होरोसाइकिल: Difference between revisions

From Vigyanwiki
Line 25: Line 25:
=== मानकीकृत गाऊसी वक्रता ===
=== मानकीकृत गाऊसी वक्रता ===


जब अतिपरवलयिक तल में -1 का मानकीकृत गाऊसी वक्रता K होता है:
जब अतिपरवलयिक तल में -1 का मानकीकृत गाऊसी वक्रता K होता है,
 
* दो बिंदुओं के बीच कुंडली के एक चाप की 'लंबाई' है:
:<math> s = 2 \sinh \left( \frac{1}{2} d \right) = \sqrt{2 (\cosh d -1) } </math> जहाँ d दो बिंदुओं के बीच की दूरी है, और sinh और cos [[अतिशयोक्तिपूर्ण कार्य|अतिपरवलय कार्य]] हैं।<ref>{{cite book|last1=Smogorzhevsky|title=लोबाचेवस्कियन ज्यामिति|date=1976|publisher=Mir|location=Moscow|page=65}}</ref>
* एक कुंडली के एक चाप की लंबाई जैसे कि एक छोर पर स्पर्शरेखा दूसरे छोर के माध्यम से त्रिज्या के समानांतर सीमित है, 1 है।<ref>{{cite book|last1=Sommerville|first1=D.M.Y.|title=गैर-यूक्लिडियन ज्यामिति के तत्व|date=2005|publisher=Dover Publications|location=Mineola, N.Y.|isbn=0-486-44222-5|page=58|edition=Unabr. and unaltered republ.}}</ref> इस कुंडली और त्रिज्या के बीच परिबद्ध क्षेत्र 1 है।<ref>{{cite book|last1=Coxeter|first1=H.S.M.|title=गैर-यूक्लिडियन ज्यामिति|url=https://archive.org/details/noneuclideangeom00coxe_738|url-access=limited|date=1998|publisher=Mathematical Assoc. of America|location=Washington, DC|isbn=978-0-88385-522-5|page=[https://archive.org/details/noneuclideangeom00coxe_738/page/n262 250]|edition=6.}}</ref>
* दो संकेंद्रित कुंडलियों की दो त्रिज्याओं के बीच चाप की लंबाई का अनुपात जहां कुंडली एक दूसरे से 1 दूरी पर हैं, e (गणितीय स्थिरांक) है: 1।<ref>{{cite book|last1=Sommerville|first1=D.M.Y.|title=गैर-यूक्लिडियन ज्यामिति के तत्व|date=2005|publisher=Dover Publications|location=Mineola, N.Y.|isbn=0-486-44222-5|page=58|edition=Unabr. and unaltered republ.}}</ref>
 


* दो बिंदुओं के बीच कुंडली के एक चाप की 'लंबाई' है
:<math> s = 2 \sinh \left( \frac{1}{2} d \right) = \sqrt{2 (\cosh d -1) } </math> जहाँ d दो बिंदुओं के बीच की दूरी है, और sinh और cos [[अतिशयोक्तिपूर्ण कार्य|अतिपरवलयिक फलन]] हैं।<ref>{{cite book|last1=Smogorzhevsky|title=लोबाचेवस्कियन ज्यामिति|date=1976|publisher=Mir|location=Moscow|page=65}}</ref>
* एक कुंडली के चाप की लंबाई इस प्रकार है कि एक छोर पर स्पर्शरेखा दूसरे छोर के माध्यम से त्रिज्या के [[समानांतर सीमित]] 1 है।।<ref>{{cite book|last1=Sommerville|first1=D.M.Y.|title=गैर-यूक्लिडियन ज्यामिति के तत्व|date=2005|publisher=Dover Publications|location=Mineola, N.Y.|isbn=0-486-44222-5|page=58|edition=Unabr. and unaltered republ.}}</ref> इस कुंडली और त्रिज्या के बीच परिबद्ध क्षेत्र 1 है।<ref>{{cite book|last1=Coxeter|first1=H.S.M.|title=गैर-यूक्लिडियन ज्यामिति|url=https://archive.org/details/noneuclideangeom00coxe_738|url-access=limited|date=1998|publisher=Mathematical Assoc. of America|location=Washington, DC|isbn=978-0-88385-522-5|page=[https://archive.org/details/noneuclideangeom00coxe_738/page/n262 250]|edition=6.}}</ref>
* दो संकेंद्रित कुंडलियों की दो त्रिज्याओं के बीच चाप की लंबाई का अनुपात जहां कुंडली एक दूसरे से 1 दूरी पर हैं, [[e]] (गणितीय स्थिरांक) : 1 है।<ref>{{cite book|last1=Sommerville|first1=D.M.Y.|title=गैर-यूक्लिडियन ज्यामिति के तत्व|date=2005|publisher=Dover Publications|location=Mineola, N.Y.|isbn=0-486-44222-5|page=58|edition=Unabr. and unaltered republ.}}</ref>
== अतिपरवलय ज्यामिति के मॉडल में प्रतिनिधित्व ==
== अतिपरवलय ज्यामिति के मॉडल में प्रतिनिधित्व ==
[[File:Order-3 apeirogonal tiling one cell horocycle.png|thumb|[[क्रम-3 एपिरोगोनल टाइलिंग]], {∞, 3}, हाइपरबोलिक प्लेन को एपिरोगोन से भरता है, जिसके वर्टिकल होरोसाइक्लिक पथ के साथ मौजूद होते हैं।]]
[[File:Order-3 apeirogonal tiling one cell horocycle.png|thumb|[[क्रम-3 एपिरोगोनल टाइलिंग]], {∞, 3}, हाइपरबोलिक प्लेन को एपिरोगोन से भरता है, जिसके वर्टिकल होरोसाइक्लिक पथ के साथ मौजूद होते हैं।]]

