मत्स्य ध्वनिकी: Difference between revisions
(Created page with "thumb|right|{{center|[[Fishfinder sonar}}]]मत्स्य ध्वनिकी में जलीय पारिस्थितिक तंत...") |
No edit summary |
||
| (7 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
[[File:Fishfinder.jpg|thumb|right|{{center|[[ | [[File:Fishfinder.jpg|thumb|right|{{center|[[फिशफाइंडर]] सोनार}}]]'''मत्स्य ध्वनिकी''' में जलीय पारिस्थितिक तंत्र वातावरण में सेंसर के रूप में ध्वनिकी का उपयोग करके [[वैज्ञानिक अनुसंधान]] और व्यावहारिक अनुप्रयोग विषयों की एक श्रृंखला सम्मलित है। ध्वनिक तकनीकों को [[जलीय जानवर|जलीय जानवरों]], [[प्राणिप्लवक]], और भौतिक और जैविक [[समुद्री आवास]] विशेषताओं को समझने के लिए प्रयुक्त किया जा सकता है। | ||
== मूल सिद्धांत == | == मूल सिद्धांत == | ||
[[बायोमास (पारिस्थितिकी)]] आकलन [[सोनार]] तकनीक का उपयोग करके [[मछली]] और अन्य समुद्री जीवों का पता लगाने और उनकी मात्रा निर्धारित करने की एक विधि है।<ref name="SimmondsMacLennan">Simmonds J. & MacLennan D. (2005). ''Fisheries Acoustics: Theory and Practice'', second edition. [[Wiley-Blackwell|Blackwell]]</ref> एक ध्वनिक ट्रांसड्यूसर पानी में ध्वनि की एक संक्षिप्त, केंद्रित नाड़ी का उत्सर्जन करता है। यदि ध्वनि का सामना ऐसी वस्तुओं से होता है जो आसपास के माध्यम से भिन्न घनत्व की होती हैं, जैसे कि मछली, तो वे कुछ ध्वनि को वापस स्रोत की ओर दर्शाती हैं। ये गूँज मछली के आकार, स्थान और [[बहुतायत (पारिस्थितिकी)]] के बारे में जानकारी प्रदान करती हैं। वैज्ञानिक [[ सोनार ]] के मूल घटक [[इलेक्ट्रॉनिक हार्डवेयर]] फ़ंक्शन ध्वनि को प्रसारित करना, प्राप्त करना, फ़िल्टर करना और बढ़ाना, रिकॉर्ड करना और गूँज का विश्लेषण करना है। | [[बायोमास (पारिस्थितिकी)]] आकलन [[सोनार]] तकनीक का उपयोग करके [[मछली]] और अन्य समुद्री जीवों का पता लगाने और उनकी मात्रा निर्धारित करने की एक विधि है।<ref name="SimmondsMacLennan">Simmonds J. & MacLennan D. (2005). ''Fisheries Acoustics: Theory and Practice'', second edition. [[Wiley-Blackwell|Blackwell]]</ref> एक ध्वनिक ट्रांसड्यूसर पानी में ध्वनि की एक संक्षिप्त, केंद्रित नाड़ी का उत्सर्जन करता है। यदि ध्वनि का सामना ऐसी वस्तुओं से होता है जो आसपास के माध्यम से भिन्न घनत्व की होती हैं, जैसे कि मछली, तो वे कुछ ध्वनि को वापस स्रोत की ओर दर्शाती हैं। ये गूँज मछली के आकार, स्थान और [[बहुतायत (पारिस्थितिकी)]] के बारे में जानकारी प्रदान करती हैं। वैज्ञानिक [[ सोनार ]] के मूल घटक [[इलेक्ट्रॉनिक हार्डवेयर]] फ़ंक्शन ध्वनि को प्रसारित करना, प्राप्त करना, फ़िल्टर करना और बढ़ाना, रिकॉर्ड करना और गूँज का विश्लेषण करना है। चूँकि व्यावसायिक रूप से उपलब्ध फिश-फाइंडर के कई निर्माता हैं, मात्रात्मक विश्लेषण के लिए आवश्यक है कि [[अंशांकन]] इको साउंडर उपकरण के साथ माप किया जाए, जिसमें उच्च सिग्नल-टू-शोर अनुपात हो। | ||
== इतिहास == | == इतिहास == | ||
{{Quote box | {{Quote box | ||
| quote = मछली टैक्सा की एक अत्यंत विस्तृत विविधता ध्वनि उत्पन्न करती है। ध्वनि उत्पादन व्यवहार मछली जीव विज्ञान के विभिन्न पहलुओं का अध्ययन करने का अवसर प्रदान करता है, जैसे कि गैर-आक्रामक तरीके से स्पॉनिंग व्यवहार और निवास स्थान का चयन। निष्क्रिय ध्वनिक विधि पारंपरिक मत्स्य मूल्यांकन तकनीकों का एक आकर्षक विकल्प या पूरक हो सकती है क्योंकि वे गैर-आक्रामक हैं, कम लागत पर संचालित की जा सकती हैं, और उच्च स्थानिक और लौकिक रिज़ॉल्यूशन पर एक बड़े अध्ययन क्षेत्र को कवर कर सकती हैं। | |||
| source = | |||
| align = right | |||
| width = 300px | |||
