साथ अंतर्निहित क्वांटम घटकों और उनके भौतिकी के साथ अंतर्संबंधों को समझने के उद्देश्य से सैद्धांतिक प्रयासों सहित, बंद केली के ट्री के लिए ब्याज की कई अतिरिक्त सांख्यिकीय यांत्रिक समस्याओं का समाधान किया जाना बाकी है।
यह भी देखें
- अन्नानी मॉडल
- बाइंडर पैरामीटर
- बोल्ट्जमैन मशीन
- अनुरूप बूटस्ट्रैप
- ज्यामितीय रूप से कुंठित चुंबक
- हाइजेनबर्ग मॉडल (शास्त्रीय)
- हाइजेनबर्ग मॉडल (क्वांटम)
- होपफील्ड नेट
- महत्वपूर्ण घातांक
- जॉन क्लाइव वार्ड|जे. सी वार्ड
- कुरामोटो मोड एल
- अधिकतम समता
- आदेश संचालिका
- पॉट्स मॉडल (अश्किन-टेलर मॉडल के साथ सामान्य)
- स्पिन मॉडल
- स्क्वायर-जाली आइसिंग मॉडल
- स्वेंडसेन-वांग एल्गोरिथम
- टी-जे मॉडल
- द्वि-आयामी महत्वपूर्ण आइसिंग मॉडल
- वोल्फ एल्गोरिथम
- एक्सवाई मॉडल
- जेड एन मॉडल
फुटनोट्स
- ↑ See Gallavotti (1999), Chapters VI-VII.
- ↑ Ernst Ising, Contribution to the Theory of Ferromagnetism
- ↑ See Baierlein (1999), Chapter 16.
- ↑ Barahona, Francisco; Grötschel, Martin; Jünger, Michael; Reinelt, Gerhard (1988). "सांख्यिकीय भौतिकी और सर्किट लेआउट डिजाइन के संयोजन अनुकूलन का एक अनुप्रयोग". Operations Research. 36 (3): 493–513. doi:10.1287/opre.36.3.493. ISSN 0030-364X. JSTOR 170992.
- ↑ El-Showk, Sheer; Paulos, Miguel F.; Poland, David; Rychkov, Slava; Simmons-Duffin, David; Vichi, Alessandro (2014). "Solving the 3d Ising Model with the Conformal Bootstrap II. C -Minimization and Precise Critical Exponents" (PDF). Journal of Statistical Physics. 157 (4–5): 869–914. arXiv:1403.4545. Bibcode:2014JSP...157..869E. doi:10.1007/s10955-014-1042-7. S2CID 119627708. Archived from the original (PDF) on 2014-04-07. Retrieved 2013-04-21.
- ↑ Peierls, R.; Born, M. (1936). "ईज़िंग के फेरोमैग्नेटिज़्म के मॉडल पर". Mathematical Proceedings of the Cambridge Philosophical Society. 32 (3): 477. Bibcode:1936PCPS...32..477P. doi:10.1017/S0305004100019174. S2CID 122630492.
- ↑ 7.0 7.1 7.2 Montroll, Potts & Ward 1963, pp. 308–309
- ↑ Simon, Barry (1980-10-01). "सहसंबंध असमानताएं और फेरोमैग्नेट्स में सहसंबंधों का क्षय". Communications in Mathematical Physics (in English). 77 (2): 111–126. Bibcode:1980CMaPh..77..111S. doi:10.1007/BF01982711. ISSN 1432-0916. S2CID 17543488.
- ↑ Duminil-Copin, Hugo; Tassion, Vincent (2016-04-01). "बर्नौली परकोलेशन और आइसिंग मॉडल के लिए चरण संक्रमण की तीव्रता का एक नया प्रमाण". Communications in Mathematical Physics (in English). 343 (2): 725–745. arXiv:1502.03050. Bibcode:2016CMaPh.343..725D. doi:10.1007/s00220-015-2480-z. ISSN 1432-0916. S2CID 119330137.
