समिश्र गतिशीलता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 6: Line 6:
{{Main|जूलिया समुच्चय}}
{{Main|जूलिया समुच्चय}}


एक सरल उदाहरण जो समिश्र गतिशीलता में कुछ मुख्य समिश्र संख्याओ C से <math>f(z)=z^2</math> के मानचित्रण को प्रदर्शित करता है। समिश्र संख्याओं में एक बिंदु <math>\infty</math> जोड़कर समिश्र प्रक्षेप्य रेखा <math>\mathbf{CP}^1</math> से स्वयं के मानचित्र के रूप में देखना सहायक होता है। <math>\mathbf{CP}^1</math> को सघन होने का लाभ है। मूल प्रश्न को <math>\mathbf{CP}^1</math> में एक बिंदु <math>z</math> दिया गया है कि इसकी कक्षा (या आगे की कक्षा) <math>\mathbf{CP}^1</math> कैसे होती है:
एक सरल उदाहरण जो समिश्र गतिशीलता में कुछ मुख्य समिश्र संख्याओ C से <math>f(z)=z^2</math> के मानचित्रण को प्रदर्शित करता है। समिश्र संख्याओं में एक बिंदु <math>\infty</math> जोड़कर समिश्र प्रक्षेप्य रेखा <math>\mathbf{CP}^1</math> से स्वयं के मानचित्र के रूप में देखना सहायक होता है। <math>\mathbf{CP}^1</math> को सघन होने का लाभ यह है कि मूल प्रश्न के <math>\mathbf{CP}^1</math> में एक बिंदु <math>z</math> दिया गया है कि इसकी कक्षा (या आगे की कक्षा) <math>\mathbf{CP}^1</math> कैसे होती है:
:<math>z,\; f(z)=z^2,\; f(f(z))=z^4, f(f(f(z)))=z^8,\; \ldots </math>
:<math>z,\; f(z)=z^2,\; f(f(z))=z^4, f(f(f(z)))=z^8,\; \ldots </math>
गुणात्मक संख्या कैसे प्रस्तुत करें? इसका उत्तर यह है कि यदि निरपेक्ष मान |z| 1 से कम है तो कक्षा 0 पर परिवर्तित हो जाती है वास्तव में चर घातांकीय गति से भी अधिक यदि |z| 1 से अधिक है, तो कक्षा <math>\mathbf{CP}^1</math> में बिंदु <math>\infty</math> पर परिवर्तित हो जाता है, जो फिर से घातांकीय गति से भी अधिक है। यहां 0 और <math>\infty</math> के अतिआकर्षक [[निश्चित बिंदु (गणित)]] हैं, जिसका अर्थ है कि उन बिंदुओं पर f का व्युत्पन्न शून्य है। एक आकर्षक निश्चित बिंदु का अर्थ है कि वह जहां f के व्युत्पन्न का निरपेक्ष मान 1 से कम है।  
गुणात्मक संख्या कैसे प्रस्तुत करें? इसका उत्तर यह है कि यदि निरपेक्ष मान |z| 1 से कम है तो कक्षा 0 पर परिवर्तित हो जाती है वास्तव में चर घातांकीय गति से भी अधिक यदि |z| 1 से अधिक है, तो कक्षा <math>\mathbf{CP}^1</math> में बिंदु <math>\infty</math> पर परिवर्तित हो जाता है, जो फिर से घातांकीय गति से भी अधिक है। यहां 0 और <math>\infty</math> के अतिआकर्षक [[निश्चित बिंदु (गणित)]] हैं, जिसका अर्थ है कि उन बिंदुओं पर f का व्युत्पन्न शून्य है। एक आकर्षक निश्चित बिंदु का अर्थ है कि वह जहां f के व्युत्पन्न का निरपेक्ष मान 1 से कम है।  
Line 16: Line 16:
[[पियरे फतौ]] और [[गैस्टन जूलिया]] ने 1910 के दशक के अंत में दिखाया कि इस कहानी का अधिकांश भाग <math>\mathbf{CP}^1</math> से लेकर 1 से अधिक घात वाले किसी भी समिश्र बीजगणितीय मानचित्र तक विस्तृत है। निरंतर मानचित्रण की घात 1 से अधिक होती है। ऐसे मानचित्रण को समिश्र गुणांक वाले बहुपद <math>f(z)</math> द्वारा या अधिक सामान्यतः एक तर्कसंगत फलन द्वारा दिया जा सकता है। अर्थात् सदैव [[जूलिया सेट|जूलिया समुच्चय]] <math>\mathbf{CP}^1</math> का एक संक्षिप्त उपसमुच्चय होता है, जिस पर f की गतिशीलता अव्यवस्थित होती है। मानचित्रण <math>f(z)=z^2</math> के लिए जूलिया समुच्चय इकाई वृत्त है। अन्य बहुपद मानचितत्रों के लिए जूलिया समुच्चय प्रायः अत्यधिक अनियमित होता है। उदाहरण के लिए एक आंशिक का अर्थ है कि इसका हॉसडॉर्फ आयाम एक पूर्णांक नहीं है। यह स्थिरांक <math>c\in\mathbf{C}</math> के लिए <math>f(z)=z^2+c</math> जैसे सरल मानचित्रण के लिए भी होता है। मैंडेलब्रॉट समुच्चय सम्मिश्र संख्याएँ c का समुच्चय है, जिससे <math>f(z)=z^2+c</math> का जूलिया समुच्चय संबद्ध है।
[[पियरे फतौ]] और [[गैस्टन जूलिया]] ने 1910 के दशक के अंत में दिखाया कि इस कहानी का अधिकांश भाग <math>\mathbf{CP}^1</math> से लेकर 1 से अधिक घात वाले किसी भी समिश्र बीजगणितीय मानचित्र तक विस्तृत है। निरंतर मानचित्रण की घात 1 से अधिक होती है। ऐसे मानचित्रण को समिश्र गुणांक वाले बहुपद <math>f(z)</math> द्वारा या अधिक सामान्यतः एक तर्कसंगत फलन द्वारा दिया जा सकता है। अर्थात् सदैव [[जूलिया सेट|जूलिया समुच्चय]] <math>\mathbf{CP}^1</math> का एक संक्षिप्त उपसमुच्चय होता है, जिस पर f की गतिशीलता अव्यवस्थित होती है। मानचित्रण <math>f(z)=z^2</math> के लिए जूलिया समुच्चय इकाई वृत्त है। अन्य बहुपद मानचितत्रों के लिए जूलिया समुच्चय प्रायः अत्यधिक अनियमित होता है। उदाहरण के लिए एक आंशिक का अर्थ है कि इसका हॉसडॉर्फ आयाम एक पूर्णांक नहीं है। यह स्थिरांक <math>c\in\mathbf{C}</math> के लिए <math>f(z)=z^2+c</math> जैसे सरल मानचित्रण के लिए भी होता है। मैंडेलब्रॉट समुच्चय सम्मिश्र संख्याएँ c का समुच्चय है, जिससे <math>f(z)=z^2+c</math> का जूलिया समुच्चय संबद्ध है।
[[File:Parabolic Julia set for internal angle 1 over 3.png|thumb|बहुपद का जूलिया समुच्चय <math>f(z)=z^2+az</math> के साथ <math>a\doteq -0.5+0.866i</math> है।]]
[[File:Parabolic Julia set for internal angle 1 over 3.png|thumb|बहुपद का जूलिया समुच्चय <math>f(z)=z^2+az</math> के साथ <math>a\doteq -0.5+0.866i</math> है।]]
[[File:Julia set (Rev formula 02).jpg|thumb|बहुपद का जूलिया समुच्चय <math>f(z)=z^2+c</math> के साथ एक [[कैंटर सेट|कैंटर समुच्चय]] <math>c\doteq 0.383-0.0745i</math> है।]]फ़तौ समुच्चय में जूलिया समुच्चय का पूरक एक तर्कसंगत फलन <math>f\colon\mathbf{CP}^1\to \mathbf{CP}^1</math> की संभावित गतिशीलता का पूर्ण वर्गीकरण है, जहां गतिशीलता साधारण है अर्थात् [[ डेनिस सुलिवान |डेनिस सुलिवान]] ने दिखाया कि फतौ समुच्चय का प्रत्येक संबद्ध घटक ''U'' पूर्व-आवधिक है जिसका अर्थ है कि प्राकृतिक संख्याएं <math>a<b</math> अर्थात (<math>f^a(U)=f^b(U)</math> हैं।
[[File:Julia set (Rev formula 02).jpg|thumb|बहुपद का जूलिया समुच्चय <math>f(z)=z^2+c</math> के साथ एक [[कैंटर सेट|कैंटर समुच्चय]] <math>c\doteq 0.383-0.0745i</math> है।]]फ़तौ समुच्चय में जूलिया समुच्चय का पूरक एक तर्कसंगत फलन <math>f\colon\mathbf{CP}^1\to \mathbf{CP}^1</math> की संभावित गतिशीलता का पूर्ण वर्गीकरण है, जहां गतिशीलता साधारण है अर्थात् [[ डेनिस सुलिवान |डेनिस सुलिवान]] ने दिखाया कि फतौ समुच्चय का प्रत्येक संबद्ध घटक ''U'' पूर्व-आवधिक है जिसका अर्थ है कि प्राकृतिक संख्याएं <math>a<b</math> अर्थात (<math>f^a(U)=f^b(U)</math> हैं।


