हाइड्रोडायनामिक स्थिरता: Difference between revisions
No edit summary |
No edit summary |
||
| (12 intermediate revisions by 6 users not shown) | |||
| Line 1: | Line 1: | ||
[[File:Laminar and turbulent flows.svg|thumb|417x417px | स्थिर प्रवाह से अशांत प्रवाह में संक्रमण का सरल आरेख। ए) स्थिर, बी) अशांत]] | |||
[[File:Laminar and turbulent flows.svg|thumb|417x417px | | [[द्रव गतिकी]] में, '''हाइड्रोडायनामिक स्थिरता''' वह क्षेत्र है जो स्थिरता का विश्लेषण करती है और द्रव प्रवाह की अस्थिरता का प्राारम्भ होता है। हाइड्रोडायनामिक स्थिरता के अध्ययन का उद्देश्य यह पता लगाना है कि कोई प्रवाह स्थिर है या अस्थिर, और यदि हां, तो ये अस्थिरताएं [[प्रक्षुब्ध (टर्बुलेन्स)]] के विकास का कारण कैसे बनेंगी।<ref name=p1>See Drazin (2002), ''Introduction to hydrodynamic stability''</ref> हाइड्रोडायनामिक स्थिरता की नींव, सैद्धांतिक और प्रायोगिक दोनों, उन्नीसवीं शताब्दी के दौरान हेल्महोल्ट्ज़, केल्विन, रेले और रेनॉल्ड्स द्वारा विशेष रूप से रखी गई थी।<ref name=p1/> हाइड्रोडायनामिक स्थिरता का अध्ययन करने के लिए इन नींवों ने कई उपयोगी उपकरण दिए हैं। इनमें रेनॉल्ड्स संख्या, यूलर समीकरण और नेवियर-स्टोक्स समीकरण शामिल हैं। प्रवाह स्थिरता का अध्ययन करते समय अधिक सरलीकृत प्रणालियों को समझना उपयोगी होता है, उदा। असंपीड्य और अदृश्य तरल पदार्थ जिन्हें बाद में और अधिक जटिल प्रवाह पर विकसित किया जा सकता है।<ref name=p1/> 1980 के दशक से, अधिक जटिल प्रवाहों के मॉडल और विश्लेषण के लिए अधिक कम्प्यूटेशनल विधियों का उपयोग किया जा रहा है। | ||
द्रव गतिकी में, हाइड्रोडायनामिक स्थिरता वह क्षेत्र है जो स्थिरता का विश्लेषण करती है और द्रव प्रवाह की अस्थिरता का प्राारम्भ होता है। हाइड्रोडायनामिक स्थिरता के अध्ययन का उद्देश्य यह पता लगाना है कि कोई प्रवाह स्थिर है या अस्थिर, और यदि हां, तो ये अस्थिरताएं | |||
== स्थिर और अस्थिर प्रवाह == | == स्थिर और अस्थिर प्रवाह == | ||
द्रव प्रवाह की विभिन्न अवस्थाओं के बीच अंतर करने के लिए किसी को इस बात पर विचार करना चाहिए कि प्रारंभिक अवस्था में किसी विक्षोभ के प्रति द्रव कैसे प्रतिक्रिया करता है।<ref name=p2>See Chandrasekhar (1961) "Hydrodynamic and Hydromagnetic stability"</ref>ये विक्षोभ प्रणाली के प्रारंभिक गुणों जैसे वेग, दबाव और घनत्व से संबंधित होगा। जेम्स क्लर्क मैक्सवेल ने स्थिर और अस्थिर प्रवाह की गुणात्मक अवधारणा को अच्छी तरह से व्यक्त किया जब उन्होंने कहा।<ref name=p1/> जब वर्तमान | द्रव प्रवाह की विभिन्न अवस्थाओं के बीच अंतर करने के लिए किसी को इस बात पर विचार करना चाहिए कि प्रारंभिक अवस्था में किसी विक्षोभ के प्रति द्रव कैसे प्रतिक्रिया करता है।<ref name=p2>See Chandrasekhar (1961) "Hydrodynamic and Hydromagnetic stability"</ref>ये विक्षोभ प्रणाली के प्रारंभिक गुणों जैसे [[वेग]], [[दबाव]] और [[घनत्व]] से संबंधित होगा। जेम्स क्लर्क मैक्सवेल ने स्थिर और अस्थिर प्रवाह की गुणात्मक अवधारणा को अच्छी तरह से व्यक्त किया जब उन्होंने कहा।<ref name=p1/> "जब वर्तमान अवस्था की एक असीम रूप से छोटी भिन्नता केवल एक असीम रूप से छोटी मात्रा में बदल जाएगी, तो भविष्य में अवस्था की स्थिति, चाहे वह आराम से हो या गति में, स्थिर कही जाती है, लेकिन जब स्थिति में एक असीम रूप से छोटी भिन्नता होती है वर्तमान स्थिति एक सीमित समय में प्रणाली की स्थिति में एक सीमित अंतर ला सकती है, तो प्रणाली को अस्थिर कहा जाता है।" इसका मतलब यह है कि एक स्थिर प्रवाह के लिए, किसी भी असीम रूप से छोटी भिन्नता, जिसे एक विक्षोभ माना जाता है, का प्रणाली की प्रारंभिक स्थिति पर कोई ध्यान देने योग्य प्रभाव नहीं होगा और अंततः समय के साथ समाप्त हो जाएगा।<ref name=p2/> एक द्रव प्रवाह को स्थिर माना जाने के लिए यह हर संभव विक्षोभ के संबंध में स्थिर होना चाहिए। इसका तात्पर्य यह है कि विक्षोभ का कोई भी तरीका मौजूद नहीं है जिसके लिए यह अस्थिर है।<ref name=p1/> | ||
इसका मतलब है कि एक स्थिर प्रवाह के लिए, किसी भी असीम रूप से छोटी भिन्नता, जिसे एक | |||
दूसरी ओर, एक अस्थिर प्रवाह के लिए, किसी भी भिन्नता का प्रणाली की स्थिति पर कुछ ध्यान देने योग्य प्रभाव होगा, जो तब विक्षोभ का आयाम में इस तरह से बढ़ने का कारण बनेगा कि सिस्टम उत्तरोत्तर प्रारंभिक अवस्था से हट जाता है और कभी वापस नहीं आता है।<ref name=p2/> इसका मतलब यह है कि कम से कम एक विक्षोभ है जिसके संबंध में प्रवाह अस्थिर है और विक्षोभ मौजूदा बल संतुलन को विकृत कर देगी।<ref name=p3>See V.Shankar – Department of Chemical Engineering IIT Kanpur (2014), "Introduction to hydrodynamic stability"</ref> | |||
== प्रवाह स्थिरता का निर्धारण == | == प्रवाह स्थिरता का निर्धारण == | ||
=== रेनॉल्ड्स संख्या === | === रेनॉल्ड्स संख्या === | ||
