विभाज्य समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, विशेष रूप से [[समूह सिद्धांत]] के क्षेत्र में, विभाज्य समूह [[एबेलियन समूह]] होता है जिसमें प्रत्येक तत्व, किसी अर्थ में, सकारात्मक पूर्णांकों द्वारा विभाजित किया जा सकता है, या अधिक सही रूप से, प्रत्येक तत्व ''n'' गुणक होता है प्रत्येक धनात्मक पूर्णांक ''n'' एबेलियन समूहों की संरचना को समझने में विभाज्य समूह महत्वपूर्ण हैं, विशेष रूप से क्योंकि वे [[इंजेक्शन मॉड्यूल]] एबेलियन समूह हैं।  
गणित में, विशेष रूप से [[समूह सिद्धांत]] के क्षेत्र में, विभाज्य समूह [[एबेलियन समूह]] होता है जिसमें प्रत्येक तत्व, किसी अर्थ में, सकारात्मक पूर्णांकों द्वारा विभाजित किया जा सकता है, या अधिक सही रूप से, प्रत्येक तत्व प्रत्येक धनात्मक पूर्णांक n के लिए nवां गुणक होता है। विशेषकर, एबेलियन समूहों की संरचना को समझने में विभाज्य समूह महत्वपूर्ण हैं, क्योंकि वे [[इंजेक्शन मॉड्यूल|इंजेक्टिव]] एबेलियन समूह हैं। '''''n'' गुणक होता है प्रत्येक धनात्मक पूर्णांक ''n'' एबेलियन समूहों की संरचना को समझने में विभाज्य समूह महत्वपूर्ण हैं, विशेष रूप से क्योंकि वे [[इंजेक्शन मॉड्यूल|मॉड्यूल]] एबेलियन समूह हैं।'''


== परिभाषा ==
== परिभाषा ==


एबेलियन समूह <math>(G, +)</math> विभाज्य है अगर, हर सकारात्मक पूर्णांक के लिए <math>n</math> और हर <math>g \in G</math>, वहां उपस्थित <math>y \in G</math> ऐसा है कि <math>ny=g</math>.<ref>Griffith, p.6</ref> समतुल्य स्थिति है किसी भी सकारात्मक पूर्णांक के लिए <math>n</math>, <math>nG=G</math>, के अस्तित्व के बाद से <math>y</math> हर एक के लिए <math>n</math> और <math>g</math> इसका आशय है <math>n G\supseteq G</math>, और दूसरी दिशा <math>n G\subseteq G</math> प्रत्येक समूह के लिए सत्य है। तीसरी समान स्थिति यह है कि एबेलियन समूह <math>G</math> विभाज्य है अगर और केवल अगर <math>G</math> [[एबेलियन समूहों की श्रेणी]] में [[इंजेक्शन वस्तु]] है; इस कारण से, विभाज्य समूह को कभी-कभी अंतः क्षेपी समूह कहा जाता है।
एबेलियन समूह <math>(G, +)</math> विभाज्य है यदि, हर सकारात्मक पूर्णांक के लिए <math>n</math> और हर <math>g \in G</math>, वहां उपस्थित <math>y \in G</math> ऐसा है कि <math>ny=g</math>.<ref>Griffith, p.6</ref> समतुल्य स्थिति है किसी भी सकारात्मक पूर्णांक के लिए <math>n</math>, <math>nG=G</math>, के अस्तित्व के बाद से <math>y</math> हर एक के लिए <math>n</math> और <math>g</math> इसका आशय है <math>n G\supseteq G</math>, और दूसरी दिशा <math>n G\subseteq G</math> प्रत्येक समूह के लिए सत्य है। तीसरी समान स्थिति यह है कि एबेलियन समूह <math>G</math> विभाज्य है यदि और केवल यदि <math>G</math> [[एबेलियन समूहों की श्रेणी]] में [[इंजेक्शन वस्तु]] है; इस कारण से, विभाज्य समूह को कभी-कभी अंतः क्षेपी समूह कहा जाता है।