| salign = | |||
| sstyle = | |||
}} | }} | ||
प्रथम विश्व युद्ध के बाद, जब पहली बार पनडुब्बियों का पता लगाने के लिए सोनार का | प्रथम विश्व युद्ध के बाद, जब पहली बार पनडुब्बियों का पता लगाने के लिए सोनार का उपयोग किया गया था, तो इको साउंडर्स ने सेना के बाहर उपयोग करना प्रारंभ कर दिया था। फ्रांसीसी अन्वेषक [[रेमंड रैलियर डू बैटी]] ने 1927 में अप्रत्याशित मिडवाटर गूँज की सूचना दी, जिसका श्रेय उन्होंने मछली स्कूलों को दिया। 1929 में, जापानी वैज्ञानिक किमुरा ने एक जलीय कृषि तालाब में [[लाल समुद्री ब्रीम]] तैराकी द्वारा एक निरंतर ध्वनिक किरण में व्यवधान की सूचना दी।<ref name="Kimura">Kimura, K, 1929. On the detection of fish-groups by an acoustic method. Journal of the Imperial Fisheries Institute, Tokyo.</ref> | ||
1930 के दशक की प्रारंभिक में, दो वाणिज्यिक मछुआरे, रोनाल्ड बॉल्स, एक अंग्रेज और नार्वे के रेइनर्ट बोकन ने मछली का पता लगाने के साधन के रूप में इकोसाउंडर्स के साथ स्वतंत्र रूप से प्रयोग करना प्रारंभ किया है। फ़्राफजॉर्ड, नॉर्वे में बोकन द्वारा रिकॉर्ड किए गए [[यूरोपीय स्प्रैट]] स्कूलों के ध्वनिक निशान प्रकाशित होने वाली मछली का पहला ईकोग्राम था।<ref>Anon, 1934. Forsøkene med ekkolodd ved Brislingfisket (Trials with an echosounder during the sprat fishery). Tidsskrift for hermetikindustri (Bulletin of the Canning Industry), July 1934, pp. 222-223.</ref> 1935 में, नार्वे के वैज्ञानिक ऑस्कर सुंदर ने अनुसंधान पोत जोहान हजोर्ट से [[अटलांटिक कॉड]] स्कूलों की टिप्पणियों की सूचना दी,<ref>{{cite journal |last1=Sund |first1=O. |year=1935 |title=इको साउंडिंग इन फिशरी रिसर्च|journal=Nature |volume=135 |issue=3423 |pages=953 |doi=10.1038/135953a0 |doi-access=free }}</ref> मात्स्यिकी अनुसंधान के लिए इकोसाउंडिंग का पहला उपयोग चिह्नित करता है। | |||
वर्तमान में, दुनिया भर में कई मत्स्य पालन के मूल्यांकन और प्रबंधन में ध्वनिक सर्वेक्षण का उपयोग किया जाता है। कैलिब्रेटेड, स्प्लिट-बीम इकोसाउंडर्स मानक उपकरण हैं। कई ध्वनिक आवृत्तियों का | द्वितीय विश्व युद्ध के समय सोनार प्रौद्योगिकियां तेजी से विकसित हुईं, और शत्रुता समाप्त होने के तुरंत बाद वाणिज्यिक मछुआरों और वैज्ञानिकों द्वारा सैन्य अधिशेष उपकरण को अपनाया गया। इस अवधि में विशेष रूप से मछली का पता लगाने के लिए डिज़ाइन किए गए उपकरणों का पहला विकास देखा गया। ध्वनिक सर्वेक्षणों की व्याख्या में बड़ी अनिश्चितताएँ बनी रहीं, चूँकि: उपकरणों का अंशांकन अनियमित और सटीक था, और मछली और अन्य जीवों के ध्वनि-प्रकीर्णन गुणों को खराब तरीके से समझा गया था। 1970 और 80 के दशक की प्रारंभिक में, इन सीमाओं को पार करने के लिए व्यावहारिक और सैद्धांतिक जांच की एक श्रृंखला प्रारंभ हुई। इस अवधि में स्प्लिट-बीम इकोसाउंडर्स, डिजिटल सिग्नल प्रोसेसिंग और इलेक्ट्रॉनिक डिस्प्ले जैसे तकनीकी विकास भी दिखाई दिए। | ||
वर्तमान में, दुनिया भर में कई मत्स्य पालन के मूल्यांकन और प्रबंधन में ध्वनिक सर्वेक्षण का उपयोग किया जाता है। कैलिब्रेटेड, स्प्लिट-बीम इकोसाउंडर्स मानक उपकरण हैं। कई ध्वनिक आवृत्तियों का अधिकांशतः एक साथ उपयोग किया जाता है, जिससे विभिन्न प्रकार के जानवरों में कुछ भेदभाव हो सकता है। मल्टीबीम, ब्रॉडबैंड और पैरामीट्रिक सोनार में अनुसंधान सहित तकनीकी विकास जारी है। | |||
== तकनीक == | == तकनीक == | ||
=== मछली की गिनती === | === मछली की गिनती === | ||