प्रवाह की स्थिरता को निर्धारित करने के लिए इस्तेमाल किया जाने वाला एक महत्वपूर्ण उपकरण रेनॉल्ड्स नंबर (आरई) है, जिसे पहली बार 1850 के दशक की प्रारम्भ में जॉर्ज गेब्रियल स्टोक्स ने आगे रखा था। 1880 के दशक के प्रारम्भ में इस विचार को और विकसित करने वाले ओसबोर्न रेनॉल्ड्स के साथ संबद्ध, यह आयामहीन संख्या जड़त्वीय शब्दों और श्यान शर्तों का अनुपात देती है।<ref name=p4>See J.Happel, H.Brenner (2009, 2nd edition) "Low Reynolds number hydrodynamics"</ref> एक भौतिक अर्थ में, यह संख्या उन बलों का अनुपात है जो तरल पदार्थ की गति (जड़त्वीय शर्तों) के कारण होते हैं, और बल जो प्रवाहित तरल पदार्थ (श्यान शर्तों) की विभिन्न परतों की सापेक्ष गति से उत्पन्न होते हैं। इसके लिए समीकरण है<ref name=p2/> | |||
: <math>R_e = \frac{\text{inertial}}{\text{viscous}} = \frac{\rho u^2}{\frac{\mu u}{L}} = \frac{\rho u L}{\mu} = \frac{u L}{\nu}</math> | : <math>R_e = \frac{\text{inertial}}{\text{viscous}} = \frac{\rho u^2}{\frac{\mu u}{L}} = \frac{\rho u L}{\mu} = \frac{u L}{\nu}</math> | ||
जहाँ, | |||
: <math>\rho = \text{density}</math> | : <math>\rho = \text{density}</math> | ||
: <math>\text{u} = \text{velocity of the fluid flow}</math> | : <math>\text{u} = \text{velocity of the fluid flow}</math> | ||
: <math>\mu = {\text{dynamic viscosity}}</math> - | : <math>\mu = {\text{dynamic viscosity}}</math> -अपरूपण प्रवाह के लिए द्रव प्रतिरोध को मापता है। | ||
:<math>\text{L} = \text{characteristic length}</math> | |||
: <math>\text{L} = \text{characteristic length}</math> | : <math>\nu = \text{kinematic viscosity} = \frac \mu \rho</math> - द्रव के घनत्व के लिए गतिशील श्यानता का अनुपात मापता है। | ||
: <math>\nu = \text{kinematic viscosity} = \frac \mu \rho</math> - द्रव के घनत्व के लिए गतिशील | |||
रेनॉल्ड्स संख्या उपयोगी है क्योंकि यह प्रवाह के स्थिर या अस्थिर होने पर सीमित अंक प्रदान कर सकता है, अर्थात् क्रांतिक रेनॉल्ड्स संख्या <math>R_c</math>। जैसे-जैसे यह बढ़ता है, एक विक्षोभ का आयाम जो तब अस्थिरता का कारण बन सकता है, छोटा होता जाता है।<ref name=p1/> उच्च रेनॉल्ड्स संख्या में यह सहमति है कि द्रव प्रवाह अस्थिर होगा। उच्च रेनॉल्ड्स संख्या में यह सहमति है कि द्रव प्रवाह अस्थिर होगा। उच्च रेनॉल्ड्स संख्या को कई तरीकों से प्राप्त किया जा सकता है, उदाहरण- यदि <math>\mu</math> एक छोटा मान है या यदि <math>\rho</math> तथा <math>\text{u}</math> उच्च मान हैं।<ref name=p2/> इसका मतलब है कि अस्थिरता लगभग तुरंत ही उत्पन्न हो जाएगी और प्रवाह अस्थिर या अशांत हो जाएगा।<ref name=p1/> | |||
=== | === नेवियर-स्टोक्स समीकरण और निरंतरता समीकरण === | ||
विश्लेषणात्मक रूप से | द्रव्य प्रवाह की स्थिरता का विश्लेषणात्मक रूप से पता लगाने के लिए, यह ध्यान रखना उपयोगी है कि हाइड्रोडायनामिक स्थिरता अन्य क्षेत्रों में स्थिरता के साथ बहुत समान है, जैसे कि मैग्नेटोहाइड्रोडायनामिक्स, प्लाज्मा भौतिकी और तन्यता। यद्यपि भौतिकी प्रत्येक मामले में भिन्न है, गणित और प्रयुक्त तकनीकें समान हैं। आवश्यक समस्या को गैर-रेखीय आंशिक अंतर समीकरणों द्वारा तैयार किया जाता है तथा ज्ञात स्थिर और अस्थिर समाधानों की स्थिरता की जांच की जाती है।<ref name=p1/> नेवियर-स्टोक्स समीकरण और निरंतरता समीकरण लगभग सभी हाइड्रोडायनामिक स्थिरता समस्याओं के लिए शासकीय समीकरण हैं। नेवियर-स्टोक्स समीकरण द्वारा दिया गया है।<ref name=p1/> | ||
: <math>\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} - \nu \,\nabla^2 \mathbf{u} = - \nabla p_0 + \mathbf{b}.</math> | : <math>\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} - \nu \,\nabla^2 \mathbf{u} = - \nabla p_0 + \mathbf{b}.</math> | ||
जहाँ, | |||
*<math>\mathbf{u} = {\text{velocity field of fluid}}</math> | *<math>\mathbf{u} = {\text{velocity field of fluid}}</math> | ||
| Line 40: | Line 35: | ||
*<math>\frac{\partial \mathbf{u}}{\partial t} = {\text{partial derivative of the velocity field with respect to time}}</math> | *<math>\frac{\partial \mathbf{u}}{\partial t} = {\text{partial derivative of the velocity field with respect to time}}</math> | ||
*<math>\nabla = \left( \frac{\partial}{\partial x},\frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)</math> | *<math>\nabla = \left( \frac{\partial}{\partial x},\frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)</math> | ||
यहां <math>\nabla</math> समीकरण के | यहां <math>\nabla</math> का उपयोग एक ऑपरेटर के रूप में किया जा रहा है जो समीकरण के बाईं ओर वेग क्षेत्र पर कार्य कर रहा है और फिर दाहिनी ओर दबाव पर कार्य कर रहा है। | ||
