दीप्तिमापी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(12 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Instrument to measure light intensity}}[[File:Fotometer.jpg|thumb|एक फोटोमीटर]]फोटोमीटर एक उपकरण है जो पराबैंगनी से लेकर अवरक्त तक और दृश्यमान स्पेक्ट्रम सहित विद्युत [[चमक]] [[विकिरण]] की शक्ति को मापता है। अधिकांश फोटोमीटर  [[ photoresistor ]], [[ photodiode ]] या [[फोटोमल्टीप्लायर]] का उपयोग करके प्रकाश को विद्युत प्रवाह में परिवर्तित करते हैं।
{{Short description|Instrument to measure light intensity}}[[File:Fotometer.jpg|thumb|एक प्रकाशमापी]]प्रकाशमापी एक उपकरण है जो पराबैंगनी से लेकर अवरक्त तक और दृश्यमान स्पेक्ट्रम सहित विद्युत [[चमक|प्रकाश]] [[विकिरण]] की बल को मापता है। अधिकांश प्रकाशमापी [[ photoresistor |फोटोरेसिस्टर]], [[ photodiode |फोटोडायोड]] या [[फोटोमल्टीप्लायर]] का उपयोग करके प्रकाश को विद्युत प्रवाह में परिवर्तित करते हैं।


फोटोमीटर उपाय:
प्रकाशमापी उपाय:
* रौशनी
* प्रकाश
* विकिरण
* विकिरण
*[[अवशोषण (प्रकाशिकी)]]
*[[अवशोषण (प्रकाशिकी)]]
* बिखराव
* प्रकाश का प्रवर्तन
*[[प्रकाश का परावर्तन]]
*[[प्रकाश का परावर्तन]]
*प्रतिदीप्ति
*प्रतिदीप्ति
* [[स्फुरदीप्ति]]
* [[स्फुरदीप्ति]]
*[[[[रोशनी]]]]
*[[रोशनी|प्रकाश]]
*'''विश्लेषण की जाने वाली धातु की मुख्य वर्णक्रमीय रेखाओं में से एक को अलग करने के लिए एक फिल्टर का उपयोग किया जा सकता है। लौ में धातु'''


== इतिहास ==
== इतिहास ==
इलेक्ट्रॉनिक प्रकाश संवेदी तत्वों के विकसित होने से पहले, फोटोमेट्री (ऑप्टिक्स) आँख द्वारा अनुमान लगाकर की जाती थी। किसी स्रोत के सापेक्ष [[चमकदार प्रवाह]] की तुलना मानक स्रोत से की गई थी। फोटोमीटर को इस तरह रखा जाता है कि जिस स्रोत की जांच की जा रही है, वह मानक स्रोत के बराबर हो, क्योंकि मानव आंख समान रोशनी का न्याय कर सकती है। सापेक्ष चमकदार प्रवाह की गणना तब की जा सकती है क्योंकि रोशनी दूरी के व्युत्क्रम वर्ग के अनुपात में घट जाती है। ऐसे फोटोमीटर के मानक उदाहरण में कागज का एक टुकड़ा होता है जिस पर तेल का धब्बा होता है जो कागज को थोड़ा अधिक पारदर्शी बनाता है। जब किसी ओर से धब्बा दिखाई नहीं देता है, तो दोनों ओर से प्रकाश बराबर होता है।
इलेक्ट्रॉनिक प्रकाश संवेदी तत्वों के विकसित होने से पहले, प्रकाशमिति (प्रकाशिकी) आँख द्वारा अनुमान लगाकर की जाती थी। किसी स्रोत के सापेक्ष [[चमकदार प्रवाह|प्रकाशदार प्रवाह]] की तुलना मानक स्रोत से की गई थी। प्रकाशमापी को इस तरह रखा जाता है कि जिस स्रोत की जांच की जा रही है, वह मानक स्रोत के सामान हो, क्योंकि मानव आंख समान प्रकाश का न्याय कर सकती है। सापेक्ष प्रकाशदार प्रवाह की गणना तब की जा सकती है क्योंकि प्रकाश दूरी के व्युत्क्रम वर्ग के अनुपात में घट जाती है। ऐसे प्रकाशमापी के मानक उदाहरण में कागज का एक टुकड़ा होता है जिस पर तेल का धब्बा होता है जो कागज को थोड़ा अधिक पारदर्शी बनाता है। जब किसी ओर से धब्बा दिखाई नहीं देता है, तो दोनों ओर से प्रकाश सामान होता है।