इसलिए किसी घटक U पर गतिशीलता का विश्लेषण करने के लिए कोई व्यक्ति f को पुनरावृत्त द्वारा प्रतिस्थापित करने के बाद मान सकता है कि <math>f(U)=U</math> या तो (1) U में F के लिए एक आकर्षक निश्चित बिंदु सम्मिलित है। (2) U इस अर्थ में परवलयिक है कि U में सभी बिंदु U की सीमा में एक निश्चित बिंदु तक अभिगम्य हैं। (3) U एक सीगल वृत्त है, जिसका अर्थ है कि U पर F विवृत इकाई वृत्त के एक अपरिमेय घुमाव से संयुग्मित है। या (4) U एक हरमन वलय है, जिसका अर्थ है कि U पर F की क्रिया एक विवृत वलय के एक अपरिमेय घुमाव से संयुग्मित है।<ref>Milnor (2006), section 13.</ref> ध्यान दें कि U में एक बिंदु z की "पिछली कक्षा",<math>\mathbf{CP}^1</math> में बिंदुओं का समुच्चय जो f के कुछ पुनरावृत्त के अंतर्गत z तक विस्तृत है, जिसे U में समाहित करने की आवश्यकता नहीं है।
इसलिए किसी घटक U पर गतिशीलता का विश्लेषण करने के लिए कोई व्यक्ति f को पुनरावृत्त द्वारा प्रतिस्थापित करने के बाद मान सकता है कि <math>f(U)=U</math> या तो (1) U में F के लिए एक आकर्षक निश्चित बिंदु सम्मिलित है। (2) U इस अर्थ में परवलयिक है कि U में सभी बिंदु U की सीमा में एक निश्चित बिंदु तक अभिगम्य हैं। (3) U एक सीगल वृत्त है, जिसका अर्थ है कि U पर F विवृत इकाई वृत्त के एक अपरिमेय घुमाव से संयुग्मित है। या (4) U एक हरमन वलय है, जिसका अर्थ है कि U पर F की क्रिया एक विवृत वलय के एक अपरिमेय घुमाव से संयुग्मित है।<ref>Milnor (2006), section 13.</ref> ध्यान दें कि U में एक बिंदु z की "पिछली कक्षा" <math>\mathbf{CP}^1</math> में बिंदुओं का समुच्चय जो f के कुछ पुनरावृत्त के अंतर्गत z तक विस्तृत है, जिसे U में समाहित करने की आवश्यकता नहीं है।