- ↑ Beffara, Vincent; Duminil-Copin, Hugo (2012-08-01). "The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1". Probability Theory and Related Fields (in English). 153 (3): 511–542. doi:10.1007/s00440-011-0353-8. ISSN 1432-2064. S2CID 55391558.
- ↑ 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 Newman, M.E.J.; Barkema, G.T. (1999). सांख्यिकीय भौतिकी में मोंटे कार्लो के तरीके. Clarendon Press. ISBN 9780198517979.
- ↑ "उदाहरण के लिए, SquareIsingModel.jl (जूलिया में)।". GitHub. 28 June 2022.
{{cite web}}: CS1 maint: url-status (link) - ↑ Teif, Vladimir B. (2007). "जीन विनियमन में डीएनए-प्रोटीन-दवा बंधन की गणना करने के लिए सामान्य स्थानांतरण मैट्रिक्स औपचारिकता". Nucleic Acids Res. 35 (11): e80. doi:10.1093/nar/gkm268. PMC 1920246. PMID 17526526.
- ↑ 14.0 14.1 Ruelle, David (1999) [1969]. Statistical Mechanics: Rigorous Results. World Scientific. ISBN 978-981-4495-00-4.
- ↑ Dyson, F. J. (1969). "एक आयामी आइसिंग फेरोमैग्नेट में चरण-संक्रमण का अस्तित्व". Comm. Math. Phys. 12 (2): 91–107. Bibcode:1969CMaPh..12...91D. doi:10.1007/BF01645907. S2CID 122117175.
- ↑ Fröhlich, J.; Spencer, T. (1982). "The phase transition in the one-dimensional Ising model with 1/r2 interaction energy". Comm. Math. Phys. 84 (1): 87–101. Bibcode:1982CMaPh..84...87F. doi:10.1007/BF01208373. S2CID 122722140.
- ↑ Baxter, Rodney J. (1982), Exactly solved models in statistical mechanics, London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], ISBN 978-0-12-083180-7, MR 0690578, archived from the original on 2012-03-20, retrieved 2009-10-25
- ↑ Suzuki, Sei; Inoue, Jun-ichi; Chakrabarti, Bikas K. (2012). अनुप्रस्थ आइसिंग मॉडल में क्वांटम आइसिंग चरण और संक्रमण. Springer. doi:10.1007/978-3-642-33039-1. ISBN 978-3-642-33038-4.
- ↑ Wood, Charlie (24 June 2020). "मैग्नेट की कार्टून तस्वीर जिसने विज्ञान को बदल दिया है". Quanta Magazine (in English). Retrieved 2020-06-26.
- ↑ "केन विल्सन याद करते हैं कि कैसे मरे गेल-मैन ने सुझाव दिया कि वह त्रि-आयामी आइसिंग मॉडल को हल करें".
- ↑ Billó, M.; Caselle, M.; Gaiotto, D.; Gliozzi, F.; Meineri, M.; others (2013). "Line defects in the 3d Ising model". JHEP. 1307 (7): 055. arXiv:1304.4110. Bibcode:2013JHEP...07..055B. doi:10.1007/JHEP07(2013)055. S2CID 119226610.
- ↑ Cosme, Catarina; Lopes, J. M. Viana Parente; Penedones, Joao (2015). "Conformal symmetry of the critical 3D Ising model inside a sphere". Journal of High Energy Physics. 2015 (8): 22. arXiv:1503.02011. Bibcode:2015JHEP...08..022C. doi:10.1007/JHEP08(2015)022. S2CID 53710971.
- ↑ Zhu, Wei; Han, Chao; Huffman, Emilie; Hofmann, Johannes S.; He, Yin-Chen (2022-10-24). "Uncovering conformal symmetry in the 3D Ising transition: State-operator correspondence from a fuzzy sphere regularization". arXiv:2210.13482 [cond-mat.stat-mech].