1861 तक, तीन प्रकार आम उपयोग में थे।<ref>{{cite book|last=Draper|first=John William|title=रसायन विज्ञान पर एक पाठ्यपुस्तक|year=1861|publisher=Harper and Brothers|location=NY|page=78}}</ref> ये रुमफोर्ड के फोटोमीटर, रिची के फोटोमीटर और फोटोमीटर थे जो छाया के विलुप्त होने का इस्तेमाल करते थे, जिसे सबसे सटीक माना जाता था।
1861 तक, तीन प्रकार सामान्य उपयोग में थे।<ref>{{cite book|last=Draper|first=John William|title=रसायन विज्ञान पर एक पाठ्यपुस्तक|year=1861|publisher=Harper and Brothers|location=NY|page=78}}</ref> ये रुमफोर्ड के प्रकाशमापी, रिची के प्रकाशमापी और प्रकाशमापी थे जो छाया के विलुप्त होने का उपयोग करते थे, जिसे सबसे स्पष्ट माना जाता था।


=== रमफोर्ड का फोटोमीटर ===
=== रमफोर्ड का प्रकाशमापी ===
[[File:Rumfords Photometer.jpg|thumbnail|रमफोर्ड का फोटोमीटर]]रमफोर्ड का फोटोमीटर (जिसे शैडो फोटोमीटर भी कहा जाता है) इस सिद्धांत पर निर्भर था कि तेज रोशनी एक गहरी छाया डालती है। तुलना की जाने वाली दो रोशनी का उपयोग कागज पर छाया डालने के लिए किया गया था। यदि परछाइयाँ समान गहराई की होती हैं, तो रोशनी की दूरी में अंतर तीव्रता में अंतर को इंगित करेगा (उदाहरण के लिए दुगनी रोशनी तीव्रता से चार गुना अधिक होगी)।
[[File:Rumfords Photometer.jpg|thumbnail|रमफोर्ड का प्रकाशमापी]]रमफोर्ड का प्रकाशमापी (जिसे शैडो प्रकाशमापी भी कहा जाता है) इस सिद्धांत पर निर्भर था कि तेज प्रकाश एक गहरी छाया डालती है। तुलना की जाने वाली दो प्रकाश का उपयोग कागज पर छाया डालने के लिए किया गया था। यदि परछाइयाँ समान गहराई की होती हैं, तो प्रकाश की दूरी में अंतर तीव्रता में अंतर को संकेत करेगा (उदाहरण के लिए दुगनी प्रकाश तीव्रता से चार गुना अधिक होगी)।


