ऊर्जा स्तर: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Different states of quantum systems }} {{Use American English|date=January 2019}}thumb|right| [[ परमाणु में...")
 
No edit summary
 
(26 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Short description|Different states of quantum systems
[[Image:Energy levels.svg|thumb|right| एक [[:hi:परमाणु|परमाणु]] में एक [[:hi:इलेक्ट्रॉन|इलेक्ट्रॉन]] के लिए ऊर्जा स्तर: जमीनी अवस्था और [[:hi:उत्साहित राज्य|उत्तेजित अवस्थाएँ]] [[:hi:ऊर्जा|ऊर्जा]] को अवशोषित करने के बाद, एक इलेक्ट्रॉन जमीनी अवस्था से उच्च ऊर्जा उत्तेजित अवस्था में "कूद" सकता है। ]][[:hi:प्रमात्रा यान्त्रिकी|क्वांटम यांत्रिक]] प्रणाली या [[:hi:कण|कण]] जो [[:hi:बाध्य अवस्था|बाध्य]] है और स्थानिक रूप से सीमित है केवल ऊर्जा के कुछ असतत मूल्यों को ही ले सकता है, जिसे '''ऊर्जा स्तर''' कहा जाता है। यह [[:hi:चिरसम्मत यांत्रिकी|शास्त्रीय]] कणों के विपरीत है, जिसमें किसी भी मात्रा में ऊर्जा हो सकती है। यह शब्द आमतौर पर [[:hi:परमाणु|परमाणुओं]], [[:hi:आयन|आयनों]], या [[:hi:अणु|अणुओं]] में [[:hi:इलेक्ट्रॉन|इलेक्ट्रॉनों]] के ऊर्जा स्तरों के लिए उपयोग किया जाता है, जो [[:hi:परमाणु नाभिक|नाभिक]] के विद्युत क्षेत्र से बंधे होते हैं, लेकिन अणुओं के ऊर्जा स्तर या अणुओं में [[:hi:आणविक कंपन|कंपन]] या घूर्णी ऊर्जा स्तरों को भी ये संदर्भित कर सकते हैं। इस तरह के असतत ऊर्जा स्तरों वाले सिस्टम के ऊर्जा स्पेक्ट्रम को [[:hi:क्वांटीकरण (भौतिकी)|मात्राबद्ध]] कहा जाता है।
}}
{{Use American English|date=January 2019}}[[Image:Energy levels.svg|thumb|right| [[ परमाणु ]] में [[ इलेक्ट्रॉन ]] के लिए ऊर्जा स्तर: जमीनी अवस्था और [[ उत्तेजित अवस्था ]] एस।  [[ ऊर्जा ]] को अवशोषित करने के बाद, एक इलेक्ट्रॉन जमीनी अवस्था से उच्च ऊर्जा उत्तेजित अवस्था में कूद सकता है। ]]  
{{Quantum mechanics|cTopic=Fundamental concepts}}
एक  [[ क्वांटम यांत्रिकी | क्वांटम यांत्रिक ]] प्रणाली या [[ कण ]] जो [[ बाध्य अवस्था | बाध्य ]] है - जो कि स्थानिक रूप से सीमित है - केवल ऊर्जा के कुछ असतत मूल्यों को ले सकता है, जिसे ''' ऊर्जा स्तर ''' कहा जाता है। यह [[ शास्त्रीय यांत्रिकी | शास्त्रीय ]] कणों के विपरीत है, जिसमें ऊर्जा की कोई भी मात्रा हो सकती है। यह शब्द आमतौर पर [[ परमाणु ]] एस, [[ आयन ]] एस, या [[ अणु ]] एस में [[ इलेक्ट्रॉन ]] एस के ऊर्जा स्तरों के लिए उपयोग किया जाता है, जो [[ परमाणु नाभिक | नाभिक ]] के विद्युत क्षेत्र से बंधे होते हैं, लेकिन कर सकते हैं नाभिक के ऊर्जा स्तर या [[ आणविक कंपन | कंपन ]] या अणुओं में घूर्णी ऊर्जा स्तरों को भी देखें। इस तरह के असतत ऊर्जा स्तरों वाले सिस्टम के ऊर्जा स्पेक्ट्रम को [[ क्वांटिज़ेशन (भौतिकी) | मात्रा ]] कहा जाता है।


[[ रसायन शास्त्र ]] और [[ परमाणु भौतिकी ]] में, एक इलेक्ट्रॉन खोल, या प्रमुख ऊर्जा स्तर, [[ परमाणु ]] के [[ परमाणु नाभिक | नाभिक ]] के आसपास एक या अधिक [[ इलेक्ट्रॉनों ]] की [[ कक्षा ]] के रूप में सोचा जा सकता है। नाभिक के सबसे निकट के कोश को कहते हैं{{serif|1}} शेल (जिसे K शेल भी कहा जाता है), उसके बाद{{serif|2}} खोल (या एल खोल ), तो{{serif|3}} खोल (या एम खोल), और इसी तरह नाभिक से दूर और दूर। गोले [[ प्रमुख क्वांटम संख्या ]] एस (''एन'' = 1, 2, 3, 4 ...) के अनुरूप हैं या [[ एक्स-रे नोटेशन ]] (के, एल, एम) में प्रयुक्त अक्षरों के साथ वर्णानुक्रम में लेबल किए गए हैं। , एन...)।
[[:hi:रसायन विज्ञान|रसायन विज्ञान]] और [[:hi:परमाणु भौतिकी|परमाणु भौतिकी]] में, एक इलेक्ट्रॉन कोश, या प्रमुख ऊर्जा स्तर, [[:hi:परमाणु|परमाणु]] के [[:hi:परमाणु नाभिक|नाभिक]] के चारों ओर एक या एक से अधिक [[:hi:इलेक्ट्रॉन|इलेक्ट्रॉनों]] की [[:hi:कक्षा (भौतिकी)|कक्षा]] के रूप में माना जा सकता है। नाभिक के सबसे निकटतम कोश को "1 शेल" (जिसे "K शेल" भी कहा जाता है), इसके बाद " 2 शेल" (या "L शेल"), फिर " 3 शेल" (या "M शेल") होता है, और इसी तरह नाभिक से दूर और दूर गोले [[:hi:मुख्य क्वांटम संख्या|प्रमुख क्वांटम संख्याओं]] के अनुरूप होते हैं ( ''n'' = 1, 2, 3, 4 ...) या [[:hi:एक्स-रे संकेतन|एक्स-रे नोटेशन]] (के, एल, एम,) में प्रयुक्त अक्षरों के साथ वर्णानुक्रम में लेबल किए जाते हैं।


प्रत्येक शेल में केवल एक निश्चित संख्या में इलेक्ट्रॉन हो सकते हैं: पहला शेल दो इलेक्ट्रॉनों को धारण कर सकता है, दूसरा शेल आठ (2 + 6) इलेक्ट्रॉनों को धारण कर सकता है, तीसरा शेल 18 (2 + 6 + 10) तक हो सकता है। ) और इसी तरह। सामान्य सूत्र यह है कि ''n''th शेल सिद्धांत रूप में 2 [[ वर्ग संख्या | ''n''<sup>2</sup> ]] इलेक्ट्रॉनों को धारण कर सकता है<ref name="madsci">[http://www.madsci.org/posts/archives/1999-03/921736624.Ch.r.html पुन: इलेक्ट्रॉन गोले की सीमा क्यों निर्धारित की जाती है?] madsci.org, 17 मार्च 1999, डैन बर्जर, संकाय रसायन विज्ञान /विज्ञान, ब्लफटन कॉलेज</ref> चूंकि इलेक्ट्रॉन [[ इलेक्ट्रोस्टैटिक क्षेत्र हैं | विद्युत रूप से ]] को नाभिक की ओर आकर्षित करते हैं, एक परमाणु के इलेक्ट्रॉन आमतौर पर बाहरी कोश पर कब्जा करेंगे, यदि अधिक आंतरिक कोश पहले से ही अन्य इलेक्ट्रॉनों द्वारा पूरी तरह से भर चुके हों। हालांकि, यह सख्त आवश्यकता नहीं है: परमाणुओं में दो या तीन अपूर्ण बाहरी कोश भी हो सकते हैं। (अधिक विवरण के लिए देखें  [[ मैडेलंग नियम ]]) इन कोशों में इलेक्ट्रॉन क्यों मौजूद हैं, इसकी व्याख्या के लिए [[ इलेक्ट्रॉन विन्यास ]] देखें।<ref name="corrosionsource.com">[http://www.corrosionsource.com/handbook/periodic/e_subshells.htm इलेक्ट्रॉन सबशेल्स]। संक्षारण स्रोत। 1 दिसंबर 2011 को लिया गया</ref>
प्रत्येक शेल में केवल एक निश्चित संख्या में इलेक्ट्रॉन हो सकते हैं - पहला शेल दो इलेक्ट्रॉनों को धारण कर सकता है, दूसरा शेल आठ (2 + 6) इलेक्ट्रॉनों को धारण कर सकता है, तीसरा शेल 18 (2 + 6 + 10) तक हो सकता है। और इसी तरह सामान्य सूत्र यह है कि एन वें शेल सिद्धांत के रूप में 2 [[:hi:वर्ग संख्या|''n'' <sup>2</sup>]] इलेक्ट्रॉनों को धारण कर सकता है। <ref name="madsci2">[http://www.madsci.org/posts/archives/1999-03/921736624.Ch.r.html Re: Why do electron shells have set limits ?] madsci.org, 17 March 1999, Dan Berger, Faculty Chemistry/Science, Bluffton College</ref> चूंकि इलेक्ट्रॉन [[:hi:विद्युत्-क्षेत्र|विद्युत रूप से नाभिक की ओर आकर्षित]] होते हैं, एक परमाणु के इलेक्ट्रॉन आमतौर पर बाहरी कोशों पर तभी कब्जा करेंगे, जब आंतरिक कोश पहले से ही अन्य इलेक्ट्रॉनों द्वारा पूरी तरह से भर दिए गए हों। हालांकि, इसकी आवश्यकता नहीं है, परमाणुओं में दो या तीन अपूर्ण बाहरी कोश भी हो सकते हैं। (अधिक जानकारी के लिए [[:hi:आफबाऊ सिद्धान्त|मैडेलुंग नियम]] देखें। ) इन कोशों में इलेक्ट्रॉन क्यों मौजूद हैं, इसकी व्याख्या के लिए [[:hi:इलेक्ट्रॉन विन्यास|इलेक्ट्रॉन विन्यास]] देखें। <ref name="corrosionsource.com2">[http://www.corrosionsource.com/handbook/periodic/e_subshells.htm Electron Subshells]. Corrosion Source. Retrieved on 1 December 2011.</ref>


यदि [[ स्थितिज ऊर्जा ]] को परमाणु नाभिक या अणु से [[ अनंत | अनंत ]] दूरी पर शून्य पर सेट किया जाता है, तो [[ बाध्य अवस्थाएं | बाध्य इलेक्ट्रॉन अवस्था ]] में नकारात्मक स्थितिज ऊर्जा होती है।
यदि [[:hi:स्थितिज ऊर्जा|स्थितिज ऊर्जा]] को परमाणु नाभिक या अणु से [[:hi:अनंत|अनंत]] दूरी पर शून्य पर सेट किया जाता है, तो सामान्य परिपाटी, [[:hi:बाध्य राज्य|बाध्य इलेक्ट्रॉन अवस्थाओं]] में नकारात्मक स्थितिज ऊर्जा उत्पन्न होती है।


यदि कोई परमाणु, आयन या अणु न्यूनतम संभव ऊर्जा स्तर पर है, तो उसे और उसके इलेक्ट्रॉनों को '' [[ ग्राउंड स्टेट ]]'' में कहा जाता है। यदि यह उच्च ऊर्जा स्तर पर है, तो इसे '' [[ उत्तेजित अवस्था | उत्तेजित ]]'' कहा जाता है, या कोई भी इलेक्ट्रॉन जिसमें जमीनी अवस्था से अधिक ऊर्जा होती है, वह ''उत्तेजित'' होता है। एक ऊर्जा स्तर को [[ पतित ऊर्जा स्तर | पतित ]] के रूप में माना जाता है यदि इसके साथ एक से अधिक मापने योग्य क्वांटम यांत्रिक [[ क्वांटम अवस्था | राज्य ]] जुड़ा हो।
यदि कोई परमाणु, आयन या अणु न्यूनतम संभव ऊर्जा स्तर पर है, तो इसे और इसके इलेक्ट्रॉनों को निम्नतम अवस्था कहा जाता है। यदि यह उच्च ऊर्जा स्तर पर है, तो इसे ''[[:hi:उत्साहित राज्य|उत्तेजित]]'' कहा जाता है, या कोई भी इलेक्ट्रॉन जिसमें निम्नतम अवस्था से अधिक ऊर्जा होती है, ''उत्साहित'' कहा जाता हैं। एक ऊर्जा स्तर को [[:hi:ऊर्जा के स्तर को कम करना|पतित]] माना जाता है यदि इसके साथ एक से अधिक मापने योग्य क्वांटम यांत्रिक [[:hi:क्वांटम अवस्था|अवस्थाएं]] जुड़ी हो।


