लेवल सेंसर: Difference between revisions

From Vigyanwiki
No edit summary
m (13 revisions imported from alpha:लेवल_सेंसर)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{short description|Sensor to detect the level of substances that flow}}
{{short description|Sensor to detect the level of substances that flow}}'''लेवल सेंसर''' (संवेदित्र )[[तरल स्तर|द्रव स्तर]] और अन्य [[तरल पदार्थ|द्रव पदार्थ]] और द्रवीकृत ठोस पदार्थों का पता लगाते हैं, जिनमें घोल, दानेदार सामग्री और चूर्ण (पाउडर) सम्मलित हैं जो एक ऊपरी [[मुक्त सतह]] प्रदर्शित करते हैं। जो पदार्थ प्रवाहित होते हैं वे [[गुरुत्वाकर्षण]] के कारण अपने पात्र (या अन्य भौतिक सीमाओं) में अनिवार्य रूप से क्षैतिज हो जाते हैं जबकि अधिकांश थोक ठोस एक शिखर के विश्राम के कोण पर ढेर हो जाते हैं। मापा जाने वाला पदार्थ किसी पात्र के अंदर हो सकता है या अपने प्राकृतिक रूप में हो सकता है (जैसे, नदी या झील)। स्तर माप या तो सतत या प्वांइट मान हो सकता है। सतत स्तर सेंसर एक निर्दिष्ट सीमा के भीतर स्तर को मापते हैं और एक निश्चित स्थान पर पदार्थ की सटीक मात्रा निर्धारित करते हैं, जबकि प्वांइट-लेवल सेंसर केवल यह संकेत देते हैं कि पदार्थ संवेदन प्वांइट से ऊपर या नीचे है। सामान्यत: उत्तरार्द्ध उन स्तरों का पता लगाता है जो अत्यधिक उच्च या निम्न हैं।
{{Distinguish|टिल्ट सेंसर|डम्पी स्तर|माप का स्तर}}
 
'''लेवल सेंसर''' (संवेदित्र )[[तरल स्तर|द्रव स्तर]] और अन्य [[तरल पदार्थ|द्रव पदार्थ]] और द्रवीकृत ठोस पदार्थों का पता लगाते हैं, जिनमें घोल, दानेदार सामग्री और चूर्ण (पाउडर) सम्मलित हैं जो एक ऊपरी [[मुक्त सतह]] प्रदर्शित करते हैं। जो पदार्थ प्रवाहित होते हैं वे [[गुरुत्वाकर्षण]] के कारण अपने पात्र (या अन्य भौतिक सीमाओं) में अनिवार्य रूप से क्षैतिज हो जाते हैं जबकि अधिकांश थोक ठोस एक शिखर के विश्राम के कोण पर ढेर हो जाते हैं। मापा जाने वाला पदार्थ किसी पात्र के अंदर हो सकता है या अपने प्राकृतिक रूप में हो सकता है (जैसे, नदी या झील)। स्तर माप या तो सतत या प्वांइट मान हो सकता है। सतत स्तर सेंसर एक निर्दिष्ट सीमा के भीतर स्तर को मापते हैं और एक निश्चित स्थान पर पदार्थ की सटीक मात्रा निर्धारित करते हैं, जबकि प्वांइट-लेवल सेंसर केवल यह संकेत देते हैं कि पदार्थ संवेदन प्वांइट से ऊपर या नीचे है। सामान्यत: उत्तरार्द्ध उन स्तरों का पता लगाता है जो अत्यधिक उच्च या निम्न हैं।


ऐसे कई भौतिक और अनुप्रयोग चर हैं जो औद्योगिक और वाणिज्यिक प्रक्रियाओं के लिए इष्टतम स्तर की निगरानी पद्धति के चयन को प्रभावित करते हैं।<ref>{{Cite web|url=https://www.engineersgarage.com/articles/what-is-level-sensor|title=लेवल सेंसर|last=EngineersGarage|date=18 September 2012|website=www.engineersgarage.com|language=en|access-date=2018-09-16}}</ref> चयन मानदंड में भौतिक सम्मलित हैं: [[चरण (पदार्थ)]] (द्रव, ठोस या घोल), [[तापमान]], [[दबाव]] या [[Index.php?title=निर्वात|निर्वात]], [[रसायन विज्ञान]], [[Index.php?title=संचरण मध्यम|संचरण मध्यम]] का अचालक स्थिरांक, मध्यम का [[घनत्व]] (विशिष्ट गुरुत्व), [[Index.php?title=प्रक्षोभन (क्रिया)|प्रक्षोभन (क्रिया)]], ध्वनिक या विद्युत शोर , [[कंपन]], यांत्रिक प्रघात, टैंक या बिन का आकार और आकार है। अनुप्रयोग बाधाएँ भी महत्वपूर्ण हैं: मूल्य, सटीकता, उपस्थिति, प्रतिक्रिया दर, [[अंशांकन]] या [[गणितीय प्रोग्रामिंग]] में आसानी, उपकरण का भौतिक आकार और आरोपण, निरंतर या असतत (प्वांइट) स्तरों की निगरानी या नियंत्रण। संक्षेप में, लेवल सेंसर बहुत महत्वपूर्ण सेंसरों में से एक हैं और विभिन्न उपभोक्ता/औद्योगिक अनुप्रयोगों में बहुत महत्वपूर्ण भूमिका निभाते हैं। अन्य प्रकार के सेंसरों की तरह, लेवल सेंसर भी उपलब्ध हैं या विभिन्न प्रकार के सेंसिंग सिद्धांतों का उपयोग करके अभिकल्पित किए जा सकते हैं। अनुप्रयोग की आवश्यकता के अनुरूप उपयुक्त प्रकार के सेंसर का चयन बहुत महत्वपूर्ण है।
ऐसे कई भौतिक और अनुप्रयोग चर हैं जो औद्योगिक और वाणिज्यिक प्रक्रियाओं के लिए इष्टतम स्तर की निगरानी पद्धति के चयन को प्रभावित करते हैं।<ref>{{Cite web|url=https://www.engineersgarage.com/articles/what-is-level-sensor|title=लेवल सेंसर|last=EngineersGarage|date=18 September 2012|website=www.engineersgarage.com|language=en|access-date=2018-09-16}}</ref> चयन मानदंड में भौतिक सम्मलित हैं: [[चरण (पदार्थ)]] (द्रव, ठोस या घोल), [[तापमान]], [[दबाव]] या [[Index.php?title=निर्वात|निर्वात]], [[रसायन विज्ञान]], [[Index.php?title=संचरण मध्यम|संचरण मध्यम]] का अचालक स्थिरांक, मध्यम का [[घनत्व]] (विशिष्ट गुरुत्व), [[Index.php?title=प्रक्षोभन (क्रिया)|प्रक्षोभन (क्रिया)]], ध्वनिक या विद्युत शोर , [[कंपन]], यांत्रिक प्रघात, टैंक या बिन का आकार और आकार है। अनुप्रयोग बाधाएँ भी महत्वपूर्ण हैं: मूल्य, सटीकता, उपस्थिति, प्रतिक्रिया दर, [[अंशांकन]] या [[गणितीय प्रोग्रामिंग]] में आसानी, उपकरण का भौतिक आकार और आरोपण, निरंतर या असतत (प्वांइट) स्तरों की निगरानी या नियंत्रण। संक्षेप में, लेवल सेंसर बहुत महत्वपूर्ण सेंसरों में से एक हैं और विभिन्न उपभोक्ता/औद्योगिक अनुप्रयोगों में बहुत महत्वपूर्ण भूमिका निभाते हैं। अन्य प्रकार के सेंसरों की तरह, लेवल सेंसर भी उपलब्ध हैं या विभिन्न प्रकार के सेंसिंग सिद्धांतों का उपयोग करके अभिकल्पित किए जा सकते हैं। अनुप्रयोग की आवश्यकता के अनुरूप उपयुक्त प्रकार के सेंसर का चयन बहुत महत्वपूर्ण है।


==ठोस पदार्थों के लिए प्वांइट और सतत स्तर का पता लगाना==
==ठोस पदार्थों के लिए प्वांइट और सतत स्तर का पता लगाना==
ठोस पदार्थों का प्वांइट स्तर पर पता लगाने के लिए विभिन्न प्रकार के सेंसर उपलब्ध हैं। इनमें स्पंदनशील (वाइब्रेटिंग), रोटेटिंग पैडल, यांत्रिक डायाफ्राम (यांत्रिक उपकरण)), [[Index.php?title=माइक्रोवेव (सूक्ष्मतरंग)|माइक्रोवेव (सूक्ष्मतरंग)]] ([[राडार]]), धारिता (धारिता), ऑप्टिकल, स्पंदित-पराश्रव्य (पराश्रव्य) और [[ अतिध्वनि संवेदक ]] लेवल सेंसर सम्मलित हैं।
ठोस पदार्थों का प्वांइट स्तर पर पता लगाने के लिए विभिन्न प्रकार के सेंसर उपलब्ध हैं। इनमें स्पंदनशील (वाइब्रेटिंग), रोटेटिंग पैडल, यांत्रिक डायाफ्राम (यांत्रिक उपकरण), माइक्रोवेव (सूक्ष्मतरंग) ([[राडार]]), धारिता (धारिता), ऑप्टिकल, स्पंदित-पराश्रव्य (पराश्रव्य) और अतिध्वनि संवेदक लेवल सेंसर सम्मलित हैं।