- ↑ Delamotte, Bertrand; Tissier, Matthieu; Wschebor, Nicolás (2016). "स्केल इनवेरियन का तात्पर्य त्रि-आयामी ईज़िंग मॉडल के लिए अनुरूप इनवेरियन से है". Physical Review E. 93 (12144): 012144. arXiv:1501.01776. Bibcode:2016PhRvE..93a2144D. doi:10.1103/PhysRevE.93.012144. PMID 26871060. S2CID 14538564.
- ↑ El-Showk, Sheer; Paulos, Miguel F.; Poland, David; Rychkov, Slava; Simmons-Duffin, David; Vichi, Alessandro (2012). "Solving the 3D Ising Model with the Conformal Bootstrap". Phys. Rev. D86 (2): 025022. arXiv:1203.6064. Bibcode:2012PhRvD..86b5022E. doi:10.1103/PhysRevD.86.025022. S2CID 39692193.
- ↑ El-Showk, Sheer; Paulos, Miguel F.; Poland, David; Rychkov, Slava; Simmons-Duffin, David; Vichi, Alessandro (2014). "Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents". Journal of Statistical Physics. 157 (4–5): 869–914. arXiv:1403.4545. Bibcode:2014JSP...157..869E. doi:10.1007/s10955-014-1042-7. S2CID 119627708.
- ↑ Simmons-Duffin, David (2015). "अनुरूप बूटस्ट्रैप के लिए एक अर्ध-निश्चित प्रोग्राम सॉल्वर". Journal of High Energy Physics. 2015 (6): 174. arXiv:1502.02033. Bibcode:2015JHEP...06..174S. doi:10.1007/JHEP06(2015)174. ISSN 1029-8479. S2CID 35625559.
- ↑ Kadanoff, Leo P. (April 30, 2014). "Deep Understanding Achieved on the 3d Ising Model". Journal Club for Condensed Matter Physics. Archived from the original on July 22, 2015. Retrieved July 19, 2015.
- ↑ Cipra, Barry A. (2000). "आइसिंग मॉडल एनपी-पूर्ण है" (PDF). SIAM News. 33 (6).
- ↑ Shi, Y.; Duke, T. (1998-11-01). "बैक्टीरिल सेंसिंग का सहकारी मॉडल". Physical Review E (in English). 58 (5): 6399–6406. arXiv:physics/9901052. Bibcode:1998PhRvE..58.6399S. doi:10.1103/PhysRevE.58.6399. S2CID 18854281.
- ↑ Bai, Fan; Branch, Richard W.; Nicolau, Dan V.; Pilizota, Teuta; Steel, Bradley C.; Maini, Philip K.; Berry, Richard M. (2010-02-05). "बैक्टीरियल फ्लैगेलर स्विच में सहयोग के लिए एक तंत्र के रूप में गठनात्मक फैलाव". Science (in English). 327 (5966): 685–689. Bibcode:2010Sci...327..685B. doi:10.1126/science.1182105. ISSN 0036-8075. PMID 20133571. S2CID 206523521.
- ↑ Vtyurina, Natalia N.; Dulin, David; Docter, Margreet W.; Meyer, Anne S.; Dekker, Nynke H.; Abbondanzieri, Elio A. (2016-04-18). "डीपीएस द्वारा डीएनए संघनन में हिस्टैरिसीस को एक आइसिंग मॉडल द्वारा वर्णित किया गया है". Proceedings of the National Academy of Sciences (in English). 113 (18): 4982–7. Bibcode:2016PNAS..113.4982V. doi:10.1073/pnas.1521241113. ISSN 0027-8424. PMC 4983820. PMID 27091987.
- ↑ J. J. Hopfield (1982), "Neural networks and physical systems with emergent collective computational abilities", Proceedings of the National Academy of Sciences of the USA, 79 (8): 2554–2558, Bibcode:1982PNAS...79.2554H, doi:10.1073/pnas.79.8.2554, PMC 346238, PMID 6953413.