== स्पष्टीकरण ==
== स्पष्टीकरण ==
[[File:Hydrogen Density Plots.png|thumb| [[ हाइड्रोजन ]] परमाणु का  [[ तरंगफलन ]] एस, नाभिक के चारों ओर अंतरिक्ष में इलेक्ट्रॉन को खोजने की संभावना को दर्शाता है। प्रत्येक स्थिर अवस्था परमाणु के एक विशिष्ट ऊर्जा स्तर को परिभाषित करती है। ]]
[[File:Hydrogen Density Plots.png|thumb| एक [[:hi:हाइड्रोजन|हाइड्रोजन]] परमाणु के [[:hi:wave function|तरंग]] कार्य, नाभिक के चारों ओर अंतरिक्ष में इलेक्ट्रॉन के मिलने की प्रायिकता को दर्शाता है। प्रत्येक स्थिर अवस्था परमाणु के एक विशिष्ट ऊर्जा स्तर को परिभाषित करती है। ]]
मात्राबद्ध ऊर्जा का स्तर कणों के तरंग व्यवहार से उत्पन्न होता है, जो एक कण की ऊर्जा और इसकी  [[ तरंग दैर्ध्य ]] के बीच संबंध देता है। [[ परमाणु ]] में  [[ इलेक्ट्रॉन ]] जैसे एक सीमित कण के लिए, [[ तरंग फ़ंक्शन ]] एस जिसमें अच्छी तरह से परिभाषित ऊर्जा होती है, में [[ स्थायी तरंग ]] का रूप होता है<ref name="Tipler">{{cite book
मात्राबद्ध ऊर्जा का स्तर कणों के तरंग व्यवहार से उत्पन्न होता है, जो कण की ऊर्जा और उसकी [[:hi:तरंगदैर्घ्य|तरंग दैर्ध्य]] के बीच संबंध स्थापित करता है। सीमित कण के लिए जैसे कि [[:hi:परमाणु|परमाणु]] में  [[:hi:इलेक्ट्रॉन|इलेक्ट्रॉन]], अच्छी तरह से परिभाषित ऊर्जा वाले [[:hi:wave function|तरंग कार्यों]] में एक [[:hi:स्थायी लहर|स्थायी तरंग]] का रूप होता है। <ref name="Tipler2">{{Cite book|last=Tipler|first=Paul A.|last2=Mosca|first2=Gene|title=Physics for Scientists and Engineers, 5th Ed.|publisher=W. H. Freeman and Co.|volume=2|date=2004|pages=1129|url=https://www.google.com/books/edition/Physics_for_Scientists_and_Engineers_Vol/R2Nuh3Ux1AwC?hl=en&gbpv=1&pg=PA1129&dq=%22energy+level%22+%22standing+waves%22|isbn=0716708108}}</ref> अच्छी तरह से परिभाषित ऊर्जा वाले [[:hi:स्थिर अवस्था|राज्यों को स्थिर राज्य]] कहा जाता है क्योंकि वे ऐसे राज्य हैं जो समय के साथ नहीं बदलते हैं। अनौपचारिक रूप से, ये अवस्थाएं एक बंद पथ (एक पथ जो समाप्त होती है जहां से शुरू हुई) के साथ तरंग की [[:hi:wave function|तरंग]] दैर्ध्य की एक पूरी संख्या के अनुरूप होती है, जैसे कि परमाणु के चारों ओर गोलाकार कक्षा, जहां तरंग दैर्ध्य की संख्या [[:hi:परमाणु कक्षक|परमाणु कक्षीय]] का प्रकार देती है (0 एस-ऑर्बिटल्स के लिए, 1 पी-ऑर्बिटल्स के लिए और इसी तरह)। प्राथमिक उदाहरण जो गणितीय रूप से यह दिखाते हैं कि एक बॉक्स में कण और परिमाण संनादी दोलक के मिलने पर ऊर्जा का स्तर कैसा  आता है
| last1  = Tipler
| first1 = Paul A.
| last2 = Mosca
| first2 = Gene
| title = Physics for Scientists and Engineers, 5th Ed.
| publisher = W. H. Freeman and Co.
| volume = 2
| date   = 2004
| pages = 1129
| url   = https://www.google.com/books/edition/Physics_for_Scientists_and_Engineers_Vol/R2Nuh3Ux1AwC?hl=en&gbpv=1&pg=PA1129&dq=%22energy+level%22+%22standing+waves%22
| isbn   = 0716708108
}}</ref> अच्छी तरह से परिभाषित ऊर्जा वाले राज्यों को  [[ स्थिर अवस्था ]] s कहा जाता है क्योंकि वे ऐसे राज्य हैं जो समय के साथ नहीं बदलते हैं। अनौपचारिक रूप से, ये अवस्थाएँ  [[ तरंग क्रिया ]] की एक बंद पथ के साथ तरंग दैर्ध्य की एक पूरी संख्या के अनुरूप होती हैं (एक पथ जो समाप्त होता है जहां यह शुरू हुआ), जैसे कि एक परमाणु के चारों ओर एक गोलाकार कक्षा, जहां तरंग दैर्ध्य की संख्या [[ परमाणु का प्रकार देती है कक्षीय ]] (s-कक्षकों के लिए 0, p- कक्षकों के लिए 1 वगैरह)। प्राथमिक उदाहरण जो गणितीय रूप से दिखाते हैं कि ऊर्जा का स्तर कैसे आता है, एक बॉक्स ]] में  [[ कण और  [[ क्वांटम हार्मोनिक ऑसिलेटर ]] हैं।


ऊर्जा अवस्थाओं का कोई भी [[ क्वांटम सुपरपोजिशन | सुपरपोजिशन ]] ( [[ रैखिक संयोजन ]]) भी एक क्वांटम अवस्था है, लेकिन ऐसे राज्य समय के साथ बदलते हैं और इनमें अच्छी तरह से परिभाषित ऊर्जा नहीं होती है।  [[ वेवफंक्शन में ऊर्जा परिणामों का मापन | वेवफंक्शन के पतन ]] को ध्वस्त करता है, जिसके परिणामस्वरूप एक नई अवस्था होती है जिसमें केवल एक ऊर्जा अवस्था होती है। किसी वस्तु के संभावित ऊर्जा स्तरों के मापन को [[ स्पेक्ट्रोस्कोपी ]] कहा जाता है।
ऊर्जा अवस्थाओं का कोई भी [[:hi:क्वांटम सुपरपोजिशन|सुपरपोजिशन]] ([[:hi:रैखिक संयोजन|रैखिक संयोजन]]) भी एक क्वांटम अवस्था है, लेकिन ऐसी अवस्थाएँ समय के साथ बदलती हैं और उनमें अच्छी तरह से परिभाषित ऊर्जाएँ नहीं होती हैं। ऊर्जा के मापन से तरंग फलन का [[:hi:वेवफंक्शन पतन|पतन]] होता है, जिसके परिणामस्वरूप एक नई अवस्था उत्पन्न होती है जिसमें केवल एक ऊर्जा अवस्था होती है। किसी वस्तु के संभावित ऊर्जा स्तरों के मापन को वर्णक्रम दर्शी कहा जाता है।


==इतिहास==
==इतिहास==
परमाणुओं में परिमाणीकरण का पहला प्रमाण 1800 के दशक की शुरुआत में [[ जोसफ वॉन फ्रौनहोफर ]] और  [[ विलियम हाइड वोलास्टन ]] द्वारा सूर्य से प्रकाश में [[ वर्णक्रमीय रेखाओं ]] का अवलोकन था। ऊर्जा स्तर की धारणा 1913 में डेनिश भौतिक विज्ञानी [[ नील्स बोहर ]] द्वारा परमाणु के [[ बोहर सिद्धांत ]] में प्रस्तावित की गई थी। [[ श्रोडिंगर समीकरण ]] के संदर्भ में इन ऊर्जा स्तरों की व्याख्या देने वाला आधुनिक क्वांटम यांत्रिक सिद्धांत 1926 में [[ इरविन श्रोडिंगर ]] और  [[ वर्नर हाइजेनबर्ग ]] द्वारा उन्नत किया गया था।
परमाणुओं में परिमाणीकरण का पहला प्रमाण 1800 के दशक की प्रांरम्भ में किया गया था। सूर्य से प्रकाश में [[:hi:वर्णक्रमीय रेखा|वर्णक्रमीय रेखाओं]] का अवलोकन था। ऊर्जा स्तर की धारणा 1913 में डेनिश भौतिक विज्ञानी [[:hi:नील्स बोर|नील्स बोहर]] द्वारा परमाणु के [[:hi:बोर का परमाणु मॉडल|बोहर सिद्धांत]] में प्रस्तावित की गई थी। [[:hi:श्रोडिंगर समीकरण|श्रोडिंगर समीकरण]] के संदर्भ में इन ऊर्जा स्तरों की व्याख्या देने वाला आधुनिक क्वांटम यांत्रिक सिद्धांत 1926 में उन्नत किया गया था।


== परमाणु ==
== परमाणु ==


===आंतरिक ऊर्जा स्तर ===
===आंतरिक ऊर्जा स्तर ===
एक परमाणु में नीचे दिए गए विभिन्न स्तरों पर इलेक्ट्रॉनों की ऊर्जा के सूत्रों में, ऊर्जा के लिए शून्य बिंदु तब निर्धारित किया जाता है जब विचाराधीन इलेक्ट्रॉन परमाणु को पूरी तरह से छोड़ देता है, अर्थात जब इलेक्ट्रॉन का  [[ प्रमुख क्वांटम संख्या ]] {{math|1=''n'' = ∞}}. जब इलेक्ट्रॉन के किसी भी निकट मान में परमाणु से बंधा होता है {{mvar|n}}, इलेक्ट्रॉन की ऊर्जा कम होती है और इसे ऋणात्मक माना जाता है।
परमाणु में नीचे दिए गए विभिन्न स्तरों पर इलेक्ट्रॉनों की ऊर्जा के सूत्रों में, ऊर्जा के लिए शून्य बिंदु तब सेट किया जाता है जब विचाराधीन इलेक्ट्रॉन परमाणु को पूरी तरह से छोड़ देता है, अर्थात जब इलेक्ट्रॉन की [[:hi:मुख्य क्वांटम संख्या|प्रमुख क्वांटम संख्या]] {{Math|1=''n'' = ∞}} होती है। जब इलेक्ट्रॉन एन (n) किसी भी निकट मान के परमाणु से बंधा होता है, तो इलेक्ट्रॉन की ऊर्जा कम होती है और इसे ऋणात्मक माना जाता है।


==== कक्षीय अवस्था ऊर्जा स्तर: नाभिक के साथ परमाणु/आयन + एक इलेक्ट्रॉन ====
==== कक्षीय अवस्था ऊर्जा स्तर: नाभिक के साथ परमाणु/आयन + एक इलेक्ट्रॉन ====
मान लें कि दिए गए  [[ परमाणु कक्षीय ]] में [[ हाइड्रोजन-जैसे परमाणु | हाइड्रोजन-जैसे परमाणु (आयन) ]] में एक इलेक्ट्रॉन है। इसकी अवस्था की ऊर्जा मुख्य रूप से (नकारात्मक) इलेक्ट्रॉन के (धनात्मक) नाभिक के साथ इलेक्ट्रोस्टैटिक इंटरैक्शन द्वारा निर्धारित की जाती है। एक नाभिक के चारों ओर एक इलेक्ट्रॉन का ऊर्जा स्तर किसके द्वारा दिया जाता है:
मान लें कि [[:hi:हाइड्रोजन जैसा परमाणु|हाइड्रोजन जैसे परमाणु (आयन)]] में दिए गए [[:hi:परमाणु कक्षक|परमाणु कक्षा]] में एक इलेक्ट्रॉन है। इसमे ऊर्जा मुख्य रूप से (नकारात्मक) इलेक्ट्रॉन के (धनात्मक) नाभिक के साथ इलेक्ट्रोस्टैटिक इंटरैक्शन द्वारा निर्धारित की जाती है। नाभिक के चारों ओर एक इलेक्ट्रॉन का ऊर्जा स्तर इसके द्वारा दिया जाता है:
: <math>E_n = - h  c  R_{\infty} \frac{Z^2}{n^2} </math>
: <math>E_n = - h  c  R_{\infty} \frac{Z^2}{n^2} </math>
(आमतौर पर 1 [[ इलेक्ट्रॉनवोल्ट | eV ]] और 10<sup>3</sup> eV के बीच),
(आमतौर पर 1 इलेक्ट्रान वोल्ट([[:hi:इलेक्ट्रॉन वोल्ट|eV)]] और,10 <sup>3</sup> इलेक्ट्रान वोल्ट(eV) के बीच), जहां {{Math|''R''<sub>∞</sub>}} [[:hi:रिडबर्ग स्थिरांक|स्थिरांक है]], जेड [[:hi:परमाणु क्रमांक|परमाणु क्रमांक]] है, एन. [[:hi:मुख्य क्वांटम संख्या|प्रमुख क्वांटम संख्या]] है, {{Math|''h''}} [[:hi:प्लैंक स्थिरांक|प्लैंक स्थरांक है]], और {{Math|''c''}} [[:hi:प्रकाश का वेग|प्रकाश की गति है]]केवल हाइड्रोजन जैसे परमाणुओं (आयनों) के लिए रिडबर्ग (Rydberg) का स्तर केवल प्रमुख क्वांटम संख्या एन. पर निर्भर करता है।
कहाँ पे {{math|''R''<sub>∞</sub>}} [[ Rydberg स्थिरांक ]] है, {{mvar|Z}}  [[ परमाणु क्रमांक ]] है, {{mvar|n}}  [[ प्रमुख क्वांटम संख्या ]] है, {{math|''h''}} [[ प्लांक नियतांक ]] है, और {{math|''c''}} प्रकाश ]] की  [[ गति है। केवल हाइड्रोजन जैसे परमाणुओं (आयनों) के लिए, Rydberg का स्तर केवल प्रमुख क्वांटम संख्या पर निर्भर करता है {{mvar|n}}.


यह समीकरण किसी भी हाइड्रोजन जैसे तत्व के लिए  [[ Rydberg सूत्र#Rydberg सूत्र के संयोजन से प्राप्त होता है | किसी भी हाइड्रोजन जैसे तत्व ]] के लिए Rydberg सूत्र (नीचे दिखाया गया है) के साथ {{math|1=''E'' = ''h &nu;'' = ''h c / &lambda;''}} यह मानते हुए कि [[ प्रमुख क्वांटम संख्या ]] {{mvar|n}} ऊपर = {{math|''n''<sub>1</sub>}} Rydberg सूत्र में और {{math|1=''n''<sub>2</sub> = ∞}} ( [[ फोटान ]] का उत्सर्जन करते समय इलेक्ट्रॉन के अवतरण के ऊर्जा स्तर की प्रमुख क्वांटम संख्या)।  [[ Rydberg फॉर्मूला ]] अनुभवजन्य [[ उत्सर्जन स्पेक्ट्रम | स्पेक्ट्रोस्कोपिक उत्सर्जन ]] डेटा से लिया गया था।<math>\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)</math>
यह समीकरण [[:hi:रिडबर्ग फॉर्मूला|किसी भी हाइड्रोजन जैसे तत्व (नीचे दिखाया गया) को रिडबर्ग (Rydberg) सूत्र]]  {{Math|1=''E'' = ''h &nu;'' = ''h c / &lambda;''}} के साथ जोड़कर प्राप्त किया जाता है, यह मानते हुए कि रिडबर्ग (Rydberg) सूत्र में [[:hi:मुख्य क्वांटम संख्या|मुख्य क्वांटम संख्या]] n ऊपर = {{Math|''n''<sub>1</sub>}} और {{Math|1=''n''<sub>2</sub> = ∞}} (प्रमुख एक [[:hi:फोटॉन|फोटॉन]] उत्सर्जित करते समय इलेक्ट्रॉन, ऊर्जा स्तर की क्वांटम संख्या से उतरता है) रिडबर्ग ([[:hi:रिडबर्ग फॉर्मूला|Rydberg) सूत्र]] अनुभवजन्य वर्णक्रम दर्शी [[:hi:उत्सर्जन वर्णक्रम|उत्सर्जन]] डेटा से प्राप्त किया गया था।
एक समतुल्य सूत्र को क्वांटम यांत्रिक रूप से समय-स्वतंत्र  [[ श्रोडिंगर समीकरण ]] से गतिज ऊर्जा  [[ हैमिल्टनियन ऑपरेटर ]] के साथ  [[ तरंग फ़ंक्शन ]] का उपयोग करके  [[ eigenvalue # श्रोडिंगर समीकरण |  eigenvalues ​​​​]] के रूप में ऊर्जा स्तर प्राप्त करने के लिए  [[ eigenfunction ]] के रूप में प्राप्त किया जा सकता है। , लेकिन Rydberg स्थिरांक को अन्य मूलभूत भौतिकी स्थिरांकों द्वारा प्रतिस्थापित किया जाएगा।