और निरंतरता समीकरण द्वारा दिया गया है | और निरंतरता समीकरण द्वारा दिया गया है- | ||
: <math>\frac{D \mathbf{\rho}}{Dt} + \rho \,\nabla \cdot \mathbf{u}=0</math> | : <math>\frac{D \mathbf{\rho}}{Dt} + \rho \,\nabla \cdot \mathbf{u}=0</math> | ||
जहाँ, | |||
*<math>\frac{D \mathbf{\rho}}{Dt} = {\text{material derivative of the density}}</math> | *<math>\frac{D \mathbf{\rho}}{Dt} = {\text{material derivative of the density}}</math> | ||
एक बार फिर <math>\nabla</math> | एक बार फिर <math>\nabla</math>को <math>\mathbf{u}</math> पर एक ऑपरेटर के तौर पर इस्तेमाल किया जा रहा है और वेग के विचलन की गणना कर रहा है। | ||
लेकिन | लेकिन यदि माना जा रहा द्रव असंपीड्य है, जिसका अर्थ है कि घनत्व स्थिर है, तो <math>\frac{D \mathbf{\rho}}{Dt}=0</math> और इसलिए- | ||
: <math>\nabla \cdot \mathbf{u} = 0</math> | : <math>\nabla \cdot \mathbf{u} = 0</math> | ||
यह धारणा कि | यह धारणा कि प्रवाह असंपीड्य है, एक अच्छा है और अधिकांश गति से यात्रा करने वाले अधिकांश तरल पदार्थों पर लागू होता है। यह इस रूप की धारणाएं हैं जो नेवियर-स्टोक्स समीकरण को विभेदक समीकरणों में सरल बनाने में मदद करेंगी, जैसे कि यूलर का समीकरण, जिसके साथ काम करना आसान है। | ||
=== यूलर का समीकरण === | === यूलर का समीकरण === | ||
यदि कोई | यदि कोई प्रवाह पर विचार करता है जो अस्पष्ट है, तो यह वह जगह है जहां श्यान बल छोटे होते हैं और इसलिए गणना में उपेक्षित किया जा सकता है तो एक यूलर के समीकरणों पर आता है। | ||
: <math>\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p_0</math> | : <math>\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p_0</math> | ||
यद्यपि इस मामले में हमने एक | यद्यपि इस मामले में हमने एक अदृश्य तरल पदार्थ ग्रहण किया है, यह धारणा उन प्रवाहों के लिए मान्य नही है जहां एक सीमा है। एक सीमा की उपस्थिति सीमा परत पर कुछ श्यानता का कारण बनती है जिसे उपेक्षित नहीं किया जा सकता है और एक नेवियर-स्टोक्स समीकरण पर वापस आ जाता है। विभिन्न परिस्थितियों में इन शासकीय समीकरणों के समाधान खोजना और उनकी स्थिरता का निर्धारण करना ही द्रव प्रवाह की स्थिरता को निर्धारित करने का मूल सिद्धांत है। | ||
=== रैखिक स्थिरता विश्लेषण === | === रैखिक स्थिरता विश्लेषण === | ||
यह निर्धारित करने के लिए कि | यह निर्धारित करने के लिए कि प्रवाह स्थिर है या अस्थिर है, अक्सर एक रैखिक स्थिरता विश्लेषण की विधि को नियोजित करता है। इस प्रकार के विश्लेषण में, शासकीय समीकरण और सीमा की स्थिति रैखिक होती है। यह इस तथ्य पर आधारित है कि 'स्थिर' या 'अस्थिर' की अवधारणा एक असीम रूप से छोटे विक्षोभ पर आधारित है। ऐसे विक्षोभों के लिए, यह मान लेना उचित है कि विभिन्न तरंगदैर्घ्य के विक्षोभ स्वतंत्र रूप से विकसित होते हैं। (एक गैर-रेखीय शासकीय समीकरण विभिन्न तरंग दैर्ध्य के विक्षोभ को एक दूसरे के साथ परस्पर क्रिया करने की अनुमति देगा।) | ||
== प्रवाह स्थिरता का विश्लेषण == | == प्रवाह स्थिरता का विश्लेषण == | ||
यह भी देखें: [[ऑर-सोमरफेल्ड समीकरण]] और [[रेले का समीकरण]] | |||
=== द्विभाजन सिद्धांत === | === द्विभाजन सिद्धांत === | ||
द्विभाजन सिद्धांत किसी दिए गए प्रवाह की स्थिरता का अध्ययन करने का एक उपयोगी तरीका है, किसी | द्विभाजन सिद्धांत किसी दिए गए प्रवाह की स्थिरता का अध्ययन करने का एक उपयोगी तरीका है, जिसमें किसी प्रणाली की संरचना में होने वाले परिवर्तन होते हैं। हाइड्रोडायनामिक स्थिरता विभेदक समीकरणों और उनके समाधानों की एक श्रृंखला है। द्विभाजन तब होता है जब प्रणाली के मापदंडों में एक छोटा सा परिवर्तन उसके व्यवहार में गुणात्मक परिवर्तन का कारण बनता है।<ref name=p1/> हाइड्रोडायनामिक स्थिरता के मामले में जो पैरामीटर बदला जा रहा है वह रेनॉल्ड्स संख्या है। यह दिखाया जा सकता है कि द्विभाजन की घटना अस्थिरता की घटना के अनुरूप होती है।<ref name=p1/> | ||
=== प्रयोगशाला और कम्प्यूटेशनल प्रयोग === | === प्रयोगशाला और कम्प्यूटेशनल प्रयोग === | ||
अधिक जटिल गणितीय तकनीकों का उपयोग किए बिना किसी दिए गए प्रवाह के बारे में जानकारी प्राप्त करने के लिए प्रयोगशाला प्रयोग एक बहुत ही उपयोगी तरीका है। कभी-कभी समय के साथ प्रवाह में परिवर्तन को भौतिक रूप से देखना एक संख्यात्मक दृष्टिकोण के समान ही उपयोगी होता है और इन प्रयोगों के किसी भी निष्कर्ष को अंतर्निहित सिद्धांत से संबंधित किया जा सकता है। प्रायोगिक विश्लेषण भी उपयोगी है क्योंकि यह किसी को बहुत आसानी से शासकीय मापदंडों को बदलने की अनुमति देता है और उनका प्रभाव दिखाई देगा। | |||