- ↑ Jaynes, E. T. (1957), "Information Theory and Statistical Mechanics", Physical Review, 106 (4): 620–630, Bibcode:1957PhRv..106..620J, doi:10.1103/PhysRev.106.620, S2CID 17870175.
- ↑ Jaynes, Edwin T. (1957), "Information Theory and Statistical Mechanics II", Physical Review, 108 (2): 171–190, Bibcode:1957PhRv..108..171J, doi:10.1103/PhysRev.108.171.
- ↑ Elad Schneidman; Michael J. Berry; Ronen Segev; William Bialek (2006), "Weak pairwise correlations imply strongly correlated network states in a neural population", Nature, 440 (7087): 1007–1012, arXiv:q-bio/0512013, Bibcode:2006Natur.440.1007S, doi:10.1038/nature04701, PMC 1785327, PMID 16625187.
- ↑ J-S Wang, W Selke, VB Andreichenko, and VS Dotsenko (1990), "The critical behaviour of the two-dimensional dilute model", Physica A, 164 (2): 221–239, Bibcode:1990PhyA..164..221W, doi:10.1016/0378-4371(90)90196-Y
{{citation}}: CS1 maint: multiple names: authors list (link) - ↑ Yi-Ping Ma; Ivan Sudakov; Courtenay Strong; Kenneth Golden (2017). "आर्कटिक समुद्री बर्फ पर पिघले हुए तालाबों के लिए आइसिंग मॉडल". arXiv:1408.2487v3 [physics.ao-ph].
संदर्भ
- Baxter, Rodney J. (1982), Exactly solved models in statistical mechanics, London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], ISBN 978-0-12-083180-7, MR 0690578
- K. Binder (2001) [1994], "Ising model", Encyclopedia of Mathematics, EMS Press
- Brush, Stephen G. (1967). "History of the Lenz-Ising Model". Reviews of Modern Physics. 39 (4): 883–893. Bibcode:1967RvMP...39..883B. doi:10.1103/RevModPhys.39.883.
- Baierlein, R. (1999), Thermal Physics, Cambridge: Cambridge University Press, ISBN 978-0-521-59082-2
- Gallavotti, G. (1999), Statistical mechanics, Texts and Monographs in Physics, Berlin: Springer-Verlag, doi:10.1007/978-3-662-03952-6, ISBN 978-3-540-64883-3, MR 1707309
- Huang, Kerson (1987), Statistical mechanics (2nd edition), Wiley, ISBN 978-0-471-81518-1
- Ising, E. (1925), "Beitrag zur Theorie des Ferromagnetismus", Z. Phys., 31 (1): 253–258, Bibcode:1925ZPhy...31..253I, doi:10.1007/BF02980577, S2CID 122157319
- Itzykson, Claude; Drouffe, Jean-Michel (1989), Théorie statistique des champs, Volume 1, Savoirs actuels (CNRS), EDP Sciences Editions, ISBN 978-2-86883-360-0
- Itzykson, Claude; Drouffe, Jean-Michel (1989), Statistical field theory, Volume 1: From Brownian motion to renormalization and lattice gauge theory, Cambridge University Press, ISBN 978-0-521-40805-9
- Friedli, S.; Velenik, Y. (2017). Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction. Cambridge: Cambridge University Press. ISBN 9781107184824.
- Ross Kindermann and J. Laurie Snell (1980), Markov Random Fields and Their Applications. American Mathematical Society. ISBN 0-8218-3381-2.
- Kleinert, H (1989), Gauge Fields in Condensed Matter, Vol. I, "Superflow and Vortex Lines", pp. 1–742, Vol. II, "Stresses and Defects", pp. 743–1456, World Scientific (Singapore); Paperback ISBN 9971-5-0210-0 (also available online: Vol. I and Vol. II)
- Kleinert, H and Schulte-Frohlinde, V (2001), Critical Properties of φ4-Theories, World Scientific (Singapore); Paperback ISBN 981-02-4658-7 (also available online)
- Lenz, W. (1920), "Beiträge zum Verständnis der magnetischen Eigenschaften in festen Körpern", Physikalische Zeitschrift, 21: 613–615.