एबेलियन समूह है <math>p</math>- [[अभाज्य संख्या]] के लिए विभाज्य <math>p</math> यदि प्रत्येक के लिए <math>g \in G</math>, वहां उपस्थित <math>y \in G</math> ऐसा है कि <math>py=g</math>. समतुल्य रूप से, एबेलियन समूह है <math>p</math>-विभाज्य अगर और केवल अगर <math>pG=G</math>.
एबेलियन समूह है <math>p</math>- [[अभाज्य संख्या]] के लिए विभाज्य <math>p</math> यदि प्रत्येक के लिए <math>g \in G</math>, वहां उपस्थित <math>y \in G</math> ऐसा है कि <math>py=g</math>. समतुल्य रूप से, एबेलियन समूह है <math>p</math>-विभाज्य यदि और केवल यदि <math>pG=G</math>.


== उदाहरण ==
== उदाहरण ==
Line 22: Line 22:
* इसके अतिरिक्त, प्रत्येक एबेलियन समूह को विभाज्य समूह में अद्वितीय उपसमूह के रूप में अद्वितीय तरीके से एम्बेड किया जा सकता है।<ref>Griffith, p.19</ref>
* इसके अतिरिक्त, प्रत्येक एबेलियन समूह को विभाज्य समूह में अद्वितीय उपसमूह के रूप में अद्वितीय तरीके से एम्बेड किया जा सकता है।<ref>Griffith, p.19</ref>
* एबेलियन समूह विभाज्य है यदि और केवल यदि यह प्रत्येक अभाज्य p के लिए p-विभाज्य है।
* एबेलियन समूह विभाज्य है यदि और केवल यदि यह प्रत्येक अभाज्य p के लिए p-विभाज्य है।
* <math>A</math> एक अँगूठी अगर <math>T</math> विभाज्य समूह है, तो <math>\mathrm{Hom}_{\mathbf{Z}\text{-Mod}} (A,T)</math> की [[श्रेणी (गणित)]] में इंजेक्शन है और <math>A</math>-[[मॉड्यूल (गणित)]] है।<ref>Lang, p. 106</ref>
* <math>A</math> एक अँगूठी यदि <math>T</math> विभाज्य समूह है, तो <math>\mathrm{Hom}_{\mathbf{Z}\text{-Mod}} (A,T)</math> की [[श्रेणी (गणित)]] में इंजेक्शन है और <math>A</math>-[[मॉड्यूल (गणित)]] है।<ref>Lang, p. 106</ref>




Line 50: Line 50:
== कम एबेलियन समूह ==
== कम एबेलियन समूह ==


एबेलियन समूह को घटा हुआ कहा जाता है यदि इसका एकमात्र विभाज्य उपसमूह {0} है। प्रत्येक एबेलियन समूह विभाज्य उपसमूह और कम उपसमूह का प्रत्यक्ष योग है। वास्तव में, किसी भी समूह का अनूठा सबसे बड़ा विभाज्य उपसमूह होता है, और यह विभाज्य उपसमूह प्रत्यक्ष योग होता है।<ref>Griffith, p.7</ref> यह पूर्णांक जेड जैसे वंशानुगत छल्ले की विशेष विशेषता है: इंजेक्शन मॉड्यूल के मॉड्यूल का सीधा योग इंजेक्शन है क्योंकि अंगूठी [[नोथेरियन रिंग]] है, और इंजेक्शन के उद्धरण इंजेक्शन हैं क्योंकि अंगूठी वंशानुगत है, इसलिए इंजेक्शन मॉड्यूल द्वारा उत्पन्न कोई सबमिशन इंजेक्शन है। विलोम का परिणाम है {{harv|मैटलिस|1958}}: यदि प्रत्येक मॉड्यूल में अद्वितीय अधिकतम इंजेक्टिव सब मॉड्यूल होता है, तो रिंग वंशानुगत होती है।
एबेलियन समूह को घटा हुआ कहा जाता है यदि इसका एकमात्र विभाज्य उपसमूह {0} है। प्रत्येक एबेलियन समूह विभाज्य उपसमूह और कम उपसमूह का प्रत्यक्ष योग है। वास्तव में, किसी भी समूह का अनूठा सबसे बड़ा विभाज्य उपसमूह होता है, और यह विभाज्य उपसमूह प्रत्यक्ष योग होता है।<ref>Griffith, p.7</ref> यह पूर्णांक Z जैसे वंशानुगत छल्ले की विशेष विशेषता है: इंजेक्शन मॉड्यूल के मॉड्यूल का सीधा योग इंजेक्शन है क्योंकि [[नोथेरियन रिंग|रिंग]] [[नोथेरियन रिंग|नोथेरियन]]  है, और इंजेक्शन के अंश इंजेक्शन हैं क्योंकि रिंग वंशानुगत है, इसलिए इंजेक्शन मॉड्यूल द्वारा उत्पन्न कोई सबमिशन इंजेक्शन है। विलोम {{harv|मैटलिस|1958}} का परिणाम है : यदि प्रत्येक मॉड्यूल में अद्वितीय अधिकतम इंजेक्टिव सब मॉड्यूल होता है, तो रिंग वंशानुगत होती है।