===कंपन प्वांइट ===
===कंपन प्वांइट ===
Line 17: Line 14:
घूर्णी पैडल लेवल सेंसर बल्क सॉलिड पॉइंट लेवल इंडिकेशन के लिए एक बहुत पुरानी और स्थापित तकनीक है। तकनीक एक कम गति वाली गियर मोटर का उपयोग करती है जो पैडल पहिये को घुमाती है। जब पैडल को ठोस पदार्थों द्वारा रोक दिया जाता है, तो मोटर अपने अरालदंड (शाफ्ट) पर अपने स्वयं के टॉर्क द्वारा तब तक घूमता रहता है जब तक कि मोटर पर लगा एक फ्लैंज एक यांत्रिक स्विच से संपर्क नहीं कर लेता है। पैडल का निर्माण विभिन्न प्रकार की सामग्रियों से किया जा सकता है लेकिन चिपचिपी सामग्री को पैडल पर निर्माण करने की अनुमति नहीं दी जानी चाहिए। यदि हॉपर में उच्च नमी के स्तर या उच्च परिवेशीय आर्द्रता के कारण प्रक्रिया सामग्री चिपचिपी हो जाती है, तो बिल्ड-अप हो सकता है। प्रति यूनिट आयतन में बहुत कम वजन वाली सामग्री जैसे कि [[पर्लाइट]], [[बेंटोनाइट]] या [[फ्लाई ऐश]] के लिए, विशेष पैडल अभिकल्पित और धीमी-टॉर्क मोटर्स का उपयोग किया जाता है। हॉपर या बिन में पैडल को उचित स्थान पर रखकर और उचित सील का उपयोग करके महीन कणों या धूल को शाफ्ट बीयरिंग और मोटर में प्रवेश करने से रोका जाना चाहिए।
घूर्णी पैडल लेवल सेंसर बल्क सॉलिड पॉइंट लेवल इंडिकेशन के लिए एक बहुत पुरानी और स्थापित तकनीक है। तकनीक एक कम गति वाली गियर मोटर का उपयोग करती है जो पैडल पहिये को घुमाती है। जब पैडल को ठोस पदार्थों द्वारा रोक दिया जाता है, तो मोटर अपने अरालदंड (शाफ्ट) पर अपने स्वयं के टॉर्क द्वारा तब तक घूमता रहता है जब तक कि मोटर पर लगा एक फ्लैंज एक यांत्रिक स्विच से संपर्क नहीं कर लेता है। पैडल का निर्माण विभिन्न प्रकार की सामग्रियों से किया जा सकता है लेकिन चिपचिपी सामग्री को पैडल पर निर्माण करने की अनुमति नहीं दी जानी चाहिए। यदि हॉपर में उच्च नमी के स्तर या उच्च परिवेशीय आर्द्रता के कारण प्रक्रिया सामग्री चिपचिपी हो जाती है, तो बिल्ड-अप हो सकता है। प्रति यूनिट आयतन में बहुत कम वजन वाली सामग्री जैसे कि [[पर्लाइट]], [[बेंटोनाइट]] या [[फ्लाई ऐश]] के लिए, विशेष पैडल अभिकल्पित और धीमी-टॉर्क मोटर्स का उपयोग किया जाता है। हॉपर या बिन में पैडल को उचित स्थान पर रखकर और उचित सील का उपयोग करके महीन कणों या धूल को शाफ्ट बीयरिंग और मोटर में प्रवेश करने से रोका जाना चाहिए।


===[[Index.php?title=प्रवेश्यता|प्रवेश्यता]]-प्रकार ===
===प्रवेश्यता-प्रकार ===
प्रवेश्यता में परिवर्तन को मापने के लिए एक आरएफ प्रवेश्यता लेवल सेंसर एक रॉड जांच और आरएफ स्रोत का उपयोग करता है। जमीन पर तार धारिता बदलने के प्रभावों को खत्म करने के लिए जांच को एक परिरक्षित समाक्षीय तार के माध्यम से संचालित किया जाता है। जब जांच के चारों ओर स्तर बदलता है, तो असंवाहक में एक समान परिवर्तन देखा जाता है। इससे इस अपूर्ण संधारित्र की स्वीकार्यता बदल जाती है और इस परिवर्तन को स्तर में परिवर्तन का पता लगाने के लिए मापा जाता है।<ref>{{cite web | url = http://www.sapconinstruments.com/fly-ash-level-detection/ | title = फ्लाई ऐश स्तर का पता लगाना| author = Sapcon Instruments | access-date = 2016-09-22}}</ref>
प्रवेश्यता में परिवर्तन को मापने के लिए एक आरएफ प्रवेश्यता लेवल सेंसर एक रॉड जांच और आरएफ स्रोत का उपयोग करता है। जमीन पर तार धारिता बदलने के प्रभावों को खत्म करने के लिए जांच को एक परिरक्षित समाक्षीय तार के माध्यम से संचालित किया जाता है। जब जांच के चारों ओर स्तर बदलता है, तो असंवाहक में एक समान परिवर्तन देखा जाता है। इससे इस अपूर्ण संधारित्र की स्वीकार्यता बदल जाती है और इस परिवर्तन को स्तर में परिवर्तन का पता लगाने के लिए मापा जाता है।<ref>{{cite web | url = http://www.sapconinstruments.com/fly-ash-level-detection/ | title = फ्लाई ऐश स्तर का पता लगाना| author = Sapcon Instruments | access-date = 2016-09-22}}</ref>


Line 59: Line 56:


===पराश्रव्य ===
===पराश्रव्य ===
[[File:Ultrasonic level sensor used in a water treatment plant.jpg|thumb|जल उपचार संयंत्र में उपयोग किया जाने वाला पराश्रव्य स्तर सेंसर]][[Index.php?title=पराश्रव्य|पराश्रव्य]] लेवल सेंसर का उपयोग अत्यधिक चिपचिपे द्रव पदार्थों के साथ-साथ ठोस पदार्थों के गैर-संपर्क स्तर के सेंसिंग के लिए किया जाता है। पंप नियंत्रण और खुले चैनल प्रवाह माप के लिए जल उपचार अनुप्रयोगों में भी इनका व्यापक रूप से उपयोग किया जाता है। सेंसर उच्च आवृत्ति (20 किलोहर्ट्ज़ से 200 किलोहर्ट्ज़) ध्वनि तरंगें उत्सर्जित करते हैं जो वापस परावर्तित होती हैं और उत्सर्जक ट्रांसड्यूसर द्वारा पता लगाई जाती हैं।<ref name="esi_tank_sensors" />
[[File:Ultrasonic level sensor used in a water treatment plant.jpg|thumb|जल उपचार संयंत्र में उपयोग किया जाने वाला पराश्रव्य स्तर सेंसर]]पराश्रव्य लेवल सेंसर का उपयोग अत्यधिक चिपचिपे द्रव पदार्थों के साथ-साथ ठोस पदार्थों के गैर-संपर्क स्तर के सेंसिंग के लिए किया जाता है। पंप नियंत्रण और खुले चैनल प्रवाह माप के लिए जल उपचार अनुप्रयोगों में भी इनका व्यापक रूप से उपयोग किया जाता है। सेंसर उच्च आवृत्ति (20 किलोहर्ट्ज़ से 200 किलोहर्ट्ज़) ध्वनि तरंगें उत्सर्जित करते हैं जो वापस परावर्तित होती हैं और उत्सर्जक ट्रांसड्यूसर द्वारा पता लगाई जाती हैं।<ref name="esi_tank_sensors" />
नमी, तापमान और दबाव के कारण ध्वनि की बदलती गति से पराश्रव्य स्तर के सेंसर भी प्रभावित होते हैं। माप की सटीकता में सुधार के लिए सुधार कारकों को स्तर माप पर लागू किया जा सकता है।
नमी, तापमान और दबाव के कारण ध्वनि की बदलती गति से पराश्रव्य स्तर के सेंसर भी प्रभावित होते हैं। माप की सटीकता में सुधार के लिए सुधार कारकों को स्तर माप पर लागू किया जा सकता है।


Line 175: Line 172:
* [[स्तर (साधन)]]
* [[स्तर (साधन)]]
* [[सेंसरों की सूची]]
* [[सेंसरों की सूची]]
* [[दृश्य ग्लास]]
* दृश्य ग्लास
* [[ज्वार नापने का यंत्र]]
* ज्वार नापने का यंत्र


==संदर्भ==
==संदर्भ==
Line 186: Line 183:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 10/08/2023]]
[[Category:Created On 10/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 07:38, 28 September 2023

लेवल सेंसर (संवेदित्र )द्रव स्तर और अन्य द्रव पदार्थ और द्रवीकृत ठोस पदार्थों का पता लगाते हैं, जिनमें घोल, दानेदार सामग्री और चूर्ण (पाउडर) सम्मलित हैं जो एक ऊपरी मुक्त सतह प्रदर्शित करते हैं। जो पदार्थ प्रवाहित होते हैं वे गुरुत्वाकर्षण के कारण अपने पात्र (या अन्य भौतिक सीमाओं) में अनिवार्य रूप से क्षैतिज हो जाते हैं जबकि अधिकांश थोक ठोस एक शिखर के विश्राम के कोण पर ढेर हो जाते हैं। मापा जाने वाला पदार्थ किसी पात्र के अंदर हो सकता है या अपने प्राकृतिक रूप में हो सकता है (जैसे, नदी या झील)। स्तर माप या तो सतत या प्वांइट मान हो सकता है। सतत स्तर सेंसर एक निर्दिष्ट सीमा के भीतर स्तर को मापते हैं और एक निश्चित स्थान पर पदार्थ की सटीक मात्रा निर्धारित करते हैं, जबकि प्वांइट-लेवल सेंसर केवल यह संकेत देते हैं कि पदार्थ संवेदन प्वांइट से ऊपर या नीचे है। सामान्यत: उत्तरार्द्ध उन स्तरों का पता लगाता है जो अत्यधिक उच्च या निम्न हैं।