- Barry M. McCoy and Tai Tsun Wu (1973), The Two-Dimensional Ising Model. Harvard University Press, Cambridge Massachusetts, ISBN 0-674-91440-6
- Montroll, Elliott W.; Potts, Renfrey B.; Ward, John C. (1963), "Correlations and spontaneous magnetization of the two-dimensional Ising model", Journal of Mathematical Physics, 4 (2): 308–322, Bibcode:1963JMP.....4..308M, doi:10.1063/1.1703955, ISSN 0022-2488, MR 0148406, archived from the original on 2013-01-12, retrieved 2009-10-25
- Onsager, Lars (1944), "Crystal statistics. I. A two-dimensional model with an order-disorder transition", Physical Review, Series II, 65 (3–4): 117–149, Bibcode:1944PhRv...65..117O, doi:10.1103/PhysRev.65.117, MR 0010315
- Onsager, Lars (1949), "Discussion", Supplemento al Nuovo Cimento, 6: 261
- John Palmer (2007), Planar Ising Correlations. Birkhäuser, Boston, ISBN 978-0-8176-4248-8.
- Istrail, Sorin (2000), "Statistical mechanics, three-dimensionality and NP-completeness. I. Universality of intractability for the partition function of the Ising model across non-planar surfaces (extended abstract)" (PDF), Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, ACM, pp. 87–96, doi:10.1145/335305.335316, ISBN 978-1581131840, MR 2114521, S2CID 7944336
- Yang, C. N. (1952), "The spontaneous magnetization of a two-dimensional Ising model", Physical Review, Series II, 85 (5): 808–816, Bibcode:1952PhRv...85..808Y, doi:10.1103/PhysRev.85.808, MR 0051740
- Glasser, M. L. (1970), "Exact Partition Function for the Two-Dimensional Ising Model", American Journal of Physics, 38 (8): 1033–1036, Bibcode:1970AmJPh..38.1033G, doi:10.1119/1.1976530
- Jellito, R. J. (1979), "The Ising Model on a Closed Cayley Tree", Physica, 99A (1): 268–280, Bibcode:1979PhyA...99..268J, doi:10.1016/0378-4371(79)90134-1
- Barth, P. F. (1981), "Cooperativity and the Transition Behavior of Large Neural Nets", Master of Science Thesis, Burlington: University of Vermont: 1–118
- Krizan, J. E.; Barth, P. F.; Glasser, M.L. (1983), "Exact Phase Transitions for the Ising Model on the Closed Cayley Tree", Physica, North-Holland Publishing Co., 119A: 230–242, doi:10.1016/0378-4371(83)90157-7
- Glasser, M. L.; Goldberg, M. (1983), "The Ising model on a closed Cayley tree", Physica, 117A (2): 670–672, Bibcode:1983PhyA..117..670G, doi:10.1016/0378-4371(83)90138-3
बाहरी संबंध
- Ising model at The Net Advance of Physics
- Barry Arthur Cipra, "The Ising model is NP-complete", SIAM News, Vol. 33, No. 6; online edition (.pdf)
- Science World article on the Ising Model
- A dynamical 2D Ising java applet by UCSC
- A dynamical 2D Ising java applet
- A larger/more complicated 2D Ising java applet
- Ising Model simulation by Enrique Zeleny, the Wolfram Demonstrations Project
- Phase transitions on lattices
- Three-dimensional proof for Ising Model impossible, Sandia researcher claims
- Interactive Monte Carlo simulation of the Ising, XY and Heisenberg models with 3D graphics(requires WebGL compatible browser)
- Ising Model code , image denoising example with Ising Model
- David Tong's Lecture Notes provide a good introduction
- The Cartoon Picture of Magnets That Has Transformed Science - Quanta Magazine article about Ising model
- Simulation of the 2-dimensional Ising model in Julia: https://github.com/cossio/SquareIsingModel.jl