==== परमाणुओं में इलेक्ट्रॉन-इलेक्ट्रॉन परस्पर क्रिया ====
<math>\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)</math>
यदि परमाणु के चारों ओर एक से अधिक इलेक्ट्रॉन हों, तो इलेक्ट्रॉन-इलेक्ट्रॉन-अंतःक्रिया से ऊर्जा स्तर में वृद्धि होती है। यदि इलेक्ट्रॉन तरंगों का स्थानिक अतिव्यापन कम है तो इन अंतःक्रियाओं को अक्सर उपेक्षित कर दिया जाता है।


बहु-इलेक्ट्रॉन परमाणुओं के लिए, इलेक्ट्रॉनों के बीच परस्पर क्रिया के कारण पूर्ववर्ती समीकरण अब सटीक नहीं रह जाता है जैसा कि केवल के साथ कहा गया है {{mvar|Z}}  [[ परमाणु क्रमांक ]] के रूप में। एक साधारण (यद्यपि पूर्ण नहीं<!--
एक समतुल्य सूत्र, [[:hi:श्रोडिंगर समीकरण|श्रोडिंगर समीकरण]] के यांत्रिक रूप से क्वांटम प्राप्त किया जा सकता है जिसमें गतिज ऊर्जा हैमिल्टनी प्रचालक के साथ एक [[:hi:wave function|तरंग फ़ंक्शन]] का उपयोग करके ऊर्जा स्तर को [[:hi:आइजनफंक्शन|आइजन वैल्यूस]] [[:hi:अभिलक्षणिक मान तथा अभिलक्षणिक सदिश|के]] रूप में प्राप्त करने के लिए उपयोग किया जाता है, लेकिन [[:hi:रिडबर्ग फॉर्मूला|रिडबर्ग(]]Rydberg) स्थिरांक को अन्य मौलिक भौतिकी स्थिरांक द्वारा प्रतिस्थापित किया जाता है।
**नोट** यहाँ जो संकेत दिया गया है वह यह है कि स्क्रीनिंग केवल एक माध्य-क्षेत्र प्रभाव है। इलेक्ट्रॉन-इलेक्ट्रॉन परस्पर क्रिया से गतिशील सहसंबंध-विनिमय ऊर्जा परिवर्तन भी होते हैं। यदि पर्याप्त रूप से मजबूत, सहसंबंध-विनिमय हमें परमाणु को ऑर्बिटल्स के संदर्भ में देखने में सक्षम होने से रोक सकता है, केवल कई-शरीर राज्यों के विचार को छोड़कर। हालांकि, परमाणुओं के मामले में सहसंबंध-विनिमय एक छोटा सा गड़बड़ी (आमतौर पर) प्रतीत होता है।
-->) इसे समझने का तरीका  [[ परिरक्षण प्रभाव ]] के रूप में है, जहां बाहरी इलेक्ट्रॉनों को कम चार्ज का एक प्रभावी नाभिक दिखाई देता है, क्योंकि आंतरिक इलेक्ट्रॉन नाभिक से कसकर बंधे होते हैं और आंशिक रूप से इसके चार्ज को रद्द कर देते हैं। यह एक अनुमानित सुधार की ओर जाता है जहाँ {{mvar|Z}} एक  [[ प्रभावी परमाणु चार्ज ]] के साथ प्रतिस्थापित किया गया है जिसे के रूप में दर्शाया गया है {{math|''Z''<sub>eff</sub>}} जो मुख्य क्वांटम संख्या पर दृढ़ता से निर्भर करता है।
<गणित प्रदर्शन = ब्लॉक> ई_ {n, \ ell} = - h c R_ {\ infty} \ fra{{Z_{\rm eff}}^2}{n^2} </गणित>
ऐसे मामलों में, कक्षीय प्रकार ( [[ अज़ीमुथल क्वांटम संख्या ]] . द्वारा निर्धारित) {{mvar|ℓ}}) साथ ही अणु के भीतर उनके स्तर को प्रभावित करते हैं {{math|''Z''<sub>eff</sub>}} और टीइसलिए विभिन्न परमाणु इलेक्ट्रॉन ऊर्जा स्तरों को भी प्रभावित करते हैं।  [[ इलेक्ट्रॉन विन्यास ]] के लिए इलेक्ट्रॉनों के साथ एक परमाणु को भरने का  [[ औफबौ सिद्धांत ]] इन भिन्न ऊर्जा स्तरों को ध्यान में रखता है।  [[ जमीनी अवस्था ]] में इलेक्ट्रॉनों के साथ एक परमाणु भरने के लिए, सबसे कम ऊर्जा का स्तर पहले भरा जाता है और  [[ पाउली अपवर्जन सिद्धांत ]], [[ औफबाऊ सिद्धांत ]] और  [[ हुंड के नियम ]] के अनुरूप होता है।


==== ठीक संरचना विभाजन ====
==== परमाणुओं में इलेक्ट्रॉन-इलेक्ट्रॉन परस्पर क्रिया ====
[[ ललित संरचना ]] सापेक्षिक गतिज ऊर्जा सुधार,  [[ स्पिन-ऑर्बिट युग्मन ]] (इलेक्ट्रॉन के  [[ स्पिन (भौतिकी) |  स्पिन ]] और गति और नाभिक के विद्युत क्षेत्र के बीच एक इलेक्ट्रोडायनामिक इंटरैक्शन) और डार्विन टर्म (संपर्क टर्म इंटरेक्शन) से उत्पन्न होती है। {{serif|s}} शेल{{which|reason=of which principal q.n.?|date=January 2014}} नाभिक के अंदर इलेक्ट्रॉन)। ये स्तरों को 10<sup>−3</sup> eV के परिमाण के विशिष्ट क्रम से प्रभावित करते हैं।
यदि परमाणु के चारों ओर एक से अधिक इलेक्ट्रॉन हों, तो इलेक्ट्रॉन-इलेक्ट्रॉन अंतःक्रिया से ऊर्जा स्तर में वृद्धि होती है। यदि इलेक्ट्रॉन तरंगों का स्थानिक अतिव्यापन कम है तो इन अंतःक्रियाओं को अक्सर उपेक्षित कर दिया जाता है।
 
==== अति सूक्ष्म संरचना ====
{{Main|Hyperfine structure}}
यह और भी महीन संरचना इलेक्ट्रॉन-नाभिक  [[ कोणीय गति युग्मन#स्पिन-स्पिन युग्मन |  स्पिन-स्पिन इंटरैक्शन ]],<!--  [[ जे-कपलिंग ]] से लिंक करने के लिए बेहतर हो सकती है। बाद में जांच करेगा--> जिसके परिणामस्वरूप 10<sup>−4</sup> eV के परिमाण के विशिष्ट क्रम द्वारा ऊर्जा स्तरों में एक सामान्य परिवर्तन होता है।
 
==== कक्षीय अवस्था ऊर्जा स्तर: नाभिक के साथ परमाणु/आयन + एक इलेक्ट्रॉन ====
मान लें कि दिए गए  [[ परमाणु कक्षीय ]] में  [[ हाइड्रोजन-जैसे परमाणु |  हाइड्रोजन-जैसे परमाणु (आयन) ]] में एक इलेक्ट्रॉन है। इसकी अवस्था की ऊर्जा मुख्य रूप से (नकारात्मक) इलेक्ट्रॉन के (धनात्मक) नाभिक के साथ इलेक्ट्रोस्टैटिक इंटरैक्शन द्वारा निर्धारित की जाती है। एक नाभिक के चारों ओर एक इलेक्ट्रॉन का ऊर्जा स्तर किसके द्वारा दिया जाता है:
: <math>E_n = - h  c  R_{\infty} \frac{Z^2}{n^2} </math>
(आमतौर पर 1  [[ इलेक्ट्रॉनवोल्ट |  eV ]] और 10<sup>3</sup> eV के बीच),
कहाँ पे {{math|''R''<sub>∞</sub>}}  [[ Rydberg स्थिरांक ]] है, {{mvar|Z}}  [[ परमाणु क्रमांक ]] है, {{mvar|n}}  [[ प्रमुख क्वांटम संख्या ]] है, {{math|''h''}}  [[ प्लांक नियतांक ]] है, और {{math|''c''}} प्रकाश ]] की  [[ गति है। केवल हाइड्रोजन जैसे परमाणुओं (आयनों) के लिए, Rydberg का स्तर केवल प्रमुख क्वांटम संख्या पर निर्भर करता है {{mvar|n}}.
 
यह समीकरण किसी भी हाइड्रोजन जैसे तत्व के लिए  [[ Rydberg सूत्र#Rydberg सूत्र के संयोजन से प्राप्त होता है |  किसी भी हाइड्रोजन जैसे तत्व ]] के लिए Rydberg सूत्र (नीचे दिखाया गया है) के साथ {{math|1=''E'' = ''h &nu;'' = ''h c / &lambda;''}} यह मानते हुए कि  [[ प्रमुख क्वांटम संख्या ]] {{mvar|n}} ऊपर = {{math|''n''<sub>1</sub>}} Rydberg सूत्र में और {{math|1=''n''<sub>2</sub> = ∞}} ( [[ फोटान ]] का उत्सर्जन करते समय इलेक्ट्रॉन के अवतरण के ऊर्जा स्तर की प्रमुख क्वांटम संख्या)।  [[ Rydberg फॉर्मूला ]] अनुभवजन्य  [[ उत्सर्जन स्पेक्ट्रम |  स्पेक्ट्रोस्कोपिक उत्सर्जन ]] डेटा से लिया गया था।<math>\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)</math>
एक समतुल्य सूत्र को क्वांटम यांत्रिक रूप से समय-स्वतंत्र  [[ श्रोडिंगर समीकरण ]] से गतिज ऊर्जा  [[ हैमिल्टनियन ऑपरेटर ]] के साथ  [[ तरंग फ़ंक्शन ]] का उपयोग करके  [[ eigenvalue # श्रोडिंगर समीकरण |  eigenvalues ​​​​]] के रूप में ऊर्जा स्तर प्राप्त करने के लिए  [[ eigenfunction ]] के रूप में प्राप्त किया जा सकता है। , लेकिन Rydberg स्थिरांक को अन्य मूलभूत भौतिकी स्थिरांकों द्वारा प्रतिस्थापित किया जाएगा।


==== परमाणुओं में इलेक्ट्रॉन-इलेक्ट्रॉन परस्पर क्रिया ====
बहु-इलेक्ट्रॉन परमाणुओं के लिए, इलेक्ट्रॉनों के बीच परस्पर क्रिया के कारण पूर्ववर्ती समीकरण अब सटीक नहीं रह गया है जैसा कि केवल जेड के साथ [[:hi:परमाणु क्रमांक|परमाणु संख्या]] के रूप में कहा गया है। कि इसे समझने का एक सरल (हालांकि पूर्ण नहीं) तरीका [[:hi:परिरक्षण प्रभाव|परिरक्षण प्रभाव]] के रूप में है, जहां बाहरी इलेक्ट्रॉनों को कम चार्ज का एक प्रभावी नाभिक दिखाई देता है, क्योंकि आंतरिक इलेक्ट्रॉन नाभिक से कसकर बंधे होते हैं और आंशिक रूप से इसके चार्ज को रद्द कर देते हैं। यह एक अनुमानित सुधार की ओर जाता है जहां Z को एक [[:hi:प्रभावी नाभिकीय चार्ज|प्रभावी परमाणु चार्ज]] के साथ प्रतिस्थापित किया जाता है जिसे {{Math|''Z''<sub>eff</sub>}} के रूप में दर्शाया जाता है जो प्रमुख क्वांटम संख्या पर दृढ़ता से निर्भर करता है।
यदि परमाणु के चारों ओर एक से अधिक इलेक्ट्रॉन हों, तो इलेक्ट्रॉन-इलेक्ट्रॉन-अंतःक्रिया से ऊर्जा स्तर में वृद्धि होती है। यदि इलेक्ट्रॉन तरंगों का स्थानिक अतिव्यापन कम है तो इन अंतःक्रियाओं को अक्सर उपेक्षित कर दिया जाता है।


बहु-इलेक्ट्रॉन परमाणुओं के लिए, इलेक्ट्रॉनों के बीच परस्पर क्रिया के कारण पूर्ववर्ती समीकरण अब सटीक नहीं रह जाता है जैसा कि केवल के साथ कहा गया है {{mvar|Z}}  [[ परमाणु क्रमांक ]] के रूप में। एक साधारण (यद्यपि पूर्ण नहीं<!--
<math display="block">E_{n,\ell} = - h c R_{\infty} \frac{{Z_{\rm eff}}^2}{n^2} </math>ऐसे मामलों में, कक्षीय प्रकार ([[:hi:अज़ीमुथल क्वांटम संख्या|अजीमुथल क्वांटम संख्या]] द्वारा निर्धारित) के साथ-साथ अणु के भीतर उनके स्तर {{Math|''Z''<sub>eff</sub>}} को प्रभावित करते हैं और इसलिए विभिन्न परमाणु इलेक्ट्रॉन ऊर्जा स्तरों को भी प्रभावित करते हैं। [[:hi:इलेक्ट्रॉन विन्यास|इलेक्ट्रॉन विन्यास]] के लिए एक परमाणु को इलेक्ट्रॉनों से भरने का [[:hi:आफबाऊ सिद्धान्त|औफबाउ सिद्धांत]] इन भिन्न ऊर्जा स्तरों को ध्यान में रखता है। [[:hi:निम्नतम अवस्था|निम्नतम अवस्था]] में इलेक्ट्रॉनों के साथ एक परमाणु भरने के लिए, सबसे कम ऊर्जा स्तर पहले भरे जाते हैं जो [[:hi:पाउली अपवर्जन नियम|पाउली अपवर्जन सिद्धांत]], [[:hi:आफबाऊ सिद्धान्त|औफबाउ सिद्धांत]] और [https://hi.wikipedia.org/wiki/What%20is%20Hund%E2%80%99s%20law?%20Explain%20Significance. हुंड के नियम के] अनुरूप होते हैं।
**नोट** यहाँ जो संकेत दिया गया है वह यह है कि स्क्रीनिंग केवल एक माध्य-क्षेत्र प्रभाव है। इलेक्ट्रॉन-इलेक्ट्रॉन परस्पर क्रिया से गतिशील सहसंबंध-विनिमय ऊर्जा परिवर्तन भी होते हैं। यदि पर्याप्त रूप से मजबूत, सहसंबंध-विनिमय हमें परमाणु को ऑर्बिटल्स के संदर्भ में देखने में सक्षम होने से रोक सकता है, केवल कई-शरीर राज्यों के विचार को छोड़कर। हालांकि, परमाणुओं के मामले में सहसंबंध-विनिमय एक छोटा सा गड़बड़ी (आमतौर पर) प्रतीत होता है।
-->) इसे समझने का तरीका  [[ परिरक्षण प्रभाव ]] के रूप में है, जहां बाहरी इलेक्ट्रॉनों को कम चार्ज का एक प्रभावी नाभिक दिखाई देता है, क्योंकि आंतरिक इलेक्ट्रॉन नाभिक से कसकर बंधे होते हैं और आंशिक रूप से इसके चार्ज को रद्द कर देते हैं। यह एक अनुमानित सुधार की ओर जाता है जहाँ {{mvar|Z}} एक  [[ प्रभावी परमाणु चार्ज ]] के साथ प्रतिस्थापित किया गया है जिसे के रूप में दर्शाया गया है {{math|''Z''<sub>eff</sub>}} जो मुख्य क्वांटम संख्या पर दृढ़ता से निर्भर करता है।
<गणित प्रदर्शन = ब्लॉक> ई_ {n, \ ell} = - h c R_ {\ infty} \ fra{{Z_{\rm eff}}^2}{n^2} </गणित>
ऐसे मामलों में, कक्षीय प्रकार ( [[ अज़ीमुथल क्वांटम संख्या ]] . द्वारा निर्धारित) {{mvar|ℓ}}) साथ ही अणु के भीतर उनके स्तर को प्रभावित करते हैं {{math|''Z''<sub>eff</sub>}} और इसलिए विभिन्न परमाणु इलेक्ट्रॉन ऊर्जा स्तरों को भी प्रभावित करते हैं। [[ इलेक्ट्रॉन विन्यास ]] के लिए इलेक्ट्रॉनों के साथ एक परमाणु को भरने का [[ औफबौ सिद्धांत ]] इन भिन्न ऊर्जा स्तरों को ध्यान में रखता है। [[ जमीनी अवस्था ]] में इलेक्ट्रॉनों के साथ एक परमाणु भरने के लिए, सबसे कम ऊर्जा का स्तर पहले भरा जाता है और  [[ पाउली अपवर्जन सिद्धांत ]], [[ औफबाऊ सिद्धांत ]] और [[ हुंड के नियम ]] के अनुरूप होता है।