द्विभाजन सिद्धांत और कमजोर अरेखीय सिद्धांत जैसे अधिक जटिल गणितीय सिद्धांतों के साथ व्यवहार करते समय, ऐसी समस्याओं को संख्यात्मक रूप से हल करना बहुत कठिन और समय लेने वाला हो जाता है, लेकिन कंप्यूटर की मदद से यह प्रक्रिया बहुत आसान और तेज हो जाती है। 1980 के दशक के बाद से कम्प्यूटेशनल विश्लेषण अधिक से अधिक उपयोगी हो गया है, एल्गोरिदम का सुधार जो शासकीय समीकरणों को हल कर सकता है, जैसे कि नेवियर-स्टोक्स समीकरण, का अर्थ है कि उन्हें विभिन्न प्रकार के प्रवाह के लिए अधिक सटीक रूप से एकीकृत किया जा सकता है। | |||
== अनुप्रयोग == | == अनुप्रयोग == | ||
=== केल्विन -हेल्महोल्ट्ज़ अस्थिरता === | === केल्विन -हेल्महोल्ट्ज़ अस्थिरता === | ||
[[File:Kelvin Helmholz wave clouds.jpg|thumb|383x383px | | [[File:Kelvin Helmholz wave clouds.jpg|thumb|383x383px|This is an image, captured in San Francisco, which shows the "ocean wave" like pattern associated with the Kelvin–Helmholtz instability forming in clouds.]] | ||
केल्विन-हेल्महोल्ट्ज़ अस्थिरता (केएचआई) हाइड्रोडायनामिक स्थिरता का एक अनुप्रयोग है जिसे प्रकृति में देखा जा सकता है। यह तब होता है जब दो तरल पदार्थ अलग-अलग वेग से बहते हैं। द्रवों के वेग में अंतर के कारण दो परतों के अंतरापृष्ठ पर अपरूपण वेग उत्पन्न हो जाता है।<ref name=p3/> एक तरल पदार्थ की गति का अपरूपण वेग दूसरे पर एक अपरूपण प्रतिबल उत्पन्न करता है, जो यदि निरोधात्मक सतह तनाव से अधिक है, तो उनके बीच अंतरापृष्ठ के साथ एक अस्थिरता उत्पन्न होती है।<ref name=p3/> यह गति केल्विन-हेल्महोल्ट्ज़ अस्थिरता की एक विशेषता, उलट समुद्री लहरों की एक श्रृंखला की उपस्थिति का कारण बनती है। वास्तव में, स्पष्ट समुद्र की लहर जैसी प्रकृति भंवर गठन का एक उदाहरण है, जो तब बनती है जब कोई द्रव किसी अक्ष के चारों ओर घूमता है, और अक्सर इस घटना से जुड़ा होता है। | |||
केल्विन-हेल्महोल्ट्ज़ अस्थिरता को शनि और बृहस्पति जैसे ग्रहों के वातावरण में बैंड में देखा जा सकता है, उदाहरण के लिए विशाल लाल धब्बे भंवर में। विशाल लाल धब्बे के आस-पास के वातावरण में केएचआई का सबसे बड़ा उदाहरण है जो बृहस्पति के वायुमंडल की विभिन्न परतों के अंतरापृष्ठ पर अपरूपण बल के कारण जाना जाता और होता है। ऐसी कई छवियां ली गई हैं, जहां पहले चर्चा की गई समुद्र-लहर जैसी विशेषताओं को स्पष्ट रूप से देखा जा सकता है, जिसमें कम से कम चार अपरूपण परतें दिखाई देती हैं।<ref name= p7>See the Astrophysical journal letters, volume 729, no. 1 (2009), Magnetic Kelvin–Helmholtz instability at the Sun </ref> | |||
पानी के बड़े पिंडों पर हवा की गति को मापने के लिए मौसम उपग्रह इस अस्थिरता का लाभ उठाते हैं। लहरें हवा से उत्पन्न होती हैं, जो पानी को अपने और आसपास की हवा के बीच इंटरफेस में बहा देती है। उपग्रहों पर लगे कंप्यूटर लहर की ऊंचाई को मापकर समुद्र की खुरदरापन का निर्धारण करते हैं। यह रडार का उपयोग करके किया जाता है, जहां एक रेडियो सिग्नल सतह पर प्रेषित होता है और परावर्तित सिग्नल से देरी दर्ज की जाती है, जिसे "उड़ान का समय" कहा जाता है। इससे मौसम विज्ञानी बादलों की गति और उनके निकट अपेक्षित वायु विक्षोभ को समझने में सक्षम होते हैं। | |||
=== रेले -टेलर अस्थिरता === | |||
[[File:Model of the initiation of termination of a Rayleigh-Taylor instability in 2D.gif|thumb|420px|यह दो द्रवों के बीच होने वाली रेले-टेलर अस्थिरता का 2डी मॉडल है। इस मॉडल में लाल द्रव पदार्थ - प्रारम्भ में शीर्ष पर, और बाद में नीचे - अधिक घने द्रव पदार्थ का प्रतिनिधित्व करता है और नीला द्रव पदार्थ कम घने द्रव पदार्थ का प्रतिनिधित्व करता है।]] | |||
रेले-टेलर अस्थिरता हाइड्रोडायनामिक स्थिरता का एक और अनुप्रयोग है और यह दो तरल पदार्थों के बीच भी होता है लेकिन इस बार तरल पदार्थों का घनत्व भिन्न होता है।<ref name="p5">See J.Oakley (2004), "Rayleigh–Taylor instability notes"</ref> घनत्व में अंतर के कारण, दो तरल पदार्थ अपनी संयुक्त संभावित ऊर्जा को कम करने का प्रयास करेंगे।<ref name="p6">See A.W.Cook, D.Youngs (2009), "Rayleigh–Taylor instability and mixing"</ref> कम घना द्रव ऊपर की ओर बल लगाने की कोशिश करके ऐसा करेगा, और अधिक घना द्रव नीचे की ओर अपना रास्ता बनाने की कोशिश करेगा।<ref name="p5" /> इसलिए, दो संभावनाएं हैं- यदि हल्का द्रव शीर्ष पर है, तो अंतरापृष्ठ को स्थिर कहा जाता है, लेकिन यदि भारी द्रव शीर्ष पर है, तो प्रणाली का संतुलन अंतरापृष्ठ के किसी भी विक्षोभ के लिए अस्थिर है। अगर ऐसा है तो दोनों तरल पदार्थ मिश्रित होने लगेंगे।<ref name="p5" /> एक बार जब भारी द्रव की एक छोटी मात्रा को हल्के तरल पदार्थ की समान मात्रा के साथ नीचे की ओर विस्थापित कर दिया जाता है, तो संभावित ऊर्जा अब प्रारंभिक अवस्था से कम हो जाती है,<ref name="p6" /> इसलिए विक्षोभ बढ़ेगा और रेले-टेलर अस्थिरताओं से जुड़े विक्षोभ प्रवाह को जन्म देगा।<ref name="p5" /> | |||