==अंतराकारिता की संतुलन माप==
==अंतराकारिता की संतुलन माप==
Line 53: Line 53:
लैटेस मानचित्र एक एबेलियन विविधता के अंतराकारिता से एक [[परिमित समूह|परि]][[परिमित समूह|मित समूह]] द्वारा विभाजित करके प्राप्त <math>\mathbf{CP}^n</math> का एक अंतराकारिता ''F'' है। इस स्थिति में F का संतुलन माप [[लेब्सेग माप]] के संबंध में निरंतर माप <math>\mathbf{CP}^n</math> है। इसके विपरीत [[अन्ना ज़डुनिक]], फ्रांकोइस बर्टेलूट और क्रिस्टोफ़ द्वारा, एकमात्र अंतराकारिता <math>\mathbf{CP}^n</math> जिसका संतुलन माप लेबेस्ग माप के संबंध में प्रायः निरंतर है यह एक लैटेस का उदाहरण हैं।<ref>Berteloot & Dupont (2005), Théorème 1.</ref> अर्थात्, सभी गैर-लैट्स अंतराकारिता के लिए <math>\mu_f</math> लेब्सगेग माप 0 के कुछ [[बोरेल सेट|बोरेल समुच्चय]] को अपना पूर्ण द्रव्यमान 1 निर्दिष्ट करता है।
लैटेस मानचित्र एक एबेलियन विविधता के अंतराकारिता से एक [[परिमित समूह|परि]][[परिमित समूह|मित समूह]] द्वारा विभाजित करके प्राप्त <math>\mathbf{CP}^n</math> का एक अंतराकारिता ''F'' है। इस स्थिति में F का संतुलन माप [[लेब्सेग माप]] के संबंध में निरंतर माप <math>\mathbf{CP}^n</math> है। इसके विपरीत [[अन्ना ज़डुनिक]], फ्रांकोइस बर्टेलूट और क्रिस्टोफ़ द्वारा, एकमात्र अंतराकारिता <math>\mathbf{CP}^n</math> जिसका संतुलन माप लेबेस्ग माप के संबंध में प्रायः निरंतर है यह एक लैटेस का उदाहरण हैं।<ref>Berteloot & Dupont (2005), Théorème 1.</ref> अर्थात्, सभी गैर-लैट्स अंतराकारिता के लिए <math>\mu_f</math> लेब्सगेग माप 0 के कुछ [[बोरेल सेट|बोरेल समुच्चय]] को अपना पूर्ण द्रव्यमान 1 निर्दिष्ट करता है।
[[File:Equilibrium measure for Lattes map.png|thumb|लैटेस मानचित्र के संतुलन माप से एक यादृच्छिक फलन <math>f(z)=(z-2)^2/z^2</math> है और जूलिया समुच्चय <math>\mathbf{CP}^1</math> है। ]]
[[File:Equilibrium measure for Lattes map.png|thumb|लैटेस मानचित्र के संतुलन माप से एक यादृच्छिक फलन <math>f(z)=(z-2)^2/z^2</math> है और जूलिया समुच्चय <math>\mathbf{CP}^1</math> है। ]]
[[File:Equilibrium measure for rational function.png|thumb|गैर-लैटेस मानचित्र के संतुलन माप से एक यादृच्छिक फलन <math>f(z)=(z-2)^4/z^4</math> जूलिया समुच्चय <math>\mathbf{CP}^1</math> है<ref>Milnor (2006), problem 14-2.</ref> लेकिन संतुलन माप अत्यधिक अनियमित है।]]आयाम 1 में संतुलन माप की अनियमितता के विषय में अधिक जानकारी है।अर्थात्, संभाव्यता माप <math>\mu</math> के हॉसडॉर्फ़ आयाम को {<math>\mathbf{CP}^1</math> पर या अधिक सामान्यतः समतल बहुरूपता पर परिभाषित करें:
[[File:Equilibrium measure for rational function.png|thumb|गैर-लैटेस मानचित्र के संतुलन माप से एक यादृच्छिक फलन <math>f(z)=(z-2)^4/z^4</math> जूलिया समुच्चय <math>\mathbf{CP}^1</math> है<ref>Milnor (2006), problem 14-2.</ref> लेकिन संतुलन माप अत्यधिक अनियमित है।]]आयाम 1 में संतुलन माप की अनियमितता के विषय में अधिक जानकारी है।अर्थात्, संभाव्यता माप <math>\mu</math> के हॉसडॉर्फ़ आयाम को <math>\mathbf{CP}^1</math> पर या अधिक सामान्यतः समतल बहुरूपता पर परिभाषित करें:
:<math>\dim(\mu)=\inf \{\dim_H(Y):\mu(Y)=1\},</math>
:<math>\dim(\mu)=\inf \{\dim_H(Y):\mu(Y)=1\},</math>
जहां <math>\dim_H(Y)</math> बोरेल समुच्चय Y के हॉसडॉर्फ आयाम को दर्शाता है जिसकी 1 से अधिक घात के <math>\mathbf{CP}^1</math> के अंतराकारिता f के लिए ज़डुनिक ने दिखाया कि <math>\mu_f</math> इसके समर्थन के हॉसडॉर्फ़ आयाम (जूलिया समुच्चय) के बराबर है यदि और केवल यदि f एक लैटेस मानचित्र एक [[चेबीशेव बहुपद]] (हस्ताक्षर तक) या एक पावर मानचित्र <math>f(z)=z^{\pm d}</math> से संयुग्मित है तो अपराह्न <math>d\geq 2</math> के साथ <ref>Milnor (2006), problem 5-3.</ref>(बाद कि स्थितियों में, जूलिया समुच्चय क्रमशः एक सवृत अंतराल या एक वृत्त <math>\mathbf{CP}^1</math> का है।<ref>Zdunik (1990), Theorem 2; Berteloot & Dupont (2005), introduction.</ref> इस प्रकार, उन विशेष स्थितियों के बाहर संतुलन माप अत्यधिक अनियमित है जो धनात्मक द्रव्यमान प्रदान करता है जूलिया समुच्चय के कुछ सवृत उपसमुच्चय पूरे जूलिया समुच्चय की तुलना में छोटे हॉसडॉर्फ आयाम के साथ हैं।
जहां <math>\dim_H(Y)</math> बोरेल समुच्चय Y के हॉसडॉर्फ आयाम को दर्शाता है जिसकी 1 से अधिक घात के <math>\mathbf{CP}^1</math> के अंतराकारिता f के लिए ज़डुनिक ने दिखाया कि <math>\mu_f</math> इसके समर्थन के हॉसडॉर्फ़ आयाम (जूलिया समुच्चय) के बराबर है यदि और केवल यदि f एक लैटेस मानचित्र एक [[चेबीशेव बहुपद]] (हस्ताक्षर तक) या एक पावर मानचित्र <math>f(z)=z^{\pm d}</math> से संयुग्मित है तो अपराह्न <math>d\geq 2</math> के साथ <ref>Milnor (2006), problem 5-3.</ref>(बाद कि स्थितियों में, जूलिया समुच्चय क्रमशः एक सवृत अंतराल या एक वृत्त <math>\mathbf{CP}^1</math> का है।<ref>Zdunik (1990), Theorem 2; Berteloot & Dupont (2005), introduction.</ref> इस प्रकार, उन विशेष स्थितियों के बाहर संतुलन माप अत्यधिक अनियमित है जो धनात्मक द्रव्यमान प्रदान करता है जूलिया समुच्चय के कुछ सवृत उपसमुच्चय पूरे जूलिया समुच्चय की तुलना में छोटे हॉसडॉर्फ आयाम के साथ हैं।
Line 73: Line 73:


===सैडल आवधिक बिंदु===
===सैडल आवधिक बिंदु===
F के एक आवधिक बिंदु z को सैडल आवधिक बिंदु कहा जाता है, यदि एक धनात्मक पूर्णांक r के लिए ऐसा हो कि <math>f^r(z)=z</math> पर स्पर्शरेखा समष्टि पर <math>f^r</math> के व्युत्पन्न का कम से कम एक आइगेन मान का निरपेक्ष मान 1 से कम है, कम से कम एक का निरपेक्ष मान 1 से अधिक है, और किसी का भी निरपेक्ष मान 1 के बराबर नहीं है। इस प्रकार f कुछ दिशाओं में विस्तार कर रहा है और दूसरों पर z के निकट संक्षिप्त है। सह-समरूपता पर सरल क्रिया के साथ एक स्वसमाकृतिकता f के लिए आवधिक बिंदु संतुलन माप <math>\mu_f</math> के समर्थन <math>J^*(f)</math> में सघन हैं।<ref name="super" /> दूसरी ओर माप <math>\mu_f</math> सवृत समिश्र उप-समष्टिों पर लुप्त हो जाता है जो X के बराबर नहीं है।<ref name="super" /> यह इस प्रकार है कि f के आवधिक बिंदु (या यहां तक ​​कि केवल <math>\mu_f</math> के समर्थन में निहित काठी आवधिक बिंदु) X में ज़ारिस्की घनत्व हैं।
F के एक आवधिक बिंदु z को सैडल आवधिक बिंदु कहा जाता है, यदि एक धनात्मक पूर्णांक r के लिए ऐसा हो कि <math>f^r(z)=z</math> पर स्पर्शरेखा समष्टि पर <math>f^r</math> के व्युत्पन्न का कम से कम एक आइगेन मान का निरपेक्ष मान 1 से कम है, कम से कम एक का निरपेक्ष मान 1 से अधिक है, और किसी का भी निरपेक्ष मान 1 के बराबर नहीं है। इस प्रकार f कुछ दिशाओं में विस्तार कर रहा है और दूसरों पर z के निकट संक्षिप्त है। सह-समरूपता पर सरल क्रिया के साथ एक स्वसमाकृतिकता f के लिए आवधिक बिंदु संतुलन माप <math>\mu_f</math> के समर्थन <math>J^*(f)</math> में सघन हैं।<ref name="super" /> दूसरी ओर माप <math>\mu_f</math> सवृत समिश्र उप-समष्टिों पर लुप्त हो जाता है जो X के बराबर नहीं है।<ref name="super" /> यह इस प्रकार है कि f के आवधिक बिंदु (या यहां तक ​​कि केवल <math>\mu_f</math> के समर्थन में निहित सैडल आवधिक बिंदु) X में ज़ारिस्की घनत्व हैं।