==== ठीक संरचना विभाजन ====
==== ठीक संरचना विभाजन ====
[[ ललित संरचना ]] सापेक्षिक गतिज ऊर्जा सुधार, [[ स्पिन-ऑर्बिट युग्मन ]] (इलेक्ट्रॉन के [[ स्पिन (भौतिकी) |  स्पिन ]] और गति और नाभिक के विद्युत क्षेत्र के बीच एक इलेक्ट्रोडायनामिक इंटरैक्शन) और डार्विन टर्म (संपर्क टर्म इंटरेक्शन) से उत्पन्न होती है। {{serif|s}} शेल{{which|reason=of which principal q.n.?|date=January 2014}} नाभिक के अंदर इलेक्ट्रॉन)। ये स्तरों को 10<sup>−3</sup> eV के परिमाण के विशिष्ट क्रम से प्रभावित करते हैं।
सापेक्ष गतिज ऊर्जा सुधार में, स्पिन-ऑर्बिट युग्मन से सूक्ष्म संरचना उत्पन्न होती है (इलेक्ट्रॉन के गति और नाभिक के विद्युत क्षेत्र के बीच एक विद्युत इंटरैक्शन) और डार्विन शब्द ( s शेल के संपर्क शब्द की अतःक्रिया से उत्पन्न होती है।) नाभिक के अंदर इलेक्ट्रॉन ये 10 <sup>−3</sup> इलेक्ट्रान वोल्ट के परिमाण के एक विशिष्ट क्रम से स्तरों को प्रभावित करते हैं।


==== अति सूक्ष्म संरचना ====
==== अति सूक्ष्म संरचना ====
{{Main|Hyperfine structure}}
सूक्ष्म संरचना इलेक्ट्रॉन-नाभिक, [[:hi:कोणीय गति युग्मन|स्पिन-स्पिन अंतःक्रिया]] के कारण होती उत्पन्न होती  है, जिसके परिणामस्वरूप 10 <sup>−4</sup> इलेक्ट्रान वोल्ट के परिमाण में एक विशिष्ट क्रम द्वारा ऊर्जा स्तरों में एक विशिष्ट परिवर्तन होता है।
यह और भी महीन संरचना इलेक्ट्रॉन-नाभिक [[ कोणीय गति युग्मन#स्पिन-स्पिन युग्मन | स्पिन-स्पिन इंटरैक्शन ]],<!--  [[ जे-कपलिंग ]] से लिंक करने के लिए बेहतर हो सकती है। बाद में जांच करेगा--> जिसके परिणामस्वरूप 10<sup>−4</sup> eV के परिमाण के विशिष्ट क्रम द्वारा ऊर्जा स्तरों में एक सामान्य परिवर्तन होता है।


=== बाहरी क्षेत्रों के कारण ऊर्जा का स्तर ===
=== बाहरी क्षेत्रों के कारण ऊर्जा का स्तर ===
====ज़ीमन प्रभाव ====
{{Main|Zeeman effect}}
चुंबकीय द्विध्रुवीय क्षण से जुड़ी एक अंतःक्रियात्मक ऊर्जा होती है, {{math|'''''μ'''''<sub>''L''</sub>}}, इलेक्ट्रॉनिक कक्षीय कोणीय गति से उत्पन्न होता है, {{math|''L''}}, के द्वारा दिया गया<math>U = -\boldsymbol{\mu}_L\cdot\mathbf{B}</math>


साथ<math>-\boldsymbol{\mu}_L = \dfrac{e\hbar}{2m}\mathbf{L} = \mu_B\mathbf{L}</math>.
==== ज़ीमन प्रभाव (Zeeman) ====
इलेक्ट्रॉनिक कक्षीय कोणीय गति, एल (L) से उत्पन्न होने वाले चुंबकीय द्विध्रुवीय क्षण, μL के साथ एक अंतःक्रियात्मक ऊर्जा जुड़ी होती है


इसके अतिरिक्त इलेक्ट्रॉन स्पिन से उत्पन्न चुंबकीय गति को ध्यान में रखते हुए।
<math>U = -\boldsymbol{\mu}_L\cdot\mathbf{B}</math>


आपेक्षिक प्रभावों के कारण ( [[ डायराक समीकरण ]]), एक चुंबकीय गति होती है, {{math|'''''μ'''''<sub>''S''</sub>}}, इलेक्ट्रॉन स्पिन से उत्पन्न होता है<math>-\boldsymbol{\mu}_S = -\mu_B g_S \mathbf{S}</math>,
साथ


साथ {{math|''g''<sub>''S''</sub>}} इलेक्ट्रॉन-स्पिन  [[ जी-फैक्टर (भौतिकी) |  जी-फैक्टर ]] (लगभग 2), जिसके परिणामस्वरूप कुल चुंबकीय क्षण होता है, {{math|'''''μ'''''}},<math>\boldsymbol{\mu} = \boldsymbol{\mu}_L + \boldsymbol{\mu}_S</math>.
<math>-\boldsymbol{\mu}_L = \dfrac{e\hbar}{2m}\mathbf{L} = \mu_B\mathbf{L}</math> .


अंतःक्रियात्मक ऊर्जा इसलिए बन जाती है<math>U_B = -\boldsymbol{\mu}\cdot\mathbf{B} = \mu_B B (M_L + g_S M_S)</math>.
इसके अतिरिक्त इलेक्ट्रॉन स्पिन से उत्पन्न चुंबकीय गति को ध्यान में रखते हुए।
 
==== निरा प्रभाव ====
{{Main|Stark effect}}


====ज़ीमन प्रभाव ====
आपेक्षिक प्रभाव ( {{Math|'''''μ'''''<sub>''S''</sub>}} [[:hi:डिराक समीकरण|)]] के कारण, एक चुंबकीय गति उप्पन्न होती है, जो μS, इलेक्ट्रॉन स्पिन से उत्पन्न होती है।
{{Main|Zeeman effect}}
चुंबकीय द्विध्रुवीय क्षण से जुड़ी एक अंतःक्रियात्मक ऊर्जा होती है, {{math|'''''μ'''''<sub>''L''</sub>}}, इलेक्ट्रॉनिक कक्षीय कोणीय गति से उत्पन्न होता है, {{math|''L''}}, के द्वारा दिया गया<math>U = -\boldsymbol{\mu}_L\cdot\mathbf{B}</math>


साथ<math>-\boldsymbol{\mu}_L = \dfrac{e\hbar}{2m}\mathbf{L} = \mu_B\mathbf{L}</math>.
<math>-\boldsymbol{\mu}_S = -\mu_B g_S \mathbf{S}</math> ,


इसके अतिरिक्त इलेक्ट्रॉन स्पिन से उत्पन्न चुंबकीय गति को ध्यान में रखते हुए।
{{Math|''g''<sub>''S''</sub>}} के साथ इलेक्ट्रॉन-स्पिन [[:hi:जी-कारक (भौतिकी)|जी-फैक्टर]] (लगभग 2), जिसके परिणामस्वरूप कुल चुंबकीय क्षण यू.उत्पन्न होता है,


आपेक्षिक प्रभावों के कारण ( [[ डायराक समीकरण ]]), एक चुंबकीय गति होती है, {{math|'''''μ'''''<sub>''S''</sub>}}, इलेक्ट्रॉन स्पिन से उत्पन्न होता है<math>-\boldsymbol{\mu}_S = -\mu_B g_S \mathbf{S}</math>,
<math>\boldsymbol{\mu} = \boldsymbol{\mu}_L + \boldsymbol{\mu}_S</math> .


साथ {{math|''g''<sub>''S''</sub>}} इलेक्ट्रॉन-स्पिन  [[ जी-फैक्टर (भौतिकी) |  जी-फैक्टर ]] (लगभग 2), जिसके परिणामस्वरूप कुल चुंबकीय क्षण होता है, {{math|'''''μ'''''}},<math>\boldsymbol{\mu} = \boldsymbol{\mu}_L + \boldsymbol{\mu}_S</math>.
अंतःक्रियात्मक ऊर्जा इसलिए बन जाती है


अंतःक्रियात्मक ऊर्जा इसलिए बन जाती है<math>U_B = -\boldsymbol{\mu}\cdot\mathbf{B} = \mu_B B (M_L + g_S M_S)</math>.
<math>U_B = -\boldsymbol{\mu}\cdot\mathbf{B} = \mu_B B (M_L + g_S M_S)</math> .


==== निरा प्रभाव ====
==== निरा प्रभाव ====
{{Main|Stark effect}}
{{main|Stark effect}}


== अणु ==
== अणु ==
[[ अणु रूप में परमाणुओं के बीच रासायनिक बंधन ]] एस क्योंकि वे शामिल परमाणुओं के लिए स्थिति को और अधिक स्थिर बनाते हैं, जिसका आम तौर पर मतलब है कि अणु में शामिल परमाणुओं के लिए योग ऊर्जा स्तर परमाणुओं की तुलना में कम है। जैसे-जैसे अलग-अलग परमाणु [[ सहसंयोजक बंधन | सहसंयोजक बंधन ]] तक पहुंचते हैं, उनके  [[ परमाणु कक्षीय | कक्षा ]] बंधन और एंटीबॉडी बनाने के लिए एक दूसरे के ऊर्जा स्तर को प्रभावित करते हैं [[ आणविक कक्षीय ]] एस।  [[ बॉन्डिंग मॉलिक्यूलर ऑर्बिटल | बॉन्डिंग ऑर्बिटल्स ]] का एनर्जी लेवल कम है, और [[ एंटीबॉन्डिंग मॉलिक्यूलर ऑर्बिटल |  एंटीबॉन्डिंग ऑर्बिटल्स ]] का एनर्जी लेवल ज्यादा है। अणु में बंधन स्थिर होने के लिए, सहसंयोजक बंधन इलेक्ट्रॉन निम्न ऊर्जा बंधन कक्षीय पर कब्जा कर लेते हैं, जिसे स्थिति के आधार पर σ या जैसे प्रतीकों द्वारा दर्शाया जा सकता है। * या π* ऑर्बिटल्स प्राप्त करने के लिए तारांकन जोड़कर संबंधित एंटी-बॉन्डिंग ऑर्बिटल्स को दर्शाया जा सकता है। एक अणु में एक  [[ गैर-बंधन कक्षीय ]] बाहरी [[ इलेक्ट्रॉन शेल | शेल ]] एस में इलेक्ट्रॉनों के साथ एक कक्षीय है जो बंधन में भाग नहीं लेता है और इसका ऊर्जा स्तर घटक परमाणु के समान है। ऐसे कक्षकों को '''n''' कक्षकों के रूप में नामित किया जा सकता है। किसी n कक्षक में इलेक्ट्रॉन सामान्यतः  [[ अकेला युग्म ]] s होते हैं।
अणु के रूप में परमाणुओं के बीच [[:hi:रासायनिक आबंध|रासायनिक बंधन]] होते है, क्योंकि वे शामिल परमाणुओं के लिए स्थिति को और अधिक स्थिर बनाते हैं, जिसका आमतौर पर मतलब है कि अणु में शामिल परमाणुओं के लिए योग ऊर्जा स्तर परमाणुओं की तुलना में कम है। जैसे अलग परमाणु [[:hi:सहसंयोजी आबंध|सहसंयोजक बंधन]] के लिए एक दूसरे के पास आते हैं, उनकी [[:hi:परमाणु कक्षक|कक्षाएँ]] एक दूसरे के ऊर्जा स्तर को प्रभावित करती हैं जिससे बंधन और प्रतिरक्षी [[:hi:आणविक कक्षीय|आणविक कक्षाएँ बनती]] हैं। बंधन कक्षक का ऊर्जा स्तर कम होता है, और प्रतिरक्षी कक्षक का ऊर्जा स्तर अधिक होता है। अणु में बंधन स्थिर होने के लिए, सहसंयोजक बंधन, इलेक्ट्रॉन निम्न ऊर्जा बंधन कक्षीय पर कब्जा कर लेते हैं, जिसे स्थिति के आधार पर σ या जैसे प्रतीकों द्वारा दर्शाया जाता है। * या π* कक्षीय  प्राप्त करने के लिए तारांकन जोड़कर संबंधित एंटी-बॉन्डिंग कक्षीय को दर्शाया जा सकता है। अणु में [[:hi:गैर-बंधन कक्षीय|गैर-बंधन कक्षीय]], बाहरी कक्षों में इलेक्ट्रॉनों के साथ एक [[:hi:इलेक्ट्रॉन कोश|कक्षीय]] होता है जो बंधन में भाग नहीं लेता है और इसका ऊर्जा स्तर घटक परमाणु के समान होता है। ऐसे कक्षाओं को एन. कक्षाओं के रूप में नामित किया जा सकता है। एक एन. कक्षक में इलेक्ट्रॉन आमतौर पर [[:hi:अयुग्मित युग्म|एकाकी जोड़े]] होते हैं। <ref name="chemguide2">[http://www.chemguide.co.uk/analysis/uvvisible/theory.html#top UV-Visible Absorption Spectra]</ref> बहुपरमाणु अणुओं में, विभिन्न कंपन और घूर्णी ऊर्जा स्तर भी शामिल होते हैं।
<ref name="chemguide">[http://www.chemguide.co.uk/analysis/uvvisible/theory.html#top UV-Visible Absorption Spectra</ref>  
बहुपरमाणुक अणुओं में, विभिन्न कंपन और घूर्णी ऊर्जा स्तर भी शामिल होते हैं।
 