उल्म के प्रमेय द्वारा गणनीय कम आवधिक एबेलियन समूहों का पूर्ण वर्गीकरण दिया गया है।
उल्म के प्रमेय द्वारा गणनीय कम आवधिक एबेलियन समूहों का पूर्ण वर्गीकरण दिया गया है।
Line 56: Line 56:
== सामान्यीकरण ==
== सामान्यीकरण ==


कई अलग-अलग परिभाषाएँ विभाज्य समूहों को विभाज्य मॉड्यूल के लिए सामान्यीकृत करती हैं। रिंग (गणित) R पर विभाज्य मॉड्यूल (गणित) ''M'' को परिभाषित करने के लिए साहित्य में निम्नलिखित परिभाषाओं का उपयोग किया गया है:
कई अलग-अलग परिभाषाएँ विभाज्य समूहों को विभाज्य मॉड्यूल के लिए सामान्यीकृत करती हैं। निम्नलिखित परिभाषाओं का उपयोग साहित्य में रिंग R पर विभाज्य मॉड्यूल ''M'' को परिभाषित करने के लिए किया गया है: '''रिंग (गणित) पर विभाज्य मॉड्यूल (गणित) को परिभाषित करने के लिए साहित्य में निम्नलिखित परिभाषाओं का उपयोग किया गया है:'''
# ''rM'' = ''M'' सभी अशून्य ''r'' के लिए ''R'' में।{{sfn|Feigelstock|2006}} (यह कभी-कभी आवश्यक होता है कि आर शून्य-भाजक नहीं है, और कुछ लेखक हैं{{sfn|Cartan|Eilenberg|1999}} के लिए आवश्यक है कि R [[डोमेन (रिंग थ्योरी)]] हो।)
# ''rM'' = ''M R'' सभी अशून्य ''r'' के लिए{{sfn|Feigelstock|2006}} (कभी-कभी यह आवश्यक होता है कि आर शून्य-भाजक नहीं है, और कुछ लेखकों{{sfn|Cartan|Eilenberg|1999}} की आवश्यकता है कि आर एक [[डोमेन (रिंग थ्योरी)|डोमेन)]] है। '''कि R शून्य-भाजक नहीं है, और कुछ लेखक हैं के लिए आवश्यक है कि   [[डोमेन (रिंग थ्योरी)|(रिंग थ्योरी)]] हो।)'''
# हर प्रमुख बाएं आइडियल (रिंग थ्योरी) Ra के लिए, Ra से M में कोई भी [[मॉड्यूल समरूपता]] R से M में होमोमोर्फिज्म तक फैला हुआ है।{{sfn|Lam|1999}}{{sfn|Nicholson|Yousif
# प्रत्येक प्रिंसिपल लेफ्ट आदर्श Ra के लिए, Ra से M तक कोई समरूपता R से M में [[मॉड्यूल समरूपता|समरूपता]] तक फैली हुई है।{{sfn|Lam|1999}}{{sfn|Nicholson|Yousif
|2003}} (इस प्रकार के विभाज्य मॉड्यूल को मुख्य रूप से इंजेक्टिव मॉड्यूल भी कहा जाता है।)
|2003}} (इस प्रकार के विभाज्य मॉड्यूल को मुख्यतः इंजेक्शन मॉड्यूल भी कहा जाता है।) '''हर प्रमुख बाएं आइडियल (रिंग थ्योरी)  के लिए, Ra से  में कोई भी [[मॉड्यूल समरूपता|मॉड्यूल]]  से  में होमोमोर्फिज्म तक फैला हुआ है। (इस प्रकार के विभाज्य मॉड्यूल को मुख्य रूप से इंजेक्टिव मॉड्यूल भी कहा जाता है।)'''
# हर [[अंतिम रूप से उत्पन्न मॉड्यूल]] के लिए R के आदर्श L को छोड़ दें, L से M में कोई भी समरूपता R से M में समरूपता तक फैली हुई है।
# '''हर  के लिए R के आदर्श L को छोड़ दें, L से M में कोई भी समरूपता R से M में समरूपता तक फैली हुई है।''' R के हर [[अंतिम रूप से उत्पन्न मॉड्यूल]] बायें आदर्श L के लिए, L से M में कोई भी समरूपता R से M में समरूपता तक फैली हुई है।