इस घटना को क्रैब नेबुला जैसे तारे के बीच की गैस में देखा जा सकता है। इसे चुंबकीय क्षेत्र और ब्रह्मांडीय किरणों द्वारा मंदाकिनीय समतल से बाहर धकेल दिया जाता है और फिर रेले-टेलर अस्थिर हो जाता है यदि इसे इसकी सामान्य पैमाने की ऊंचाई से आगे धकेल दिया जाए।<ref name="p5" /> यह अस्थिरता नाभिकीय बम विस्फोट के बाद बने बादल की भी व्याख्या करती है जो ज्वालामुखी विस्फोट और परमाणु बम जैसी प्रक्रियाओं में बनता है। | |||
रेले - | |||
रेले-टेलर अस्थिरता का पृथ्वी की जलवायु पर बड़ा प्रभाव पड़ता है। ग्रीनलैंड और आइसलैंड के तट से आने वाली हवाएं समुद्र की सतह के वाष्पीकरण का कारण बनती हैं, जिस पर वे गुजरते हैं, सतह के पास समुद्र के पानी की लवणता को बढ़ाते हैं, और सतह के पास पानी को सघन बनाते हैं। यह तब पिच्छ उत्पन्न करता है जो समुद्र की धाराओं को चलाते हैं। यह प्रक्रिया एक ऊष्मा पम्प के रूप में कार्य करती है, जो गर्म भूमध्यरेखीय जल को उत्तर की ओर ले जाती है। समुद्र के अपवर्तन के बिना, उत्तरी यूरोप को तापमान में भारी गिरावट का सामना करना पड़ सकता है।<ref name="p5" /> | |||
== यह भी देखें == | == यह भी देखें == | ||
*हाइड्रोडायनामिक अस्थिरताओं की सूची | *हाइड्रोडायनामिक अस्थिरताओं की सूची | ||
* | *लैमिनार–अशांत संक्रमण | ||
*प्लाज्मा स्थिरता | *प्लाज्मा स्थिरता | ||
* | *स्क्वॉयर की प्रमेय | ||
*टेलर - | *टेलर-कूएट प्रवाह | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
| Line 122: | Line 118: | ||
*{{cite web | url=http://camtools.cam.ac.uk/access/wiki/site/c273ad86-91fe-46f8-0023-1b87d4b7eeb6/home.html | title=Advanced Instability Methods (AIM) Network | publisher=various authors | accessdate=12 May 2013 | archive-url=https://web.archive.org/web/20150221222141/https://camtools.cam.ac.uk/access/wiki/site/c273ad86-91fe-46f8-0023-1b87d4b7eeb6/home.html | archive-date=21 February 2015 | url-status=dead }} | *{{cite web | url=http://camtools.cam.ac.uk/access/wiki/site/c273ad86-91fe-46f8-0023-1b87d4b7eeb6/home.html | title=Advanced Instability Methods (AIM) Network | publisher=various authors | accessdate=12 May 2013 | archive-url=https://web.archive.org/web/20150221222141/https://camtools.cam.ac.uk/access/wiki/site/c273ad86-91fe-46f8-0023-1b87d4b7eeb6/home.html | archive-date=21 February 2015 | url-status=dead }} | ||
*{{Cite web|url = http://home.iitk.ac.in/~vshankar/files/VShankar_Stability_Intro.pdf|title = Introduction to Hydrodynamic stability|date = 2014|accessdate = 31 October 2015|website = |publisher = Department of Mathematics, IIT Kanpur|last = Shankar|first = V}} | *{{Cite web|url = http://home.iitk.ac.in/~vshankar/files/VShankar_Stability_Intro.pdf|title = Introduction to Hydrodynamic stability|date = 2014|accessdate = 31 October 2015|website = |publisher = Department of Mathematics, IIT Kanpur|last = Shankar|first = V}} | ||
[[Category: | [[Category:Machine Translated Page]] | ||
[[Category: | [[Category:CS1 maint]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:द्रव की गतिशीलता]] | |||
Latest revision as of 10:03, 4 August 2022
द्रव गतिकी में, हाइड्रोडायनामिक स्थिरता वह क्षेत्र है जो स्थिरता का विश्लेषण करती है और द्रव प्रवाह की अस्थिरता का प्राारम्भ होता है। हाइड्रोडायनामिक स्थिरता के अध्ययन का उद्देश्य यह पता लगाना है कि कोई प्रवाह स्थिर है या अस्थिर, और यदि हां, तो ये अस्थिरताएं प्रक्षुब्ध (टर्बुलेन्स) के विकास का कारण कैसे बनेंगी।[1] हाइड्रोडायनामिक स्थिरता की नींव, सैद्धांतिक और प्रायोगिक दोनों, उन्नीसवीं शताब्दी के दौरान हेल्महोल्ट्ज़, केल्विन, रेले और रेनॉल्ड्स द्वारा विशेष रूप से रखी गई थी।[1] हाइड्रोडायनामिक स्थिरता का अध्ययन करने के लिए इन नींवों ने कई उपयोगी उपकरण दिए हैं। इनमें रेनॉल्ड्स संख्या, यूलर समीकरण और नेवियर-स्टोक्स समीकरण शामिल हैं। प्रवाह स्थिरता का अध्ययन करते समय अधिक सरलीकृत प्रणालियों को समझना उपयोगी होता है, उदा। असंपीड्य और अदृश्य तरल पदार्थ जिन्हें बाद में और अधिक जटिल प्रवाह पर विकसित किया जा सकता है।[1] 1980 के दशक से, अधिक जटिल प्रवाहों के मॉडल और विश्लेषण के लिए अधिक कम्प्यूटेशनल विधियों का उपयोग किया जा रहा है।
स्थिर और अस्थिर प्रवाह