सह-समरूपता पर सरल क्रिया के साथ एक स्वसमाकृतिकता F के लिए F और इसका व्युत्क्रम मानचित्र एर्गोडिक है और अधिक दृढ़ता से संतुलन माप <math>\mu_f</math> के संबंध में मिश्रण करता है।<ref>Dinh & Sibony (2010), "Super-potentials ...", Theorem 4.4.2.</ref> इसका तात्पर्य यह है कि <math>\mu_f</math> के संबंध में लगभग प्रत्येक बिंदु z के लिए z की आगे और पीछे की कक्षाएँ <math>\mu_f</math> के संबंध में समान रूप से वितरित की जाती हैं।
सह-समरूपता पर सरल क्रिया के साथ एक स्वसमाकृतिकता F के लिए F और इसका व्युत्क्रम मानचित्र एर्गोडिक है और अधिक दृढ़ता से संतुलन माप <math>\mu_f</math> के संबंध में मिश्रण करता है।<ref>Dinh & Sibony (2010), "Super-potentials ...", Theorem 4.4.2.</ref> इसका तात्पर्य यह है कि <math>\mu_f</math> के संबंध में लगभग प्रत्येक बिंदु z के लिए z की आगे और पीछे की कक्षाएँ <math>\mu_f</math> के संबंध में समान रूप से वितरित की जाती हैं।
Line 79: Line 79:
<math>\mathbf{CP}^n</math> के अंतराकारिता की स्थिति में एक उल्लेखनीय अंतर यह है कि सह-समरूपता पर सरल प्रक्रिया के साथ एक स्वसमाकृतिकता F के लिए X का एक गैर-रिक्त विवृत उपसमुच्चय हो सकता है, जिस पर न तो आगे और न ही पीछे की कक्षाएँ समर्थन J^ तक अभिगम्य होती हैं। संतुलन माप का <math>J^*(f)</math> उदाहरण के लिए एरिक बेडफोर्ड, क्यूंघी किम और [[कर्टिस मैकमुलेन]] ने धनात्मक सांस्थितिक एन्ट्रापी (इसलिए सह-समरूपता पर सरल प्रक्रिया) के साथ एक समतल प्रक्षेप्य तर्कसंगत सतह के स्वसमाकृतिकता F का निर्माण किया, जैसे कि F में एक सीगल वक्र है, जिस पर F की प्रक्रिया एक से संयुग्मित है और तर्कहीन घूर्णन<ref>Cantat (2010), Théorème 9.8.</ref> उस विवृत समुच्चय में बिंदु कभी भी f या इसके व्युत्क्रम की क्रिया के अंतर्गत <math>J^*(f)</math> तक नहीं जाता हैं।
<math>\mathbf{CP}^n</math> के अंतराकारिता की स्थिति में एक उल्लेखनीय अंतर यह है कि सह-समरूपता पर सरल प्रक्रिया के साथ एक स्वसमाकृतिकता F के लिए X का एक गैर-रिक्त विवृत उपसमुच्चय हो सकता है, जिस पर न तो आगे और न ही पीछे की कक्षाएँ समर्थन J^ तक अभिगम्य होती हैं। संतुलन माप का <math>J^*(f)</math> उदाहरण के लिए एरिक बेडफोर्ड, क्यूंघी किम और [[कर्टिस मैकमुलेन]] ने धनात्मक सांस्थितिक एन्ट्रापी (इसलिए सह-समरूपता पर सरल प्रक्रिया) के साथ एक समतल प्रक्षेप्य तर्कसंगत सतह के स्वसमाकृतिकता F का निर्माण किया, जैसे कि F में एक सीगल वक्र है, जिस पर F की प्रक्रिया एक से संयुग्मित है और तर्कहीन घूर्णन<ref>Cantat (2010), Théorème 9.8.</ref> उस विवृत समुच्चय में बिंदु कभी भी f या इसके व्युत्क्रम की क्रिया के अंतर्गत <math>J^*(f)</math> तक नहीं जाता हैं।


कम से कम समिश्र आयाम 2 में F का संतुलन माप F के पृथक आवधिक बिंदुओं के वितरण का वर्णन करता है। F पुनरावृत्त द्वारा निर्धारित समिश्र वक्र भी हो सकते हैं, जिन्हें यहां अस्वीकृत कर दिया गया है। अर्थात्, मान लीजिए कि F धनात्मक सांस्थितिक एन्ट्रापी <math>h(f)=\log d_1</math> के साथ एक संक्षिप्त काहलर सतह X का स्वसमाकृतिकता है। संभाव्यता माप पर विचार करें जो कि समय r के अलग-अलग आवधिक बिंदुओं पर समान रूप से वितरित किया जाता है जिसका अर्थ है कि <math>f^r(z)=z</math> एरिक बेडफोर्ड, ल्युबिच और [[जॉन स्मिली (गणितज्ञ)]] के अनुसार जब r अनंत तक जाता है तो यह माप दुर्बल रूप से <math>\mu_f</math> में परिवर्तित हो जाती है।<ref>Cantat (2014), Theorem 8.2.</ref> सैडल आवधिक बिंदुओं के उपसमुच्चय के लिए भी यही भी प्रक्रिया प्रयुक्त होती है, क्योंकि आवधिक बिंदुओं के दोनों समुच्चय <math>(d_1)^r</math> की दर से बढ़ते हैं।
कम से कम समिश्र आयाम 2 में F का संतुलन माप F के पृथक आवधिक बिंदुओं के वितरण का वर्णन करता है। F पुनरावृत्त द्वारा निर्धारित समिश्र वक्र भी हो सकते हैं, जिन्हें यहां अस्वीकृत कर दिया गया है। अर्थात्, मान लीजिए कि F धनात्मक सांस्थितिक एन्ट्रापी <math>h(f)=\log d_1</math> के साथ एक संक्षिप्त काहलर सतह X का स्वसमाकृतिकता है। संभाव्यता माप पर विचार करें जो कि समय r के अलग-अलग आवधिक बिंदुओं पर समान रूप से वितरित किया जाता है जिसका अर्थ है कि <math>f^r(z)=z</math> एरिक बेडफोर्ड, ल्युबिच और [[जॉन स्मिली (गणितज्ञ)]] के अनुसार जब r अनंत तक जाता है तो यह माप दुर्बल रूप से <math>\mu_f</math> में परिवर्तित हो जाती है।<ref>Cantat (2014), Theorem 8.2.</ref> सैडल आवधिक बिंदुओं के उपसमुच्चय के लिए भी यह प्रक्रिया प्रयुक्त होती है, क्योंकि सैडल आवधिक बिंदुओं के दोनों समुच्चय <math>(d_1)^r</math> की दर से बढ़ते हैं।


==यह भी देखें==
==यह भी देखें==
Line 128: Line 128:
==बाहरी संबंध==
==बाहरी संबंध==
* [https://people.math.harvard.edu/~ctm/gallery/ Gallery of dynamics (Curtis McMullen)]
* [https://people.math.harvard.edu/~ctm/gallery/ Gallery of dynamics (Curtis McMullen)]
* [http://www.math.sunysb.edu/surveys-dynamical-systems Surveys in Dynamical Systems][[Category: जटिल गतिशीलता| जटिल गतिशीलता]] [[Category: जटिल विश्लेषण]] [[Category: गतिशील प्रणालियाँ]] [[Category: अराजकता सिद्धांत]] [[Category: भग्न]]  
* [http://www.math.sunysb.edu/surveys-dynamical-systems Surveys in Dynamical Systems]