अंतिम दो शर्तें इंजेक्टिव मॉड्यूल के लिए बेयर की कसौटी के प्रतिबंधित संस्करण हैं। चूँकि अंतःक्षेपी बाएँ मॉड्यूल सभी बाएँ आदर्शों से R तक समरूपता का विस्तार करते हैं, अंतःक्षेपी मॉड्यूल स्पष्ट रूप से अर्थ 2 और 3 में विभाज्य हैं।
अंतिम दो शर्तें इंजेक्टिव मॉड्यूल के लिए बेयर की कसौटी के प्रतिबंधित संस्करण हैं। चूँकि अंतःक्षेपी बाएँ मॉड्यूल सभी बाएँ आदर्शों से R तक समरूपता का विस्तार करते हैं, अंतःक्षेपी मॉड्यूल स्पष्ट रूप से अर्थ 2 और 3 में विभाज्य हैं।


यदि R अतिरिक्त रूप से डोमेन है तो तीनों परिभाषाएँ मेल खाती हैं। यदि R प्रमुख बाएं आदर्श डोमेन है, तो विभाज्य मॉड्यूल इंजेक्शन मॉड्यूल के साथ मेल खाता है।{{sfn|Lam|1999|loc=p.70—73}} इस प्रकार पूर्णांक जेड की अंगूठी के स्थितियों में, जो प्रमुख आदर्श डोमेन है, जेड-मॉड्यूल (जो वास्तव में एबेलियन समूह है) विभाज्य है अगर और केवल अगर यह इंजेक्शन है।
यदि R अतिरिक्त रूप से डोमेन है तो तीनों परिभाषाएँ मेल खाती हैं। यदि R प्रमुख बाएं आदर्श डोमेन है, तो विभाज्य मॉड्यूल इंजेक्शन मॉड्यूल के साथ मेल खाता है।{{sfn|Lam|1999|loc=p.70—73}} इस प्रकार पूर्णांक Z की रिंग के स्थितियों में, जो प्रमुख आदर्श डोमेन है, Z-मॉड्यूल (जो वास्तव में एबेलियन समूह है) विभाज्य है यदि और केवल यदि यह इंजेक्शन है।


यदि R [[ क्रमविनिमेय अंगूठी |क्रमविनिमेय अंगूठी]] डोमेन है, तो इंजेक्टिव R मॉड्यूल विभाज्य R मॉड्यूल के साथ मेल खाता है अगर और केवल अगर R [[ डेडेकिंड डोमेन |डेडेकिंड डोमेन]] है।{{sfn|Lam|1999|loc=p.70—73}}
यदि R [[ क्रमविनिमेय अंगूठी |क्रमविनिमेय]] डोमेन है, तो इंजेक्टिव R मॉड्यूल विभाज्य R मॉड्यूल के साथ मेल खाता है यदि और केवल यदि R [[ डेडेकिंड डोमेन |डेडेकिंड डोमेन]] है।{{sfn|Lam|1999|loc=p.70—73}}