मोटे तौर पर, एक आणविक ऊर्जा राज्य, यानी  [[ आणविक हैमिल्टनियन ]] का  [[ ईजेनस्टेट ]], इलेक्ट्रॉनिक, कंपन, घूर्णी, परमाणु और अनुवाद संबंधी घटकों का योग है, जैसे:
<गणित प्रदर्शन = ब्लॉक> ई = ई_ {\ पाठ {इलेक्ट्रॉनिक}} + ई_ {\ पाठ {कंपन}} + ई_ {\ पाठ {घूर्णन}} + ई_ {\ पाठ {परमाणु}} + ई_ {\ पाठ {अनुवाद }}</गणित>


कहाँ पे {{math|''E''<sub>electronic</sub>}} अणु ]] के [[ आणविक ज्यामिति | संतुलन ज्यामिति पर  [[ इलेक्ट्रॉनिक आणविक हैमिल्टनियन ]] ( [[ संभावित ऊर्जा सतह ]] का मान) का [[ eigenvalue ]] है।
मोटे तौर पर, एक आणविक ऊर्जा अवस्था, यानी [[:hi:आण्विक हैमिल्टनियन|आणविक हैमिल्टनियन]], [[:hi:आइजेनस्टेट|स्वदेशी]] इलेक्ट्रॉनिक, कंपनघूर्णी, परमाणु और अनुवाद संबंधी घटकों का योग है, जैसे:<math display="block">E = E_{\text{electronic}} + E_{\text{vibrational}} + E_{\text{rotational}} + E_{\text{nuclear}} + E_{\text{translational}}</math>जहां {{Math|''E''<sub>electronic</sub>}}  [[:hi:इलेक्ट्रॉनिक आणविक हैमिल्टनियन|इलेक्ट्रॉनिक आणविक हैमिल्टन]] ( [[:hi:संभावित ऊर्जा सतह|संभावित ऊर्जा सतह]] का मूल्य) का एक प्रतिरूप है।
 
आणविक ऊर्जा स्तरों को [[:hi:आणविक शब्द प्रतीक|आणविक शब्द प्रतीकों]] द्वारा लेबल किया जाता है। इन घटकों की विशिष्ट ऊर्जाएं, विशिष्ट ऊर्जा अवस्था और पदार्थ के साथ बदलती रहती हैं।
आणविक ऊर्जा स्तरों को [[ आणविक शब्द प्रतीक ]] s द्वारा लेबल किया जाता है। इन घटकों की विशिष्ट ऊर्जाएं विशिष्ट ऊर्जा अवस्था और पदार्थ के साथ बदलती रहती हैं।


===ऊर्जा स्तर आरेख ===
===ऊर्जा स्तर आरेख ===
एक अणु में परमाणुओं के बीच बंधों के लिए विभिन्न प्रकार के ऊर्जा स्तर आरेख होते हैं।
एक अणु में परमाणुओं के बीच बंधों के लिए विभिन्न प्रकार के ऊर्जा स्तर आरेख होते हैं।
;उदाहरण
:'' [[ आण्विक कक्षीय आरेख ]] s'', '' [[ Jablonski चित्र ]] s'', और '' [[ Franck-Condon सिद्धांत |  Franck-Condon ]]'' आरेख।


'''उदाहरण'''
''[[:hi:आणविक कक्षीय आरेख|आण्विक कक्षीय आरेख]]'', ''[[:hi:जब्लोन्स्की आरेख|जब्लोन्स्की आरेख]]'', और ''[[:hi:फ्रैंक-कोंडोन सिद्धांत|फ्रैंक-कोंडोन]]'' आरेख।
==ऊर्जा स्तर संक्रमण ==
==ऊर्जा स्तर संक्रमण ==
{{Further|atomic electron transition|molecular electron transition}}
[[File:Atomic Absorption (hv corrected).png|thumb|181x181px|{{Math|''E''<sub>1</sub>}} से {{Math|''E''<sub>2</sub>}} तक ऊर्जा स्तर में वृद्धि लाल स्क्विगली तीर द्वारा दर्शाए गए फोटॉन के अवशोषण के परिणामस्वरूप होती है, और जिसकी ऊर्जा {{Math|''[[Planck constant|h]] [[Frequency|&nu;]]''}}]]
[[File:Atomic Absorption (hv corrected).png|thumb|right|200px|से ऊर्जा स्तर में वृद्धि {{math|''E''<sub>1</sub>}} को {{math|''E''<sub>2</sub>}} लाल स्क्विगली तीर द्वारा दर्शाए गए फोटॉन के अवशोषण के परिणामस्वरूप, और जिसकी ऊर्जा है {{math|''[[Planck constant|h]] [[Frequency|&nu;]]''}}][[File:Schematic_diagram_of_atomic_line_spontaneous_emission_(hv_corrected).png|thumb|left|200px|से ऊर्जा स्तर में कमी {{math|''E''<sub>2</sub>}} को {{math|''E''<sub>1</sub>}} जिसके परिणामस्वरूप एक फोटॉन का उत्सर्जन होता है जिसे लाल स्क्वीगली तीर द्वारा दर्शाया जाता है, और जिसकी ऊर्जा है {{math|''[[Planck constant|h]] [[Frequency|&nu;]]''}}]]
[[File:Schematic_diagram_of_atomic_line_spontaneous_emission_(hv_corrected).png|thumb|left|200px|{{Math|''E''<sub>2</sub>}} से {{Math|''E''<sub>1</sub>}} तक ऊर्जा स्तर में कमी के परिणामस्वरूप लाल स्क्विगली तीर द्वारा दर्शाए गए एक फोटॉन का उत्सर्जन होता है, और जिसकी ऊर्जा {{Math|''[[Planck constant|h]] [[Frequency|&nu;]]''}}]]परमाणुओं और अणुओं में इलेक्ट्रॉन एक [[:hi:फोटॉन|फोटॉन]] ([[:hi:विद्युतचुंबकीय विकिरण|विद्युत चुम्बकीय विकिरण]]) को उत्सर्जित या अवशोषित करके ऊर्जा के स्तर को बदल सकते हैं ( विद्युत चुम्बकीय विकिरण), जिसकी ऊर्जा दो स्तरों के बीच ऊर्जा अंतर के बराबर होनी चाहिए। परमाणु, अणु, या [[:hi:आयन|आयन]] जैसी रासायनिक प्रजातियों से भी इलेक्ट्रॉनों को पूरी तरह से हटाया जा सकता है। एक परमाणु से एक इलेक्ट्रॉन का पूर्ण निष्कासन [[:hi:आयनन|आयनीकरण]] का एक रूप हो सकता है, जो प्रभावी रूप से इलेक्ट्रॉन को एक अनंत [[:hi:मुख्य क्वांटम संख्या|प्रमुख क्वांटम संख्या]] के साथ एक [[:hi:परमाणु कक्षक|कक्षीय कक्ष]] में ले जा रहा है, जो प्रभावी रूप से इतनी दूर है कि शेष परमाणु पर व्यावहारिक रूप से कोई और प्रभाव नहीं पड़ता है। विभिन्न प्रकार के परमाणुओं के लिए, पहली, दूसरी, तीसरी, आदि [[:hi:आयनन ऊर्जा|आयनीकरण ऊर्जाएं होती]] हैं, जो मूल रूप से [[:hi:निम्नतम अवस्था|निम्नतम अवस्था]] में परमाणु से क्रमशः उच्चतम ऊर्जा इलेक्ट्रॉनों के पहले, फिर दूसरे, फिर तीसरे आदि को हटाने के लिए होती हैं। इसी विपरीत मात्रा में ऊर्जा भी जारी की जा सकती है, कभी-कभी [[:hi:फोटॉन ऊर्जा|फोटॉन ऊर्जा]] के रूप में, जब इलेक्ट्रॉनों को सकारात्मक चार्ज आयनों या कभी-कभी परमाणुओं में जोड़ा जाता है। तो अणु अपने [[:hi:आणविक कंपन|कंपन]] या घूर्णी ऊर्जा स्तरों में भी संक्रमण से गुजर सकते हैं। ऊर्जा स्तर के संक्रमण गैर-विकिरणीय भी हो सकते हैं, जिसका अर्थ है कि फोटॉन का उत्सर्जन या अवशोषण में शामिल नही होना।
परमाणुओं और अणुओं में इलेक्ट्रॉन [[ फोटॉन ]] ( [[ विद्युत चुम्बकीय विकिरण ]] में से) को उत्सर्जित या अवशोषित करके ऊर्जा स्तर बदल सकते हैं ('' [[ परमाणु इलेक्ट्रॉन संक्रमण |  संक्रमण ]]'' इंच) ऊर्जा स्तर बदल सकते हैं, जिनकी ऊर्जा ऊर्जा अंतर के बराबर होनी चाहिए दो स्तरों के बीच।
 
परमाणु, अणु, या [[ आयन ]] जैसी रासायनिक प्रजातियों से भी इलेक्ट्रॉनों को पूरी तरह से हटाया जा सकता है। एक परमाणु से एक इलेक्ट्रॉन का पूर्ण निष्कासन [[ आयनीकरण ]] का एक रूप हो सकता है, जो प्रभावी रूप से इलेक्ट्रॉन को [[ परमाणु कक्षीय |  कक्षीय ]] में एक अनंत [[ प्रमुख क्वांटम संख्या ]] के साथ प्रभावी रूप से स्थानांतरित कर रहा है, जो कि इतनी दूर है कि शेष परमाणु (आयन) पर व्यावहारिक रूप से अधिक प्रभाव नहीं पड़ता है। विभिन्न प्रकार के परमाणुओं के लिए, 1, 2, 3, आदि हैं।  [[ आयनीकरण ऊर्जा | आयनीकरण ऊर्जा ]], परमाणु से क्रमशः 1, फिर 2, फिर 3, आदि उच्चतम ऊर्जा इलेक्ट्रॉनों को हटाने के लिए।  [[ ग्राउंड स्टेट ]] में। इसी विपरीत मात्रा में ऊर्जा भी जारी की जा सकती है, कभी-कभी [[ फोटॉन ऊर्जा ]] के रूप में, जब इलेक्ट्रॉनों को सकारात्मक चार्ज आयनों या कभी-कभी परमाणुओं में जोड़ा जाता है। अणु अपने [[ आणविक कंपन | कंपन ]] या घूर्णी ऊर्जा स्तरों में भी संक्रमण से गुजर सकते हैं। ऊर्जा स्तर के संक्रमण गैर-विकिरणीय भी हो सकते हैं, जिसका अर्थ है कि फोटॉन का उत्सर्जन या अवशोषण शामिल नहीं है।
यदि कोई परमाणु, आयन या अणु न्यूनतम संभव ऊर्जा स्तर पर है, तो उसे और उसके इलेक्ट्रॉनों को ''[[:hi:निम्नतम अवस्था|निम्नतम अवस्था]]'' में कहा जाता है। यदि यह उच्च ऊर्जा स्तर पर है, तो इसे ''[[:hi:उत्साहित राज्य|उत्तेजित]]'' कहा जाता है, या कोई भी इलेक्ट्रॉन जिसमें निम्नतम अवस्था से अधिक ऊर्जा होती है, ''उत्साहित'' होते हैं। ऐसी प्रजाति को एक फोटॉन [[:hi:प्रकाश अवशोषण|अवशोषित]] करके उच्च ऊर्जा स्तर तक उत्साहित किया जा सकता है जिसकी ऊर्जा स्तरों के बीच ऊर्जा, अंतर के बराबर होती है। इसके विपरीत, एक उत्तेजित प्रजाति ऊर्जा अंतर के बराबर एक फोटॉन को स्वचालित रूप से उत्सर्जित करके निम्न ऊर्जा स्तर तक जा सकती है। फोटान की ऊर्जा [[:hi:प्लैंक स्थिरांक|प्लैंक की स्थिरांक]] ({{Math|''h''}}) गुणा इसकी [[:hi:आवृत्ति|आवृत्ति]] (f) के बराबर होती है और इस प्रकार इसकी आवृत्ति के समानुपाती होती है, या इसकी [[:hi:तरंगदैर्घ्य|तरंग दैर्ध्य]] ( λ ) के विपरीत होती है। <ref name="chemguide3">[http://www.chemguide.co.uk/analysis/uvvisible/theory.html#top UV-Visible Absorption Spectra]</ref>


यदि कोई परमाणु, आयन या अणु न्यूनतम संभव ऊर्जा स्तर पर है, तो उसे और उसके इलेक्ट्रॉनों को '' [[ ग्राउंड स्टेट ]]'' में कहा जाता है। यदि यह उच्च ऊर्जा स्तर पर है, तो इसे '' [[ उत्तेजित अवस्था |  उत्तेजित ]]'' कहा जाता है, या कोई भी इलेक्ट्रॉन जिसमें जमीनी अवस्था से अधिक ऊर्जा होती है, वह ''उत्तेजित'' होता है। ऐसी प्रजाति  [[ प्रकाश अवशोषण |  द्वारा ]] एक फोटॉन को अवशोषित करके उच्च ऊर्जा स्तर तक उत्साहित हो सकती है जिसकी ऊर्जा स्तरों के बीच ऊर्जा अंतर के बराबर होती है। इसके विपरीत, एक उत्तेजित प्रजाति ऊर्जा अंतर के बराबर एक फोटॉन को स्वचालित रूप से उत्सर्जित करके निम्न ऊर्जा स्तर तक जा सकती है। एक फोटान की ऊर्जा  [[ प्लांक नियतांक ]] . के बराबर होती है{{math|''h''}}) इसकी  [[ आवृत्ति ]] . गुना{{mvar|f}}) और इस प्रकार इसकी आवृत्ति के समानुपाती होता है, या इसके  [[ तरंग दैर्ध्य ]] . के व्युत्क्रमानुपाती होता है{{mvar|λ}})<ref name="chemguide" />
{{Math|1=Δ''E'' = ''h f'' = ''h c / λ''}}
{{math|1=Δ''E'' = ''h f'' = ''h c / λ''}},
जबसे {{math|''c''}}, प्रकाश की गति, के बराबर होती है {{math|''f λ''}}<ref name="chemguide" />


इसके अनुरूप, कई प्रकार के  [[ स्पेक्ट्रोस्कोपी ]] उत्सर्जित की आवृत्ति या तरंग दैर्ध्य का पता लगाने पर आधारित होते हैं या  [[ अवशोषण स्पेक्ट्रोस्कोपी | अवशोषित ]] फोटॉन को विश्लेषण की गई सामग्री के बारे में जानकारी प्रदान करने के लिए ऊर्जा स्तर और सामग्री का विश्लेषण करके प्राप्त सामग्री की इलेक्ट्रॉनिक संरचना पर जानकारी प्रदान करते हैं।  [[ स्पेक्ट्रम ]]
चूँकि {{Math|''c''}}, प्रकाश की गति, {{Math|''f λ''}} के बराबर होती है <ref name="chemguide4">[http://www.chemguide.co.uk/analysis/uvvisible/theory.html#top UV-Visible Absorption Spectra]</ref>