ऐसे कई भौतिक और अनुप्रयोग चर हैं जो औद्योगिक और वाणिज्यिक प्रक्रियाओं के लिए इष्टतम स्तर की निगरानी पद्धति के चयन को प्रभावित करते हैं।[1] चयन मानदंड में भौतिक सम्मलित हैं: चरण (पदार्थ) (द्रव, ठोस या घोल), तापमान, दबाव या निर्वात, रसायन विज्ञान, संचरण मध्यम का अचालक स्थिरांक, मध्यम का घनत्व (विशिष्ट गुरुत्व), प्रक्षोभन (क्रिया), ध्वनिक या विद्युत शोर , कंपन, यांत्रिक प्रघात, टैंक या बिन का आकार और आकार है। अनुप्रयोग बाधाएँ भी महत्वपूर्ण हैं: मूल्य, सटीकता, उपस्थिति, प्रतिक्रिया दर, अंशांकन या गणितीय प्रोग्रामिंग में आसानी, उपकरण का भौतिक आकार और आरोपण, निरंतर या असतत (प्वांइट) स्तरों की निगरानी या नियंत्रण। संक्षेप में, लेवल सेंसर बहुत महत्वपूर्ण सेंसरों में से एक हैं और विभिन्न उपभोक्ता/औद्योगिक अनुप्रयोगों में बहुत महत्वपूर्ण भूमिका निभाते हैं। अन्य प्रकार के सेंसरों की तरह, लेवल सेंसर भी उपलब्ध हैं या विभिन्न प्रकार के सेंसिंग सिद्धांतों का उपयोग करके अभिकल्पित किए जा सकते हैं। अनुप्रयोग की आवश्यकता के अनुरूप उपयुक्त प्रकार के सेंसर का चयन बहुत महत्वपूर्ण है।

ठोस पदार्थों के लिए प्वांइट और सतत स्तर का पता लगाना

ठोस पदार्थों का प्वांइट स्तर पर पता लगाने के लिए विभिन्न प्रकार के सेंसर उपलब्ध हैं। इनमें स्पंदनशील (वाइब्रेटिंग), रोटेटिंग पैडल, यांत्रिक डायाफ्राम (यांत्रिक उपकरण), माइक्रोवेव (सूक्ष्मतरंग) (राडार), धारिता (धारिता), ऑप्टिकल, स्पंदित-पराश्रव्य (पराश्रव्य) और अतिध्वनि संवेदक लेवल सेंसर सम्मलित हैं।

कंपन प्वांइट

File:Sensor prinzip.svg
कंपन प्वांइट जांच का सिद्धांत

ये बहुत सूक्ष्म चूर्ण के स्तर का पता लगाते हैं (आयतन घनत्व: 0.02–0.2 g/cm3), सूक्ष्म चूर्ण (आयतन घनत्व: 0.2–0.5 g/cm3), और दानेदार ठोस (आयतन घनत्व: 0.5 g/cm3 या बड़ा)। कंपन आवृत्ति के उचित चयन और उपयुक्त संवेदनशीलता समायोजन के साथ, वे अत्यधिक द्रवयुक्त चूर्ण और इलेक्ट्रोस्टैटिक (स्थिरवैद्युत) सामग्री के स्तर को भी समझ सकते हैं।

एकल-जांच कंपन लेवल सेंसर थोक चूर्ण स्तर के लिए आदर्श हैं। चूंकि केवल एक सेंसिंग तत्व चूर्ण से संपर्क करता है, दो जांच तत्वों के बीच सेतुबंधन समाप्त हो जाती है और मीडिया बिल्ड-अप कम से कम हो जाता है। जांच का कंपन जांच तत्व पर सामग्री के निर्माण को समाप्त कर देता है। कंपन स्तर सेंसर धूल, असंवाहक चूर्ण से स्थिर चार्ज निर्माण, या चालकता, तापमान, दबाव, आर्द्रता या नमी सामग्री में परिवर्तन से प्रभावित नहीं होते हैं। स्वरित्र द्विभुज शैली कंपन सेंसर एक अन्य विकल्प हैं। वे कम महंगे होते हैं, लेकिन टीन्स के बीच सामग्री जमा होने का खतरा होता है,

घूर्णी पैडल

घूर्णी पैडल लेवल सेंसर बल्क सॉलिड पॉइंट लेवल इंडिकेशन के लिए एक बहुत पुरानी और स्थापित तकनीक है। तकनीक एक कम गति वाली गियर मोटर का उपयोग करती है जो पैडल पहिये को घुमाती है। जब पैडल को ठोस पदार्थों द्वारा रोक दिया जाता है, तो मोटर अपने अरालदंड (शाफ्ट) पर अपने स्वयं के टॉर्क द्वारा तब तक घूमता रहता है जब तक कि मोटर पर लगा एक फ्लैंज एक यांत्रिक स्विच से संपर्क नहीं कर लेता है। पैडल का निर्माण विभिन्न प्रकार की सामग्रियों से किया जा सकता है लेकिन चिपचिपी सामग्री को पैडल पर निर्माण करने की अनुमति नहीं दी जानी चाहिए। यदि हॉपर में उच्च नमी के स्तर या उच्च परिवेशीय आर्द्रता के कारण प्रक्रिया सामग्री चिपचिपी हो जाती है, तो बिल्ड-अप हो सकता है। प्रति यूनिट आयतन में बहुत कम वजन वाली सामग्री जैसे कि पर्लाइट, बेंटोनाइट या फ्लाई ऐश के लिए, विशेष पैडल अभिकल्पित और धीमी-टॉर्क मोटर्स का उपयोग किया जाता है। हॉपर या बिन में पैडल को उचित स्थान पर रखकर और उचित सील का उपयोग करके महीन कणों या धूल को शाफ्ट बीयरिंग और मोटर में प्रवेश करने से रोका जाना चाहिए।

प्रवेश्यता-प्रकार

प्रवेश्यता में परिवर्तन को मापने के लिए एक आरएफ प्रवेश्यता लेवल सेंसर एक रॉड जांच और आरएफ स्रोत का उपयोग करता है। जमीन पर तार धारिता बदलने के प्रभावों को खत्म करने के लिए जांच को एक परिरक्षित समाक्षीय तार के माध्यम से संचालित किया जाता है। जब जांच के चारों ओर स्तर बदलता है, तो असंवाहक में एक समान परिवर्तन देखा जाता है। इससे इस अपूर्ण संधारित्र की स्वीकार्यता बदल जाती है और इस परिवर्तन को स्तर में परिवर्तन का पता लगाने के लिए मापा जाता है।[2]


द्रव का प्वांइट स्तर पता लगाना

द्रवों में प्वांइट स्तर का पता लगाने के लिए विशिष्ट प्रणालियों में चुंबकीय और यांत्रिक फ्लोट, दबाव सेंसर, इलेक्ट्रोकंडक्टिव सेंसिंग या इलेक्ट्रोस्टैटिक (धारिता या इंडक्टेंस) संसूचक सम्मलित हैं - और इलेक्ट्रोमैग्नेटिक (जैसे चुंबकीय विरूपण) के माध्यम से द्रव सतह पर सिग्नल की उड़ान के समय को मापकर ), पराश्रव्य, रडार या ऑप्टिकल सेंसर है।[3][4]

चुंबकीय और यांत्रिक फ्लोट

चुंबकीय, यांत्रिक, तार और अन्य फ्लोट स्तर सेंसर के पीछे के सिद्धांत में अधिकांशत: यांत्रिक स्विच को खोलना या बंद करना सम्मलित होता है, या तो स्विच के सीधे संपर्क के माध्यम से, या रीड के चुंबकीय संचालन के माध्यम से। अन्य उदाहरणों में, जैसे चुंबकीय विरूपण सेंसर, फ्लोट सिद्धांत का उपयोग करके निरंतर निगरानी संभव है।

चुंबकीय रूप से सक्रिय फ्लोट सेंसर के साथ, स्विचन तब होता है जब फ्लोट के अंदर सील किया गया एक स्थायी चुंबक सक्रियण स्तर तक बढ़ जाता है या गिर जाता है। यंत्रवत् सक्रिय फ्लोट के साथ, एक लघु (सूक्ष्म) स्विच के विरुद्ध फ्लोट की गति के परिणामस्वरूप स्विचन होता है। चुंबकीय और यांत्रिक फ्लोट स्तर सेंसर दोनों के लिए, रासायनिक अनुकूलता, तापमान, विशिष्ट गुरुत्व (घनत्व), उछाल और चिपचिपाहट स्टेम और फ्लोट के चयन को प्रभावित करती है। उदाहरण के लिए, उछाल बनाए रखते हुए 0.5 जितनी कम विशिष्ट गुरुत्व वाले द्रव पदार्थों के साथ बड़े फ्लोट्स का उपयोग किया जा सकता है। फ्लोट सामग्री की पसंद विशिष्ट गुरुत्व और चिपचिपाहट में तापमान-प्रेरित परिवर्तनों से भी प्रभावित होती है - परिवर्तन जो सीधे उछाल को प्रभावित करते हैं।[5]

फ्लोट-प्रकार के सेंसरों को अभिकल्पित किया जा सकता है जिससे कि एक ढाल फ्लोट को प्रक्षोभ और तरंग गति से बचाए। फ्लोट सेंसर संक्षारक सहित विभिन्न प्रकार के द्रव पदार्थों में अच्छी तरह से काम करते हैं। चूंकि, जब कार्बनिक सॉल्वैंट्स के लिए उपयोग किया जाता है, तो किसी को यह सत्यापित करने की आवश्यकता होगी कि ये द्रव पदार्थ सेंसर के निर्माण के लिए उपयोग की जाने वाली सामग्रियों के साथ रासायनिक रूप से संगत हैं। फ्लोट-स्टाइल सेंसर का उपयोग उच्च चिपचिपाहट (मोटी) द्रव पदार्थ, कीचड़ या द्रव पदार्थ के साथ नहीं किया जाना चाहिए जो स्टेम या फ्लोट से चिपकते हैं, या ऐसी सामग्री जिसमें धातु चिप्स जैसे दूषित पदार्थ होते हैं; अन्य सेंसिंग प्रौद्योगिकियाँ इन अनुप्रयोगों के लिए बेहतर अनुकूल हैं।

फ्लोट-प्रकार सेंसर का एक विशेष अनुप्रयोग तेल-जल पृथक्करण प्रणालियों में अंतरापृष्ठ स्तर का निर्धारण है। एक ओर तेल के विशिष्ट गुरुत्व और दूसरी ओर पानी के विशिष्ट गुरुत्व से मेल खाने के लिए प्रत्येक फ्लोट के आकार के साथ दो फ्लोट का उपयोग किया जा सकता है। स्टेम टाइप फ्लोट स्विच का एक अन्य विशेष अनुप्रयोग मल्टी-पैरामीटर सेंसर बनाने के लिए तापमान या दबाव सेंसर की स्थापना है। चुंबकीय फ्लोट स्विच अपनी सादगी, विश्वसनीयता और कम लागत के लिए लोकप्रिय हैं।