=== रिची का फोटोमीटर ===
=== रिची का प्रकाशमापी ===
[[File:Ritchies Photometer.png|thumb|रिची का फोटोमीटर]]रिची का फोटोमीटर सतहों की समान रोशनी पर निर्भर करता है। इसमें एक बॉक्स (ए, बी) छह या आठ इंच लंबा और चौड़ाई और गहराई में होता है। बीच में, लकड़ी का एक टुकड़ा (एफ, ई, जी) ऊपर की ओर झुका हुआ था और सफेद कागज से ढका हुआ था। उपयोगकर्ता की आंख एक बॉक्स के शीर्ष पर एक ट्यूब (डी) के माध्यम से देखती है। उपकरण की ऊंचाई भी स्टैंड (सी) के माध्यम से समायोज्य थी। तुलना करने के लिए रोशनी को बॉक्स (एम, एन) के किनारे रखा गया था - जो कागज की सतहों को रोशन करता था ताकि आंख दोनों सतहों को साथ देख सके। रोशनी की स्थिति को बदलकर, दूरी में अंतर के वर्ग के अनुरूप तीव्रता में अंतर के साथ, दोनों सतहों को समान रूप से प्रकाशित करने के लिए बनाया गया था।
[[File:Ritchies Photometer.png|thumb|रिची का प्रकाशमापी]]रिची का प्रकाशमापी सतहों की समान प्रकाश पर निर्भर करता है। इसमें एक बॉक्स (ए, बी) छह या आठ इंच लंबा और चौड़ाई और गहराई में होता है। मध्य में, लकड़ी का एक टुकड़ा (एफ, ई, जी) ऊपर की ओर झुका हुआ था और सफेद कागज से ढका हुआ था। उपयोगकर्ता की आंख एक बॉक्स के शीर्ष पर एक ट्यूब (डी) के माध्यम से देखती है। उपकरण की ऊंचाई भी स्टैंड (सी) के माध्यम से समायोज्य थी। तुलना करने के लिए प्रकाश को बॉक्स (एम, एन) के किनारे रखा गया था - जो कागज की सतहों को प्रकाशित करता था जिससे आंख दोनों सतहों को साथ देख सके। प्रकाश की स्थिति को बदलकर, दूरी में अंतर के वर्ग के अनुरूप तीव्रता में अंतर के साथ, दोनों सतहों को समान रूप से प्रकाशित करने के लिए बनाया गया था।


===छाया विलोपन की विधि===
===छाया विलोपन की विधि===
इस प्रकार का फोटोमीटर इस तथ्य पर निर्भर करता है कि यदि कोई प्रकाश किसी अपारदर्शी वस्तु की छाया को एक सफेद स्क्रीन पर फेंकता है, तो निश्चित दूरी होती है, यदि दूसरा प्रकाश वहां लाया जाता है, तो छाया के सभी निशान मिटा दिए जाते हैं।
इस प्रकार का प्रकाशमापी इस तथ्य पर निर्भर करता है कि यदि कोई प्रकाश किसी अपारदर्शी वस्तु की छाया को एक सफेद स्क्रीन पर फेंकता है, तो निश्चित दूरी होती है, यदि दूसरा प्रकाश वहां लाया जाता है, तो छाया के सभी निशान मिटा दिए जाते हैं।


== फोटोमीटर का सिद्धांत ==
== प्रकाशमापी का सिद्धांत ==
अधिकांश फोटोमीटर फोटोरेसिस्टर्स, फोटोडायोड्स या फोटोमल्टीप्लायरों के साथ प्रकाश का पता लगाते हैं। प्रकाश का विश्लेषण करने के लिए, परिभाषित [[तरंग दैर्ध्य]] पर निर्धारण के लिए या प्रकाश के [[स्पेक्ट्रम]] के विश्लेषण के लिए फोटोमीटर  फ़िल्टर (ऑप्टिक्स) या [[मोनोक्रोमेटर]] के माध्यम से पारित होने के बाद प्रकाश को माप सकता है।
अधिकांश प्रकाशमापी फोटोरेसिस्टर्स, फोटोडायोड्स या फोटोमल्टीप्लायरों के साथ प्रकाश का पता लगाते हैं। प्रकाश का विश्लेषण करने के लिए, परिभाषित [[तरंग दैर्ध्य]] पर निर्धारण के लिए या प्रकाश के [[स्पेक्ट्रम]] के विश्लेषण के लिए प्रकाशमापी फ़िल्टर (प्रकाशिकी) या [[मोनोक्रोमेटर]] के माध्यम से पारित होने के बाद प्रकाश को माप सकता है।


== फोटॉन गिनती ==
== फोटॉन गणना ==
{{main|Photon counting}}
{{main|फोटान की गणना}}
कुछ फोटोमीटर आने वाले उज्ज्वल प्रवाह की बजाय अलग-अलग [[फोटोन]] की गणना करके प्रकाश को मापते हैं। ऑपरेटिंग सिद्धांत समान हैं लेकिन परिणाम फोटॉन/सेमी जैसी इकाइयों में दिए गए हैं<sup>2</sup> या फोटॉन·सेमी<sup>−2</sup>·sr<sup>−1</sup> डब्ल्यू/सेमी के बजाय<sup>2</sup> या डब्ल्यू·सेमी<sup>−2</sup>·sr<sup>-1</sup>.