द्रव प्रवाह की विभिन्न अवस्थाओं के बीच अंतर करने के लिए किसी को इस बात पर विचार करना चाहिए कि प्रारंभिक अवस्था में किसी विक्षोभ के प्रति द्रव कैसे प्रतिक्रिया करता है।[2]ये विक्षोभ प्रणाली के प्रारंभिक गुणों जैसे वेग, दबाव और घनत्व से संबंधित होगा। जेम्स क्लर्क मैक्सवेल ने स्थिर और अस्थिर प्रवाह की गुणात्मक अवधारणा को अच्छी तरह से व्यक्त किया जब उन्होंने कहा।[1] "जब वर्तमान अवस्था की एक असीम रूप से छोटी भिन्नता केवल एक असीम रूप से छोटी मात्रा में बदल जाएगी, तो भविष्य में अवस्था की स्थिति, चाहे वह आराम से हो या गति में, स्थिर कही जाती है, लेकिन जब स्थिति में एक असीम रूप से छोटी भिन्नता होती है वर्तमान स्थिति एक सीमित समय में प्रणाली की स्थिति में एक सीमित अंतर ला सकती है, तो प्रणाली को अस्थिर कहा जाता है।" इसका मतलब यह है कि एक स्थिर प्रवाह के लिए, किसी भी असीम रूप से छोटी भिन्नता, जिसे एक विक्षोभ माना जाता है, का प्रणाली की प्रारंभिक स्थिति पर कोई ध्यान देने योग्य प्रभाव नहीं होगा और अंततः समय के साथ समाप्त हो जाएगा।[2] एक द्रव प्रवाह को स्थिर माना जाने के लिए यह हर संभव विक्षोभ के संबंध में स्थिर होना चाहिए। इसका तात्पर्य यह है कि विक्षोभ का कोई भी तरीका मौजूद नहीं है जिसके लिए यह अस्थिर है।[1]
दूसरी ओर, एक अस्थिर प्रवाह के लिए, किसी भी भिन्नता का प्रणाली की स्थिति पर कुछ ध्यान देने योग्य प्रभाव होगा, जो तब विक्षोभ का आयाम में इस तरह से बढ़ने का कारण बनेगा कि सिस्टम उत्तरोत्तर प्रारंभिक अवस्था से हट जाता है और कभी वापस नहीं आता है।[2] इसका मतलब यह है कि कम से कम एक विक्षोभ है जिसके संबंध में प्रवाह अस्थिर है और विक्षोभ मौजूदा बल संतुलन को विकृत कर देगी।[3]
प्रवाह स्थिरता का निर्धारण
रेनॉल्ड्स संख्या
प्रवाह की स्थिरता को निर्धारित करने के लिए इस्तेमाल किया जाने वाला एक महत्वपूर्ण उपकरण रेनॉल्ड्स नंबर (आरई) है, जिसे पहली बार 1850 के दशक की प्रारम्भ में जॉर्ज गेब्रियल स्टोक्स ने आगे रखा था। 1880 के दशक के प्रारम्भ में इस विचार को और विकसित करने वाले ओसबोर्न रेनॉल्ड्स के साथ संबद्ध, यह आयामहीन संख्या जड़त्वीय शब्दों और श्यान शर्तों का अनुपात देती है।[4] एक भौतिक अर्थ में, यह संख्या उन बलों का अनुपात है जो तरल पदार्थ की गति (जड़त्वीय शर्तों) के कारण होते हैं, और बल जो प्रवाहित तरल पदार्थ (श्यान शर्तों) की विभिन्न परतों की सापेक्ष गति से उत्पन्न होते हैं। इसके लिए समीकरण है[2]
जहाँ,
- -अपरूपण प्रवाह के लिए द्रव प्रतिरोध को मापता है।
- - द्रव के घनत्व के लिए गतिशील श्यानता का अनुपात मापता है।
रेनॉल्ड्स संख्या उपयोगी है क्योंकि यह प्रवाह के स्थिर या अस्थिर होने पर सीमित अंक प्रदान कर सकता है, अर्थात् क्रांतिक रेनॉल्ड्स संख्या । जैसे-जैसे यह बढ़ता है, एक विक्षोभ का आयाम जो तब अस्थिरता का कारण बन सकता है, छोटा होता जाता है।[1] उच्च रेनॉल्ड्स संख्या में यह सहमति है कि द्रव प्रवाह अस्थिर होगा। उच्च रेनॉल्ड्स संख्या में यह सहमति है कि द्रव प्रवाह अस्थिर होगा। उच्च रेनॉल्ड्स संख्या को कई तरीकों से प्राप्त किया जा सकता है, उदाहरण- यदि एक छोटा मान है या यदि तथा उच्च मान हैं।[2] इसका मतलब है कि अस्थिरता लगभग तुरंत ही उत्पन्न हो जाएगी और प्रवाह अस्थिर या अशांत हो जाएगा।[1]
नेवियर-स्टोक्स समीकरण और निरंतरता समीकरण
द्रव्य प्रवाह की स्थिरता का विश्लेषणात्मक रूप से पता लगाने के लिए, यह ध्यान रखना उपयोगी है कि हाइड्रोडायनामिक स्थिरता अन्य क्षेत्रों में स्थिरता के साथ बहुत समान है, जैसे कि मैग्नेटोहाइड्रोडायनामिक्स, प्लाज्मा भौतिकी और तन्यता। यद्यपि भौतिकी प्रत्येक मामले में भिन्न है, गणित और प्रयुक्त तकनीकें समान हैं। आवश्यक समस्या को गैर-रेखीय आंशिक अंतर समीकरणों द्वारा तैयार किया जाता है तथा ज्ञात स्थिर और अस्थिर समाधानों की स्थिरता की जांच की जाती है।[1] नेवियर-स्टोक्स समीकरण और निरंतरता समीकरण लगभग सभी हाइड्रोडायनामिक स्थिरता समस्याओं के लिए शासकीय समीकरण हैं। नेवियर-स्टोक्स समीकरण द्वारा दिया गया है।[1]
जहाँ,
यहां का उपयोग एक ऑपरेटर के रूप में किया जा रहा है जो समीकरण के बाईं ओर वेग क्षेत्र पर कार्य कर रहा है और फिर दाहिनी ओर दबाव पर कार्य कर रहा है।
और निरंतरता समीकरण द्वारा दिया गया है-
जहाँ,
एक बार फिर को पर एक ऑपरेटर के तौर पर इस्तेमाल किया जा रहा है और वेग के विचलन की गणना कर रहा है।
लेकिन यदि माना जा रहा द्रव असंपीड्य है, जिसका अर्थ है कि घनत्व स्थिर है, तो और इसलिए-
यह धारणा कि प्रवाह असंपीड्य है, एक अच्छा है और अधिकांश गति से यात्रा करने वाले अधिकांश तरल पदार्थों पर लागू होता है। यह इस रूप की धारणाएं हैं जो नेवियर-स्टोक्स समीकरण को विभेदक समीकरणों में सरल बनाने में मदद करेंगी, जैसे कि यूलर का समीकरण, जिसके साथ काम करना आसान है।
यूलर का समीकरण
यदि कोई प्रवाह पर विचार करता है जो अस्पष्ट है, तो यह वह जगह है जहां श्यान बल छोटे होते हैं और इसलिए गणना में उपेक्षित किया जा सकता है तो एक यूलर के समीकरणों पर आता है।
यद्यपि इस मामले में हमने एक अदृश्य तरल पदार्थ ग्रहण किया है, यह धारणा उन प्रवाहों के लिए मान्य नही है जहां एक सीमा है। एक सीमा की उपस्थिति सीमा परत पर कुछ श्यानता का कारण बनती है जिसे उपेक्षित नहीं किया जा सकता है और एक नेवियर-स्टोक्स समीकरण पर वापस आ जाता है। विभिन्न परिस्थितियों में इन शासकीय समीकरणों के समाधान खोजना और उनकी स्थिरता का निर्धारण करना ही द्रव प्रवाह की स्थिरता को निर्धारित करने का मूल सिद्धांत है।