Revision as of 19:12, 19 March 2023

Error creating thumbnail:
पॉइंकेयर डिस्क मॉडल में एक नीला कुंडली और कुछ लाल मानक। मानक ऊपरी केंद्रीय आदर्श बिंदु पर असमान रूप से अभिसरण करते हैं।

अतिपरवलीय ज्यामिति में, एक कुंडली (from Greek ὅριον (hórion) 'border', and κύκλος (kúklos) 'circle'), जिसे कभी-कभी ऑरिसाइकल, ऑरिसर्कल या सीमांत वृत्त कहा जाता है, एक वक्र है जिसके सामान्य या लंबवत भूगणितीय सभी एक ही दिशा में असम्बद्ध रूप से अभिसरित होते हैं। यह एक होरोस्फीयर (या ऑरिस्फीयर) की द्वि-आयामी स्थिति है।

कुंडली का केंद्र वह आदर्श बिंदु होता है जहां सभी सामान्य भूगर्भ विज्ञान स्पर्शोन्मुख रूप से अभिसरित होते हैं। एक ही केंद्र वाली दो कुंडली संकेन्द्री होती है। यद्यपि ऐसा प्रतीत होता है जैसे दो संकेंद्रित कुंडलियों की लंबाई या वक्रता समान नहीं हो सकती, लेकिन वास्तव में कोई भी दो कुंडली सर्वांगसम होती हैं।

कुंडली को उन वृत्तों की सीमाओ के रूप में भी वर्णित किया जा सकता है जो किसी दिए गए बिंदु में एक स्पर्शरेखा साझा करते हैं, क्योंकि उनकी त्रिज्या अनंत की ओर जाती है। यूक्लिडियन ज्यामिति में,ऐसा "अनंत त्रिज्या का वृत्त" एक सीधी रेखा होगी, लेकिन अतिपरवलय ज्यामिति में यह एक कुंडली (एक वृत्त) है।

उत्तल पक्ष से कुंडली को अतिचक्र द्वारा अनुमानित किया जाता है, जिनकी धुरी से दूरी अनंत की ओर जाती है।

गुण

* प्रत्येक बिंदु युग्म से 2 कुंडली बनती है। कुंडली के केंद्र उनके बीच के खंड के लंबवत द्विभाजक के आदर्श बिंदु हैं।

  • कुंडली के तीन बिन्दु एक रेखा, वृत्त या अतिचक्र पर नहीं होते हैं।
  • एक सीधी रेखा, वृत्त, अतिचक्र, या अन्य कुंडली एक कुंडली को अधिकतम दो बिंदुओं पर काटती है।
  • किसी कुंडली की जीवा का लंब समद्विभाजक कुंडली का अभिलंब होता है और यह जीवा द्वारा अंतरित चाप को समद्विभाजित करता है।
  • दो बिंदुओं के बीच कुंडली के एक चाप की लंबाई है,
उन दो बिंदुओं के बीच रेखा खंड की लंबाई से अधिक,
उन दो बिंदुओं के बीच अतिचक्र के चाप की लंबाई से अधिक और
उन दो बिंदुओं के बीच किसी भी वृत्त चाप की लंबाई से छोटा।
  • एक कुंडली से उसके केंद्र की दूरी अनंत होती है, और जबकि अतिपरवलयिक ज्यामिति के कुछ मॉडलों में ऐसा लगता है कि कुंडली के दो छोर एक साथ और करीब और उसके केंद्र के करीब हो जाते हैं, यह सच नहीं है, कुंडली के दो "सिरे" एक दूसरे से और दूर होते जाते हैं।
  • एक नियमित एपिरोगोन या तो कुंडली या अतिचक्र द्वारा परिचालित होता है।
  • यदि C कुंडली का केंद्र है और A और B कुंडली पर बिंदु हैं तो कोण CAB और CBA बराबर होते हैं।[1]
  • कुंडली के एक त्रिज्यखंड (दो त्रिज्या और कुंडली के बीच का क्षेत्र) का क्षेत्रफल परिमित होता है।[2]