उनकी अलग-अलग फोटॉन काउंटिंग प्रकृति के कारण, ये उपकरण अवलोकनों तक सीमित हैं जहां विकिरण कम है। विकिरण इसके संबंधित डिटेक्टर रीडआउट इलेक्ट्रॉनिक्स के समय के संकल्प से सीमित है। वर्तमान तकनीक के साथ यह मेगाहर्ट्ज़ रेंज में है। अधिकतम विकिरण भी डिटेक्टर के थ्रूपुट और गेन पैरामीटर द्वारा सीमित है।
कुछ प्रकाशमापी आने वाले उज्ज्वल प्रवाह के अतिरिक्त अलग-अलग [[फोटोन]] की गणना करके प्रकाश को मापते हैं। ऑपरेटिंग सिद्धांत समान हैं किन्तु परिणाम W·cm<sup>−2</sup>·sr<sup>−1</sup> के अतिरिक्त फोटॉन/सेमी<sup>2</sup> या फोटॉन·cm<sup>−2</sup>·sr<sup>−1</sup> जैसी इकाइयों में दिए गए हैं |


एनआईआर, दृश्यमान और पराबैंगनी तरंग दैर्ध्य में फोटॉन काउंटिंग उपकरणों में प्रकाश संवेदन तत्व पर्याप्त संवेदनशीलता प्राप्त करने के लिए फोटोमल्टीप्लायर है।
उनकी अलग-अलग फोटॉन गणना प्रकृति के कारण, ये उपकरण अवलोकनों तक सीमित हैं जहां विकिरण कम है। विकिरण इसके संबंधित संसूचक रीडआउट इलेक्ट्रॉनिक्स के समय के संकल्प से सीमित है। वर्तमान विधि के साथ यह मेगाहर्ट्ज़ दूरी में है। अधिकतम विकिरण भी संसूचक के थ्रूपुट और गेन मापदण्ड द्वारा सीमित है।


एयरबोर्न और स्पेस-आधारित [[रिमोट सेंसिंग]] में ऐसे फोटॉन काउंटरों का उपयोग [[ विद्युत चुम्बकीय वर्णक्रम ]] जैसे [[एक्स-रे]] से [[दूर पराबैंगनी]] तक की ऊपरी पहुंच में किया जाता है। यह आमतौर पर मापी जाने वाली वस्तुओं की कम उज्ज्वल तीव्रता के साथ-साथ कम आवृत्तियों पर प्रकाश की तरंग जैसी प्रकृति की तुलना में इसकी कण जैसी प्रकृति का उपयोग करके उच्च ऊर्जा पर प्रकाश को मापने में कठिनाई के कारण होता है। इसके विपरीत, रेडियोमीटर आमतौर पर [[दृश्यमान प्रकाश]] से रिमोट सेंसिंग के लिए उपयोग किए जाते हैं, [[ अवरक्त ]] हालांकि [[ आकाशवाणी आवृति ]] रेंज।
एनआईआर, दृश्यमान और पराबैंगनी तरंग दैर्ध्य में फोटॉन गणना उपकरणों में प्रकाश संवेदन तत्व पर्याप्त संवेदनशीलता प्राप्त करने के लिए फोटोमल्टीप्लायर है।
 