जब अलग-अलग लक्ष्यों को इतनी दूरी पर रखा जाता है कि उन्हें एक दूसरे से अलग किया जा सकता है, तो लक्ष्यों की संख्या की गणना करके मछलियों की संख्या का अनुमान लगाना सीधा है। इस प्रकार के विश्लेषण को इको काउंटिंग कहा जाता है, और ऐतिहासिक रूप से बायोमास आकलन के लिए सबसे पहले | जब अलग-अलग लक्ष्यों को इतनी दूरी पर रखा जाता है कि उन्हें एक दूसरे से अलग किया जा सकता है, तो लक्ष्यों की संख्या की गणना करके मछलियों की संख्या का अनुमान लगाना सीधा है। इस प्रकार के विश्लेषण को इको काउंटिंग कहा जाता है, और ऐतिहासिक रूप से बायोमास आकलन के लिए सबसे पहले उपयोग किया गया था। | ||
=== इको इंटीग्रेशन === | === इको इंटीग्रेशन === | ||
यदि एक से अधिक लक्ष्य ध्वनिक बीम में एक ही गहराई पर स्थित हैं, तो | यदि एक से अधिक लक्ष्य ध्वनिक बीम में एक ही गहराई पर स्थित हैं, तो सामान्यतः उन्हें अलग-अलग हल करना संभव नहीं होता है। यह अक्सर स्कूली मछली या ज़ोप्लांकटन के एकत्रीकरण के स्थितियों में होता है। इन स्थितियों में, बायोमास का अनुमान लगाने के लिए इको इंटीग्रेशन का उपयोग किया जाता है। इको इंटीग्रेशन मानता है कि लक्ष्यों के एक समूह द्वारा बिखरी हुई कुल ध्वनिक ऊर्जा प्रत्येक व्यक्तिगत लक्ष्य द्वारा बिखरी हुई ऊर्जा का योग है। यह धारणा ज्यादातर मामलों में ठीक रहती है।<ref>Linearity of fisheries acoustics, with additional theorems. Kenneth G. Foote, 1983. Journal of the Acoustical Society of America 73, pp. 1932-1940.</ref> स्कूल या एकत्रीकरण द्वारा बैकस्कैटर की गई कुल ध्वनिक ऊर्जा को एक साथ एकीकृत किया जाता है, और कुल संख्या का अनुमान देते हुए, इस कुल को एक ही जानवर के बैकस्कैटरिंग गुणांक (पहले निर्धारित) से विभाजित किया जाता है। | ||
== उपकरण == | == उपकरण == | ||
=== इकोसाउंडर्स === | === इकोसाउंडर्स === | ||
{{Main| | {{Main|प्रतिध्वनि बज रही है।}} | ||
मत्स्य ध्वनिकी में प्राथमिक उपकरण वैज्ञानिक इकोसाउंडर है। यह उपकरण मनोरंजक या वाणिज्यिक [[ मछली खोजक ]] या [[ प्रतिध्वनि बज रही है ]] के समान सिद्धांतों पर काम करता है, लेकिन अधिक सटीकता और सटीकता के लिए इंजीनियर किया गया है, जिससे मात्रात्मक बायोमास अनुमान लगाया जा सकता है। एक इकोसाउंडर में, एक ट्रांसीवर एक छोटी पल्स उत्पन्न करता है जिसे ट्रांसड्यूसर द्वारा पानी में भेजा जाता है, [[ piezoelectric ]] तत्वों की एक सरणी ध्वनि की एक केंद्रित किरण उत्पन्न करने के लिए व्यवस्थित होती है। मात्रात्मक कार्य के लिए उपयोग करने के लिए, इकोसाउंडर को उसी कॉन्फ़िगरेशन और वातावरण में कैलिब्रेट किया जाना चाहिए जिसमें इसका उपयोग किया जाएगा; यह आम तौर पर ज्ञात ध्वनिक गुणों वाले धातु क्षेत्र से गूँज की जांच करके किया जाता है। | मत्स्य ध्वनिकी में प्राथमिक उपकरण वैज्ञानिक इकोसाउंडर है। यह उपकरण मनोरंजक या वाणिज्यिक [[ मछली खोजक ]] या [[ प्रतिध्वनि बज रही है ]] के समान सिद्धांतों पर काम करता है, लेकिन अधिक सटीकता और सटीकता के लिए इंजीनियर किया गया है, जिससे मात्रात्मक बायोमास अनुमान लगाया जा सकता है। एक इकोसाउंडर में, एक ट्रांसीवर एक छोटी पल्स उत्पन्न करता है जिसे ट्रांसड्यूसर द्वारा पानी में भेजा जाता है, [[ piezoelectric |पेज़ोएलेक्ट्रिक]] तत्वों की एक सरणी ध्वनि की एक केंद्रित किरण उत्पन्न करने के लिए व्यवस्थित होती है। मात्रात्मक कार्य के लिए उपयोग करने के लिए, इकोसाउंडर को उसी कॉन्फ़िगरेशन और वातावरण में कैलिब्रेट किया जाना चाहिए जिसमें इसका उपयोग किया जाएगा; यह आम तौर पर ज्ञात ध्वनिक गुणों वाले धातु क्षेत्र से गूँज की जांच करके किया जाता है। | ||