 
[[Category:All Wikipedia articles written in American English]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:Created On 03/07/2023]]
[[Category:Created On 03/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Use American English from March 2019]]
[[Category:अराजकता सिद्धांत]]
[[Category:गतिशील प्रणालियाँ]]
[[Category:जटिल गतिशीलता| जटिल गतिशीलता]]
[[Category:जटिल विश्लेषण]]
[[Category:भग्न]]

Latest revision as of 09:01, 16 July 2023

समिश्र गतिशीलता या पूर्णसममितिक गतिशीलता एक समिश्र विश्लेषणात्मक मानचित्रण से पुनरावृत्त करके प्राप्त गतिशील प्रणालियों का अध्ययन है। यह आलेख बीजगणितीय गतिशीलता की स्थिति पर केंद्रित है, जहां एक बहुपद या तर्कसंगत फलन को दोहराया जाता है। ज्यामितीय शब्दों में यह कुछ बीजगणितीय विविधता से मानचित्रण को पुनरावृत्त करने के समान है। अंकगणितीय गतिशीलता का संबंधित सिद्धांत समिश्र संख्याओं के अतिरिक्त तर्कसंगत संख्याओं या P समिश्र संख्याओं पर पुनरावृत्ति का अध्ययन करता है।

समिश्र आयाम में गतिशीलता - 1

एक सरल उदाहरण जो समिश्र गतिशीलता में कुछ मुख्य समिश्र संख्याओ C से के मानचित्रण को प्रदर्शित करता है। समिश्र संख्याओं में एक बिंदु जोड़कर समिश्र प्रक्षेप्य रेखा से स्वयं के मानचित्र के रूप में देखना सहायक होता है। को सघन होने का लाभ यह है कि मूल प्रश्न के में एक बिंदु दिया गया है कि इसकी कक्षा (या आगे की कक्षा) कैसे होती है:

गुणात्मक संख्या कैसे प्रस्तुत करें? इसका उत्तर यह है कि यदि निरपेक्ष मान |z| 1 से कम है तो कक्षा 0 पर परिवर्तित हो जाती है वास्तव में चर घातांकीय गति से भी अधिक यदि |z| 1 से अधिक है, तो कक्षा में बिंदु पर परिवर्तित हो जाता है, जो फिर से घातांकीय गति से भी अधिक है। यहां 0 और के अतिआकर्षक निश्चित बिंदु (गणित) हैं, जिसका अर्थ है कि उन बिंदुओं पर f का व्युत्पन्न शून्य है। एक आकर्षक निश्चित बिंदु का अर्थ है कि वह जहां f के व्युत्पन्न का निरपेक्ष मान 1 से कम है।

दूसरी ओर, मान लीजिए कि जिसका अर्थ है कि z, C में इकाई वृत्त पर है। इन बिंदुओं पर f की गतिशीलता विभिन्न प्रकारों से अव्यवस्थित है। उदाहरण के लिए माप सिद्धांत के संदर्भ में वृत्त पर लगभग सभी बिंदुओं z के लिए z की आगे की कक्षा वृत्त में सघन है और वास्तव में वृत्त पर समान रूप से कुछ धनात्मक पूर्णांक r के लिए वाले बिंदु वितरित अनुक्रम है।

वृत्त पर अनन्त रूप से अनेक आवर्त बिन्दु भी होते हैं, अर्थात् कुछ धनात्मक पूर्णांक r के लिए वाले बिंदु (यहां का अर्थ है f से z r बार लगाने का परिणाम) यहां तक ​​कि वृत्त पर आवधिक बिंदु z पर भी f की गतिशीलता को अव्यवस्थित माना जा सकता है, चूँकि z के निकट के बिंदु f की पुनरावृत्ति करने पर z से तीव्र विचलन करते हैं। इकाई वृत्त पर f के आवधिक बिंदु प्रतिकर्षित कर रहे हैं यदि , तो z पर के अवकलज का निरपेक्ष मान 1 से अधिक होता है।

पियरे फतौ और गैस्टन जूलिया ने 1910 के दशक के अंत में दिखाया कि इस कहानी का अधिकांश भाग से लेकर 1 से अधिक घात वाले किसी भी समिश्र बीजगणितीय मानचित्र तक विस्तृत है। निरंतर मानचित्रण की घात 1 से अधिक होती है। ऐसे मानचित्रण को समिश्र गुणांक वाले बहुपद द्वारा या अधिक सामान्यतः एक तर्कसंगत फलन द्वारा दिया जा सकता है। अर्थात् सदैव जूलिया समुच्चय का एक संक्षिप्त उपसमुच्चय होता है, जिस पर f की गतिशीलता अव्यवस्थित होती है। मानचित्रण के लिए जूलिया समुच्चय इकाई वृत्त है। अन्य बहुपद मानचितत्रों के लिए जूलिया समुच्चय प्रायः अत्यधिक अनियमित होता है। उदाहरण के लिए एक आंशिक का अर्थ है कि इसका हॉसडॉर्फ आयाम एक पूर्णांक नहीं है। यह स्थिरांक के लिए जैसे सरल मानचित्रण के लिए भी होता है। मैंडेलब्रॉट समुच्चय सम्मिश्र संख्याएँ c का समुच्चय है, जिससे का जूलिया समुच्चय संबद्ध है।

बहुपद का जूलिया समुच्चय के साथ है।
बहुपद का जूलिया समुच्चय के साथ एक कैंटर समुच्चय है।

फ़तौ समुच्चय में जूलिया समुच्चय का पूरक एक तर्कसंगत फलन की संभावित गतिशीलता का पूर्ण वर्गीकरण है, जहां गतिशीलता साधारण है अर्थात् डेनिस सुलिवान ने दिखाया कि फतौ समुच्चय का प्रत्येक संबद्ध घटक U पूर्व-आवधिक है जिसका अर्थ है कि प्राकृतिक संख्याएं अर्थात ( हैं।

इसलिए किसी घटक U पर गतिशीलता का विश्लेषण करने के लिए कोई व्यक्ति f को पुनरावृत्त द्वारा प्रतिस्थापित करने के बाद मान सकता है कि या तो (1) U में F के लिए एक आकर्षक निश्चित बिंदु सम्मिलित है। (2) U इस अर्थ में परवलयिक है कि U में सभी बिंदु U की सीमा में एक निश्चित बिंदु तक अभिगम्य हैं। (3) U एक सीगल वृत्त है, जिसका अर्थ है कि U पर F विवृत इकाई वृत्त के एक अपरिमेय घुमाव से संयुग्मित है। या (4) U एक हरमन वलय है, जिसका अर्थ है कि U पर F की क्रिया एक विवृत वलय के एक अपरिमेय घुमाव से संयुग्मित है।[1] ध्यान दें कि U में एक बिंदु z की "पिछली कक्षा" में बिंदुओं का समुच्चय जो f के कुछ पुनरावृत्त के अंतर्गत z तक विस्तृत है, जिसे U में समाहित करने की आवश्यकता नहीं है।