रैखिक स्थिरता विश्लेषण
यह निर्धारित करने के लिए कि प्रवाह स्थिर है या अस्थिर है, अक्सर एक रैखिक स्थिरता विश्लेषण की विधि को नियोजित करता है। इस प्रकार के विश्लेषण में, शासकीय समीकरण और सीमा की स्थिति रैखिक होती है। यह इस तथ्य पर आधारित है कि 'स्थिर' या 'अस्थिर' की अवधारणा एक असीम रूप से छोटे विक्षोभ पर आधारित है। ऐसे विक्षोभों के लिए, यह मान लेना उचित है कि विभिन्न तरंगदैर्घ्य के विक्षोभ स्वतंत्र रूप से विकसित होते हैं। (एक गैर-रेखीय शासकीय समीकरण विभिन्न तरंग दैर्ध्य के विक्षोभ को एक दूसरे के साथ परस्पर क्रिया करने की अनुमति देगा।)
प्रवाह स्थिरता का विश्लेषण
यह भी देखें: ऑर-सोमरफेल्ड समीकरण और रेले का समीकरण
द्विभाजन सिद्धांत
द्विभाजन सिद्धांत किसी दिए गए प्रवाह की स्थिरता का अध्ययन करने का एक उपयोगी तरीका है, जिसमें किसी प्रणाली की संरचना में होने वाले परिवर्तन होते हैं। हाइड्रोडायनामिक स्थिरता विभेदक समीकरणों और उनके समाधानों की एक श्रृंखला है। द्विभाजन तब होता है जब प्रणाली के मापदंडों में एक छोटा सा परिवर्तन उसके व्यवहार में गुणात्मक परिवर्तन का कारण बनता है।[1] हाइड्रोडायनामिक स्थिरता के मामले में जो पैरामीटर बदला जा रहा है वह रेनॉल्ड्स संख्या है। यह दिखाया जा सकता है कि द्विभाजन की घटना अस्थिरता की घटना के अनुरूप होती है।[1]
प्रयोगशाला और कम्प्यूटेशनल प्रयोग
अधिक जटिल गणितीय तकनीकों का उपयोग किए बिना किसी दिए गए प्रवाह के बारे में जानकारी प्राप्त करने के लिए प्रयोगशाला प्रयोग एक बहुत ही उपयोगी तरीका है। कभी-कभी समय के साथ प्रवाह में परिवर्तन को भौतिक रूप से देखना एक संख्यात्मक दृष्टिकोण के समान ही उपयोगी होता है और इन प्रयोगों के किसी भी निष्कर्ष को अंतर्निहित सिद्धांत से संबंधित किया जा सकता है। प्रायोगिक विश्लेषण भी उपयोगी है क्योंकि यह किसी को बहुत आसानी से शासकीय मापदंडों को बदलने की अनुमति देता है और उनका प्रभाव दिखाई देगा।
द्विभाजन सिद्धांत और कमजोर अरेखीय सिद्धांत जैसे अधिक जटिल गणितीय सिद्धांतों के साथ व्यवहार करते समय, ऐसी समस्याओं को संख्यात्मक रूप से हल करना बहुत कठिन और समय लेने वाला हो जाता है, लेकिन कंप्यूटर की मदद से यह प्रक्रिया बहुत आसान और तेज हो जाती है। 1980 के दशक के बाद से कम्प्यूटेशनल विश्लेषण अधिक से अधिक उपयोगी हो गया है, एल्गोरिदम का सुधार जो शासकीय समीकरणों को हल कर सकता है, जैसे कि नेवियर-स्टोक्स समीकरण, का अर्थ है कि उन्हें विभिन्न प्रकार के प्रवाह के लिए अधिक सटीक रूप से एकीकृत किया जा सकता है।
अनुप्रयोग
केल्विन -हेल्महोल्ट्ज़ अस्थिरता
केल्विन-हेल्महोल्ट्ज़ अस्थिरता (केएचआई) हाइड्रोडायनामिक स्थिरता का एक अनुप्रयोग है जिसे प्रकृति में देखा जा सकता है। यह तब होता है जब दो तरल पदार्थ अलग-अलग वेग से बहते हैं। द्रवों के वेग में अंतर के कारण दो परतों के अंतरापृष्ठ पर अपरूपण वेग उत्पन्न हो जाता है।[3] एक तरल पदार्थ की गति का अपरूपण वेग दूसरे पर एक अपरूपण प्रतिबल उत्पन्न करता है, जो यदि निरोधात्मक सतह तनाव से अधिक है, तो उनके बीच अंतरापृष्ठ के साथ एक अस्थिरता उत्पन्न होती है।[3] यह गति केल्विन-हेल्महोल्ट्ज़ अस्थिरता की एक विशेषता, उलट समुद्री लहरों की एक श्रृंखला की उपस्थिति का कारण बनती है। वास्तव में, स्पष्ट समुद्र की लहर जैसी प्रकृति भंवर गठन का एक उदाहरण है, जो तब बनती है जब कोई द्रव किसी अक्ष के चारों ओर घूमता है, और अक्सर इस घटना से जुड़ा होता है।
केल्विन-हेल्महोल्ट्ज़ अस्थिरता को शनि और बृहस्पति जैसे ग्रहों के वातावरण में बैंड में देखा जा सकता है, उदाहरण के लिए विशाल लाल धब्बे भंवर में। विशाल लाल धब्बे के आस-पास के वातावरण में केएचआई का सबसे बड़ा उदाहरण है जो बृहस्पति के वायुमंडल की विभिन्न परतों के अंतरापृष्ठ पर अपरूपण बल के कारण जाना जाता और होता है। ऐसी कई छवियां ली गई हैं, जहां पहले चर्चा की गई समुद्र-लहर जैसी विशेषताओं को स्पष्ट रूप से देखा जा सकता है, जिसमें कम से कम चार अपरूपण परतें दिखाई देती हैं।[5]
पानी के बड़े पिंडों पर हवा की गति को मापने के लिए मौसम उपग्रह इस अस्थिरता का लाभ उठाते हैं। लहरें हवा से उत्पन्न होती हैं, जो पानी को अपने और आसपास की हवा के बीच इंटरफेस में बहा देती है। उपग्रहों पर लगे कंप्यूटर लहर की ऊंचाई को मापकर समुद्र की खुरदरापन का निर्धारण करते हैं। यह रडार का उपयोग करके किया जाता है, जहां एक रेडियो सिग्नल सतह पर प्रेषित होता है और परावर्तित सिग्नल से देरी दर्ज की जाती है, जिसे "उड़ान का समय" कहा जाता है। इससे मौसम विज्ञानी बादलों की गति और उनके निकट अपेक्षित वायु विक्षोभ को समझने में सक्षम होते हैं।
रेले -टेलर अस्थिरता