प्रारंभ िक इकोसाउंडर्स केवल ध्वनि की एक किरण प्रसारित करते थे। ध्वनिक [[बीम पैटर्न]] के कारण, अलग-अलग दिगंश कोणों पर समान लक्ष्य अलग-अलग प्रतिध्वनि स्तर लौटाएंगे। यदि बीम पैटर्न और लक्ष्य के कोण ज्ञात हैं, तो इस दिशा की भरपाई की जा सकती है। लक्ष्य के कोण को निर्धारित करने की आवश्यकता ने जुड़वां-बीम इकोसाउंडर के विकास को जन्म दिया, जो दो ध्वनिक बीम बनाता है, एक दूसरे के अंदर। आंतरिक और बाहरी बीम में एक ही प्रतिध्वनि के चरण अंतर की तुलना करके, कोण ऑफ-एक्सिस का अनुमान लगाया जा सकता है। इस अवधारणा के एक और परिशोधन में, एक स्प्लिट-बीम इकोसाउंडर ट्रांसड्यूसर चेहरे को चार चतुर्भुजों में विभाजित करता है, जिससे तीन आयामों में लक्ष्यों का स्थान प्राप्त होता है। एकल-आवृत्ति, स्प्लिट-बीम इकोसाउंडर्स अब मात्स्यिकी ध्वनिकी के मानक साधन हैं। | |||
=== मल्टीबीम इकोसाउंडर्स === | === मल्टीबीम इकोसाउंडर्स === | ||
{{Main| | {{Main|मल्टीबीम इकोसाउंडर}} | ||
मल्टीबीम सोनार ध्वनि पुंजों के एक पंखे के आकार के सेट को पानी में बाहर की ओर प्रोजेक्ट करते हैं और प्रत्येक बीम में गूँज रिकॉर्ड करते हैं। इनका व्यापक रूप से बाथमीट्रिक सर्वेक्षणों में उपयोग किया गया है, लेकिन हाल ही में मत्स्य ध्वनिकी में भी इसका उपयोग | मल्टीबीम सोनार ध्वनि पुंजों के एक पंखे के आकार के सेट को पानी में बाहर की ओर प्रोजेक्ट करते हैं और प्रत्येक बीम में गूँज रिकॉर्ड करते हैं। इनका व्यापक रूप से बाथमीट्रिक सर्वेक्षणों में उपयोग किया गया है, लेकिन हाल ही में मत्स्य ध्वनिकी में भी इसका उपयोग प्रारंभ हो गया है। उनका प्रमुख लाभ एक इकोसाउंडर द्वारा दिए गए संकीर्ण जल स्तंभ प्रोफ़ाइल में दूसरा आयाम जोड़ना है। इस प्रकार कई पिंग्स को जानवरों के वितरण की त्रि-आयामी तस्वीर देने के लिए जोड़ा जा सकता है। | ||
=== ध्वनिक कैमरे === | === ध्वनिक कैमरे === | ||
ध्वनिक कैमरे<ref>Martignac F., Daroux A. , Baglinière J.L., Ombredanne D., Guilalrd J., 2015. The use of acoustic cameras in shallow waters: new hydroacoustic tools for monitoring migratory fish population. A review of DIDSON technology. Fish & Fisheries, 16 (3), 486–510. DOI: 10.1111/faf.12071</ref> ऐसे उपकरण हैं जो पानी की त्रि-आयामी मात्रा को तुरंत चित्रित करते हैं। ये | ध्वनिक कैमरे<ref>Martignac F., Daroux A. , Baglinière J.L., Ombredanne D., Guilalrd J., 2015. The use of acoustic cameras in shallow waters: new hydroacoustic tools for monitoring migratory fish population. A review of DIDSON technology. Fish & Fisheries, 16 (3), 486–510. DOI: 10.1111/faf.12071</ref> ऐसे उपकरण हैं जो पानी की त्रि-आयामी मात्रा को तुरंत चित्रित करते हैं। ये सामान्यतः पारंपरिक इकोसाउंडर्स की तुलना में उच्च-आवृत्ति ध्वनि का उपयोग करते हैं। यह उनके रिज़ॉल्यूशन को बढ़ाता है ताकि अलग-अलग वस्तुओं को विस्तार से देखा जा सके, लेकिन इसका मतलब है कि उनकी सीमा दसियों मीटर तक सीमित है। वे बंद और/या पानी के धुंधले निकायों में मछली के व्यवहार का अध्ययन करने के लिए बहुत उपयोगी हो सकते हैं, उदाहरण के लिए बांधों पर [[ anadromous | एनाड्रोमस्]] मछली के मार्ग की निगरानी करना | ||
== मात्स्यिकी ध्वनिकी के लिए प्लेटफार्म == | == मात्स्यिकी ध्वनिकी के लिए प्लेटफार्म == | ||
मत्स्य ध्वनिक अनुसंधान विभिन्न प्लेटफार्मों से किया जाता है। सबसे आम एक पारंपरिक अनुसंधान पोत है, जिसमें ईकोसाउंडर्स जहाज के पतवार पर या एक ड्रॉप कील में लगे होते हैं। यदि जहाज में स्थायी रूप से इकोसाउंडर्स स्थापित नहीं होते हैं, तो उन्हें जहाज के किनारे से जुड़े एक पोल माउंट पर तैनात किया जा सकता है, या जहाज के पीछे या उसके साथ खींची गई टोफिश या टोफिश पर तैनात किया जा सकता है। खींचे गए शरीर गहरी जीवित मछलियों के अध्ययन के लिए विशेष रूप से उपयोगी होते हैं, जैसे नारंगी खुरदरा, जो | मत्स्य ध्वनिक अनुसंधान विभिन्न प्लेटफार्मों से किया जाता है। सबसे