एक तारक का प्रयोग आमतौर पर उत्तेजित अवस्था को निर्दिष्ट करने के लिए किया जाता है। एक अणु के बंधन में एक जमीनी अवस्था से उत्तेजित अवस्था में एक इलेक्ट्रॉन संक्रमण का एक पदनाम हो सकता है जैसे σ → σ*,  → π*, या n → π* जिसका अर्थ है  बंधन से  [[ प्रतिरक्षी तक इलेक्ट्रॉन का उत्तेजना ]] ऑर्बिटल, बॉन्डिंग से π एंटीबॉडी ऑर्बिटल तक, या n नॉन-बॉन्डिंग से π एंटीबॉडी ऑर्बिटल तक।
इसके अनुरूप, कई प्रकार की विद्युतदर्शी,उत्सर्जित या [[:hi:अवशोषण स्पेक्ट्रोस्कोपी|अवशोषित]] फोटॉन की आवृत्ति या तरंग दैर्ध्य का पता लगाने पर आधारित होती है, जिसमें विश्लेषण की गई सामग्री के बारे में जानकारी प्रदान की जाती है, जिसमें वर्णक्रम का विश्लेषण करके प्राप्त सामग्री के ऊर्जा स्तर और इलेक्ट्रॉनिक संरचना की जानकारी प्राप्त की जाती है।
<ref name="chemguide" />
<ref>[http://www.chem.ucla.edu/'''bacher/UV-vis/uv_vis_tetracyclone.html.html का सिद्धांतपराबैंगनी-दृश्यमान (यूवी-विज़) स्पेक्ट्रोस्कोपी</ref> इन सभी प्रकार के उत्तेजित अणुओं के लिए विपरीत इलेक्ट्रॉन संक्रमण भी अपनी जमीनी अवस्था में वापस आना संभव है, जिसे * → σ, * → π, या * → n के रूप में नामित किया जा सकता है।


एक अणु में एक इलेक्ट्रॉन के ऊर्जा स्तर में एक संक्रमण को [[ कंपन संक्रमण ]] के साथ जोड़ा जा सकता है और इसे  [[ वाइब्रोनिक संक्रमण ]] कहा जाता है। एक कंपन और  [[ घूर्णी संक्रमण ]] को  [[ रोविब्रेशनल युग्मन ]] द्वारा जोड़ा जा सकता है।  [[ रोविब्रोनिक युग्मन ]] में, इलेक्ट्रॉन संक्रमण एक साथ कंपन और घूर्णी संक्रमण दोनों के साथ संयुक्त होते हैं। संक्रमण में शामिल फोटॉन में विद्युत चुम्बकीय स्पेक्ट्रम में विभिन्न श्रेणियों की ऊर्जा हो सकती है, जैसे कि [[ एक्स-रे ]], [[ पराबैंगनी ]], [[ दृश्य प्रकाश ]], [[ अवरक्त ]], या [[ माइक्रोवेव ]] विकिरण, संक्रमण के प्रकार पर निर्भर करता है। एक बहुत ही सामान्य तरीके से, इलेक्ट्रॉनिक राज्यों के बीच ऊर्जा स्तर के अंतर बड़े होते हैं, कंपन स्तरों के बीच अंतर मध्यवर्ती होते हैं, और घूर्णी स्तरों के बीच अंतर छोटे होते हैं, हालांकि ओवरलैप हो सकते हैं।  [[ अनुवाद (भौतिकी) |  अनुवादीय ]] ऊर्जा स्तर व्यावहारिक रूप से निरंतर हैं और  [[ शास्त्रीय यांत्रिकी ]] का उपयोग करके गतिज ऊर्जा के रूप में गणना की जा सकती है।
तारक का प्रयोग आमतौर पर उत्तेजित अवस्था को निर्दिष्ट करने के लिए किया जाता है। अणु के बंधन में एक निम्नतम अवस्था से उत्तेजित अवस्था में इलेक्ट्रॉन संक्रमण का पदनाम हो सकता है जैसे कि → *, →*, या →* अर्थात इलेक्ट्रॉन का उत्तेजन एक के लिए बंधन, एक से [[:hi:प्रतिरक्षी|प्रतिरक्षी]] कक्षीय, एक के लिए बंधन प्रतिरक्षी कक्षीय, या n गैर-बंधन प्रतिरक्षी कक्षीय। <ref name="chemguide5">[http://www.chemguide.co.uk/analysis/uvvisible/theory.html#top UV-Visible Absorption Spectra]</ref> <ref>[http://www.chem.ucla.edu/~bacher/UV-vis/uv_vis_tetracyclone.html.html Theory of Ultraviolet-Visible (UV-Vis) Spectroscopy]</ref> इन सभी प्रकार के उत्तेजित अणुओं के लिए विपरीत इलेक्ट्रॉन संक्रमण भी अपनी निम्नतम अवस्था में वापस आना संभव है, जिसे * के रूप में नामित किया जा सकता है। →, *→, या *→एन।


उच्च  [[ तापमान ]] द्रव परमाणुओं और अणुओं को उनकी अनुवाद ऊर्जा में तेजी से बढ़ने का कारण बनता है, और कंपन और घूर्णी मोड के उच्च औसत आयामों के लिए अणुओं को ऊष्मीय रूप से उत्तेजित करता है (अणुओं को उच्च आंतरिक ऊर्जा स्तरों के लिए उत्तेजित करता है)। इसका मतलब यह है कि जैसे-जैसे तापमान बढ़ता है, आणविक  [[ ताप क्षमता ]] में अनुवादकीय, कंपन और घूर्णी योगदान अणुओं को गर्मी को अवशोषित करने देता है और  [[ आंतरिक ऊर्जा ]] से अधिक रखता है।  [[ चालन (गर्मी) | ऊष्मा का संचालन ]] आमतौर पर तब होता है जब अणु या परमाणु टकराते हैं  [[ हीट ट्रांसफर | एक दूसरे के बीच गर्मी ]] को स्थानांतरित करते हैं। यहां तक ​​​​कि उच्च तापमान पर, इलेक्ट्रॉनों को परमाणुओं या अणुओं में उच्च ऊर्जा कक्षाओं के लिए ऊष्मीय रूप से उत्तेजित किया जा सकता है। कम ऊर्जा स्तर पर एक इलेक्ट्रॉन की बाद की बूंद एक फोटॉन जारी कर सकती है, जिससे संभवतः रंगीन चमक हो सकती है।
अणु में इलेक्ट्रॉन के ऊर्जा स्तर में संक्रमण को [[:hi:कंपन संक्रमण|कंपन संक्रमण]] के साथ जोड़ा जा सकता है और इसे कंपट्रानीय संक्रमण कहा जाता है। एक कंपन और [[:hi:घूर्णी संक्रमण|घूर्णी संक्रमण]] को घूर्णनशील युग्मन। द्वारा जोड़ा जा सकता है। घूर्णनशील युग्मन, में इलेक्ट्रॉन संक्रमण एक साथ कंपन और घूर्णी संक्रमण दोनों के साथ संयुक्त होते हैं। संक्रमण में शामिल फोटॉन में विद्युत चुम्बकीय वर्णक्रम में विभिन्न श्रेणियों की ऊर्जा हो सकती है, जैसे कि [[:hi:ऍक्स किरण|एक्स-रे]], [[:hi:पराबैंगनी|पराबैंगनी]], [[:hi:प्रकाश|दृश्य प्रकाश]], [[:hi:अवरक्त|अवरक्त]], या [[:hi:सूक्ष्मतरंग|माइक्रोवेव]] विकिरण, यह संक्रमण के प्रकार पर निर्भर करता है। एक बहुत ही सामान्य तरीके से, इलेक्ट्रॉनिक राज्यों के बीच ऊर्जा स्तर के अंतर बड़े होते हैं, कंपन स्तरों के बीच अंतर मध्यवर्ती होते हैं, और घूर्णी स्तरों के बीच अंतर छोटे होते हैं, हालांकि ओवरलैप हो सकते हैं। [[:hi:अनुवाद (भौतिकी)|अनुवाद]] ऊर्जा का स्तर व्यावहारिक रूप से निरंतर होता है और [[:hi:चिरसम्मत यांत्रिकी|शास्त्रीय यांत्रिकी]] का उपयोग करके गतिज ऊर्जा के रूप में इसकी गणना की जा सकती है।


नाभिक से दूर एक इलेक्ट्रॉन में नाभिक के करीब एक इलेक्ट्रॉन की तुलना में अधिक संभावित ऊर्जा होती है, इस प्रकार यह नाभिक से कम बाध्य हो जाता है, क्योंकि इसकी संभावित ऊर्जा नकारात्मक होती है और नाभिक से इसकी दूरी पर व्युत्क्रमानुपाती होती है।<ref>{{cite web |url=http://chemed.chem.wisc.edu/chempaths/GenChem-Textbook/Electron-Density-and-Potential-Energy-899.html |title=Archived copy |access-date=2010-10-07 |url-status=dead |archive-url=https://web.archive.org/web/20100718111313/http://chemed.chem.wisc.edu/chempaths/GenChem-Textbook/Electron-Density-and-Potential-Energy-899.html |archive-date=2010-07-18 }}</ref>
उच्च [[:hi:तापमान|तापमान]] के कारण द्रव के परमाणु और अणु तेजी से आगे बढ़ते हैं, जिससे उनकी अनुवाद ऊर्जा बढ़ती है, और अणुओं का कंपन और घूर्णी मोड के उच्च औसत आयामों के लिए इसे उत्तेजित करता है (अणुओं को उच्च आंतरिक ऊर्जा स्तरों के लिए उत्तेजित करता है)। इसका मतलब यह है कि जैसे-जैसे तापमान बढ़ता है, आणविक [[:hi:ऊष्मा धारिता|ताप क्षमता]] में अनुवाद, कंपन और घूर्णी योगदान, अणुओं में गर्मी को अवशोषित करके और अधिक [[:hi:आन्तरिक ऊर्जा|आंतरिक ऊर्जा]] धारण करने लगते हैं। [[:hi:ऊष्मा चालन|गर्मी का संचालन]] आम तौर पर तब होता है जब अणु या परमाणु एक दूसरे के बीच [[:hi:ऊष्मा अन्तरण|गर्मी को स्थानांतरित करते]] हैं। यहां तक कि उच्च तापमान पर, इलेक्ट्रॉनों को परमाणुओं या अणुओं में उच्च ऊर्जा कक्षाओं के लिए ऊष्मीय रूप से उत्तेजित किया जा सकता है। निम्न ऊर्जा स्तर पर एक इलेक्ट्रॉन की बूंद एक फोटॉन जारी कर सकती है, जिससे संभवतः रंगीन चमक हो सकती है।
 
नाभिक से दूर इलेक्ट्रॉन में नाभिक के करीब एक इलेक्ट्रॉन की तुलना में अधिक संभावित ऊर्जा होती है, इस प्रकार यह नाभिक से कम बाध्य हो जाता है, क्योंकि इसकी संभावित ऊर्जा नकारात्मक होती है और नाभिक से इसकी दूरी व्युत्क्रमानुपाती होती है। <ref>{{Cite web|url=http://chemed.chem.wisc.edu/chempaths/GenChem-Textbook/Electron-Density-and-Potential-Energy-899.html|title=Archived copy|access-date=2010-10-07|archive-url=https://web.archive.org/web/20100718111313/http://chemed.chem.wisc.edu/chempaths/GenChem-Textbook/Electron-Density-and-Potential-Energy-899.html|archive-date=2010-07-18}}</ref>


== क्रिस्टलीय सामग्री ==
== क्रिस्टलीय सामग्री ==
[[ क्रिस्टल | क्रिस्टलीय ठोस ]] एस में ऊर्जा स्तरों के स्थान पर या इसके अतिरिक्त [[ ऊर्जा बैंड ]] एस पाया गया है। एक खाली बैंड के भीतर इलेक्ट्रॉन किसी भी ऊर्जा को ग्रहण कर सकते हैं। पहले तो यह ऊर्जा स्तरों की आवश्यकता का अपवाद प्रतीत होता है। हालाँकि, जैसा कि [[ बैंड सिद्धांत ]] में दिखाया गया है, ऊर्जा बैंड वास्तव में कई असतत ऊर्जा स्तरों से बने होते हैं जो हल करने के लिए एक साथ बहुत करीब होते हैं। एक बैंड के भीतर स्तरों की संख्या क्रिस्टल में परमाणुओं की संख्या के क्रम की होती है, इसलिए यद्यपि इलेक्ट्रॉन वास्तव में इन ऊर्जाओं तक ही सीमित होते हैं, वे मूल्यों की निरंतरता को ग्रहण करने में सक्षम प्रतीत होते हैं। क्रिस्टल में महत्वपूर्ण ऊर्जा स्तर [[ वैलेंस बैंड ]] के ऊपर, [[ चालन बैंड ]] के नीचे, [[ फर्मी स्तर ]], [[ वैक्यूम स्तर ]], और किसी भी [[ दोष राज्यों के ऊर्जा स्तर ]] हैं। क्रिस्टल
[[:hi:क्रिस्टल|क्रिस्टलीय ठोस]] में ऊर्जा स्तरों और इसके अतिरिक्त [[:hi:ऊर्जा बैंड|ऊर्जा बैंड]] पाए जाते हैं। एक खाली बैंड के भीतर इलेक्ट्रॉन किसी भी ऊर्जा को ग्रहण कर सकते हैं। सबसे पहले यह ऊर्जा स्तरों की आवश्यकता का अपवाद प्रतीत होता है। हालाँकि, जैसा कि [[:hi:बैंड सिद्धांत|बैंड सिद्धांत]] में दिखाया गया है, कि ऊर्जा बैंड वास्तव में कई असतत ऊर्जा स्तरों से बने होते हैं जो बहुत करीब होते हैं। एक बैंड के भीतर स्तरों की संख्या क्रिस्टल में परमाणुओं की संख्या के क्रम की होती है, इसलिए यद्यपि इलेक्ट्रॉन वास्तव में इन ऊर्जाओं तक ही सीमित होते हैं, वे मूल्यों की निरंतरता को ग्रहण करने में सक्षम प्रतीत होते हैं। क्रिस्टल में महत्वपूर्ण ऊर्जा स्तर [[:hi:संयोजी बंध|होते है,सबसे ऊपर, वैलेंस बैंड]], सबसे नीचे [[:hi:चालन बैंड|चालन बैंड]],होते है। [[:hi:devanagri|फर्मी स्तर]], [[:hi:वैक्यूम स्तर|निर्वात स्तर]],और उर्जा स्तर, क्रिस्टल में किसी भी [[:hi:दोष राज्य|दोष अवस्थाओ]] के ऊर्जा स्तर होते है।
 
== यह सभी देखें ==
 
* [[:hi:गड़बड़ी सिद्धांत (क्वांटम यांत्रिकी)|गड़बड़ी सिद्धांत (क्वांटम यांत्रिकी)]]
* [[:hi:अभिकलनात्मक रसायन|कम्प्यूटेशनल केमिस्ट्री]]
 