== यह भी देखें ==
== यह भी देखें ==

Revision as of 11:07, 17 March 2023

गणित में, विशेष रूप से समूह सिद्धांत के क्षेत्र में, विभाज्य समूह एबेलियन समूह होता है जिसमें प्रत्येक तत्व, किसी अर्थ में, सकारात्मक पूर्णांकों द्वारा विभाजित किया जा सकता है, या अधिक सही रूप से, प्रत्येक तत्व प्रत्येक धनात्मक पूर्णांक n के लिए nवां गुणक होता है। विशेषकर, एबेलियन समूहों की संरचना को समझने में विभाज्य समूह महत्वपूर्ण हैं, क्योंकि वे इंजेक्टिव एबेलियन समूह हैं। n गुणक होता है प्रत्येक धनात्मक पूर्णांक n एबेलियन समूहों की संरचना को समझने में विभाज्य समूह महत्वपूर्ण हैं, विशेष रूप से क्योंकि वे मॉड्यूल एबेलियन समूह हैं।

परिभाषा

एबेलियन समूह विभाज्य है यदि, हर सकारात्मक पूर्णांक के लिए और हर , वहां उपस्थित ऐसा है कि .[1] समतुल्य स्थिति है किसी भी सकारात्मक पूर्णांक के लिए , , के अस्तित्व के बाद से हर एक के लिए और इसका आशय है , और दूसरी दिशा प्रत्येक समूह के लिए सत्य है। तीसरी समान स्थिति यह है कि एबेलियन समूह विभाज्य है यदि और केवल यदि एबेलियन समूहों की श्रेणी में इंजेक्शन वस्तु है; इस कारण से, विभाज्य समूह को कभी-कभी अंतः क्षेपी समूह कहा जाता है।

एबेलियन समूह है - अभाज्य संख्या के लिए विभाज्य यदि प्रत्येक के लिए , वहां उपस्थित ऐसा है कि . समतुल्य रूप से, एबेलियन समूह है -विभाज्य यदि और केवल यदि .

उदाहरण

  • परिमेय संख्याएँ योग के तहत विभाज्य समूह बनाएं।
  • अधिक सामान्यतः, किसी भी सदिश स्थान का अंतर्निहित योगात्मक समूह विभाज्य है।
  • विभाज्य समूह का प्रत्येक भागफल समूह विभाज्य है। इस प्रकार, विभाज्य है।
  • पी-प्राथमिक घटक का , जो पी-क्वैसीसाइक्लिक समूह के लिए समूह समरूपता है , विभाज्य है।
  • सम्मिश्र संख्याओं का गुणक समूह विभाज्य है।
  • प्रत्येक अस्तित्वगत रूप से बंद एबेलियन समूह (मॉडल सिद्धांत के अर्थ में) विभाज्य है।

गुण

  • यदि विभाज्य समूह एबेलियन समूह का उपसमूह है तो यह उस एबेलियन समूह का प्रत्यक्ष योग है।[2]
  • प्रत्येक एबेलियन समूह को विभाज्य समूह में एम्बेडिंग किया जा सकता है।[3]
  • गैर-तुच्छ विभाज्य समूह अंतिम रूप से उत्पन्न एबेलियन समूह नहीं हैं।
  • इसके अतिरिक्त, प्रत्येक एबेलियन समूह को विभाज्य समूह में अद्वितीय उपसमूह के रूप में अद्वितीय तरीके से एम्बेड किया जा सकता है।[4]
  • एबेलियन समूह विभाज्य है यदि और केवल यदि यह प्रत्येक अभाज्य p के लिए p-विभाज्य है।
  • एक अँगूठी यदि विभाज्य समूह है, तो की श्रेणी (गणित) में इंजेक्शन है और -मॉड्यूल (गणित) है।[5]


विभाज्य समूहों की संरचना प्रमेय

माना G विभाज्य समूह है। तब G का मरोड़ उपसमूह Tor(G) विभाज्य है। चूंकि विभाज्य समूह इंजेक्शन मॉड्यूल है, Tor(G) G. का सीधा योग है