आम एक पारंपरिक अनुसंधान पोत है, जिसमें ईकोसाउंडर्स जहाज के पतवार पर या एक ड्रॉप कील में लगे होते हैं। यदि जहाज में स्थायी रूप से इकोसाउंडर्स स्थापित नहीं होते हैं, तो उन्हें जहाज के किनारे से जुड़े एक पोल माउंट पर तैनात किया जा सकता है, या जहाज के पीछे या उसके साथ खींची गई टोफिश या टोफिश पर तैनात किया जा सकता है। खींचे गए शरीर गहरी जीवित मछलियों के अध्ययन के लिए विशेष रूप से उपयोगी होते हैं, जैसे नारंगी खुरदरा, जो सामान्यतः सतह पर एक ईकोसाउंडर की सीमा के नीचे रहते हैं। | ||
अनुसंधान जहाजों के अलावा, मछली पकड़ने के जहाजों, घाटों और मालवाहक जहाजों जैसे विभिन्न प्रकार के जहाजों से ध्वनिक डेटा एकत्र किया जा सकता है। अवसरों के जहाज बड़े क्षेत्रों में कम लागत वाले डेटा संग्रह की | अनुसंधान जहाजों के अलावा, मछली पकड़ने के जहाजों, घाटों और मालवाहक जहाजों जैसे विभिन्न प्रकार के जहाजों से ध्वनिक डेटा एकत्र किया जा सकता है। अवसरों के जहाज बड़े क्षेत्रों में कम लागत वाले डेटा संग्रह की प्रस्ताव कर सकते हैं, चूंकि एक सच्चे सर्वेक्षण डिजाइन की कमी से इन आंकड़ों का विश्लेषण कठिनाई हो सकता है। हाल के वर्षों में, दूरस्थ रूप से संचालित वाहनों और स्वायत्त पानी के नीचे के वाहनों के साथ-साथ महासागर वेधशालाओं में भी ध्वनिक उपकरणों को तैनात किया गया है। | ||
== लक्ष्य शक्ति अवलोकन और मॉडलिंग == | == लक्ष्य शक्ति अवलोकन और मॉडलिंग == | ||
टारगेट स्ट्रेंथ ( | टारगेट स्ट्रेंथ (टीएस) इस बात का माप है कि मछली, जन्तुप्लवक, या अन्य लक्ष्य स्कैटर ट्रांसड्यूसर की ओर कितनी अच्छी तरह ध्वनि करते हैं। सामान्यतः, बड़े जानवरों की लक्ष्य शक्ति अधिक होती है, चूंकि अन्य कारक, जैसे कि मछलियों में गैस से भरे स्विमब्लैडर की उपस्थिति या अनुपस्थिति का बहुत बड़ा प्रभाव हो सकता है। मत्स्य पालन ध्वनिकी में लक्ष्य शक्ति महत्वपूर्ण है, क्योंकि यह ध्वनिक बैकस्कैटर और पशु बायोमास के बीच एक कड़ी प्रदान करती है। टीएस को सैद्धांतिक रूप से सरल लक्ष्य जैसे गोले और सिलेंडर के लिए प्राप्त किया जा सकता है, किन्तु व्यवहार में, इसे सामान्यतः अनुभवजन्य रूप से मापा जाता है या संख्यात्मक मॉडल के साथ गणना की जाती है। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
सर्वेक्षण, स्टॉक मूल्यांकन, प्रबंधन | सर्वेक्षण, स्टॉक मूल्यांकन, प्रबंधन | ||
परिस्थितिकी | परिस्थितिकी | ||
व्यवहार | व्यवहार | ||
| Line 75: | Line 78: | ||
{{hydroacoustics|state=expanded}} | {{hydroacoustics|state=expanded}} | ||
{{fishery science topics|state=collapsed}} | {{fishery science topics|state=collapsed}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Collapse templates]] | |||
[[Category:Created On 26/04/2023]] | [[Category:Created On 26/04/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:मत्स्य विज्ञान]] | |||
Latest revision as of 15:39, 26 October 2023
मत्स्य ध्वनिकी में जलीय पारिस्थितिक तंत्र वातावरण में सेंसर के रूप में ध्वनिकी का उपयोग करके वैज्ञानिक अनुसंधान और व्यावहारिक अनुप्रयोग विषयों की एक श्रृंखला सम्मलित है। ध्वनिक तकनीकों को जलीय जानवरों, प्राणिप्लवक, और भौतिक और जैविक समुद्री आवास विशेषताओं को समझने के लिए प्रयुक्त किया जा सकता है।
मूल सिद्धांत