अंतराकारिता की संतुलन माप

समिश्र गतिशीलता को किसी भी आयाम में प्रभावी रूप से विकसित किया गया है। यह आयाम उदाहरणों के सबसे समृद्ध स्रोत, समिश्र प्रक्षेप्य समष्टि से मानचित्रण पर केंद्रित है। के मुख्य परिणामों को किसी भी प्रक्षेप्य विविधता से लेकर तर्कसंगत मानचित्रों के एक वर्ग तक विस्तारित किया गया है।[2] हालाँकि, ध्यान दें कि कई प्रकार में कोई भी स्व-मानचित्रण नहीं होता है।

मान लीजिए कि F, की एक अंतराकारिता है जिसका अर्थ धनात्मक पूर्णांक n के लिए मे बीजीय विविधता की आकारिता है। ऐसे मानचित्रण की सूची सजातीय निर्देशांक में दी गई है:

समान घात d के कुछ समिश्र बहुपद के लिए जिनका में कोई उभयनिष्ठ शून्य नहीं है।

चाउ के प्रमेय के अनुसार यह से स्व-पूर्णसममितिक मानचित्रण के समान है। माना कि d, 1 से अधिक है तो मानचित्रण f की घात है जो 1 से भी अधिक है।

पुनः पर एक अद्वितीय संभाव्यता माप है जो f की संतुलन माप है जो f की गतिशीलता के सबसे अव्यवस्थित भाग का वर्णन करती है। इसे ग्रीन माप या अधिकतम एन्ट्रापी की माप भी कहा जाता है। इस माप को हंस ब्रोलिन (1965) द्वारा एक चर में बहुपद के लिए परिभाषित किया गया था, जिसको अलेक्जेंड्रे फ़्रेयर, आर्टूर लोप्स, रिकार्डो माने और मिखाइल लुबिच द्वारा 1983 के आसपास के लिए परिभाषित किया गया था और 1994 के आसपास किसी भी आयाम के लिए जॉन हबर्ड, पीटर पापाडोपोल, जॉन फ़ोर्नेस और सिबोनी ने परिभाषित किया गया था। एक छोटे जूलिया समुच्चय में संतुलन माप का समर्थन (माप सिद्धांत) है, यह केवल जूलिया समुच्चय के लिए है।

उदाहरण

  • पर मानचित्रण के लिए संतुलन माप इकाई पर हार माप है।
  • सामान्यतः माना कि एक पूर्णांक के लिए मानचित्रण माप है:
तब संतुलन माप -आयामी टोरस पर हार माप से अधिक सामान्य पूर्णसममितिक मानचित्रण के लिए संतुलन माप से बहुत अधिक समिश्र हो सकती है। जैसे कि जूलिया समुच्चय की छवियों मे पहले से ही समिश्र आयाम 1 में देखा जा सकता है।

संतुलन माप की विशेषताएँ

संतुलन माप की एक आधारिक विशेषताएँ यह है कि ये F के अंतर्गत अपरिवर्तनीय है, इस अर्थ में कि पुशफॉरवर्ड माप के बराबर है क्योंकि एक परिमित आकारिता है, पुलबैक माप भी परिभाषित है और इस अर्थ में पूरी तरह से अपरिवर्तनीय है।

संतुलन माप की एक उल्लेखनीय विशेषता यह है कि यह जीन-यवेस ब्रिएंड, जूलियन डुवाल, टीएन-कुओंग दिन्ह और सिबोनी द्वारा समय में पीछे की ओर अनुसरण किए जाने पर में लगभग प्रत्येक बिंदु के स्पर्शोन्मुखता का वर्णन करता है। समान रूप से में एक बिंदु z और एक धनात्मक पूर्णांक r के लिए संभाव्यता माप पर विचार करें जो कि संख्या w पर के साथ समान रूप से वितरित है। फिर एक ज़ारिस्की सवृत उपसमुच्चय है, जैसे कि E में सभी बिंदुओं z के लिए अभी परिभाषित माप संतुलन माप में दुर्बल रूप से परिवर्तित होती हैं क्योंकि r अनंत तक जाता है। अधिक विस्तार से के केवल सीमित रूप से कई सवृत समिश्र उप-समष्टि f के अंतर्गत पूरी तरह से अपरिवर्तनीय हैं जिसका अर्थ है कि और कोई असाधारण समुच्चय ले सकता है, E अद्वितीय और बसे बड़ा अपरिवर्तनीय सवृत समिश्र उपसमष्टि है जो के बराबर नहीं है।[3]

संतुलन माप का एक और लक्षण वर्णन (ब्रिएंड और डुवल के कारण) इस प्रकार है। प्रत्येक धनात्मक पूर्णांक r के लिए आवर्त r के आवधिक बिंदुओं की संख्या जिसका अर्थ है कि बहुलता के साथ के रूप मे गिना जाता है जो सामान्यतः है। संभाव्यता माप पर विचार करें जो अवधि r के बिंदुओं पर समान रूप से वितरित है। फिर जैसे-जैसे r अनंत तक जाता है, ये माप भी संतुलन माप में परिवर्तित हो जाती है। इसके अतिरिक्त अधिकांश आवधिक बिंदु विकर्षक हैं और में स्थित हैं। इसलिए किसी भी बिन्दु को केवल में प्रतिकर्षित आवधिक बिंदुओं के औसत से समान सीमा माप प्राप्त होता है।[4] के बाहर भी विकर्षक आवधिक बिंदु हो सकते हैं।[5]

संतुलन माप के किसी भी सवृत समिश्र उपसमष्टि को शून्य द्रव्यमान देता है जो संपूर्ण समष्टि नहीं है।[6] चूँकि के आवर्त बिंदु में सघन हैं, इसलिए यह इस प्रकार है कि f के आवर्त बिंदु में सघन हैं। इस ज़ारिस्की घनत्व का एक अधिक बीजगणितीय प्रमाण नजमुद्दीन फखरुद्दीन द्वारा दिया गया था।[7] के बराबर सवृत समिश्र उपसमष्टिों को शून्य द्रव्यमान देने का एक और परिणाम यह है कि प्रत्येक बिंदु का द्रव्यमान शून्य है। जिसके परिणामस्वरूप के समर्थन का कोई पृथक बिंदु नहीं है और इसलिए यह एक आदर्श समुच्चय है।

संतुलन माप का समर्थन बहुत छोटा नहीं है, इस अर्थ में कि इसका हॉसडॉर्फ आयाम सदैव शून्य से अधिक होता है।[6] उस अर्थ में 1 से अधिक घात के साथ समिश्र प्रक्षेप्य समष्टि का अंतराकारिता सदैव कम से कम समष्टि के भाग पर अव्यवस्थित व्यवहार करता है कुछ ऐसे उदाहरण हैं जहां पूरी तरह से है।[8] यह इसको शुद्ध बनाने का एक और तरीका है कि f में कुछ अव्यवस्थित प्रकार है वह यह है कि f की सांस्थितिक एन्ट्रापी सदैव शून्य से अधिक होती है, वास्तव में मिखाइल ग्रोमोव, माइकल मिसिउरविक्ज़ और फेलिक्स प्रेज़िटिकी के अनुसार यह के बराबर है।

