क्लासेन फलन: Difference between revisions

From Vigyanwiki
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 411: Line 411:
* {{cite news|first1=Jonathan M. |last1=Borwein | first2=Armin |last2= Straub | doi=10.1016/j.jat.2013.07.003| journal=J. Approx. Theory|pages=74–88 | volume=193| year=2013|title=Relations for Nielsen Polylogarithms}}
* {{cite news|first1=Jonathan M. |last1=Borwein | first2=Armin |last2= Straub | doi=10.1016/j.jat.2013.07.003| journal=J. Approx. Theory|pages=74–88 | volume=193| year=2013|title=Relations for Nielsen Polylogarithms}}
* {{cite arXiv| first1=R. J. | last1=Mathar | eprint=1309.7504 | title=A C99 implementation of the Clausen sums |year=2013| class=math.NA }}
* {{cite arXiv| first1=R. J. | last1=Mathar | eprint=1309.7504 | title=A C99 implementation of the Clausen sums |year=2013| class=math.NA }}
[[Category: ज़ेटा और एल-फ़ंक्शन]]


 
[[Category:All articles with unsourced statements]]
 
[[Category:Articles with unsourced statements from July 2013]]
[[Category: Machine Translated Page]]
[[Category:Created On 05/07/2023]]
[[Category:Created On 05/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:ज़ेटा और एल-फ़ंक्शन]]

Latest revision as of 15:51, 5 September 2023

क्लॉज़ेन फ़ंक्शन का ग्राफ़ Cl2(θ)

गणित में थॉमस क्लाजेंन (1832) द्वारा प्रस्तुत क्लॉजेन फलन एकल चर का एक विशेष फलन है। इसे निश्चित समाकलन, त्रिकोणमितीय श्रृंखला और विभिन्न प्रकारों से व्यक्त किया जा सकता है। यह बहुगणित, प्रतिलोम स्पर्शज्या समाकलन, पॉलीगामा फलन, रीमैन जेटा फलन, डिरिचलेट एटा फलन और डिरिचलेट बीटा फलन के साथ जुड़ा हुआ है।

क्रम 2 का क्लॉजेन फलन - अनेक वर्गों में से समान होने के बाद भी इसे क्लॉजेन फलन के रूप में प्रदर्शित किया जाता है - समाकलन द्वारा दिया जाता है:

अंतराल निरपेक्ष मान से कम साइन फलन धनात्मक रहता है, इसलिए निरपेक्ष मान के चिह्न को छोड़ा जा सकता है। क्लॉजेन फलन के द्वारा फूरियर श्रृंखला को भी प्रदर्शित किया जा सकता है:

विशेष रूप से निश्चित और अनिश्चित दोनों लघुगणक और बहुगणितीय समाकलन के कई वर्गों के परिणाम के संबंध में क्लॉजेन फलन, फलन के एक वर्ग के रूप में, आधुनिक गणितीय अनुसंधान के कई क्षेत्रों में व्यापक रूप से प्रदर्शित होते हैं। उनके पास हाइपरज्यामितीय श्रृंखला के योग, केंद्रीय द्विपद गुणांक के प्रतिलोम से जुड़े योग, पॉलीगामा फलन के योग और डिरिचलेट L -श्रृंखला के संबंध में भी कई अनुप्रयोग हैं।

मूल गुण

क्लॉजेन फलन (क्रम 2 के) में सभी (पूर्णांक) गुणकों में शून्य होते हैं यदि एक पूर्णांक है, तो

इसमें अधिकतम है

और न्यूनतम पर है

निम्नलिखित गुण श्रृंखला परिभाषा के परिणाम हैं:

देखना लू & पेरेज (1992).

सामान्य परिभाषा

Standard Clausen functions
Standard Clausen functions
Glaisher-Clausen functions
Glaisher–Clausen functions

सामान्यतः कोई दो व्यापक क्लॉजेन फलन को परिभाषित करता है:

जो Re z >1 के साथ सम्मिश्र z के लिए मान्य हैं। विश्लेषण संबंधी निरंतरता के माध्यम से परिभाषा को सम्पूर्ण सम्मिश्र स्तर तक बढ़ाया जा सकता है।

जब z को एक ऋणात्मक पूर्णांक से प्रतिस्थापित किया जाता है, तो 'मानक क्लॉजेन फलन ' को निम्नलिखित फूरियर श्रृंखला द्वारा परिभाषित किया जाता है:

N.B. SL-प्रकार क्लॉजेन फलन में वैकल्पिक अंकन होता है और कभी-कभी इन्हें ग्लैशर-क्लॉजेन फलन (जेम्स व्हिटब्रेड ली ग्लैशर के बाद, इसलिए GL-अंकन) के रूप में जाना जाता है।

बर्नौली बहुपद से संबंध

SL-प्रकार क्लॉजेन फलन में बहुपद हैं जो बर्नौली बहुपद से संबंधित हैं। यह संबंध बर्नौली बहुपदों के फूरियर श्रृंखला निरूपण से सम्बंधित है:

उपरोक्त में समायोजित करने पर, और फिर पुनः पदों को पुनर्व्यवस्थित करने से निम्नलिखित विवृत रूप (बहुपद) प्राप्त होती हैं:

जहां बर्नौली बहुपद को संबंध के द्वारा: बर्नौली संख्याओं के संदर्भ में परिभाषित किया गया है

उपरोक्त से निम्न स्पष्ट परिणाम प्राप्त किया गया हैं:


द्विगुणन सूत्र

के लिय द्विगुणन सूत्र को समाकलन परिभाषा से सिद्ध किया जा सकता है (परिणाम के लिए लू & पेरेज (1992). भी देखें - हालांकि कोई प्रमाण नहीं दिया गया है):

कैटलन स्थिरांक को के द्वारा निरूपित करना, द्विगुणन सूत्र के परिणामों में निम्न संबंध हैं:

उच्च क्रम के क्लॉजेन फलन के लिए, ऊपर दिए गए सूत्र से द्विगुणन सूत्र प्राप्त किए जा सकते हैं; बस को डमी वेरिएबल से बदलें, औरअंतराल पर समाकलन करें यह प्रक्रिया को बार-बार लागू करने से निम्नलिखित परिणाम मिलते हैं:

और अधिक सामान्यतः, पर शामिल होने पर

के लिय व्यापक द्विगुणन सूत्र का उपयोग कैटलन के स्थिरांक को शामिल करते हुए ऑर्डर 2 के क्लॉजेन फलन के परिणाम के विस्तार की अनुमति देता है।

जहाँ डिरिचलेट बीटा फलन है।

द्विगुणन सूत्र का प्रमाण

समाकलन परिभाषा से,

प्राप्त करने के लिए साइन फलन के लिए द्विगुणन सूत्र लागू करें,

दोनों समाकलन पर प्रतिस्थापन लागू करें:

उस अंतिम पूर्णांक पर संयोजन करें , और त्रिकोणमितीय पहचान का उपयोग करें उसे दिखाने के लिए:

इसलिए,


सामान्य-क्रम क्लॉजेन फलन के व्युत्पन्न

क्लॉजेन फलन, फूरियर श्रृंखला के विस्तार का प्रत्यक्ष अवकलन देता है:

गणना के प्रथम मौलिक प्रमेय को लागु करके:


प्रतिलोम स्पर्शज्या समाकलन से संबंध

द्वारा प्रतिलोम स्पर्शज्या समाकलन को अंतराल पर परिभाषित किया गया है

क्लॉजेन फलन के संदर्भ में इसका निम्नलिखित विवृत रूप है:


प्रतिलोम स्पर्शज्या समाकलन संबंध का प्रमाण

प्रतिलोम स्पर्शज्या समाकलन की समाकलन परिभाषा से,

भागों में समाकलन करना

प्राप्त करने के लिए प्रतिस्थापन लागू करें

प्राप्त करने और उस अंतिम पूर्णांक के लिए परिवर्तन लागू करें:

अंत में, द्विगुणन सूत्र के प्रमाण के साथ, प्रतिस्थापन उस अंतिम पूर्णांक को कम कर देता है

इस प्रकार


बार्न्स G-फलन से संबंध

वास्तव में , दूसरे क्रम के क्लॉजेन फलन को बार्न्स G-फलन और (यूलर) गामा फलन के संदर्भ में व्यक्त किया जा सकता है:

या समकक्ष

देखना एडमचिक (2003).

बहुगणित से संबंध

क्लॉजेन फलन इकाई चक्र पर बहुगणित के वास्तविक और काल्पनिक भागों का प्रदर्शित करते हैं:

इसमें बहुगणित श्रृंखला की परिभाषा को लागु करके आसानी से प्राप्त किया जा सकता है।

यूलर प्रमेय द्वारा,

और डीमोइवर के प्रमेय द्वारा (डीमोइवर का सूत्र)

इस तरह


पॉलीगामा फलन से संबंध

क्लॉजेन फलन, पॉलीगामा फलन से एक दुसरे रूप से जुड़े हुए हैं। वास्तव क्लॉजेन फलन को साइन फलन और पॉलीगामा फलन के रैखिक संयोजन के रूप में व्यक्त करना संभव है। ऐसा ही एक संबंध यहां दिखाया गया है, और नीचे सिद्ध किया गया है:

माना और धनात्मक पूर्णांक हों, जैसे कि एक परिमेय संख्या है , फिर, उच्च क्रम क्लॉजेन फलन (सम सूचकांक के) के लिए श्रृंखला परिभाषा के अनुसार:

हमने इस योग को P-भागों में विभाजित किया है, ताकि पहली श्रृंखला में सभी शामिल हों, और केवल वे पद के सर्वांगसम हों, दूसरी श्रृंखला में अंतिम p-वें भाग तक आदि के सर्वांगसम सभी पद शामिल हैं, जिनमें के सर्वांगसम सभी पद शामिल हैं।

हम इन राशियों को दोहरा योग बनाने के लिए अनुक्रमित कर सकते हैं:

साइन फलन के लिए अतिरिक्त सूत्र लागू करना, अंश में ज्या पद बन जाता है:

परिणाम स्वरूप,

दोहरे योग में आंतरिक योग को एक गैर-परिवर्तनीय योग में बदलने के लिए ठीक उसी तरह से दो भागों में विभाजित करें जैसे पहले योग को P-भागों में विभाजित किया गया था:

के लिए पॉलीगामा फलन में श्रृंखला प्रदर्शित है

तो पॉलीगामा फलन के संदर्भ में पिछला आंतरिक योग बन जाता है:

इसे वापस दोहरे योग में जोड़ने से परिणाम प्राप्त है:


व्यापक लॉगसाइन समाकलन से संबंध

व्यापक लॉगसाइन समाकलन को इसके द्वारा परिभाषित किया गया है:

इस व्यापक संकेतन में क्लॉजेन फलन को इस रूप में व्यक्त किया जा सकता है:


कुमेर का संबंध

अर्न्स्ट कुमेर और रोजर्स संबंध बताते हैं

.के लिए मान्य है |

लोबचेव्स्की फलन से संबंध

लोबचेव्स्की फलन Λ या Л मूल रूप से चर के परिवर्तन के साथ एक ही फलन है:

हालाँकि लोबचेव्स्की फलन का नाम ऐतिहासिक रूप से सही नहीं है, क्योंकि अतिपरवलिक आयतन के लिए लोबचेव्स्की के सूत्रों ने दुसरे फलन का उपयोग किया था


डिरिचलेट L-फलन से संबंध

के मानों के लिए (अर्थात, कुछ पूर्णांकों p और q के लिए के लिए),फलन चक्रीय समूह में किसी अवयव की आवर्ती कक्षा का प्रदर्शित करने के लिए समझा जा सकता है, और इस प्रकार हर्विट्ज जेटा फलन से जुड़े एक साधारण योग के रूप में व्यक्त किया जा सकता है।[citation needed] इससे कुछ डिरिचलेट L-फलन के बीच संबंधों की गणना की जा सकती है।

श्रृंखला वृद्धि

क्लॉजेन फलन के लिए एक श्रृंखला वृद्धि द्वारा दिया गया है

जो को रखती है, यहाँ, रीमैन जेटा फलन है। जिसके द्वारा अधिक तेजी से संसृत रूप दिया जाता है

संसृत इस तथ्य से सहायता प्राप्त है n के बड़े मानों के लिए तेजी से शून्य की ओर बढ़ता है। दोनों फॉर्म तर्कसंगत जेटा श्रृंखला प्राप्त करने के लिए उपयोग की जाने वाली पुनर्संयोजन तकनीकों के माध्यम से प्राप्त किए जा सकते हैं (बोर्विन एट अल. 2000).

विशेष मूल्य

बार्न्स जी-फलन और कैटलन के स्थिरांक K को याद करें। इनमे कुछ विशेष मान शामिल हैं

सामान्य तौर पर, बार्न्स G-फलन परावर्तन सूत्र से,

समान रूप से, गामा फलन के लिए यूलर के परावर्तन सूत्र का उपयोग करते हुए,


व्यापक विशेष मान

उच्च क्रम क्लॉजेन फलन के लिए कुछ विशेष मान शामिल हैं

जंहा डिरिचलेट बीटा फलन है, डिरिचलेट जेटा फलन है (जिसे अल्टरनेटिंग जेटा फलन भी कहा जाता है), और रीमैन जेटा फलन है।

प्रत्यक्ष फलन के समाकलन

क्लॉजेन फलन के श्रृंखला निरूपण से निम्नलिखित समाकलन को आसानी से सिद्ध होते हैं:

अंतराल पर फलन के वर्ग के पहले क्षणों को खोजने के लिए फूरियर- विश्लेषण संबंधी तरीकों का उपयोग किया जा सकता है:[1]

यहाँ ज़ेटा फलन को दर्शाता है।

प्रत्यक्ष समाकलन से जुड़े अभिन्न मूल्यांकन

क्लॉजेन फलन और विभिन्न सामान्य गणितीय स्थिरांक के संदर्भ में बड़ी संख्या में त्रिकोणमितीय और लघुगणक-त्रिकोणमितीय समाकलन का परिणाम निकाला जा सकता है, और विभिन्न सामान्य गणितीय स्थिरांक जैसे (कैटलन स्थिरांक), , और जीटा फलन, , है |

क्लॉजेन फलन के समाकलन उदाहरण नीचे सूचीबद्ध रूप से प्रस्तुत किया गया हैं, और प्रमाणों के लिए मूल त्रिकोणमिति, भागों में समाकलन, और क्लॉजेन फलन की फूरियर श्रृंखला परिभाषाओं के कभी-कभी संख्या-दर-संख्या समाकलन की आवश्यकता होती है।


संदर्भ

  1. István, Mező (2020). "लॉग-साइन इंटीग्रल्स और अल्टरनेटिंग यूलर सम्स". Acta Mathematica Hungarica (160): 45–57. doi:10.1007/s10474-019-00975-w.