== संदर्भ ==
{{DEFAULTSORT:Energy Level}}
 
[[pl:Powłoka elektronowa]]


==See also==
[[Category:CS1|Energy Level]]
*[[Perturbation theory (quantum mechanics)]]
[[Category:CS1 maint|Energy Level]]
*[[Computational chemistry
[[Category:Machine Translated Page|Energy Level]]
]
[[Category:Pages with script errors|Energy Level]]
[[Category: Machine Translated Page]]
[[Category:Pages with template loops|Energy Level]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData|Energy Level]]
[[Category:Wikipedia pages with incorrect protection templates|Cite book/TemplateData]]

Latest revision as of 10:51, 3 August 2022

File:Energy levels.svg
एक परमाणु में एक इलेक्ट्रॉन के लिए ऊर्जा स्तर: जमीनी अवस्था और उत्तेजित अवस्थाएँऊर्जा को अवशोषित करने के बाद, एक इलेक्ट्रॉन जमीनी अवस्था से उच्च ऊर्जा उत्तेजित अवस्था में "कूद" सकता है।

क्वांटम यांत्रिक प्रणाली या कण जो बाध्य है और स्थानिक रूप से सीमित है केवल ऊर्जा के कुछ असतत मूल्यों को ही ले सकता है, जिसे ऊर्जा स्तर कहा जाता है। यह शास्त्रीय कणों के विपरीत है, जिसमें किसी भी मात्रा में ऊर्जा हो सकती है। यह शब्द आमतौर पर परमाणुओं, आयनों, या अणुओं में इलेक्ट्रॉनों के ऊर्जा स्तरों के लिए उपयोग किया जाता है, जो नाभिक के विद्युत क्षेत्र से बंधे होते हैं, लेकिन अणुओं के ऊर्जा स्तर या अणुओं में कंपन या घूर्णी ऊर्जा स्तरों को भी ये संदर्भित कर सकते हैं। इस तरह के असतत ऊर्जा स्तरों वाले सिस्टम के ऊर्जा स्पेक्ट्रम को मात्राबद्ध कहा जाता है।

रसायन विज्ञान और परमाणु भौतिकी में, एक इलेक्ट्रॉन कोश, या प्रमुख ऊर्जा स्तर, परमाणु के नाभिक के चारों ओर एक या एक से अधिक इलेक्ट्रॉनों की कक्षा के रूप में माना जा सकता है। नाभिक के सबसे निकटतम कोश को "1 शेल" (जिसे "K शेल" भी कहा जाता है), इसके बाद " 2 शेल" (या "L शेल"), फिर " 3 शेल" (या "M शेल") होता है, और इसी तरह नाभिक से दूर और दूर गोले प्रमुख क्वांटम संख्याओं के अनुरूप होते हैं ( n = 1, 2, 3, 4 ...) या एक्स-रे नोटेशन (के, एल, एम,) में प्रयुक्त अक्षरों के साथ वर्णानुक्रम में लेबल किए जाते हैं।

प्रत्येक शेल में केवल एक निश्चित संख्या में इलेक्ट्रॉन हो सकते हैं - पहला शेल दो इलेक्ट्रॉनों को धारण कर सकता है, दूसरा शेल आठ (2 + 6) इलेक्ट्रॉनों को धारण कर सकता है, तीसरा शेल 18 (2 + 6 + 10) तक हो सकता है। और इसी तरह सामान्य सूत्र यह है कि एन वें शेल सिद्धांत के रूप में 2 n 2 इलेक्ट्रॉनों को धारण कर सकता है। [1] चूंकि इलेक्ट्रॉन विद्युत रूप से नाभिक की ओर आकर्षित होते हैं, एक परमाणु के इलेक्ट्रॉन आमतौर पर बाहरी कोशों पर तभी कब्जा करेंगे, जब आंतरिक कोश पहले से ही अन्य इलेक्ट्रॉनों द्वारा पूरी तरह से भर दिए गए हों। हालांकि, इसकी आवश्यकता नहीं है, परमाणुओं में दो या तीन अपूर्ण बाहरी कोश भी हो सकते हैं। (अधिक जानकारी के लिए मैडेलुंग नियम देखें। ) इन कोशों में इलेक्ट्रॉन क्यों मौजूद हैं, इसकी व्याख्या के लिए इलेक्ट्रॉन विन्यास देखें। [2]

यदि स्थितिज ऊर्जा को परमाणु नाभिक या अणु से अनंत दूरी पर शून्य पर सेट किया जाता है, तो सामान्य परिपाटी, बाध्य इलेक्ट्रॉन अवस्थाओं में नकारात्मक स्थितिज ऊर्जा उत्पन्न होती है।

यदि कोई परमाणु, आयन या अणु न्यूनतम संभव ऊर्जा स्तर पर है, तो इसे और इसके इलेक्ट्रॉनों को निम्नतम अवस्था कहा जाता है। यदि यह उच्च ऊर्जा स्तर पर है, तो इसे उत्तेजित कहा जाता है, या कोई भी इलेक्ट्रॉन जिसमें निम्नतम अवस्था से अधिक ऊर्जा होती है, उत्साहित कहा जाता हैं। एक ऊर्जा स्तर को पतित माना जाता है यदि इसके साथ एक से अधिक मापने योग्य क्वांटम यांत्रिक अवस्थाएं जुड़ी हो।

स्पष्टीकरण

Error creating thumbnail:
एक हाइड्रोजन परमाणु के तरंग कार्य, नाभिक के चारों ओर अंतरिक्ष में इलेक्ट्रॉन के मिलने की प्रायिकता को दर्शाता है। प्रत्येक स्थिर अवस्था परमाणु के एक विशिष्ट ऊर्जा स्तर को परिभाषित करती है।

मात्राबद्ध ऊर्जा का स्तर कणों के तरंग व्यवहार से उत्पन्न होता है, जो कण की ऊर्जा और उसकी तरंग दैर्ध्य के बीच संबंध स्थापित करता है। सीमित कण के लिए जैसे कि परमाणु में इलेक्ट्रॉन, अच्छी तरह से परिभाषित ऊर्जा वाले तरंग कार्यों में एक स्थायी तरंग का रूप होता है। [3] अच्छी तरह से परिभाषित ऊर्जा वाले राज्यों को स्थिर राज्य कहा जाता है क्योंकि वे ऐसे राज्य हैं जो समय के साथ नहीं बदलते हैं। अनौपचारिक रूप से, ये अवस्थाएं एक बंद पथ (एक पथ जो समाप्त होती है जहां से शुरू हुई) के साथ तरंग की तरंग दैर्ध्य की एक पूरी संख्या के अनुरूप होती है, जैसे कि परमाणु के चारों ओर गोलाकार कक्षा, जहां तरंग दैर्ध्य की संख्या परमाणु कक्षीय का प्रकार देती है (0 एस-ऑर्बिटल्स के लिए, 1 पी-ऑर्बिटल्स के लिए और इसी तरह)। प्राथमिक उदाहरण जो गणितीय रूप से यह दिखाते हैं कि एक बॉक्स में कण और परिमाण संनादी दोलक के मिलने पर ऊर्जा का स्तर कैसा  आता है ।

ऊर्जा अवस्थाओं का कोई भी सुपरपोजिशन (रैखिक संयोजन) भी एक क्वांटम अवस्था है, लेकिन ऐसी अवस्थाएँ समय के साथ बदलती हैं और उनमें अच्छी तरह से परिभाषित ऊर्जाएँ नहीं होती हैं। ऊर्जा के मापन से तरंग फलन का पतन होता है, जिसके परिणामस्वरूप एक नई अवस्था उत्पन्न होती है जिसमें केवल एक ऊर्जा अवस्था होती है। किसी वस्तु के संभावित ऊर्जा स्तरों के मापन को वर्णक्रम दर्शी कहा जाता है।

इतिहास

परमाणुओं में परिमाणीकरण का पहला प्रमाण 1800 के दशक की प्रांरम्भ में किया गया था। सूर्य से प्रकाश में वर्णक्रमीय रेखाओं का अवलोकन था। ऊर्जा स्तर की धारणा 1913 में डेनिश भौतिक विज्ञानी नील्स बोहर द्वारा परमाणु के बोहर सिद्धांत में प्रस्तावित की गई थी। श्रोडिंगर समीकरण के संदर्भ में इन ऊर्जा स्तरों की व्याख्या देने वाला आधुनिक क्वांटम यांत्रिक सिद्धांत 1926 में उन्नत किया गया था।

परमाणु

आंतरिक ऊर्जा स्तर

परमाणु में नीचे दिए गए विभिन्न स्तरों पर इलेक्ट्रॉनों की ऊर्जा के सूत्रों में, ऊर्जा के लिए शून्य बिंदु तब सेट किया जाता है जब विचाराधीन इलेक्ट्रॉन परमाणु को पूरी तरह से छोड़ देता है, अर्थात जब इलेक्ट्रॉन की प्रमुख क्वांटम संख्या n = ∞ होती है। जब इलेक्ट्रॉन एन (n) किसी भी निकट मान के परमाणु से बंधा होता है, तो इलेक्ट्रॉन की ऊर्जा कम होती है और इसे ऋणात्मक माना जाता है।

कक्षीय अवस्था ऊर्जा स्तर: नाभिक के साथ परमाणु/आयन + एक इलेक्ट्रॉन

मान लें कि हाइड्रोजन जैसे परमाणु (आयन) में दिए गए परमाणु कक्षा में एक इलेक्ट्रॉन है। इसमे ऊर्जा मुख्य रूप से (नकारात्मक) इलेक्ट्रॉन के (धनात्मक) नाभिक के साथ इलेक्ट्रोस्टैटिक इंटरैक्शन द्वारा निर्धारित की जाती है। नाभिक के चारों ओर एक इलेक्ट्रॉन का ऊर्जा स्तर इसके द्वारा दिया जाता है:

(आमतौर पर 1 इलेक्ट्रान वोल्ट(eV) और,10 3 इलेक्ट्रान वोल्ट(eV) के बीच), जहां R स्थिरांक है, जेड परमाणु क्रमांक है, एन. प्रमुख क्वांटम संख्या है, h प्लैंक स्थरांक है, और c प्रकाश की गति है। केवल हाइड्रोजन जैसे परमाणुओं (आयनों) के लिए रिडबर्ग (Rydberg) का स्तर केवल प्रमुख क्वांटम संख्या एन. पर निर्भर करता है।

यह समीकरण किसी भी हाइड्रोजन जैसे तत्व (नीचे दिखाया गया) को रिडबर्ग (Rydberg) सूत्र E = h ν = h c / λ के साथ जोड़कर प्राप्त किया जाता है, यह मानते हुए कि रिडबर्ग (Rydberg) सूत्र में मुख्य क्वांटम संख्या n ऊपर = n1 और n2 = ∞ (प्रमुख एक फोटॉन उत्सर्जित करते समय इलेक्ट्रॉन, ऊर्जा स्तर की क्वांटम संख्या से उतरता है) रिडबर्ग (Rydberg) सूत्र अनुभवजन्य वर्णक्रम दर्शी उत्सर्जन डेटा से प्राप्त किया गया था।

एक समतुल्य सूत्र, श्रोडिंगर समीकरण के यांत्रिक रूप से क्वांटम प्राप्त किया जा सकता है जिसमें गतिज ऊर्जा हैमिल्टनी प्रचालक के साथ एक तरंग फ़ंक्शन का उपयोग करके ऊर्जा स्तर को आइजन वैल्यूस के रूप में प्राप्त करने के लिए उपयोग किया जाता है, लेकिन रिडबर्ग(Rydberg) स्थिरांक को अन्य मौलिक भौतिकी स्थिरांक द्वारा प्रतिस्थापित किया जाता है।

परमाणुओं में इलेक्ट्रॉन-इलेक्ट्रॉन परस्पर क्रिया

यदि परमाणु के चारों ओर एक से अधिक इलेक्ट्रॉन हों, तो इलेक्ट्रॉन-इलेक्ट्रॉन अंतःक्रिया से ऊर्जा स्तर में वृद्धि होती है। यदि इलेक्ट्रॉन तरंगों का स्थानिक अतिव्यापन कम है तो इन अंतःक्रियाओं को अक्सर उपेक्षित कर दिया जाता है।

बहु-इलेक्ट्रॉन परमाणुओं के लिए, इलेक्ट्रॉनों के बीच परस्पर क्रिया के कारण पूर्ववर्ती समीकरण अब सटीक नहीं रह गया है जैसा कि केवल जेड के साथ परमाणु संख्या के रूप में कहा गया है। कि इसे समझने का एक सरल (हालांकि पूर्ण नहीं) तरीका परिरक्षण प्रभाव के रूप में है, जहां बाहरी इलेक्ट्रॉनों को कम चार्ज का एक प्रभावी नाभिक दिखाई देता है, क्योंकि आंतरिक इलेक्ट्रॉन नाभिक से कसकर बंधे होते हैं और आंशिक रूप से इसके चार्ज को रद्द कर देते हैं। यह एक अनुमानित सुधार की ओर जाता है जहां Z को एक प्रभावी परमाणु चार्ज के साथ प्रतिस्थापित किया जाता है जिसे Zeff के रूप में दर्शाया जाता है जो प्रमुख क्वांटम संख्या पर दृढ़ता से निर्भर करता है।

ऐसे मामलों में, कक्षीय प्रकार (अजीमुथल क्वांटम संख्या ℓ द्वारा निर्धारित) के साथ-साथ अणु के भीतर उनके स्तर Zeff को प्रभावित करते हैं और इसलिए विभिन्न परमाणु इलेक्ट्रॉन ऊर्जा स्तरों को भी प्रभावित करते हैं। इलेक्ट्रॉन विन्यास के लिए एक परमाणु को इलेक्ट्रॉनों से भरने का औफबाउ सिद्धांत इन भिन्न ऊर्जा स्तरों को ध्यान में रखता है। निम्नतम अवस्था में इलेक्ट्रॉनों के साथ एक परमाणु भरने के लिए, सबसे कम ऊर्जा स्तर पहले भरे जाते हैं जो पाउली अपवर्जन सिद्धांत, औफबाउ सिद्धांत और हुंड के नियम के अनुरूप होते हैं।

ठीक संरचना विभाजन

सापेक्ष गतिज ऊर्जा सुधार में, स्पिन-ऑर्बिट युग्मन से सूक्ष्म संरचना उत्पन्न होती है (इलेक्ट्रॉन के गति और नाभिक के विद्युत क्षेत्र के बीच एक विद्युत इंटरैक्शन) और डार्विन शब्द ( s शेल के संपर्क शब्द की अतःक्रिया से उत्पन्न होती है।) नाभिक के अंदर इलेक्ट्रॉन ये 10 −3 इलेक्ट्रान वोल्ट के परिमाण के एक विशिष्ट क्रम से स्तरों को प्रभावित करते हैं।

अति सूक्ष्म संरचना

सूक्ष्म संरचना इलेक्ट्रॉन-नाभिक, स्पिन-स्पिन अंतःक्रिया के कारण होती उत्पन्न होती है, जिसके परिणामस्वरूप 10 −4 इलेक्ट्रान वोल्ट के परिमाण में एक विशिष्ट क्रम द्वारा ऊर्जा स्तरों में एक विशिष्ट परिवर्तन होता है।

बाहरी क्षेत्रों के कारण ऊर्जा का स्तर

ज़ीमन प्रभाव (Zeeman)

इलेक्ट्रॉनिक कक्षीय कोणीय गति, एल (L) से उत्पन्न होने वाले चुंबकीय द्विध्रुवीय क्षण, μL के साथ एक अंतःक्रियात्मक ऊर्जा जुड़ी होती है

साथ

.