चुंबकीय संवेदन का एक रूप हॉल प्रभाव सेंसर है जो यांत्रिक गेज के संकेतों के चुंबकीय संवेदन का उपयोग करता है। एक विशिष्ट अनुप्रयोग में, एक चुंबकत्व-संवेदनशील हॉल प्रभाव सेंसर को एक यांत्रिक टैंक गेज से चिपका दिया जाता है जिसमें एक चुंबकीय संकेतक सुई होती है, जिससे कि गेज की सुई की संकेत स्थिति का पता लगाया जा सके, चुंबकीय सेंसर संकेतक सुई की स्थिति को विद्युत सिग्नल में बदल देता है, जिससे अन्य (सामान्यत: दूरस्थ) संकेत या संकेतन की अनुमति मिलती है।[3]


वायवीय

वायवीय स्तर सेंसर का उपयोग वहां किया जाता है जहां खतरनाक स्थितियां सम्मलित होती हैं, जहां कोई विद्युत शक्ति नहीं है या इसका उपयोग प्रतिबंधित है, या भारी कीचड़ या घोल वाले अनुप्रयोगों में किया जाता है। चूंकि एक डायाफ्राम के खिलाफ हवा के एक स्तंभ के संपीड़न का उपयोग एक स्विच को सक्रिय करने के लिए किया जाता है, कोई भी प्रक्रिया द्रव सेंसर के चलने वाले हिस्सों से संपर्क नहीं करती है। ये सेंसर अत्यधिक चिपचिपे द्रव पदार्थ जैसे ग्रीस, साथ ही पानी आधारित और संक्षारक द्रव पदार्थ के साथ उपयोग के लिए उपयुक्त हैं। प्वांइट स्तर की निगरानी के लिए अपेक्षाकृत कम लागत वाली तकनीक होने का इसका अतिरिक्त लाभ है। इस तकनीक का एक रूप बब्बलर (बुदबुदक) है, जो हवा को एक ट्यूब में टैंक के नीचे तक संपीड़ित करता है, जब तक कि दबाव में वृद्धि रुक ​​न जाए क्योंकि हवा का दबाव ट्यूब के नीचे से हवा के बुलबुले को बाहर निकालने के लिए पर्याप्त हो जाता है, जिससे वहां दबाव पर काबू पा लिया जाता है। स्थिर वायु दबाव का माप टैंक के तल पर दबाव को इंगित करता है, और, इसलिए, द्रव पदार्थ का द्रव्यमान ऊपर हो जाता है।[6][7][8][9][3][4]


प्रवाहकीय

प्रवाहकीय स्तर सेंसर पानी जैसे प्रवाहकीय द्रव पदार्थों की एक विस्तृत श्रृंखला के प्वांइट स्तर का पता लगाने के लिए आदर्श हैं, और विशेष रूप से कास्टिक सोडा, हाइड्रोक्लोरिक अम्ल, नाइट्रिक अम्ल, फेरिक क्लोराइड और इसी तरह के द्रव पदार्थों जैसे अत्यधिक संक्षारक द्रव पदार्थों के लिए उपयुक्त हैं। उन प्रवाहकीय द्रव पदार्थों के लिए जो संक्षारक हैं, सेंसर के इलेक्ट्रोड को टाइटेनियम, हास्टेलॉय बी या सी, या 316 स्टेनलेस स्टील से निर्मित किया जाना चाहिए और स्पेसर, विभाजक या सिरेमिक, पॉलीथीन और टेफ्लॉन-आधारित सामग्री के धारकों के साथ इन्सुलेट किया जाना चाहिए। उनके अभिकल्पित के आधार पर, एक धारक के साथ अलग-अलग लंबाई के कई इलेक्ट्रोड (विद्युदग्र) का उपयोग किया जा सकता है। चूंकि तापमान और दबाव बढ़ने पर संक्षारक द्रव पदार्थ अधिक उग्र हो जाते हैं, इसलिए इन सेंसरों को निर्दिष्ट करते समय इन चरम स्थितियों पर विचार करने की आवश्यकता होती है।

प्रवाहकीय स्तर के सेंसर अलग-अलग इलेक्ट्रोडों पर लागू कम-वोल्टता, वर्तमान-सीमित शक्ति स्रोत का उपयोग करते हैं। बिजली की आपूर्ति द्रव की चालकता से मेल खाती है, उच्च वोल्टता संस्करणों को कम प्रवाहकीय (उच्च प्रतिरोध) माध्यमों में संचालित करने के लिए अभिकल्पित किया गया है। बिजली स्रोत में अधिकांशत: नियंत्रण के कुछ पहलू सम्मलित होते हैं, जैसे उच्च-निम्न या वैकल्पिक पंप नियंत्रण, सबसे लंबी जांच (सामान्य) और छोटी जांच (रिटर्न) दोनों से संपर्क करने वाला एक प्रवाहकीय द्रव एक प्रवाहकीय सर्किट पूरा करता है। प्रवाहकीय सेंसर बेहद सुरक्षित हैं क्योंकि वे कम वोल्टता और धाराओं का उपयोग करते हैं। चूंकि उपयोग किया जाने वाला करंट और वोल्टता स्वाभाविक रूप से छोटा है, व्यक्तिगत सुरक्षा कारणों से, तकनीक खतरनाक क्षेत्रों में विद्युत उपकरण के लिए अंतरराष्ट्रीय मानकों को पूरा करने के लिए आंतरिक सुरक्षा बनाने में भी सक्षम है। प्रवाहकीय जांच में ठोस-अवस्था वाले उपकरण होने का अतिरिक्त लाभ होता है और इन्हें स्थापित करना और उपयोग करना बहुत आसान होता है। कुछ द्रव पदार्थों और अनुप्रयोगों में, रखरखाव एक मुद्दा हो सकता है। जांच निरंतर जारी रहनी चाहिए यदि बिल्डअप जांच को माध्यम से अलग कर देता है, तो यह ठीक से काम करना बंद कर देगा, जांच के एक साधारण निरीक्षण के लिए संदेहास्पद जांच और ग्राउंड संदर्भ से जुड़े एक ओममीटर की आवश्यकता होती है।

सामान्यत:, अधिकांश पानी और अपशिष्ट जल के कुओं में, सीढ़ी, पंप और अन्य धातु प्रतिष्ठानों के साथ कुआं खुद ही जमीन पर वापसी प्रदान करता है। चूंकि, रासायनिक टैंकों और अन्य गैर-ग्राउंडेड कुओं में, इंस्टॉलर को ग्राउंड रिटर्न, सामान्यत: एक अर्थ रॉड की आपूर्ति करनी होती है।

स्थिति आश्रित आवृत्ति मॉनिटर

एक सूक्ष्म संसाधित्र नियंत्रित आवृत्ति स्थिति परिवर्तन का पता लगाने की विधि अलग-अलग लंबाई के कई सेंसर जांच पर उत्पन्न कम आयाम सिग्नल का उपयोग करती है। प्रत्येक जांच की आवृत्ति सरणी में अन्य सभी जांचों से अलग होती है और पानी से छूने पर स्वतंत्र रूप से स्थिति बदलती है। प्रत्येक जांच पर आवृत्ति के स्थिति परिवर्तन की निगरानी एक सूक्ष्म संसाधित्र द्वारा की जाती है जो कई जल स्तर नियंत्रण कार्य कर सकता है।

स्थिति पर निर्भर आवृत्ति निगरानी की एक ताकत सेंसिंग जांच की दीर्घकालिक स्थिरता है। दूषित पानी में इलेक्ट्रोलिसिस के कारण सेंसर में खराबी, गिरावट या गिरावट का कारण बनने के लिए सिग्नल की शक्ति पर्याप्त नहीं है। सेंसर की सफाई की आवश्यकताएं न्यूनतम या समाप्त हो गई हैं। विभिन्न लंबाई की कई सेंसिंग छड़ों का उपयोग उपयोगकर्ता को विभिन्न जल ऊंचाइयों पर सहजता से नियंत्रण स्विच स्थापित करने की अनुमति देता है।

स्थिति पर निर्भर आवृत्ति मॉनिटर में सूक्ष्म संसाधित्र बहुत कम बिजली की खपत के साथ वाल्व और/या बड़े पंपों को सक्रिय कर सकता है। सूक्ष्म संसाधित्र का उपयोग करके जटिल, एप्लिकेशन विशिष्ट कार्यक्षमता प्रदान करते हुए एकाधिक स्विच नियंत्रणों को छोटे पैकेज में बनाया जा सकता है। नियंत्रणों की कम बिजली खपत बड़े और छोटे क्षेत्र के अनुप्रयोगों में सुसंगत है। इस सार्वभौमिक तकनीक का उपयोग व्यापक द्रव गुणवत्ता वाले अनुप्रयोगों में किया जाता है।

प्वांइट स्तर का पता लगाने और निरंतर निगरानी दोनों के लिए सेंसर

पराश्रव्य

File:Ultrasonic level sensor used in a water treatment plant.jpg
जल उपचार संयंत्र में उपयोग किया जाने वाला पराश्रव्य स्तर सेंसर

पराश्रव्य लेवल सेंसर का उपयोग अत्यधिक चिपचिपे द्रव पदार्थों के साथ-साथ ठोस पदार्थों के गैर-संपर्क स्तर के सेंसिंग के लिए किया जाता है। पंप नियंत्रण और खुले चैनल प्रवाह माप के लिए जल उपचार अनुप्रयोगों में भी इनका व्यापक रूप से उपयोग किया जाता है। सेंसर उच्च आवृत्ति (20 किलोहर्ट्ज़ से 200 किलोहर्ट्ज़) ध्वनि तरंगें उत्सर्जित करते हैं जो वापस परावर्तित होती हैं और उत्सर्जक ट्रांसड्यूसर द्वारा पता लगाई जाती हैं।[3]