एयरबोर्न और स्पेस-आधारित [[रिमोट सेंसिंग]] में ऐसे फोटॉन काउंटरों का उपयोग [[ विद्युत चुम्बकीय वर्णक्रम |विद्युत चुम्बकीय वर्णक्रम]] जैसे [[एक्स-रे]] से [[दूर पराबैंगनी]] तक की ऊपरी पहुंच में किया जाता है। यह सामान्यतः मापी जाने वाली वस्तुओं की कम उज्ज्वल तीव्रता के साथ-साथ कम आवृत्तियों पर प्रकाश की तरंग जैसी प्रकृति की तुलना में इसकी कण जैसी प्रकृति का उपयोग करके उच्च ऊर्जा पर प्रकाश को मापने में कठिनाई के कारण होता है। इसके विपरीत, रेडियोमीटर सामान्यतः [[दृश्यमान प्रकाश]] से [[ अवरक्त |अवरक्त]] चूंकि [[ आकाशवाणी आवृति |आकाशवाणी आवृति]] दूरी रिमोट सेंसिंग के लिए उपयोग किए जाते हैं, ।


== फोटोग्राफी ==
== फोटोग्राफी ==
{{Main|Light meter}}
{{Main|प्रकाश मीटर}}
[[फोटोग्राफी]] में सही एक्सपोज़र (फ़ोटोग्राफ़ी) निर्धारित करने के लिए फ़ोटोमीटर का उपयोग किया जाता है। आधुनिक कैमरों में, फोटोमीटर आमतौर पर अंतर्निहित होता है। चूंकि तस्वीर के विभिन्न हिस्सों की रोशनी अलग-अलग होती है, उन्नत फोटोमीटर संभावित तस्वीर के विभिन्न हिस्सों में प्रकाश की तीव्रता को मापते हैं और अंतिम तस्वीर के लिए सबसे उपयुक्त एक्सपोजर निर्धारित करने के लिए एल्गोरिदम का उपयोग करते हैं। इच्छित चित्र के प्रकार के अनुसार एल्गोरिद्म को अनुकूलित करना ([[पैमाइश प्रणाली]] देखें)। ऐतिहासिक रूप से, फोटोमीटर कैमरे से अलग था और [[एक्सपोजर मीटर]] के रूप में जाना जाता था। तब उन्नत फोटोमीटर का उपयोग या तो संभावित चित्र से प्रकाश को मापने के लिए किया जा सकता है, चित्र के तत्वों से मापने के लिए यह पता लगाने के लिए कि चित्र के सबसे महत्वपूर्ण हिस्से इष्टतम रूप से सामने आए हैं, या घटना प्रकाश को दृश्य में मापने के लिए एक एकीकृत एडाप्टर के साथ।
[[फोटोग्राफी]] में सही एक्सपोज़र (फ़ोटोग्राफ़ी) निर्धारित करने के लिए फ़ोटोमीटर का उपयोग किया जाता है। आधुनिक कैमरों में, प्रकाशमापी सामान्यतः अंतर्निहित होता है। चूंकि छवि के विभिन्न भागों की प्रकाश अलग-अलग होती है, उन्नत प्रकाशमापी संभावित छवि के विभिन्न भागों में प्रकाश की तीव्रता को मापते हैं और अंतिम छवि के लिए सबसे उपयुक्त एक्सपोजर निर्धारित करने के लिए एल्गोरिदम का उपयोग करते हैं। इच्छित चित्र के प्रकार के अनुसार एल्गोरिद्म को अनुकूलित करना ([[पैमाइश प्रणाली]] देखें)। ऐतिहासिक रूप से, प्रकाशमापी कैमरे से अलग था और [[एक्सपोजर मीटर]] के रूप में जाना जाता था। तब उन्नत प्रकाशमापी का उपयोग या तो संभावित चित्र से प्रकाश को मापने के लिए किया जा सकता है, चित्र के तत्वों से मापने के लिए यह पता लगाने के लिए कि चित्र के सबसे महत्वपूर्ण भाग इष्टतम रूप से सामने आए हैं, या घटना प्रकाश को दृश्य में मापने के लिए एक एकीकृत एडाप्टर के साथ आये है।
 