बायोमास (पारिस्थितिकी) आकलन सोनार तकनीक का उपयोग करके मछली और अन्य समुद्री जीवों का पता लगाने और उनकी मात्रा निर्धारित करने की एक विधि है।[1] एक ध्वनिक ट्रांसड्यूसर पानी में ध्वनि की एक संक्षिप्त, केंद्रित नाड़ी का उत्सर्जन करता है। यदि ध्वनि का सामना ऐसी वस्तुओं से होता है जो आसपास के माध्यम से भिन्न घनत्व की होती हैं, जैसे कि मछली, तो वे कुछ ध्वनि को वापस स्रोत की ओर दर्शाती हैं। ये गूँज मछली के आकार, स्थान और बहुतायत (पारिस्थितिकी) के बारे में जानकारी प्रदान करती हैं। वैज्ञानिक सोनार के मूल घटक इलेक्ट्रॉनिक हार्डवेयर फ़ंक्शन ध्वनि को प्रसारित करना, प्राप्त करना, फ़िल्टर करना और बढ़ाना, रिकॉर्ड करना और गूँज का विश्लेषण करना है। चूँकि व्यावसायिक रूप से उपलब्ध फिश-फाइंडर के कई निर्माता हैं, मात्रात्मक विश्लेषण के लिए आवश्यक है कि अंशांकन इको साउंडर उपकरण के साथ माप किया जाए, जिसमें उच्च सिग्नल-टू-शोर अनुपात हो।
इतिहास
मछली टैक्सा की एक अत्यंत विस्तृत विविधता ध्वनि उत्पन्न करती है। ध्वनि उत्पादन व्यवहार मछली जीव विज्ञान के विभिन्न पहलुओं का अध्ययन करने का अवसर प्रदान करता है, जैसे कि गैर-आक्रामक तरीके से स्पॉनिंग व्यवहार और निवास स्थान का चयन। निष्क्रिय ध्वनिक विधि पारंपरिक मत्स्य मूल्यांकन तकनीकों का एक आकर्षक विकल्प या पूरक हो सकती है क्योंकि वे गैर-आक्रामक हैं, कम लागत पर संचालित की जा सकती हैं, और उच्च स्थानिक और लौकिक रिज़ॉल्यूशन पर एक बड़े अध्ययन क्षेत्र को कवर कर सकती हैं।
प्रथम विश्व युद्ध के बाद, जब पहली बार पनडुब्बियों का पता लगाने के लिए सोनार का उपयोग किया गया था, तो इको साउंडर्स ने सेना के बाहर उपयोग करना प्रारंभ कर दिया था। फ्रांसीसी अन्वेषक रेमंड रैलियर डू बैटी ने 1927 में अप्रत्याशित मिडवाटर गूँज की सूचना दी, जिसका श्रेय उन्होंने मछली स्कूलों को दिया। 1929 में, जापानी वैज्ञानिक किमुरा ने एक जलीय कृषि तालाब में लाल समुद्री ब्रीम तैराकी द्वारा एक निरंतर ध्वनिक किरण में व्यवधान की सूचना दी।[2]
1930 के दशक की प्रारंभिक में, दो वाणिज्यिक मछुआरे, रोनाल्ड बॉल्स, एक अंग्रेज और नार्वे के रेइनर्ट बोकन ने मछली का पता लगाने के साधन के रूप में इकोसाउंडर्स के साथ स्वतंत्र रूप से प्रयोग करना प्रारंभ किया है। फ़्राफजॉर्ड, नॉर्वे में बोकन द्वारा रिकॉर्ड किए गए यूरोपीय स्प्रैट स्कूलों के ध्वनिक निशान प्रकाशित होने वाली मछली का पहला ईकोग्राम था।[3] 1935 में, नार्वे के वैज्ञानिक ऑस्कर सुंदर ने अनुसंधान पोत जोहान हजोर्ट से अटलांटिक कॉड स्कूलों की टिप्पणियों की सूचना दी,[4] मात्स्यिकी अनुसंधान के लिए इकोसाउंडिंग का पहला उपयोग चिह्नित करता है।
द्वितीय विश्व युद्ध के समय सोनार प्रौद्योगिकियां तेजी से विकसित हुईं, और शत्रुता समाप्त होने के तुरंत बाद वाणिज्यिक मछुआरों और वैज्ञानिकों द्वारा सैन्य अधिशेष उपकरण को अपनाया गया। इस अवधि में विशेष रूप से मछली का पता लगाने के लिए डिज़ाइन किए गए उपकरणों का पहला विकास देखा गया। ध्वनिक सर्वेक्षणों की व्याख्या में बड़ी अनिश्चितताएँ बनी रहीं, चूँकि: उपकरणों का अंशांकन अनियमित और सटीक था, और मछली और अन्य जीवों के ध्वनि-प्रकीर्णन गुणों को खराब तरीके से समझा गया था। 1970 और 80 के दशक की प्रारंभिक में, इन सीमाओं को पार करने के लिए व्यावहारिक और सैद्धांतिक जांच की एक श्रृंखला प्रारंभ हुई। इस अवधि में स्प्लिट-बीम इकोसाउंडर्स, डिजिटल सिग्नल प्रोसेसिंग और इलेक्ट्रॉनिक डिस्प्ले जैसे तकनीकी विकास भी दिखाई दिए।
वर्तमान में, दुनिया भर में कई मत्स्य पालन के मूल्यांकन और प्रबंधन में ध्वनिक सर्वेक्षण का उपयोग किया जाता है। कैलिब्रेटेड, स्प्लिट-बीम इकोसाउंडर्स मानक उपकरण हैं। कई ध्वनिक आवृत्तियों का अधिकांशतः एक साथ उपयोग किया जाता है, जिससे विभिन्न प्रकार के जानवरों में कुछ भेदभाव हो सकता है। मल्टीबीम, ब्रॉडबैंड और पैरामीट्रिक सोनार में अनुसंधान सहित तकनीकी विकास जारी है।
तकनीक
मछली की गिनती
जब अलग-अलग लक्ष्यों को इतनी दूरी पर रखा जाता है कि उन्हें एक दूसरे से अलग किया जा सकता है, तो लक्ष्यों की संख्या की गणना करके मछलियों की संख्या का अनुमान लगाना सीधा है। इस प्रकार के विश्लेषण को इको काउंटिंग कहा जाता है, और ऐतिहासिक रूप से बायोमास आकलन के लिए सबसे पहले उपयोग किया गया था।