नमी, तापमान और दबाव के कारण ध्वनि की बदलती गति से पराश्रव्य स्तर के सेंसर भी प्रभावित होते हैं। माप की सटीकता में सुधार के लिए सुधार कारकों को स्तर माप पर लागू किया जा सकता है।

प्रक्षोभ, फोम, भाप, रासायनिक धुंध (वाष्प), और प्रक्रिया सामग्री की एकाग्रता में परिवर्तन भी पराश्रव्य सेंसर की प्रतिक्रिया को प्रभावित करते हैं। प्रक्षोभ और फोम ध्वनि तरंग को सेंसर पर ठीक से प्रतिबिंबित होने से रोकते हैं; भाप और रासायनिक धुंध और वाष्प ध्वनि तरंग को विकृत या अवशोषित करते हैं; और एकाग्रता में भिन्नता के कारण ध्वनि तरंग में ऊर्जा की मात्रा में परिवर्तन होता है जो सेंसर पर वापस परावर्तित होती है। इन कारकों के कारण होने वाली त्रुटियों को रोकने के लिए स्टिलिंग वेल्स और तरंगपथक (तरंगपथक) का उपयोग किया जाता है।

परावर्तित ध्वनि के प्रति सर्वोत्तम प्रतिक्रिया सुनिश्चित करने के लिए ट्रांसड्यूसर का उचित आरोपण आवश्यक है। परावर्तित ध्वनि के प्रति सर्वोत्तम प्रतिक्रिया सुनिश्चित करने के लिए ट्रांसड्यूसर का उचित आरोपण आवश्यक है। इसके अतिरिक्त, गलत रिटर्न और परिणामी गलत प्रतिक्रिया को कम करने के लिए हॉपर, बिन या टैंक को वेल्डमेंट, ब्रैकेट या सीढ़ी जैसी बाधाओं से अपेक्षाकृत मुक्त होना चाहिए, चूंकि अधिकांश आधुनिक प्रणालियों में बड़े पैमाने पर इंजीनियरिंग परिवर्तन करने के लिए पर्याप्त "बुद्धिमान" इको प्रोसेसिंग होती है। अनावश्यक, सिवाय इसके कि जहां अनुचित लक्ष्य के लिए ट्रांसड्यूसर की दृष्टि की रेखा को अवरुद्ध कर देती है। चूँकि पराश्रव्य ट्रांसड्यूसर का उपयोग ध्वनिक ऊर्जा संचारित करने और प्राप्त करने दोनों के लिए किया जाता है, यह यांत्रिक कंपन की अवधि के अधीन होता है जिसे "रिंगिंग" कहा जाता है। प्रतिध्वनि सिग्नल को संसाधित करने से पहले इस कंपन को कम करना (रोकना) चाहिए। शुद्ध परिणाम ट्रांसड्यूसर के चेहरे से एक दूरी है जो गलत है और किसी वस्तु का पता नहीं लगा सकता है। ट्रांसड्यूसर की सीमा के आधार पर, इसे "ब्लैंकिंग ज़ोन" के रूप में जाना जाता है, सामान्यत: 150 मिमी से 1 मीटर तक है।

इलेक्ट्रॉनिक सिग्नल प्रक्रमण परिपथिकी की आवश्यकता का उपयोग पराश्रव्य सेंसर को एक बुद्धिमान उपकरण बनाने के लिए किया जा सकता है। पराश्रव्य सेंसर को प्वांइट स्तर पर नियंत्रण, निरंतर निगरानी या दोनों प्रदान करने के लिए अभिकल्पित किया जा सकता है। सूक्ष्म संसाधित्र की उपस्थिति और अपेक्षाकृत कम बिजली की खपत के कारण, अन्य अभिकलन उपकरणों से सीरियल संचार की क्षमता भी है, जिससे यह सेंसर सिग्नल, रिमोट वायरलेस मॉनिटरिंग या प्लांट नेटवर्क संचार के अंशांकन और फ़िल्टरिंग को समायोजित करने के लिए एक अच्छी तकनीक बन जाती है। कम कीमत और उच्च कार्यक्षमता के शक्तिशाली मिश्रण के कारण पराश्रव्य सेंसर व्यापक लोकप्रियता प्राप्त करता है।

धारिता

धारिता लेवल सेंसर विभिन्न प्रकार के ठोस, जलीय और कार्बनिक द्रव पदार्थ और घोल की उपस्थिति को महसूस करने में उत्कृष्टता प्राप्त करते हैं।[10] धारिता सर्किट पर लागू रेडियो आवृत्ति सिगनल के लिए तकनीक को अधिकांशत: आरएफ के रूप में जाना जाता है। सेंसरों को कम से कम 1.1 (कोक और फ्लाई ऐश) और अधिकतम 88 (पानी) या अधिक असंवाहक स्थिरांक वाली सामग्री को समझने के लिए अभिकल्पित किया जा सकता है। कीचड़ और घोल जैसे निर्जलित केक और सीवेज घोल (असंवाहक स्थिरांक लगभग 50) और द्रव रसायन जैसे कि बिनाबुझा चूना (क्विकलाईम) (असंवाहक स्थिरांक लगभग 90) को भी महसूस किया जा सकता है।[3]दोहरे जांच धारिता लेवल सेंसर का उपयोग दो अलग-अलग असंवाहक स्थिरांक के साथ दो अमिश्रणीय द्रव पदार्थों के बीच अंतरापृष्ठ को समझने के लिए भी किया जा सकता है, जो तेल-पानी अंतरापृष्ठ एप्लिकेशन के लिए उपरोक्त चुंबकीय फ्लोट स्विच के लिए एक ठोस स्थिति विकल्प प्रदान करता है।

चूंकि धारिता लेवल सेंसर इलेक्ट्रॉनिक उपकरण हैं, चरण मॉड्यूलेशन और उच्च आवृत्तियों का उपयोग सेंसर को उन अनुप्रयोगों के लिए उपयुक्त बनाता है जिनमें असंवाहक स्थिरांक समान होते हैं। सेंसर में कोई हिलने वाला भाग नहीं है, यह मजबूत है, उपयोग में आसान है और साफ करने में आसान है, और इसे उच्च तापमान और दबाव अनुप्रयोगों के लिए अभिकल्पित किया जा सकता है। कम असंवाहक सामग्रियों की रगड़ और गति के परिणामस्वरूप उच्च-वोल्टता स्थैतिक चार्ज के निर्माण और निर्वहन से खतरा सम्मलित है, लेकिन इस खतरे को उचित अभिकल्पना और ग्राउंडिंग के साथ समाप्त किया जा सकता है।

जांच सामग्री का उचित चयन घर्षण और क्षरण के कारण होने वाली समस्याओं को कम या समाप्त कर देता है। चिपकने वाले पदार्थों और तेल और ग्रीस जैसी उच्च-चिपचिपापन सामग्री की प्वांइट स्तर की जांच के परिणामस्वरूप जांच पर सामग्री का निर्माण हो सकता है; चूंकि, स्व-समस्वरण सेंसर का उपयोग करके इसे कम किया जा सकता है। झाग बनने वाले द्रव पदार्थों और छींटों या प्रक्षोभ की संभावना वाले अनुप्रयोगों के लिए, धारिता लेवल सेंसर को अन्य उपकरणों के बीच स्प्लैशगार्ड या स्टिलिंग कुओं के साथ अभिकल्पित किया जा सकता है।

धारिता जांच के लिए एक महत्वपूर्ण सीमा बड़े पैमाने पर ठोस पदार्थों के भंडारण के लिए उपयोग किए जाने वाले लंबे डिब्बे में है। एक प्रवाहकीय जांच की आवश्यकता जो मापी गई सीमा के नीचे तक फैली हो, समस्याग्रस्त है। बिन या साइलो में प्रलंबित लंबी प्रवाहकीय तार जांच (20 से 50 मीटर लंबी), साइलो में थोक चूर्ण के वजन और तार पर लगाए गए घर्षण के कारण जबरदस्त यांत्रिक तनाव के अधीन होती है। इस तरह के अधिष्ठापन (इंस्टॉलेशन) के परिणामस्वरूप अधिकांशत: तार टूट जाएगी।

ऑप्टिकल अंतरापृष्ठ

ऑप्टिकल सेंसर का उपयोग तलछट, प्रलंबित ठोस पदार्थों वाले द्रव पदार्थ और द्रव-द्रव अंतरापृष्ठ के प्वांइट लेवल सेंसिंग के लिए किया जाता है। ये सेंसर इन्फ्रारेड डायोड (एलईडी) से उत्सर्जित इन्फ्रारेड प्रकाश के संचरण में कमी या बदलाव को महसूस करते हैं। निर्माण सामग्री और बढ़ते स्थान के उचित चयन के साथ, इन सेंसरों का उपयोग जलीय, कार्बनिक और संक्षारक द्रव पदार्थों के साथ किया जा सकता है।

किफायती इन्फ्रारेड-आधारित ऑप्टिकल अंतरापृष्ठ पॉइंट लेवल सेंसर का एक सामान्य अनुप्रयोग बसे हुए तालाबों में कीचड़/पानी अंतरापृष्ठ का पता लगाना है। स्पंद मॉडुलन तकनीक और एक उच्च शक्ति इन्फ्रारेड डायोड का उपयोग करके, कोई परिवेश प्रकाश से हस्तक्षेप को खत्म कर सकता है, एलईडी को उच्च लाभ पर संचालित कर सकता है, और जांच पर बिल्ड-अप के प्रभाव को कम कर सकता है।