इसके अतिरिक्त इलेक्ट्रॉन स्पिन से उत्पन्न चुंबकीय गति को ध्यान में रखते हुए।

आपेक्षिक प्रभाव ( μS ) के कारण, एक चुंबकीय गति उप्पन्न होती है, जो μS, इलेक्ट्रॉन स्पिन से उत्पन्न होती है।

,

gS के साथ इलेक्ट्रॉन-स्पिन जी-फैक्टर (लगभग 2), जिसके परिणामस्वरूप कुल चुंबकीय क्षण यू.उत्पन्न होता है,

.

अंतःक्रियात्मक ऊर्जा इसलिए बन जाती है

.

निरा प्रभाव

अणु

अणु के रूप में परमाणुओं के बीच रासायनिक बंधन होते है, क्योंकि वे शामिल परमाणुओं के लिए स्थिति को और अधिक स्थिर बनाते हैं, जिसका आमतौर पर मतलब है कि अणु में शामिल परमाणुओं के लिए योग ऊर्जा स्तर परमाणुओं की तुलना में कम है। जैसे अलग परमाणु सहसंयोजक बंधन के लिए एक दूसरे के पास आते हैं, उनकी कक्षाएँ एक दूसरे के ऊर्जा स्तर को प्रभावित करती हैं जिससे बंधन और प्रतिरक्षी आणविक कक्षाएँ बनती हैं। बंधन कक्षक का ऊर्जा स्तर कम होता है, और प्रतिरक्षी कक्षक का ऊर्जा स्तर अधिक होता है। अणु में बंधन स्थिर होने के लिए, सहसंयोजक बंधन, इलेक्ट्रॉन निम्न ऊर्जा बंधन कक्षीय पर कब्जा कर लेते हैं, जिसे स्थिति के आधार पर σ या जैसे प्रतीकों द्वारा दर्शाया जाता है। * या π* कक्षीय प्राप्त करने के लिए तारांकन जोड़कर संबंधित एंटी-बॉन्डिंग कक्षीय को दर्शाया जा सकता है। अणु में गैर-बंधन कक्षीय, बाहरी कक्षों में इलेक्ट्रॉनों के साथ एक कक्षीय होता है जो बंधन में भाग नहीं लेता है और इसका ऊर्जा स्तर घटक परमाणु के समान होता है। ऐसे कक्षाओं को एन. कक्षाओं के रूप में नामित किया जा सकता है। एक एन. कक्षक में इलेक्ट्रॉन आमतौर पर एकाकी जोड़े होते हैं। [4] बहुपरमाणु अणुओं में, विभिन्न कंपन और घूर्णी ऊर्जा स्तर भी शामिल होते हैं।

मोटे तौर पर, एक आणविक ऊर्जा अवस्था, यानी आणविक हैमिल्टनियन, स्वदेशी इलेक्ट्रॉनिक, कंपनघूर्णी, परमाणु और अनुवाद संबंधी घटकों का योग है, जैसे:

जहां Eelectronic इलेक्ट्रॉनिक आणविक हैमिल्टन ( संभावित ऊर्जा सतह का मूल्य) का एक प्रतिरूप है। आणविक ऊर्जा स्तरों को आणविक शब्द प्रतीकों द्वारा लेबल किया जाता है। इन घटकों की विशिष्ट ऊर्जाएं, विशिष्ट ऊर्जा अवस्था और पदार्थ के साथ बदलती रहती हैं।

ऊर्जा स्तर आरेख

एक अणु में परमाणुओं के बीच बंधों के लिए विभिन्न प्रकार के ऊर्जा स्तर आरेख होते हैं।

उदाहरण

आण्विक कक्षीय आरेख, जब्लोन्स्की आरेख, और फ्रैंक-कोंडोन आरेख।

ऊर्जा स्तर संक्रमण

E1 से E2 तक ऊर्जा स्तर में वृद्धि लाल स्क्विगली तीर द्वारा दर्शाए गए फोटॉन के अवशोषण के परिणामस्वरूप होती है, और जिसकी ऊर्जा hν
E2 से E1 तक ऊर्जा स्तर में कमी के परिणामस्वरूप लाल स्क्विगली तीर द्वारा दर्शाए गए एक फोटॉन का उत्सर्जन होता है, और जिसकी ऊर्जा hν

परमाणुओं और अणुओं में इलेक्ट्रॉन एक फोटॉन (विद्युत चुम्बकीय विकिरण) को उत्सर्जित या अवशोषित करके ऊर्जा के स्तर को बदल सकते हैं ( विद्युत चुम्बकीय विकिरण), जिसकी ऊर्जा दो स्तरों के बीच ऊर्जा अंतर के बराबर होनी चाहिए। परमाणु, अणु, या आयन जैसी रासायनिक प्रजातियों से भी इलेक्ट्रॉनों को पूरी तरह से हटाया जा सकता है। एक परमाणु से एक इलेक्ट्रॉन का पूर्ण निष्कासन आयनीकरण का एक रूप हो सकता है, जो प्रभावी रूप से इलेक्ट्रॉन को एक अनंत प्रमुख क्वांटम संख्या के साथ एक कक्षीय कक्ष में ले जा रहा है, जो प्रभावी रूप से इतनी दूर है कि शेष परमाणु पर व्यावहारिक रूप से कोई और प्रभाव नहीं पड़ता है। विभिन्न प्रकार के परमाणुओं के लिए, पहली, दूसरी, तीसरी, आदि आयनीकरण ऊर्जाएं होती हैं, जो मूल रूप से निम्नतम अवस्था में परमाणु से क्रमशः उच्चतम ऊर्जा इलेक्ट्रॉनों के पहले, फिर दूसरे, फिर तीसरे आदि को हटाने के लिए होती हैं। इसी विपरीत मात्रा में ऊर्जा भी जारी की जा सकती है, कभी-कभी फोटॉन ऊर्जा के रूप में, जब इलेक्ट्रॉनों को सकारात्मक चार्ज आयनों या कभी-कभी परमाणुओं में जोड़ा जाता है। तो अणु अपने कंपन या घूर्णी ऊर्जा स्तरों में भी संक्रमण से गुजर सकते हैं। ऊर्जा स्तर के संक्रमण गैर-विकिरणीय भी हो सकते हैं, जिसका अर्थ है कि फोटॉन का उत्सर्जन या अवशोषण में शामिल नही होना।

यदि कोई परमाणु, आयन या अणु न्यूनतम संभव ऊर्जा स्तर पर है, तो उसे और उसके इलेक्ट्रॉनों को निम्नतम अवस्था में कहा जाता है। यदि यह उच्च ऊर्जा स्तर पर है, तो इसे उत्तेजित कहा जाता है, या कोई भी इलेक्ट्रॉन जिसमें निम्नतम अवस्था से अधिक ऊर्जा होती है, उत्साहित होते हैं। ऐसी प्रजाति को एक फोटॉन अवशोषित करके उच्च ऊर्जा स्तर तक उत्साहित किया जा सकता है जिसकी ऊर्जा स्तरों के बीच ऊर्जा, अंतर के बराबर होती है। इसके विपरीत, एक उत्तेजित प्रजाति ऊर्जा अंतर के बराबर एक फोटॉन को स्वचालित रूप से उत्सर्जित करके निम्न ऊर्जा स्तर तक जा सकती है। फोटान की ऊर्जा प्लैंक की स्थिरांक (h) गुणा इसकी आवृत्ति (f) के बराबर होती है और इस प्रकार इसकी आवृत्ति के समानुपाती होती है, या इसकी तरंग दैर्ध्य ( λ ) के विपरीत होती है। [5]

ΔE = h f = h c / λ

चूँकि c, प्रकाश की गति, f λ के बराबर होती है [6]

इसके अनुरूप, कई प्रकार की विद्युतदर्शी,उत्सर्जित या अवशोषित फोटॉन की आवृत्ति या तरंग दैर्ध्य का पता लगाने पर आधारित होती है, जिसमें विश्लेषण की गई सामग्री के बारे में जानकारी प्रदान की जाती है, जिसमें वर्णक्रम का विश्लेषण करके प्राप्त सामग्री के ऊर्जा स्तर और इलेक्ट्रॉनिक संरचना की जानकारी प्राप्त की जाती है।

तारक का प्रयोग आमतौर पर उत्तेजित अवस्था को निर्दिष्ट करने के लिए किया जाता है। अणु के बंधन में एक निम्नतम अवस्था से उत्तेजित अवस्था में इलेक्ट्रॉन संक्रमण का पदनाम हो सकता है जैसे कि → *, →*, या →* अर्थात इलेक्ट्रॉन का उत्तेजन एक के लिए बंधन, एक से प्रतिरक्षी कक्षीय, एक के लिए बंधन प्रतिरक्षी कक्षीय, या n गैर-बंधन प्रतिरक्षी कक्षीय। [7] [8] इन सभी प्रकार के उत्तेजित अणुओं के लिए विपरीत इलेक्ट्रॉन संक्रमण भी अपनी निम्नतम अवस्था में वापस आना संभव है, जिसे * के रूप में नामित किया जा सकता है। →, *→, या *→एन।

अणु में इलेक्ट्रॉन के ऊर्जा स्तर में संक्रमण को कंपन संक्रमण के साथ जोड़ा जा सकता है और इसे कंपट्रानीय संक्रमण कहा जाता है। एक कंपन और घूर्णी संक्रमण को घूर्णनशील युग्मन। द्वारा जोड़ा जा सकता है। घूर्णनशील युग्मन, में इलेक्ट्रॉन संक्रमण एक साथ कंपन और घूर्णी संक्रमण दोनों के साथ संयुक्त होते हैं। संक्रमण में शामिल फोटॉन में विद्युत चुम्बकीय वर्णक्रम में विभिन्न श्रेणियों की ऊर्जा हो सकती है, जैसे कि एक्स-रे, पराबैंगनी, दृश्य प्रकाश, अवरक्त, या माइक्रोवेव विकिरण, यह संक्रमण के प्रकार पर निर्भर करता है। एक बहुत ही सामान्य तरीके से, इलेक्ट्रॉनिक राज्यों के बीच ऊर्जा स्तर के अंतर बड़े होते हैं, कंपन स्तरों के बीच अंतर मध्यवर्ती होते हैं, और घूर्णी स्तरों के बीच अंतर छोटे होते हैं, हालांकि ओवरलैप हो सकते हैं। अनुवाद ऊर्जा का स्तर व्यावहारिक रूप से निरंतर होता है और शास्त्रीय यांत्रिकी का उपयोग करके गतिज ऊर्जा के रूप में इसकी गणना की जा सकती है।

उच्च तापमान के कारण द्रव के परमाणु और अणु तेजी से आगे बढ़ते हैं, जिससे उनकी अनुवाद ऊर्जा बढ़ती है, और अणुओं का कंपन और घूर्णी मोड के उच्च औसत आयामों के लिए इसे उत्तेजित करता है (अणुओं को उच्च आंतरिक ऊर्जा स्तरों के लिए उत्तेजित करता है)। इसका मतलब यह है कि जैसे-जैसे तापमान बढ़ता है, आणविक ताप क्षमता में अनुवाद, कंपन और घूर्णी योगदान, अणुओं में गर्मी को अवशोषित करके और अधिक आंतरिक ऊर्जा धारण करने लगते हैं। गर्मी का संचालन आम तौर पर तब होता है जब अणु या परमाणु एक दूसरे के बीच गर्मी को स्थानांतरित करते हैं। यहां तक कि उच्च तापमान पर, इलेक्ट्रॉनों को परमाणुओं या अणुओं में उच्च ऊर्जा कक्षाओं के लिए ऊष्मीय रूप से उत्तेजित किया जा सकता है। निम्न ऊर्जा स्तर पर एक इलेक्ट्रॉन की बूंद एक फोटॉन जारी कर सकती है, जिससे संभवतः रंगीन चमक हो सकती है।

नाभिक से दूर इलेक्ट्रॉन में नाभिक के करीब एक इलेक्ट्रॉन की तुलना में अधिक संभावित ऊर्जा होती है, इस प्रकार यह नाभिक से कम बाध्य हो जाता है, क्योंकि इसकी संभावित ऊर्जा नकारात्मक होती है और नाभिक से इसकी दूरी व्युत्क्रमानुपाती होती है। [9]

क्रिस्टलीय सामग्री

क्रिस्टलीय ठोस में ऊर्जा स्तरों और इसके अतिरिक्त ऊर्जा बैंड पाए जाते हैं। एक खाली बैंड के भीतर इलेक्ट्रॉन किसी भी ऊर्जा को ग्रहण कर सकते हैं। सबसे पहले यह ऊर्जा स्तरों की आवश्यकता का अपवाद प्रतीत होता है। हालाँकि, जैसा कि बैंड सिद्धांत में दिखाया गया है, कि ऊर्जा बैंड वास्तव में कई असतत ऊर्जा स्तरों से बने होते हैं जो बहुत करीब होते हैं। एक बैंड के भीतर स्तरों की संख्या क्रिस्टल में परमाणुओं की संख्या के क्रम की होती है, इसलिए यद्यपि इलेक्ट्रॉन वास्तव में इन ऊर्जाओं तक ही सीमित होते हैं, वे मूल्यों की निरंतरता को ग्रहण करने में सक्षम प्रतीत होते हैं। क्रिस्टल में महत्वपूर्ण ऊर्जा स्तर होते है,सबसे ऊपर, वैलेंस बैंड, सबसे नीचे चालन बैंड,होते है। फर्मी स्तर, निर्वात स्तर,और उर्जा स्तर, क्रिस्टल में किसी भी दोष अवस्थाओ के ऊर्जा स्तर होते है।

यह सभी देखें

संदर्भ

  1. Re: Why do electron shells have set limits ? madsci.org, 17 March 1999, Dan Berger, Faculty Chemistry/Science, Bluffton College
  2. Electron Subshells. Corrosion Source. Retrieved on 1 December 2011.
  3. Tipler, Paul A.; Mosca, Gene (2004). Physics for Scientists and Engineers, 5th Ed. Vol. 2. W. H. Freeman and Co. p. 1129. ISBN 0716708108.
  4. UV-Visible Absorption Spectra
  5. UV-Visible Absorption Spectra
  6. UV-Visible Absorption Spectra
  7. UV-Visible Absorption Spectra
  8. Theory of Ultraviolet-Visible (UV-Vis) Spectroscopy
  9. "Archived copy". Archived from the original on 2010-07-18. Retrieved 2010-10-07.{{cite web}}: CS1 maint: archived copy as title (link)