विभाज्य समूह के भागफल के रूप में, G/Tor(G) विभाज्य है। इसके अलावा, यह मरोड़ (बीजगणित) मरोड़-मुक्त है। इस प्रकार, यह 'Q' पर सदिश समष्टि है और इसलिए वहाँ समुच्चय का का अस्तित्व है

मरोड़ उपसमूह की संरचना निर्धारित करना कठिन है, लेकिन कोई दिखा सकता है[6][7] कि सभी अभाज्य संख्याओं p का अस्तित्व है ऐसा है कि

कहाँ टोर (G) का P-प्राथमिक घटक है।

इस प्रकार, यदि 'P' अभाज्य संख्याओं का समुच्चय है,

सेट I और Ip की कार्डिनैलिटीp p ∈ 'P' के लिए विशिष्ट रूप से समूह G द्वारा निर्धारित किया जाता है।

इंजेक्शन लिफाफा

जैसा कि ऊपर कहा गया है, किसी भी एबेलियन समूह A को विभाज्य समूह D में आवश्यक उपसमूह के रूप में विशिष्ट रूप से एम्बेड किया जा सकता है। यह विभाज्य समूह D A का 'इंजेक्शन लिफाफा' है, और यह अवधारणा एबेलियन समूहों की श्रेणी में इंजेक्शन उपसमूह है।

कम एबेलियन समूह

एबेलियन समूह को घटा हुआ कहा जाता है यदि इसका एकमात्र विभाज्य उपसमूह {0} है। प्रत्येक एबेलियन समूह विभाज्य उपसमूह और कम उपसमूह का प्रत्यक्ष योग है। वास्तव में, किसी भी समूह का अनूठा सबसे बड़ा विभाज्य उपसमूह होता है, और यह विभाज्य उपसमूह प्रत्यक्ष योग होता है।[8] यह पूर्णांक Z जैसे वंशानुगत छल्ले की विशेष विशेषता है: इंजेक्शन मॉड्यूल के मॉड्यूल का सीधा योग इंजेक्शन है क्योंकि रिंग नोथेरियन है, और इंजेक्शन के अंश इंजेक्शन हैं क्योंकि रिंग वंशानुगत है, इसलिए इंजेक्शन मॉड्यूल द्वारा उत्पन्न कोई सबमिशन इंजेक्शन है। विलोम (मैटलिस 1958) का परिणाम है : यदि प्रत्येक मॉड्यूल में अद्वितीय अधिकतम इंजेक्टिव सब मॉड्यूल होता है, तो रिंग वंशानुगत होती है।

उल्म के प्रमेय द्वारा गणनीय कम आवधिक एबेलियन समूहों का पूर्ण वर्गीकरण दिया गया है।

सामान्यीकरण

कई अलग-अलग परिभाषाएँ विभाज्य समूहों को विभाज्य मॉड्यूल के लिए सामान्यीकृत करती हैं। निम्नलिखित परिभाषाओं का उपयोग साहित्य में रिंग R पर विभाज्य मॉड्यूल M को परिभाषित करने के लिए किया गया है: रिंग (गणित) पर विभाज्य मॉड्यूल (गणित) को परिभाषित करने के लिए साहित्य में निम्नलिखित परिभाषाओं का उपयोग किया गया है:

  1. rM = M R सभी अशून्य r के लिए[9] (कभी-कभी यह आवश्यक होता है कि आर शून्य-भाजक नहीं है, और कुछ लेखकों[10] की आवश्यकता है कि आर एक डोमेन) है। कि R शून्य-भाजक नहीं है, और कुछ लेखक हैं के लिए आवश्यक है कि (रिंग थ्योरी) हो।)
  2. प्रत्येक प्रिंसिपल लेफ्ट आदर्श Ra के लिए, Ra से M तक कोई समरूपता R से M में समरूपता तक फैली हुई है।[11][12] (इस प्रकार के विभाज्य मॉड्यूल को मुख्यतः इंजेक्शन मॉड्यूल भी कहा जाता है।) हर प्रमुख बाएं आइडियल (रिंग थ्योरी) के लिए, Ra से में कोई भी मॉड्यूल से में होमोमोर्फिज्म तक फैला हुआ है। (इस प्रकार के विभाज्य मॉड्यूल को मुख्य रूप से इंजेक्टिव मॉड्यूल भी कहा जाता है।)
  3. हर के लिए R के आदर्श L को छोड़ दें, L से M में कोई भी समरूपता R से M में समरूपता तक फैली हुई है। R के हर अंतिम रूप से उत्पन्न मॉड्यूल बायें आदर्श L के लिए, L से M में कोई भी समरूपता R से M में समरूपता तक फैली हुई है।