निरंतर ऑप्टिकल स्तर संवेदन के लिए एक वैकल्पिक दृष्टिकोण में लेजर का उपयोग सम्मलित है। लेज़र प्रकाश अधिक संकेंद्रित होता है और इसलिए धूल भरे या भाप वाले वातावरण में प्रवेश करने में अधिक सक्षम होता है। लेज़र प्रकाश अधिकांश ठोस, द्रव सतहों से परावर्तित होता है। सेंसर से सतह की सीमा या दूरी निर्धारित करने के लिए, उड़ान के समय को सटीक टाइमिंग परिपथिकी से मापा जा सकता है। लागत और रखरखाव की चिंता के कारण औद्योगिक अनुप्रयोगों में लेजर का उपयोग सीमित है। प्रदर्शन को बनाए रखने के लिए प्रकाशिकी को बार-बार साफ किया जाना चाहिए।

माइक्रोवेव

माइक्रोवेव सेंसर नम, वाष्पशील और धूल भरे वातावरण के साथ-साथ उन अनुप्रयोगों में उपयोग के लिए आदर्श होते हैं जिनमें तापमान और दबाव भिन्न होते हैं। माइक्रोवेव (जिन्हें अधिकांशत: रडार के रूप में भी वर्णित किया जाता है), तापमान और वाष्प परतों में प्रवेश करेंगे जो पराश्रव्य जैसी अन्य तकनीकों के लिए समस्याएं पैदा कर सकते हैं।[3]माइक्रोवेव विद्युत चुम्बकीय ऊर्जा हैं और इसलिए उन्हें ऊर्जा संचारित करने के लिए वायु अणुओं की आवश्यकता नहीं होती है जिससे वे निर्वात में उपयोगी हो जाते हैं। माइक्रोवेव, विद्युत चुम्बकीय ऊर्जा के रूप में, धातु और प्रवाहकीय पानी जैसी उच्च प्रवाहकीय गुणों वाली वस्तुओं से परावर्तित होते हैं। वैकल्पिक रूप से, उन्हें 'कम असंवाहक' या प्लास्टिक, कांच, कागज, कई चूर्ण और खाद्य सामग्री और अन्य ठोस जैसे रोधक (इन्सुलेशन) माध्यमों द्वारा विभिन्न डिग्री में अवशोषित किया जाता है।

माइक्रोवेव सेंसर विभिन्न प्रकार की तकनीकों में निष्पादित किए जाते हैं। दो बुनियादी सिग्नल प्रक्रमण तकनीकों को लागू किया जाता है, जिनमें से प्रत्येक अपने स्वयं के फायदे पेश करती है: स्पंदित या टाइम-डोमेन रिफ्लेक्टोमेट्री (परालर्तनमापीय) (टीडीआर) जो माध्यम में विद्युत चुम्बकीय तरंगों की गति (प्रकाश की गति को वर्गमूल से विभाजित करके उड़ान के समय का माप है) माध्यम के असंवाहक स्थिरांक का [11] पराश्रव्य लेवल सेंसर और एफएमसीडब्ल्यू तकनीकों को नियोजित करने वाले डॉपलर प्रणाली के समान है। पराश्रव्य स्तर के सेंसर की तरह, माइक्रोवेव सेंसर 1 गीगाहर्ट्ज से 60 गीगाहर्ट्ज तक विभिन्न आवृत्तियों पर निष्पादित होते हैं।[12] सामान्यत:, जितनी अधिक आवृत्ति, उतना अधिक सटीक और अधिक महंगा होता है। माइक्रोवेव को गैर-संपर्क तकनीक से क्रियान्वित किया जाता है या निर्देशित किया जाता है। पहला एक माइक्रोवेव सिग्नल की निगरानी करके किया जाता है जो मुक्त स्थान (वैक्यूम समेत) के माध्यम से प्रसारित होता है और वापस प्रतिबिंबित होता है, या तार तकनीक पर रडार के रूप में निष्पादित किया जा सकता है, जिसे सामान्यत: निर्देशित तरंग रडार या निर्देशित माइक्रोवेव रडार के रूप में जाना जाता है। बाद की तकनीक में, सामान्यत: चूर्ण और कम असंवाहक मीडिया में प्रदर्शन में सुधार होता है जो शून्य के माध्यम से प्रसारित विद्युत चुम्बकीय ऊर्जा के अच्छे परावर्तक नहीं होते हैं (जैसा कि गैर-संपर्क माइक्रोवेव सेंसर में)। यह तकनीक अधिक सटीक परिणाम या सेंसर अनुप्रयोग के लिए आवश्यक अतिरिक्त जानकारी प्राप्त करने के लिए एप्लिकेशन विशिष्ट तरंगपथक का उपयोग कर सकती है (उदाहरण के लिए, कुछ सेंसर टैंक भागों या अन्य उपकरणों को तरंगपथक या उसके हिस्से के रूप में उपयोग कर सकते हैं)।[13] जब तरंगपथक इलेक्ट्रॉनिक भाग से दूर होता है (सामान्यत: कठोर परिस्थितियों, विकिरण, या उच्च दबाव वाले द्रव पदार्थ/गैसों आदि के अनुसार उबलते जलाशयों के लिए) तो दूरस्थ तरंगपथक का उपयोग करना आम बात है। लेकिन निर्देशित तकनीक के साथ वही यांत्रिक बाधाएं सम्मलित हैं जो पोत में जांच करके पहले उल्लिखित धारिता (आरएफ) तकनीकों के लिए समस्याएं पैदा करती हैं।

गैर-संपर्क माइक्रोवेव-आधारित रडार सेंसर कम चालकता वाले 'माइक्रोवेव-पारदर्शी' (गैर-प्रवाहकीय) ग्लास/प्लास्टिक की खिड़कियों या बर्तन की दीवारों के माध्यम से देखने में सक्षम हैं, जिसके माध्यम से माइक्रोवेव बीम को पारित किया जा सकता है और 'माइक्रोवेव परावर्तक' (प्रवाहकीय) द्रव को माप सकते हैं। (उसी तरह जैसे माइक्रोवेव ओवन में प्लास्टिक के कटोरे का उपयोग करते हैं) वे उच्च तापमान, दबाव, निर्वात या कंपन से भी काफी हद तक अप्रभावित रहते हैं। चूंकि इन सेंसरों को प्रक्रिया सामग्री के साथ भौतिक संपर्क की आवश्यकता नहीं होती है, इसलिए ट्रांसमीटर/रिसीवर को प्रक्रिया के ऊपर/बाहर एक सुरक्षित दूरी पर लगाया जा सकता है, यहां तक ​​कि तापमान को कम करने के लिए कई मीटर के एंटीना विस्तार के साथ भी, फिर भी स्तर में परिवर्तन पर प्रतिक्रिया करता है। या दूरी परिवर्तन उदा. वे 1200 डिग्री सेल्सियस से अधिक तापमान पर पिघले धातु उत्पादों के माप के लिए आदर्श हैं। माइक्रोवेव ट्रांसमीटर भी पराश्रव्य्स का वही मुख्य लाभ प्रदान करते हैं: सिग्नल को संसाधित करने के लिए एक सूक्ष्म संसाधित्र की उपस्थिति, कई निगरानी, ​​​​नियंत्रण, संचार, व्यवस्था और नैदानिक ​​​​क्षमताएं प्रदान करते हैं और बदलते घनत्व, चिपचिपाहट और विद्युत गुणों से स्वतंत्र होते हैं। इसके अतिरिक्त, वे पराश्रव्य्स की कुछ अनुप्रयोग सीमाओं को हल करते हैं: उच्च दबाव और वैक्यूम, उच्च तापमान, धूल, तापमान और वाष्प परतों में संचालन, गाइडेड वेव रडार संकीर्ण सीमित स्थानों में बहुत सफलतापूर्वक माप सकते हैं, क्योंकि मार्गदर्शक तत्व मापे गए तरल तक और उससे सही संचरण सुनिश्चित करता है। नलिका के अंदर या बाहरी निग्रह या पिंजरे जैसे अनुप्रयोग, फ्लोट या विस्थापन उपकरणों के लिए एक उत्कृष्ट विकल्प प्रदान करते हैं, क्योंकि वे किसी भी चलने वाले हिस्से या शृंखलन को हटा देते हैं और घनत्व परिवर्तन या निर्माण से अप्रभावित रहते हैं। वे द्रव गैसों (एलएनजी, एलपीजी, अमोनिया) जैसे बहुत कम माइक्रोवेव परावर्तन उत्पादों के साथ भी उत्कृष्ट हैं, जिन्हें कम तापमान/उच्च दबाव पर संग्रहीत किया जाता है, चूंकि सीलिंग व्यवस्था और खतरनाक क्षेत्र अनुमोदन पर देखभाल की आवश्यकता होती है। थोक ठोस पदार्थों और चूर्ण पर, जीडब्ल्यूआर रडार या पराश्रव्य सेंसर का एक बढ़िया विकल्प प्रदान करता है, लेकिन उत्पाद की गति के कारण तार के घिसाव और छत पर लोडिंग पर कुछ ध्यान देने की आवश्यकता होती है।

स्तर की निगरानी के लिए माइक्रोवेव या रडार तकनीकों का एक बड़ा नुकसान ऐसे सेंसर और जटिल सेट अप की अपेक्षाकृत उच्च कीमत है। चूंकि, पिछले कुछ वर्षों में कीमतों में काफी कमी आई है, लंबी दूरी के पराश्रव्य्स की तुलना में, दोनों तकनीकों के सरलीकृत सेट-अप के साथ-साथ उपयोग में भी सुधार हुआ है।

द्रव पदार्थों का निरंतर स्तर माप

चुंबकीय विरूपण

चुंबकीय विरूपण लेवल सेंसर फ्लोट प्रकार के सेंसर के समान होते हैं, जिसमें एक फ्लोट के अंदर सील किया गया एक स्थायी चुंबक एक स्टेम में ऊपर और नीचे यात्रा करता है जिसमें एक चुंबकीय विरूपण तार सील होता है। भंडारण और शिपिंग पात्र में विभिन्न प्रकार के द्रव पदार्थों की उच्च सटीकता, निरंतर स्तर माप के लिए आदर्श, इन सेंसरों को द्रव के विशिष्ट गुरुत्व के आधार पर फ्लोट के उचित विकल्प की आवश्यकता होती है। चुंबकीय विरूपण लेवल सेंसर के लिए फ्लोट और स्टेम सामग्री चुनते समय, चुंबकीय और यांत्रिक फ्लोट लेवल सेंसर के लिए वर्णित समान दिशानिर्देश लागू होते हैं।