रेले-टेलर अस्थिरता हाइड्रोडायनामिक स्थिरता का एक और अनुप्रयोग है और यह दो तरल पदार्थों के बीच भी होता है लेकिन इस बार तरल पदार्थों का घनत्व भिन्न होता है।[6] घनत्व में अंतर के कारण, दो तरल पदार्थ अपनी संयुक्त संभावित ऊर्जा को कम करने का प्रयास करेंगे।[7] कम घना द्रव ऊपर की ओर बल लगाने की कोशिश करके ऐसा करेगा, और अधिक घना द्रव नीचे की ओर अपना रास्ता बनाने की कोशिश करेगा।[6] इसलिए, दो संभावनाएं हैं- यदि हल्का द्रव शीर्ष पर है, तो अंतरापृष्ठ को स्थिर कहा जाता है, लेकिन यदि भारी द्रव शीर्ष पर है, तो प्रणाली का संतुलन अंतरापृष्ठ के किसी भी विक्षोभ के लिए अस्थिर है। अगर ऐसा है तो दोनों तरल पदार्थ मिश्रित होने लगेंगे।[6] एक बार जब भारी द्रव की एक छोटी मात्रा को हल्के तरल पदार्थ की समान मात्रा के साथ नीचे की ओर विस्थापित कर दिया जाता है, तो संभावित ऊर्जा अब प्रारंभिक अवस्था से कम हो जाती है,[7] इसलिए विक्षोभ बढ़ेगा और रेले-टेलर अस्थिरताओं से जुड़े विक्षोभ प्रवाह को जन्म देगा।[6]
इस घटना को क्रैब नेबुला जैसे तारे के बीच की गैस में देखा जा सकता है। इसे चुंबकीय क्षेत्र और ब्रह्मांडीय किरणों द्वारा मंदाकिनीय समतल से बाहर धकेल दिया जाता है और फिर रेले-टेलर अस्थिर हो जाता है यदि इसे इसकी सामान्य पैमाने की ऊंचाई से आगे धकेल दिया जाए।[6] यह अस्थिरता नाभिकीय बम विस्फोट के बाद बने बादल की भी व्याख्या करती है जो ज्वालामुखी विस्फोट और परमाणु बम जैसी प्रक्रियाओं में बनता है।
रेले-टेलर अस्थिरता का पृथ्वी की जलवायु पर बड़ा प्रभाव पड़ता है। ग्रीनलैंड और आइसलैंड के तट से आने वाली हवाएं समुद्र की सतह के वाष्पीकरण का कारण बनती हैं, जिस पर वे गुजरते हैं, सतह के पास समुद्र के पानी की लवणता को बढ़ाते हैं, और सतह के पास पानी को सघन बनाते हैं। यह तब पिच्छ उत्पन्न करता है जो समुद्र की धाराओं को चलाते हैं। यह प्रक्रिया एक ऊष्मा पम्प के रूप में कार्य करती है, जो गर्म भूमध्यरेखीय जल को उत्तर की ओर ले जाती है। समुद्र के अपवर्तन के बिना, उत्तरी यूरोप को तापमान में भारी गिरावट का सामना करना पड़ सकता है।[6]
यह भी देखें
- हाइड्रोडायनामिक अस्थिरताओं की सूची
- लैमिनार–अशांत संक्रमण
- प्लाज्मा स्थिरता
- स्क्वॉयर की प्रमेय
- टेलर-कूएट प्रवाह
टिप्पणियाँ
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 See Drazin (2002), Introduction to hydrodynamic stability
- ↑ 2.0 2.1 2.2 2.3 2.4 See Chandrasekhar (1961) "Hydrodynamic and Hydromagnetic stability"
- ↑ 3.0 3.1 3.2 See V.Shankar – Department of Chemical Engineering IIT Kanpur (2014), "Introduction to hydrodynamic stability"
- ↑ See J.Happel, H.Brenner (2009, 2nd edition) "Low Reynolds number hydrodynamics"
- ↑ See the Astrophysical journal letters, volume 729, no. 1 (2009), Magnetic Kelvin–Helmholtz instability at the Sun
- ↑ 6.0 6.1 6.2 6.3 6.4 6.5 See J.Oakley (2004), "Rayleigh–Taylor instability notes"
- ↑ 7.0 7.1 See A.W.Cook, D.Youngs (2009), "Rayleigh–Taylor instability and mixing"
संदर्भ
- Drazin, P.G. (2002), Introduction to hydrodynamic stability, Cambridge University Press, ISBN 978-0-521-00965-2
- Chandrasekhar, S. (1961), Hydrodynamic and hydromagnetic stability, Dover, ISBN 978-0-486-64071-6
- Charru, F. (2011), Hydrodynamic instabilities, Cambridge University Press, ISBN 978-1139500548
- Godreche, C.; Manneville, P., eds. (1998), Hydrodynamics and nonlinear instabilities, Cambridge University Press, ISBN 978-0521455039
- Lin, C.C. (1966), The theory of hydrodynamic stability (corrected ed.), Cambridge University Press, OCLC 952854
- Swinney, H.L.; Gollub, J.P. (1985), Hydrodynamic instabilities and the transition to turbulence (2nd ed.), Springer, ISBN 978-3-540-13319-3
- Happel, J.; Brenner, H. (2009), Low Reynolds number hydrodynamics (2nd ed.), ISBN 978-9024728770
- Foias, C.; Manley, O.; Rosa, R.; Teman, R. (2001), Navier–Stokes equations and turbulence, Cambridge University Press, ISBN 978-8126509430
- Panton, R.L. (2006), Incompressible Flow (3rd ed.), Wiley India, ISBN 978-8126509430
- Johnson, Jay R.; Wing, Simon; Delamere, Peter A. (2014), "Kelvin–Helmholtz instability in planetary magnetospheres", Space Science Reviews, 184 (1–4): 1–31, Bibcode:2014SSRv..184....1J, doi:10.1007/s11214-014-0085-z
बाहरी संबंध
- "Flow instabilities". National Committee for Fluid Mechanics Films (NCFMF). Retrieved 9 March 2009.
- "Advanced Instability Methods (AIM) Network". various authors. Archived from the original on 21 February 2015. Retrieved 12 May 2013.
- Shankar, V (2014). "Introduction to Hydrodynamic stability" (PDF). Department of Mathematics, IIT Kanpur. Retrieved 31 October 2015.