इको इंटीग्रेशन
यदि एक से अधिक लक्ष्य ध्वनिक बीम में एक ही गहराई पर स्थित हैं, तो सामान्यतः उन्हें अलग-अलग हल करना संभव नहीं होता है। यह अक्सर स्कूली मछली या ज़ोप्लांकटन के एकत्रीकरण के स्थितियों में होता है। इन स्थितियों में, बायोमास का अनुमान लगाने के लिए इको इंटीग्रेशन का उपयोग किया जाता है। इको इंटीग्रेशन मानता है कि लक्ष्यों के एक समूह द्वारा बिखरी हुई कुल ध्वनिक ऊर्जा प्रत्येक व्यक्तिगत लक्ष्य द्वारा बिखरी हुई ऊर्जा का योग है। यह धारणा ज्यादातर मामलों में ठीक रहती है।[5] स्कूल या एकत्रीकरण द्वारा बैकस्कैटर की गई कुल ध्वनिक ऊर्जा को एक साथ एकीकृत किया जाता है, और कुल संख्या का अनुमान देते हुए, इस कुल को एक ही जानवर के बैकस्कैटरिंग गुणांक (पहले निर्धारित) से विभाजित किया जाता है।
उपकरण
इकोसाउंडर्स
मत्स्य ध्वनिकी में प्राथमिक उपकरण वैज्ञानिक इकोसाउंडर है। यह उपकरण मनोरंजक या वाणिज्यिक मछली खोजक या प्रतिध्वनि बज रही है के समान सिद्धांतों पर काम करता है, लेकिन अधिक सटीकता और सटीकता के लिए इंजीनियर किया गया है, जिससे मात्रात्मक बायोमास अनुमान लगाया जा सकता है। एक इकोसाउंडर में, एक ट्रांसीवर एक छोटी पल्स उत्पन्न करता है जिसे ट्रांसड्यूसर द्वारा पानी में भेजा जाता है, पेज़ोएलेक्ट्रिक तत्वों की एक सरणी ध्वनि की एक केंद्रित किरण उत्पन्न करने के लिए व्यवस्थित होती है। मात्रात्मक कार्य के लिए उपयोग करने के लिए, इकोसाउंडर को उसी कॉन्फ़िगरेशन और वातावरण में कैलिब्रेट किया जाना चाहिए जिसमें इसका उपयोग किया जाएगा; यह आम तौर पर ज्ञात ध्वनिक गुणों वाले धातु क्षेत्र से गूँज की जांच करके किया जाता है।
प्रारंभ िक इकोसाउंडर्स केवल ध्वनि की एक किरण प्रसारित करते थे। ध्वनिक बीम पैटर्न के कारण, अलग-अलग दिगंश कोणों पर समान लक्ष्य अलग-अलग प्रतिध्वनि स्तर लौटाएंगे। यदि बीम पैटर्न और लक्ष्य के कोण ज्ञात हैं, तो इस दिशा की भरपाई की जा सकती है। लक्ष्य के कोण को निर्धारित करने की आवश्यकता ने जुड़वां-बीम इकोसाउंडर के विकास को जन्म दिया, जो दो ध्वनिक बीम बनाता है, एक दूसरे के अंदर। आंतरिक और बाहरी बीम में एक ही प्रतिध्वनि के चरण अंतर की तुलना करके, कोण ऑफ-एक्सिस का अनुमान लगाया जा सकता है। इस अवधारणा के एक और परिशोधन में, एक स्प्लिट-बीम इकोसाउंडर ट्रांसड्यूसर चेहरे को चार चतुर्भुजों में विभाजित करता है, जिससे तीन आयामों में लक्ष्यों का स्थान प्राप्त होता है। एकल-आवृत्ति, स्प्लिट-बीम इकोसाउंडर्स अब मात्स्यिकी ध्वनिकी के मानक साधन हैं।
मल्टीबीम इकोसाउंडर्स
मल्टीबीम सोनार ध्वनि पुंजों के एक पंखे के आकार के सेट को पानी में बाहर की ओर प्रोजेक्ट करते हैं और प्रत्येक बीम में गूँज रिकॉर्ड करते हैं। इनका व्यापक रूप से बाथमीट्रिक सर्वेक्षणों में उपयोग किया गया है, लेकिन हाल ही में मत्स्य ध्वनिकी में भी इसका उपयोग प्रारंभ हो गया है। उनका प्रमुख लाभ एक इकोसाउंडर द्वारा दिए गए संकीर्ण जल स्तंभ प्रोफ़ाइल में दूसरा आयाम जोड़ना है। इस प्रकार कई पिंग्स को जानवरों के वितरण की त्रि-आयामी तस्वीर देने के लिए जोड़ा जा सकता है।
ध्वनिक कैमरे
ध्वनिक कैमरे[6] ऐसे उपकरण हैं जो पानी की त्रि-आयामी मात्रा को तुरंत चित्रित करते हैं। ये सामान्यतः पारंपरिक इकोसाउंडर्स की तुलना में उच्च-आवृत्ति ध्वनि का उपयोग करते हैं। यह उनके रिज़ॉल्यूशन को बढ़ाता है ताकि अलग-अलग वस्तुओं को विस्तार से देखा जा सके, लेकिन इसका मतलब है कि उनकी सीमा दसियों मीटर तक सीमित है। वे बंद और/या पानी के धुंधले निकायों में मछली के व्यवहार का अध्ययन करने के लिए बहुत उपयोगी हो सकते हैं, उदाहरण के लिए बांधों पर एनाड्रोमस् मछली के मार्ग की निगरानी करना