अंत में किसी भी संतुलन माप के समर्थन पर F की गतिशीलता के विषय में अधिक कहा जा सकता है कि फोर्नेस और सिबोनी के अनुसार F एर्गोडिक है और अधिक दृढ़ता से उस माप के संबंध में समिश्र (गणित) है।[9] उदाहरण के लिए यह इस प्रकार है कि के संबंध में लगभग प्रत्येक बिंदु के लिए इसकी आगे की कक्षा के संबंध में समान रूप से वितरित की जाती है।

लैटेस मानचित्र

लैटेस मानचित्र एक एबेलियन विविधता के अंतराकारिता से एक परिमित समूह द्वारा विभाजित करके प्राप्त का एक अंतराकारिता F है। इस स्थिति में F का संतुलन माप लेब्सेग माप के संबंध में निरंतर माप है। इसके विपरीत अन्ना ज़डुनिक, फ्रांकोइस बर्टेलूट और क्रिस्टोफ़ द्वारा, एकमात्र अंतराकारिता जिसका संतुलन माप लेबेस्ग माप के संबंध में प्रायः निरंतर है यह एक लैटेस का उदाहरण हैं।[10] अर्थात्, सभी गैर-लैट्स अंतराकारिता के लिए लेब्सगेग माप 0 के कुछ बोरेल समुच्चय को अपना पूर्ण द्रव्यमान 1 निर्दिष्ट करता है।

लैटेस मानचित्र के संतुलन माप से एक यादृच्छिक फलन है और जूलिया समुच्चय है।
गैर-लैटेस मानचित्र के संतुलन माप से एक यादृच्छिक फलन जूलिया समुच्चय है[11] लेकिन संतुलन माप अत्यधिक अनियमित है।

आयाम 1 में संतुलन माप की अनियमितता के विषय में अधिक जानकारी है।अर्थात्, संभाव्यता माप के हॉसडॉर्फ़ आयाम को पर या अधिक सामान्यतः समतल बहुरूपता पर परिभाषित करें:

जहां बोरेल समुच्चय Y के हॉसडॉर्फ आयाम को दर्शाता है जिसकी 1 से अधिक घात के के अंतराकारिता f के लिए ज़डुनिक ने दिखाया कि इसके समर्थन के हॉसडॉर्फ़ आयाम (जूलिया समुच्चय) के बराबर है यदि और केवल यदि f एक लैटेस मानचित्र एक चेबीशेव बहुपद (हस्ताक्षर तक) या एक पावर मानचित्र से संयुग्मित है तो अपराह्न के साथ [12](बाद कि स्थितियों में, जूलिया समुच्चय क्रमशः एक सवृत अंतराल या एक वृत्त का है।[13] इस प्रकार, उन विशेष स्थितियों के बाहर संतुलन माप अत्यधिक अनियमित है जो धनात्मक द्रव्यमान प्रदान करता है जूलिया समुच्चय के कुछ सवृत उपसमुच्चय पूरे जूलिया समुच्चय की तुलना में छोटे हॉसडॉर्फ आयाम के साथ हैं।

प्रक्षेपी प्रकार की स्वचालितता

प्रक्षेपी स्वचालितता समिश्र गतिशीलता पुनरावृत्ति के अंतर्गत तर्कसंगत मानचित्रों के व्यवहार का वर्णन करना चाहती है। इस स्थिति मे जिसका कुछ सफलता के साथ अध्ययन किया गया है, वह एक समतल समिश्र प्रक्षेप्य विविधता X की स्वसमाकृतिकता है, जिसका अर्थ X से स्वयं तक स्वसमाकृतिकता F की स्थिति है जहां f एकल सह-समरूपता पर गैर-तुच्छ रूप से कार्य करता है।

ग्रोमोव और योसेफ योमडिन ने दिखाया कि एक समतल समिश्र प्रक्षेपीय प्रकार की अंतराकारिता (उदाहरण के लिए, एक स्वसमाकृतिकता) की सांस्थितिक एन्ट्रॉपी सह-समरूपता पर इसकी विविधता निर्धारित होती है।[14] स्पष्ट रूप से, समिश्र आयाम n और X के लिए , माना कि हॉज सिद्धांत समूह पर पुलबैक द्वारा कार्य करने वाली f की वर्णक्रमीय त्रिज्या है और f की सांस्थितिक एन्ट्रापी है:

f की सांस्थितिक एन्ट्रॉपी संपूर्ण सह-समरूपता पर f के वर्णक्रमीय त्रिज्या का लघुगणक भी है। इस प्रकार f में इस अर्थ में कुछ अव्यवस्थित व्यवहार है कि इसकी सांस्थितिक एन्ट्रॉपी शून्य से अधिक है यदि और केवल यदि यह 1 से अधिक निरपेक्ष मान के आइगेन मान के साथ कुछ सह-समरूपता समूह पर कार्य करता है। कई प्रक्षेप्य विविधता में ऐसी स्वसमाकृतिकता नहीं होती है, लेकिन उदाहरण के लिए कई तर्कसंगत सतहों और K-3 सतहों में ऐसी स्वसमाकृतिकता होती है।[15]

माना कि X एक संक्षिप्त काहलर बहुपद है, जिसमें एक समतल समिश्र प्रक्षेपीय प्रकार की स्थितियाँ सम्मिलित है। माना कि X के स्वसमाकृतिकता f में सह-समरूपता पर सरल निर्धारित होती है यदि केवल एक संख्या p है जैसे कि अपना अधिकतम मान लेता है और पर f में केवल एक ही निरपेक्ष मान के साथ आइगेन मान और यह एक सरल आइगेन मान है। उदाहरण के लिए सर्ज कैंटैट ने दिखाया कि धनात्मक सांस्थितिक एन्ट्रॉपी के साथ संक्षिप्त काहलर सतह के प्रत्येक स्वसमाकृतिकता में सह-समरूपता पर सरल प्रक्रिया होती है।[16] यहां एक "स्वसमाकृतिकता" समिश्र विश्लेषणात्मक है, लेकिन X पर काहलर आव्यूह को संरक्षित करने के लिए नहीं माना जाता है। वास्तव में प्रत्येक स्वसमाकृतिकता जो आव्यूह को संरक्षित करता है, उसमें सांस्थितिक एन्ट्रापी शून्य होती है।

सह-समरूपता पर सरल क्रिया के साथ एक स्वसमाकृतिकता F के लिए समिश्र गतिशीलता के कुछ लक्ष्यों को प्राप्त किया गया है। दीन्ह, सिबोनी और हेनरी डी थेलिन ने दिखाया कि F के लिए अधिकतम एन्ट्रापी का एक अद्वितीय अपरिवर्तनीय संभाव्यता माप है, जिसे संतुलन माप (या ग्रीन माप, या अधिकतम एन्ट्रापी का माप) कहा जाता है।[17] विशेष रूप से में f के संबंध में एन्ट्रापी है। के समर्थन को छोटा जूलिया समुच्चय कहा जाता है। अनौपचारिक रूप से f में कुछ अव्यवस्थित प्रक्रिया होता है और सबसे अव्यवस्थित प्रक्रिया छोटे जूलिया समुच्चय पर केंद्रित होती है। कम से कम जब अधिक शुद्ध रूप से या पर्याप्त रूप से छोटे हॉसडॉर्फ आयाम के सभी समुच्चयों को शून्य द्रव्यमान प्रदान करता है।[18]