अंतिम दो शर्तें इंजेक्टिव मॉड्यूल के लिए बेयर की कसौटी के प्रतिबंधित संस्करण हैं। चूँकि अंतःक्षेपी बाएँ मॉड्यूल सभी बाएँ आदर्शों से R तक समरूपता का विस्तार करते हैं, अंतःक्षेपी मॉड्यूल स्पष्ट रूप से अर्थ 2 और 3 में विभाज्य हैं।

यदि R अतिरिक्त रूप से डोमेन है तो तीनों परिभाषाएँ मेल खाती हैं। यदि R प्रमुख बाएं आदर्श डोमेन है, तो विभाज्य मॉड्यूल इंजेक्शन मॉड्यूल के साथ मेल खाता है।[13] इस प्रकार पूर्णांक Z की रिंग के स्थितियों में, जो प्रमुख आदर्श डोमेन है, Z-मॉड्यूल (जो वास्तव में एबेलियन समूह है) विभाज्य है यदि और केवल यदि यह इंजेक्शन है।

यदि R क्रमविनिमेय डोमेन है, तो इंजेक्टिव R मॉड्यूल विभाज्य R मॉड्यूल के साथ मेल खाता है यदि और केवल यदि R डेडेकिंड डोमेन है।[13]

यह भी देखें

  • इंजेक्शन वाली वस्तु
  • इंजेक्शन मॉड्यूल

टिप्पणियाँ

  1. Griffith, p.6
  2. Hall, p.197
  3. Griffith, p.17
  4. Griffith, p.19
  5. Lang, p. 106
  6. Kaplansky 1965.
  7. Fuchs 1970.
  8. Griffith, p.7
  9. Feigelstock 2006.
  10. Cartan & Eilenberg 1999.
  11. Lam 1999.
  12. Nicholson & Yousif 2003.
  13. 13.0 13.1 Lam 1999, p.70—73.


संदर्भ

  • Cartan, Henri; Eilenberg, Samuel (1999), Homological algebra, Princeton Landmarks in Mathematics, Princeton, NJ: Princeton University Press, pp. xvi+390, ISBN 0-691-04991-2, MR 1731415 With an appendix by David A. Buchsbaum; Reprint of the 1956 original
  • Feigelstock, Shalom (2006), "Divisible is injective", Soochow J. Math., 32 (2): 241–243, ISSN 0250-3255, MR 2238765
  • Griffith, Phillip A. (1970). Infinite Abelian group theory. Chicago Lectures in Mathematics. University of Chicago Press. ISBN 0-226-30870-7.
  • Hall, Marshall, jr (1959). The theory of groups. New York: Macmillan.{{cite book}}: CS1 maint: multiple names: authors list (link) Chapter 13.3.
  • Kaplansky, Irving (1965). Infinite Abelian Groups. University of Michigan Press.
  • Fuchs, László (1970). Infinite Abelian Groups Vol 1. Academic Press.
  • Lam, Tsit-Yuen (1999), Lectures on modules and rings, Graduate Texts in Mathematics No. 189, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-0525-8, ISBN 978-0-387-98428-5, MR 1653294
  • Serge Lang (1984). Algebra, Second Edition. Menlo Park, California: Addison-Wesley.
  • Matlis, Eben (1958). "Injective modules over Noetherian rings". Pacific Journal of Mathematics. 8: 511–528. doi:10.2140/pjm.1958.8.511. ISSN 0030-8730. MR 0099360.
  • Nicholson, W. K.; Yousif, M. F. (2003), Quasi-Frobenius rings, Cambridge Tracts in Mathematics, vol. 158, Cambridge: Cambridge University Press, pp. xviii+307, doi:10.1017/CBO9780511546525, ISBN 0-521-81593-2, MR 2003785