मानकीकृत गाऊसी वक्रता

जब अतिपरवलयिक तल में -1 का मानकीकृत गाऊसी वक्रता K होता है,

  • दो बिंदुओं के बीच कुंडली के एक चाप की 'लंबाई' है
जहाँ d दो बिंदुओं के बीच की दूरी है, और sinh और cos अतिपरवलयिक फलन हैं।[3]
  • एक कुंडली के चाप की लंबाई इस प्रकार है कि एक छोर पर स्पर्शरेखा दूसरे छोर के माध्यम से त्रिज्या के समानांतर सीमित 1 है।।[4] इस कुंडली और त्रिज्या के बीच परिबद्ध क्षेत्र 1 है।[5]
  • दो संकेंद्रित कुंडलियों की दो त्रिज्याओं के बीच चाप की लंबाई का अनुपात जहां कुंडली एक दूसरे से 1 दूरी पर हैं, e (गणितीय स्थिरांक) : 1 है।[6]

अतिपरवलय ज्यामिति के मॉडल में प्रतिनिधित्व

Error creating thumbnail:
क्रम-3 एपिरोगोनल टाइलिंग, {∞, 3}, हाइपरबोलिक प्लेन को एपिरोगोन से भरता है, जिसके वर्टिकल होरोसाइक्लिक पथ के साथ मौजूद होते हैं।

पोंकारे डिस्क मॉडल

अतिपरवलय तल के पोनकारे डिस्क मॉडल में, कुंडली चक्रों को सीमा वृत्त के स्पर्शरेखा वृत्तों द्वारा दर्शाया जाता है; कुंडली का केंद्र वह आदर्श बिंदु है जहां कुंडली सीमा चक्र को छूती है।

दो बिंदुओं के माध्यम से दो होरोसाइकिलों का कम्पास और सीधा निर्माण एपोलोनियस की समस्या के विशेष मामलों के लिए सीपीपी निर्माण का एक ही निर्माण है जहां दोनों बिंदु सर्कल के अंदर हैं।

पोंकारे आधा विमान मॉडल

पोनकारे अर्ध-विमान मॉडल में, कुंडली चक्रों को सीमा रेखा पर स्पर्शरेखा द्वारा दर्शाया जाता है, इस मामले में उनका केंद्र आदर्श बिंदु होता है जहां वृत्त सीमा रेखा को छूता है।

जब कुंडली का केंद्र आदर्श बिंदु होता है तो कुंडली सीमा रेखा के समानांतर एक रेखा है।

पहले मामले में कंपास और सीधा किनारा निर्माण एपोलोनियस की समस्या के विशेष मामलों के लिए एलपीपी निर्माण के समान निर्माण है।

हाइपरबोलाइड मॉडल

हाइपरबोलाइड मॉडल में वे हाइपरबोलॉइड के चौराहों द्वारा प्रतिनिधित्व करते हैं, जिनके सामान्य स्पर्शोन्मुख शंकु में स्थित हैं।

मीट्रिक

यदि गॉसियन वक्रता −1 होने के लिए मीट्रिक को सामान्य किया जाता है, तो कुंडली प्रत्येक बिंदु पर जियोडेसिक वक्रता 1 का एक वक्र है।

यह भी देखें

File:Apolleangasket symmetry.png
अपोलोनियन गैसकेट में दिखाई देने वाले वृत्त जो बाहरी वृत्त के स्पर्शरेखा हैं, को पोनकारे डिस्क मॉडल में हॉरोसायकल माना जा सकता है

* राशिफल

  • हाइपर साइकिल (ज्यामिति)

संदर्भ

  1. Sossinsky, A.B. (2012). ज्यामिति. Providence, R.I.: American Mathematical Society. pp. 141–2. ISBN 9780821875711.
  2. Coxeter, H.S.M. (1998). गैर-यूक्लिडियन ज्यामिति (6. ed.). Washington, DC: Mathematical Assoc. of America. pp. 243–244. ISBN 978-0-88385-522-5.
  3. Smogorzhevsky (1976). लोबाचेवस्कियन ज्यामिति. Moscow: Mir. p. 65.
  4. Sommerville, D.M.Y. (2005). गैर-यूक्लिडियन ज्यामिति के तत्व (Unabr. and unaltered republ. ed.). Mineola, N.Y.: Dover Publications. p. 58. ISBN 0-486-44222-5.
  5. Coxeter, H.S.M. (1998). गैर-यूक्लिडियन ज्यामिति (6. ed.). Washington, DC: Mathematical Assoc. of America. p. 250. ISBN 978-0-88385-522-5.
  6. Sommerville, D.M.Y. (2005). गैर-यूक्लिडियन ज्यामिति के तत्व (Unabr. and unaltered republ. ed.). Mineola, N.Y.: Dover Publications. p. 58. ISBN 0-486-44222-5.