कुमेर स्वसमाकृतिकता

कुछ एबेलियन विविधता में धनात्मक एन्ट्रापी का स्वसमाकृतिकता होता है। उदाहरण के लिए मान लीजिए कि E एक समिश्र दीर्घवृत्तीय वक्र है और मान लीजिए कि X एबेलियन सतह है। फिर व्युत्क्रमणीय पूर्णांक आव्यूहों का समूह पर कार्य करता है। कोई भी समूह तत्व f जिसका ट्रेस (रैखिक बीजगणित) का पूर्ण मान 2 से अधिक है, उदाहरण के लिए , का वर्णक्रमीय त्रिज्या 1 से अधिक है और इसलिए यह X का एक धनात्मक-एन्ट्रॉपी स्वसमाकृतिकता देता है और F की संतुलन माप X पर हार माप (मानक लेबेस्ग माप) है।[19]

कुमेर स्वसमाकृतिकता को स्वसमाकृतिकता के साथ एबेलियन सतह के एक सीमित समूह द्वारा भागफल समष्टि लेकर और फिर सतह को समतल बनाने के लिए विस्तृत रूप मे परिभाषित किया जाता है। परिणामी सतहों में कुछ विशेष K-3 सतहें और तर्कसंगत सतहें सम्मिलित हैं। कुमेर स्वसमाकृतिकता के लिए संतुलन माप में X के बराबर समर्थन होता है और कई वक्रों के बाहर समतल होता है। इसके विपरीत, कैंटैट और ड्पॉयून्ट ने दिखाया कि कुमेर उदाहरणों को छोड़कर धनात्मक एन्ट्रापी की सभी सतह स्वसमाकृतिकता के लिए लेबेस्ग माप के संबंध में संतुलन माप बिल्कुल निरंतर नहीं है।[20] इस अर्थ में स्वसमाकृतिकता की संतुलन माप का कुछ भाग अनियमित होना सामान्य है।

सैडल आवधिक बिंदु

F के एक आवधिक बिंदु z को सैडल आवधिक बिंदु कहा जाता है, यदि एक धनात्मक पूर्णांक r के लिए ऐसा हो कि पर स्पर्शरेखा समष्टि पर के व्युत्पन्न का कम से कम एक आइगेन मान का निरपेक्ष मान 1 से कम है, कम से कम एक का निरपेक्ष मान 1 से अधिक है, और किसी का भी निरपेक्ष मान 1 के बराबर नहीं है। इस प्रकार f कुछ दिशाओं में विस्तार कर रहा है और दूसरों पर z के निकट संक्षिप्त है। सह-समरूपता पर सरल क्रिया के साथ एक स्वसमाकृतिकता f के लिए आवधिक बिंदु संतुलन माप के समर्थन में सघन हैं।[18] दूसरी ओर माप सवृत समिश्र उप-समष्टिों पर लुप्त हो जाता है जो X के बराबर नहीं है।[18] यह इस प्रकार है कि f के आवधिक बिंदु (या यहां तक ​​कि केवल के समर्थन में निहित सैडल आवधिक बिंदु) X में ज़ारिस्की घनत्व हैं।

सह-समरूपता पर सरल क्रिया के साथ एक स्वसमाकृतिकता F के लिए F और इसका व्युत्क्रम मानचित्र एर्गोडिक है और अधिक दृढ़ता से संतुलन माप के संबंध में मिश्रण करता है।[21] इसका तात्पर्य यह है कि के संबंध में लगभग प्रत्येक बिंदु z के लिए z की आगे और पीछे की कक्षाएँ के संबंध में समान रूप से वितरित की जाती हैं।

के अंतराकारिता की स्थिति में एक उल्लेखनीय अंतर यह है कि सह-समरूपता पर सरल प्रक्रिया के साथ एक स्वसमाकृतिकता F के लिए X का एक गैर-रिक्त विवृत उपसमुच्चय हो सकता है, जिस पर न तो आगे और न ही पीछे की कक्षाएँ समर्थन J^ तक अभिगम्य होती हैं। संतुलन माप का उदाहरण के लिए एरिक बेडफोर्ड, क्यूंघी किम और कर्टिस मैकमुलेन ने धनात्मक सांस्थितिक एन्ट्रापी (इसलिए सह-समरूपता पर सरल प्रक्रिया) के साथ एक समतल प्रक्षेप्य तर्कसंगत सतह के स्वसमाकृतिकता F का निर्माण किया, जैसे कि F में एक सीगल वक्र है, जिस पर F की प्रक्रिया एक से संयुग्मित है और तर्कहीन घूर्णन[22] उस विवृत समुच्चय में बिंदु कभी भी f या इसके व्युत्क्रम की क्रिया के अंतर्गत तक नहीं जाता हैं।

कम से कम समिश्र आयाम 2 में F का संतुलन माप F के पृथक आवधिक बिंदुओं के वितरण का वर्णन करता है। F पुनरावृत्त द्वारा निर्धारित समिश्र वक्र भी हो सकते हैं, जिन्हें यहां अस्वीकृत कर दिया गया है। अर्थात्, मान लीजिए कि F धनात्मक सांस्थितिक एन्ट्रापी के साथ एक संक्षिप्त काहलर सतह X का स्वसमाकृतिकता है। संभाव्यता माप पर विचार करें जो कि समय r के अलग-अलग आवधिक बिंदुओं पर समान रूप से वितरित किया जाता है जिसका अर्थ है कि एरिक बेडफोर्ड, ल्युबिच और जॉन स्मिली (गणितज्ञ) के अनुसार जब r अनंत तक जाता है तो यह माप दुर्बल रूप से में परिवर्तित हो जाती है।[23] सैडल आवधिक बिंदुओं के उपसमुच्चय के लिए भी यह प्रक्रिया प्रयुक्त होती है, क्योंकि सैडल आवधिक बिंदुओं के दोनों समुच्चय की दर से बढ़ते हैं।

यह भी देखें

टिप्पणियाँ

  1. Milnor (2006), section 13.
  2. Guedj (2010), Theorem B.
  3. Dinh & Sibony (2010), "Dynamics ...", Theorem 1.4.1.
  4. Dinh & Sibony (2010), "Dynamics ...", Theorem 1.4.13.
  5. Fornaess & Sibony (2001), Theorem 4.3.
  6. 6.0 6.1 Dinh & Sibony (2010), "Dynamics ...", Proposition 1.2.3.
  7. Fakhruddin (2003), Corollary 5.3.
  8. Milnor (2006), Theorem 5.2 and problem 14-2; Fornaess (1996), Chapter 3.
  9. Dinh & Sibony (2010), "Dynamics ...", Theorem 1.6.3.
  10. Berteloot & Dupont (2005), Théorème 1.
  11. Milnor (2006), problem 14-2.
  12. Milnor (2006), problem 5-3.
  13. Zdunik (1990), Theorem 2; Berteloot & Dupont (2005), introduction.
  14. Cantat (2000), Théorème 2.2.
  15. Cantat (2010), sections 7 to 9.
  16. Cantat (2014), section 2.4.3.
  17. De Thélin & Dinh (2012), Theorem 1.2.
  18. 18.0 18.1 18.2 Dinh & Sibony (2010), "Super-potentials ...", section 4.4.
  19. Cantat & Dupont (2020), section 1.2.1.
  20. Cantat & Dupont (2020), Main Theorem.
  21. Dinh & Sibony (2010), "Super-potentials ...", Theorem 4.4.2.
  22. Cantat (2010), Théorème 9.8.
  23. Cantat (2014), Theorem 8.2.


संदर्भ


बाहरी संबंध