मात्स्यिकी ध्वनिकी के लिए प्लेटफार्म
मत्स्य ध्वनिक अनुसंधान विभिन्न प्लेटफार्मों से किया जाता है। सबसे आम एक पारंपरिक अनुसंधान पोत है, जिसमें ईकोसाउंडर्स जहाज के पतवार पर या एक ड्रॉप कील में लगे होते हैं। यदि जहाज में स्थायी रूप से इकोसाउंडर्स स्थापित नहीं होते हैं, तो उन्हें जहाज के किनारे से जुड़े एक पोल माउंट पर तैनात किया जा सकता है, या जहाज के पीछे या उसके साथ खींची गई टोफिश या टोफिश पर तैनात किया जा सकता है। खींचे गए शरीर गहरी जीवित मछलियों के अध्ययन के लिए विशेष रूप से उपयोगी होते हैं, जैसे नारंगी खुरदरा, जो सामान्यतः सतह पर एक ईकोसाउंडर की सीमा के नीचे रहते हैं।
अनुसंधान जहाजों के अलावा, मछली पकड़ने के जहाजों, घाटों और मालवाहक जहाजों जैसे विभिन्न प्रकार के जहाजों से ध्वनिक डेटा एकत्र किया जा सकता है। अवसरों के जहाज बड़े क्षेत्रों में कम लागत वाले डेटा संग्रह की प्रस्ताव कर सकते हैं, चूंकि एक सच्चे सर्वेक्षण डिजाइन की कमी से इन आंकड़ों का विश्लेषण कठिनाई हो सकता है। हाल के वर्षों में, दूरस्थ रूप से संचालित वाहनों और स्वायत्त पानी के नीचे के वाहनों के साथ-साथ महासागर वेधशालाओं में भी ध्वनिक उपकरणों को तैनात किया गया है।
लक्ष्य शक्ति अवलोकन और मॉडलिंग
टारगेट स्ट्रेंथ (टीएस) इस बात का माप है कि मछली, जन्तुप्लवक, या अन्य लक्ष्य स्कैटर ट्रांसड्यूसर की ओर कितनी अच्छी तरह ध्वनि करते हैं। सामान्यतः, बड़े जानवरों की लक्ष्य शक्ति अधिक होती है, चूंकि अन्य कारक, जैसे कि मछलियों में गैस से भरे स्विमब्लैडर की उपस्थिति या अनुपस्थिति का बहुत बड़ा प्रभाव हो सकता है। मत्स्य पालन ध्वनिकी में लक्ष्य शक्ति महत्वपूर्ण है, क्योंकि यह ध्वनिक बैकस्कैटर और पशु बायोमास के बीच एक कड़ी प्रदान करती है। टीएस को सैद्धांतिक रूप से सरल लक्ष्य जैसे गोले और सिलेंडर के लिए प्राप्त किया जा सकता है, किन्तु व्यवहार में, इसे सामान्यतः अनुभवजन्य रूप से मापा जाता है या संख्यात्मक मॉडल के साथ गणना की जाती है।
अनुप्रयोग
सर्वेक्षण, स्टॉक मूल्यांकन, प्रबंधन
परिस्थितिकी
व्यवहार
यह भी देखें
संदर्भ
- ↑ Simmonds J. & MacLennan D. (2005). Fisheries Acoustics: Theory and Practice, second edition. Blackwell
- ↑ Kimura, K, 1929. On the detection of fish-groups by an acoustic method. Journal of the Imperial Fisheries Institute, Tokyo.
- ↑ Anon, 1934. Forsøkene med ekkolodd ved Brislingfisket (Trials with an echosounder during the sprat fishery). Tidsskrift for hermetikindustri (Bulletin of the Canning Industry), July 1934, pp. 222-223.
- ↑ Sund, O. (1935). "इको साउंडिंग इन फिशरी रिसर्च". Nature. 135 (3423): 953. doi:10.1038/135953a0.
- ↑ Linearity of fisheries acoustics, with additional theorems. Kenneth G. Foote, 1983. Journal of the Acoustical Society of America 73, pp. 1932-1940.
- ↑ Martignac F., Daroux A. , Baglinière J.L., Ombredanne D., Guilalrd J., 2015. The use of acoustic cameras in shallow waters: new hydroacoustic tools for monitoring migratory fish population. A review of DIDSON technology. Fish & Fisheries, 16 (3), 486–510. DOI: 10.1111/faf.12071
अग्रिम पठन
- Fish MP and Mowbray WH (1970) Sounds of western North Atlantic fishes; a reference file of biological underwater sounds Johns Hopkins Press.
बाहरी संबंध
- Census of Marine Life - Acoustic Technology
- Fisheries Acoustics Research University of Washington.
- Acoustics Unpacked: A General Guide for Deriving Abundance Estimates from Hydroacoustic Data