चुंबकीय विरूपण स्तर और स्थिति उपकरण चुंबकीय विरूपण तार को विद्युत प्रवाह से चार्ज करते हैं, जब क्षेत्र फ्लोट के चुंबकीय क्षेत्र को काटता है तो एक यांत्रिक मोड़ या पल्स उत्पन्न होता है, यह ध्वनि की गति से तार के नीचे वापस जाता है, जैसे पराध्वनिक या रडार दूरी को मापा जाता है पल्स से रिटर्न पल्स रजिस्ट्री तक उड़ान के समय के अनुसार है। उड़ान का समय रिटर्न पल्स का पता लगाने वाले सेंसर से दूरी से मेल खाता है।

चुंबकीय विरूपण तकनीक से संभव सटीकता के कारण, यह "अभिरक्षा अंतरण" अनुप्रयोगों के लिए लोकप्रिय है। वाणिज्यिक लेनदेन के संचालन के लिए वजन और माप की एजेंसी द्वारा इसकी अनुमति दी जा सकती है। इसे अधिकांशत: चुंबकीय दृष्टि गेज पर भी लगाया जाता है। इस भिन्नता में, चुंबक को एक फ्लोट में स्थापित किया जाता है जो गेज ग्लास या ट्यूब के अंदर जाता है। चुंबक सेंसर पर काम करता है जो गेज पर बाहरी रूप से लगा होता है। बॉयलर और अन्य उच्च तापमान या दबाव अनुप्रयोग इस प्रदर्शन गुणवत्ता का लाभ उठाते हैं।

प्रतिरोधक श्रृंखला

प्रतिरोधक श्रृंखला लेवल सेंसर चुंबकीय फ्लोट लेवल सेंसर के समान होते हैं, जिसमें एक फ्लोट के अंदर सील किया गया एक स्थायी चुंबक एक स्टेम के ऊपर और नीचे चलता रहता है जिसमें निकट दूरी वाले स्विच और प्रतिरोधक सील होते हैं। जब स्विच बंद हो जाते हैं, तो प्रतिरोध को जोड़ दिया जाता है और वर्तमान या वोल्टता संकेतों में परिवर्तित कर दिया जाता है जो द्रव के स्तर के समानुपाती होते हैं।

फ्लोट और स्टेम सामग्री का चुनाव रासायनिक अनुकूलता के साथ-साथ विशिष्ट गुरुत्व और उछाल को प्रभावित करने वाले अन्य कारकों के संदर्भ में द्रव पर निर्भर करता है। ये सेंसर समुद्री, रासायनिक प्रसंस्करण, फार्मास्यूटिकल्स (भैषजिक), खाद्य प्रसंस्करण, अपशिष्ट उपचार और अन्य अनुप्रयोगों में द्रव स्तर माप के लिए अच्छी तरह से काम करते हैं। दो फ्लोट्स के उचित विकल्प के साथ, प्रतिरोधक श्रृंखला लेवल सेंसर का उपयोग दो अमिश्रणीय द्रव पदार्थों के बीच एक अंतरापृष्ठ की उपस्थिति की निगरानी के लिए भी किया जा सकता है, जिनकी विशिष्ट गुरुत्वाकर्षण 0.6 से अधिक है, लेकिन 0.1 इकाई से कम भिन्न है।

चुंबकत्व प्रतिरोधी

File:Magneto Resistive Level Sensor.jpg
मैग्नेटोरेसिस्टिव लेवल सेंसर

चुंबकत्व प्रतिरोधी फ्लोट लेवल सेंसर के समान होते हैं, चूंकि फ्लोट आर्म पिवट के अंदर एक स्थायी चुंबक जोड़ी को सील कर दिया जाता है। जैसे-जैसे फ्लोट ऊपर बढ़ता है, गति और स्थान चुंबकीय क्षेत्र की कोणीय स्थिति के रूप में प्रसारित होते हैं। यह पहचान प्रणाली 0.02° गति तक अत्यधिक सटीक है। फ़ील्ड कंपास स्थान फ़्लोट स्थिति का भौतिक स्थान प्रदान करता है। फ्लोट और स्टेम सामग्री का चुनाव रासायनिक अनुकूलता के साथ-साथ विशिष्ट गुरुत्व और फ्लोट की उछाल को प्रभावित करने वाले अन्य कारकों के संदर्भ में द्रव पर निर्भर करता है। इलेक्ट्रॉनिक निगरानी प्रणाली द्रव पदार्थ के संपर्क में नहीं आती है और इसे आंतरिक सुरक्षा या विस्फोट प्रूफ माना जाता है। ये सेंसर समुद्री, वाहन, विमानन, रासायनिक प्रसंस्करण, फार्मास्यूटिकल्स, खाद्य प्रसंस्करण, अपशिष्ट उपचार और अन्य अनुप्रयोगों में द्रव स्तर माप के लिए अच्छी तरह से काम करते हैं।

सूक्ष्म संसाधित्र की उपस्थिति और कम बिजली की खपत के कारण, अन्य अभिकलन उपकरणों से क्रमिक संचार की क्षमता भी है, जो सेंसर सिग्नल के अंशांकन और फ़िल्टरिंग को समायोजित करने के लिए एक अच्छी तकनीक है।

द्रवस्थैतिक दबाव

द्रवस्थैतिक दाब लेवल सेंसर गहरे टैंकों या जलाशयों में पानी में संक्षारक तरल पदार्थ के स्तर को मापने के लिए उपयुक्त पनडुब्बी या बाहरी रूप से लगाए गए दबाव सेंसर हैं। सामान्यत:, द्रव का स्तर द्रव सामग्री (टैंक या जलाशय) के तल पर दबाव से निर्धारित होता है; तल पर दबाव, द्रव के घनत्व/विशिष्ट गुरुत्व के लिए समायोजित, द्रव की गहराई को इंगित करता है।[3]इन सेंसरों के लिए, उचित प्रदर्शन सुनिश्चित करने के लिए रासायनिक रूप से संगत सामग्रियों का उपयोग करना महत्वपूर्ण है। व्यावसायिक तौर पर 10 एमबार से लेकर 1000 बार तक के सेंसर उपलब्ध हैं।

चूंकि ये सेंसर गहराई के साथ बढ़ते दबाव को महसूस करते हैं और क्योंकि द्रव पदार्थों का विशिष्ट गुरुत्वाकर्षण अलग-अलग होता है, इसलिए प्रत्येक एप्लिकेशन के लिए सेंसर को ठीक से कैलिब्रेट किया जाना चाहिए, इसके अतिरिक्त, तापमान में बड़े बदलाव के कारण विशिष्ट गुरुत्व में परिवर्तन होता है जिसे दबाव के स्तर में परिवर्तित होने पर ध्यान में रखा जाना चाहिए, इन सेंसरों को डायाफ्राम को संदूषण या निर्माण से मुक्त रखने के लिए अभिकल्पित किया जा सकता है, इस प्रकार उचित संचालन और सटीक द्रवस्थैतिक दबाव स्तर माप सुनिश्चित किया जा सकता है।

खुली हवा के अनुप्रयोगों में उपयोग के लिए, जहां सेंसर को टैंक या उसके पाइप के नीचे नहीं लगाया जा सकता है, द्रवस्थैतिक दबाव स्तर सेंसर का एक विशेष संस्करण, एक स्तर जांच, एक तार से टैंक में निचले प्वांइट तक प्रलंबित किया जा सकता है जिसे मापा जाना है.[3]सेंसर को विशेष रूप से द्रव वातावरण से इलेक्ट्रॉनिक्स को सील करने के लिए अभिकल्पित किया जाना चाहिए, छोटे शीर्ष दाब (100 INWC से कम) वाले टैंकों में, सेंसर गेज के पिछले हिस्से को वायुमंडलीय दबाव में वेंट करना बहुत महत्वपूर्ण है। अन्यथा, बैरोमीटर के दबाव में सामान्य परिवर्तन सेंसर आउटपुट सिग्नल में बड़ी त्रुटि उत्पन्न करता है। इसके अतिरिक्त, अधिकांश सेंसरों को द्रव में तापमान परिवर्तन के लिए प्रतिकारिता देने की आवश्यकता होती है।

ऑपरेशन

दबाव स्तर की जांच सीधे द्रव में डूबी होती है और टैंक तल के ऊपर स्थायी रूप से तैरती रहती है। माप हाइड्रोस्टेटिक सिद्धांत के अनुसार किया जाता है। द्रव स्तंभ का द्रवस्थैतिक दबाव-संवेदनशील सेंसर तत्व के विस्तार का कारण बनता है, जो माप दबाव को विद्युत मानक सिग्नल में परिवर्तित करता है। लेवल प्रोब के संयोजी तार को कई कार्य पूरे करने होते हैं। बिजली की आपूर्ति और सिग्नल अग्रेषण के अतिरिक्त, लेवल सेंसर को तार द्वारा जगह पर रखा जाता है। तार में एक पतली वायु ट्यूब भी सम्मलित है जो परिवेशी वायु दबाव को स्तर जांच तक निर्देशित करती है। इसलिए लेवल जांच को सामान्यत: सापेक्ष दबाव सेंसर के रूप में अभिकल्पित किया जाता है, जो वर्तमान परिवेश दबाव को उनकी मापने की सीमा के शून्य प्वांइट के रूप में उपयोग करते हैं।

इस तथाकथित सापेक्ष दबाव मुआवजे के बिना, स्तर जांच न केवल द्रवस्थैतिक दबाव को मापेगी बल्कि द्रव स्तंभ पर हवा के दबाव को भी मापती है। समुद्र तल पर, यह लगभग 1013 एमबार है - जो दस मीटर ऊंचे पानी के स्तंभ द्वारा लगाए गए दबाव के अनुरूप होता है। इसके अतिरिक्त, परिवर्तनशील वायु दबाव माप परिणाम को प्रभावित करता है। सामान्य वायुदाब में लगभग +/- 20 एमबार का उतार-चढ़ाव, जो +/- 20 सेमीडब्ल्यू (जल स्तंभ) के अनुरूप होता है।

