विट बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Algebra of meromorphic vector fields on the Riemann sphere}}
{{Short description|Algebra of meromorphic vector fields on the Riemann sphere}}
{{dablink|विट बीजगणित सीधे द्विघात रूपों के विट रिंग से या विट वैक्टर के बीजगणित से संबंधित नहीं है।}}
गणित में, सम्मिश्र '''विट बीजगणित''', जिसका नाम [[अर्नेस्ट विट]] के नाम पर रखा गया है, [[रीमैन क्षेत्र]] पर परिभाषित मेरोमोर्फिक सदिश क्षेत्रों का लाई बीजगणित है जो दो निश्चित बिंदुओं को त्यागकर होलोमोर्फिक हैं। यह वृत्त पर बहुपद सदिश क्षेत्रों के [[झूठ बीजगणित|लाई बीजगणित]], एवं वलय '''C'''[''z'',''z''<sup>−1</sup>] की व्युत्पत्तियों के लाई बीजगणित का भी सम्मिश्रीकरण होता है।
गणित में, जटिल विट बीजगणित, जिसका नाम [[अर्नेस्ट विट]] के नाम पर रखा गया है, [[रीमैन क्षेत्र]] पर परिभाषित मेरोमोर्फिक सदिश क्षेत्रों का लाई बीजगणित है जो दो निश्चित बिंदुओं को त्यागकर होलोमोर्फिक हैं। यह वृत्त पर बहुपद सदिश क्षेत्रों के [[झूठ बीजगणित|लाई बीजगणित]], एवं वलय '''C'''[''z'',''z''<sup>−1</sup>] की व्युत्पत्तियों के लाई बीजगणित का भी जटिलीकरण होता है।


परिमित क्षेत्रों पर परिभाषित कुछ संबंधित लाई बीजगणित हैं, जिन्हें विट बीजगणित भी कहा जाता है।
परिमित क्षेत्रों पर परिभाषित कुछ संबंधित लाई बीजगणित हैं, जिन्हें विट बीजगणित भी कहा जाता है।


जटिल विट बीजगणित को प्रथम बार कार्टन (1909) द्वारा परिभाषित किया गया था, एवं 1930 के दशक में विट द्वारा परिमित क्षेत्रों पर इसके अनुरूप का अध्ययन किया गया था।
सम्मिश्र विट बीजगणित को प्रथम बार कार्टन (1909) द्वारा परिभाषित किया गया था, एवं 1930 के दशक में विट द्वारा परिमित क्षेत्रों पर इसके अनुरूप का अध्ययन किया गया था।


== आधार ==
== आधार ==
Line 67: Line 66:
* {{springer|author= |title=Witt algebra|id=W/w098060}}
* {{springer|author= |title=Witt algebra|id=W/w098060}}


[[Category: अनुरूप क्षेत्र सिद्धांत]] [[Category: बीजगणित झूठ बोलो]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/05/2023]]
[[Category:Created On 01/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अनुरूप क्षेत्र सिद्धांत]]
[[Category:बीजगणित झूठ बोलो]]

Latest revision as of 15:29, 30 October 2023

गणित में, सम्मिश्र विट बीजगणित, जिसका नाम अर्नेस्ट विट के नाम पर रखा गया है, रीमैन क्षेत्र पर परिभाषित मेरोमोर्फिक सदिश क्षेत्रों का लाई बीजगणित है जो दो निश्चित बिंदुओं को त्यागकर होलोमोर्फिक हैं। यह वृत्त पर बहुपद सदिश क्षेत्रों के लाई बीजगणित, एवं वलय C[z,z−1] की व्युत्पत्तियों के लाई बीजगणित का भी सम्मिश्रीकरण होता है।

परिमित क्षेत्रों पर परिभाषित कुछ संबंधित लाई बीजगणित हैं, जिन्हें विट बीजगणित भी कहा जाता है।

सम्मिश्र विट बीजगणित को प्रथम बार कार्टन (1909) द्वारा परिभाषित किया गया था, एवं 1930 के दशक में विट द्वारा परिमित क्षेत्रों पर इसके अनुरूप का अध्ययन किया गया था।

आधार

विट बीजगणित के लिए आधार सदिश क्षेत्रों द्वारा दिया गया , n के लिए है।

दो आधार सदिश क्षेत्रों के लाई व्युत्पन्न किसके द्वारा दिया गया है,

इस बीजगणित में विरासोरो बीजगणित नामक केंद्रीय विस्तार है, जो द्वि-आयामी अनुरूप क्षेत्र सिद्धांत एवं स्ट्रिंग सिद्धांत में महत्वपूर्ण होता है।

ध्यान दें कि n को 1,0,-1 तक सीमित करने पर, सबलजेब्रा प्राप्त होता है। सम्मिश्र संख्याओं के क्षेत्र में लिया गया, यह केवल लाई बीजगणित है लोरेंत्ज़ समूह का है। वास्तविक से अधिक, यह बीजगणित SL(2,R)|sl(2,R) = su(1,1) है। इसके विपरीत, su(1,1) प्रस्तुति में मूल बीजगणित का पुनर्निर्माण करने के लिए पर्याप्त है।[1]


परिमित क्षेत्रों पर

विशेषता p> 0 के क्षेत्र के ऊपर, विट बीजगणित को रिंग के व्युत्पन्न के लाई बीजगणित के रूप में परिभाषित किया गया है।

k[z]/zp

विट बीजगणित Lm द्वारा −1≤ mp−2 के लिए विस्तारित किया गया है।

छवियां

n = -1 विट सदिश क्षेत्र
n = 0 विट सदिश क्षेत्र
n = 1 विट सदिश क्षेत्र
n = -2 विट सदिश क्षेत्र
n = 2 विट सदिश क्षेत्र
n = -3 विट सदिश क्षेत्र

यह भी देखें

संदर्भ

  1. D Fairlie, J Nuyts, and C Zachos (1988). Phys Lett B202 320-324. doi:10.1016/0370-2693(88)90478-9