गहरे कुएं के अभिकल्पना के लिए, सीलबंद गेज मापने के सिद्धांत का भी उपयोग किया जाता है। लगभग गहराई से. 20 मीटर, सापेक्ष दबाव की प्रतिकारिता केवल पतली नली द्वारा एक सीमित सीमा तक ही की जा सकती है। लेवल सेंसर को तब एक पूर्ण दबाव ट्रांसमीटर के रूप में अभिकल्पित किया गया है जिसका शून्य प्वांइट उपयोग के स्थान के आधार पर वांछित औसत वायु दबाव पर समायोजित किया जाता है। इसका मतलब यह है कि लेवल सेंसर का अब वायुमंडल से कोई संबंध नहीं है। हवा के दबाव में संभावित उतार-चढ़ाव का माप परिणाम पर प्रभाव पड़ सकता है, लेकिन वे गहरे कुओं में एक छोटी भूमिका निभाते हैं।

संरूपण

द्रवस्थैतिक दबाव, गुरुत्वाकर्षण दबाव या गुरुत्वाकर्षण दबाव, एक स्थिर द्रव पदार्थ के भीतर होता है। यह गुरुत्वाकर्षण के कारण होता है और द्रव स्तंभ के घनत्व और ऊंचाई पर निर्भर करता है। द्रव का द्रव्यमान कोई मायने नहीं रखता - द्रवस्थैतिक विरोधाभास भी देखें - अर्थात पात्र में द्रव का कुल वजन नहीं, बल्कि भरने का स्तर निर्णायक होता है।

जहाँ:

= घनत्व [पानी के लिए: ≈ 1.000 किग्रा/वर्ग मीटर]
= गुरुत्वाकर्षण स्थिरांक [: ≈ 9,81 मी/से²]
= द्रव स्तंभ की ऊंचाई
=परिवेशी वायुदाब
= हाइड्रोस्टेटिक दबाव

न्यूनतम स्तर को लेवल सेंसर के मुख्य सिरे के पास मापने वाले तत्व के पूर्ण आवरण से शुरू होता है। स्तर जांच के नीचे भरने के स्तर का पता नहीं चला है। इसलिए, अनुप्रयोग और आरोपण ऊंचाई के आधार पर, ऑफसेट सेटिंग के साथ मूल्यांकन इकाई में स्तर को संबंधित आरोपण ऊंचाई पर समायोजित करना आवश्यक है।

अभिकल्पना के प्रकार

साइट की आवश्यकताओं के आधार पर, स्तरीय जांच विभिन्न सुविधाएँ प्रदान करती हैं:

सुरक्षात्मक टोपी
खुलेपन/छेदों का आकार और संख्या

आवास सामग्री

स्टेनलेस स्टील, टाइटेनियम, पीटीएफई

तार सामग्री
पीई, एफईपी, शुद्ध ईपीआर, पीए

मापने का सिद्धांत

सापेक्ष या सीलबंद गेज

सेंसर प्रौद्योगिकी
पीज़ोरेसिस्टिव सिलिकॉन सेंसर, सिरेमिक मोटी-फिल्म सेंसर, सिरेमिक कैपेसिटिव

वायु बुदबुदक

एक वायु बुदबुदक प्रणाली द्रव स्तर की सतह के नीचे एक छेद के साथ एक ट्यूब का उपयोग करती है। हवा का एक निश्चित प्रवाह ट्यूब के माध्यम से पारित किया जाता है। ट्यूब में दबाव ट्यूब के बहिर्गम पर द्रव की गहराई (और घनत्व) के समानुपाती होता है।[3]

वायु बुदबुदक प्रणाली में कोई हिलने वाला भाग नहीं होता है, जो उन्हें सीवेज, जल निकासी जल, सीवेज कीचड़, रात की मिट्टी, या बड़ी मात्रा में प्रलंबित ठोस पदार्थों वाले पानी के स्तर को मापने के लिए उपयुक्त बनाता है। सेंसर का एकमात्र हिस्सा जो द्रव से संपर्क करता है वह एक बुदबुद नली है जो उस सामग्री के साथ रासायनिक रूप से संगत है जिसका स्तर मापा जाना है। चूंकि माप के प्वांइट पर कोई विद्युत घटक नहीं है, इसलिए तकनीक वर्गीकृत खतरनाक क्षेत्रों के लिए एक अच्छा विकल्प है। प्रणाली का नियंत्रण भाग सुरक्षित रूप से दूर स्थित किया जा सकता है, जिसमें वायवीय नलकर्म खतरनाक क्षेत्र को सुरक्षित क्षेत्र से अलग करती है।

वायुमंडलीय दबाव पर खुले टैंकों के लिए वायु बुदबुदक प्रणाली एक अच्छा विकल्प है और इसे इस तरह बनाया जा सकता है कि उच्च दबाव वाली हवा को बाईपास वाल्व के माध्यम से ठोस पदार्थों को हटाने के लिए भेजा जाता है जो बुदबुद नली को रोक सकते हैं। यह तकनीक स्वाभाविक रूप से स्व-सफाई है। द्रव स्तर माप अनुप्रयोगों के लिए इसकी अत्यधिक अनुशंसा की जाती है जहां पराश्रव्य, फ्लोट या माइक्रोवेव तकनीक भरोसेमंद सिद्ध हुई हैं। माप के दौरान प्रणाली को हवा की निरंतर आपूर्ति की आवश्यकता होती है। ट्यूब को कीचड़ से अवरुद्ध होने से बचाने के लिए ट्यूब का सिरा एक निश्चित ऊंचाई से ऊपर होना चाहिए।

गामा किरण

एक परमाणु स्तर गेज या गामा किरण गेज एक प्रक्रिया पोत से गुजरने वाली गामा किरणों के क्षीणन द्वारा स्तर को मापता है।[14] इस तकनीक का उपयोग इस्पात निर्माण की सतत ढलाई प्रक्रिया में पिघले हुए इस्पात के स्तर को विनियमित करने के लिए किया जाता है। पानी से ठंडा किया हुआ साँचे को एक तरफ विकिरण के स्रोत, जैसे कोबाल्ट-60 -60 या सीज़ियम-137 -137, और दूसरी तरफ एक संवेदनशील संसूचक जैसे जगमगाहट काउंटर के साथ व्यवस्थित किया जाता है। जैसे-जैसे साँचे में पिघले हुए स्टील का स्तर बढ़ता है, सेंसर द्वारा कम गामा विकिरण का पता लगाया जाता है। यह तकनीक गैर-संपर्क माप की अनुमति देती है जहां पिघली हुई धातु की गर्मी संपर्क तकनीकों और यहां तक ​​कि कई गैर-संपर्क तकनीकों को अव्यावहारिक बना देती है।

न्यूक्लियोनिक लेवल सेंसर का उपयोग अधिकांशत: खनिज संदलन परिपथ में किया जाता है, जहां अयस्क से भरे होने की तुलना में गामा किरण का पता लगाने में वृद्धि एक शून्य को इंगित करती है।[15]


यह भी देखें

संदर्भ

  1. EngineersGarage (18 September 2012). "लेवल सेंसर". www.engineersgarage.com (in English). Retrieved 2018-09-16.
  2. Sapcon Instruments. "फ्लाई ऐश स्तर का पता लगाना". Retrieved 2016-09-22.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 made-tank-monitors-and-tank-monitoring-systems/tabk-sensor/ टैंक सेंसर और जांच , इलेक्ट्रॉनिक सेंसर्स, इंक., 8 अगस्त 2018 को पुनःप्राप्त
  4. 4.0 4.1 हेनरी हॉपर, द्रव स्तर मापने के एक दर्जन तरीके और वे कैसे काम करते हैं, 1 दिसंबर, 2018, सेंसर्स मैगज़ीन, 29 अगस्त, 2018 को पुनःप्राप्त
  5. Deeter. "फ्लोट लेवल सेंसर". Retrieved 2009-05-05.
  6. G. J. Roy (22 October 2013). इंस्ट्रुमेंटेशन और नियंत्रण पर नोट्स. Elsevier. pp. 23–. ISBN 978-1-4831-0491-1.
  7. "तरल स्तर निर्धारित करने के लिए उपकरण". google.com.
  8. रासायनिक युग. Morgan-Grampian. 1934.
  9. "मोटरबोटिंग". Motor Boating: 2–. January 1927. ISSN 1531-2623.
  10. "कैपेसिटिव लेवल सेंसर". Level Sensor Solutions. elobau.
  11. Zivenko, Oleksiy (2019). "इसके भंडारण और परिवहन के दौरान एलपीजी लेखांकन विशिष्टता". Measuring Equipment and Metrology (in English). 80 (3): 21–27. doi:10.23939/istcmtm2019.03.021. ISSN 0368-6418. S2CID 211776025.
  12. "60GHz FMCW Cloud Level Radar - Staal Instruments B.V." www.senz2.com.
  13. Zhukov, Yuriy D.; Zivenko, Oleksii V.; Gudyma, Yevgen A.; Raieva, Anna N. (2019). "निर्देशित तरंग रडार एलपीजी स्तर माप सेंसर के लिए सुधार तकनीक" (PDF). Shipbuilding & Marine Infrastructure. 2 (12): 27–34. doi:10.15589/smi2019.2(12).3. S2CID 213556435.
  14. Falahati, M. (2018). "द्रव स्तर को मापने के लिए एक सतत परमाणु गेज का डिजाइन, मॉडलिंग और निर्माण". Journal of Instrumentation. 13 (2): P02028. Bibcode:2018JInst..13P2028F. doi:10.1088/1748-0221/13/02/P02028.
  15. "न्यूक्लियोनिक गेज पर तकनीकी डेटा" (PDF). International Atomic Energy Agency. July 2005. pp. 34–39. Retrieved 9 February 2023.