== दृश्य प्रकाश परावर्तन प्रकाशमिति ==
परावर्तन प्रकाशमापी तरंग दैर्ध्य के कार्य के रूप में सतह के परावर्तन को मापता है। सतह को सफेद प्रकाश से प्रकाशित किया जाता है, और परावर्तित प्रकाश को एक मोनोक्रोमेटर से निकलना के बाद मापा जाता है। इस प्रकार के माप में मुख्य रूप से व्यावहारिक अनुप्रयोग होते हैं, उदाहरण के लिए पेंट उद्योग में सतह के रंग को निष्पक्ष रूप से चिह्नित करने के लिए।
 
== यूवी और दृश्यमान प्रकाश संचरण प्रकाशमिति ==
{{Main|अवशोषण स्पेक्ट्रोस्कोपी}}


== दृश्य प्रकाश परावर्तन फोटोमेट्री ==
ये विलयन में रंगीन पदार्थों के दिए गए तरंग दैर्ध्य (या तरंग दैर्ध्य की दी गई सीमा) के प्रकाश के अवशोषण को मापने के लिए ऑप्टिकल उपकरण हैं। प्रकाश के अवशोषण से, बीयर का नियम समाधान में रंगीन पदार्थ की एकाग्रता की गणना करना संभव बनाता है। इसके विस्तृत अनुप्रयोग और इसकी विश्वसनीयता और शक्तिशाली के कारण, प्रकाशमापी जैव रसायन और विश्लेषणात्मक रसायन विज्ञान में प्रमुख उपकरणों में से एक बन गया है। जलीय विलयन में काम करने के लिए अवशोषण प्रकाशमापी लगभग 240 एनएम से 750 एनएम तक तरंग दैर्ध्य से पराबैंगनी और दृश्य श्रेणियों में काम करते हैं।
परावर्तन फोटोमीटर तरंग दैर्ध्य के कार्य के रूप में सतह के परावर्तन को मापता है। सतह को सफेद रोशनी से रोशन किया जाता है, और परावर्तित प्रकाश को एक मोनोक्रोमेटर से गुजरने के बाद मापा जाता है। इस प्रकार के माप में मुख्य रूप से व्यावहारिक अनुप्रयोग होते हैं, उदाहरण के लिए पेंट उद्योग में सतह के रंग को निष्पक्ष रूप से चिह्नित करने के लिए।


== यूवी और दृश्यमान प्रकाश संचरण फोटोमेट्री ==
[[स्पेक्ट्रोफोटोमीटर|स्पेक्ट्रोप्रकाशमापी]] और निस्पंदन प्रकाशमापी का सिद्धांत यह है कि (जहाँ तक संभव हो) [[ एकरंगा |एकरंगा]] प्रकाश को कंटेनर (सेल) से होकर निकलना दिया जाता है जिसमें समाधान युक्त वैकल्पिक रूप से सपाट खिड़कियां होती हैं। यह तब एक प्रकाश संसूचक तक पहुंचता है, जो समान विलायक के साथ किन्तु रंगीन पदार्थ के बिना एक समान सेल से निकलना के बाद तीव्रता की तुलना में प्रकाश की तीव्रता को मापता है। प्रकाश की तीव्रता के मध्य के अनुपात से, रंगीन पदार्थ की प्रकाश को अवशोषित करने की क्षमता (रंगीन पदार्थ का अवशोषण, या किसी दिए गए तरंग दैर्ध्य पर रंगीन पदार्थ के अणुओं के फोटॉन क्रॉस सेक्शन क्षेत्र) को जानना संभव है, बीयर के नियम का उपयोग करके पदार्थ की सांद्रता की गणना करना संभव है।
{{Main|Absorption spectroscopy}}
ये विलयन में रंगीन पदार्थों के दिए गए तरंग दैर्ध्य (या तरंग दैर्ध्य की दी गई सीमा) के प्रकाश के अवशोषण को मापने के लिए ऑप्टिकल उपकरण हैं। प्रकाश के अवशोषण से, बीयर का नियम समाधान में रंगीन पदार्थ की एकाग्रता की गणना करना संभव बनाता है। इसके विस्तृत अनुप्रयोग और इसकी विश्वसनीयता और मजबूती के कारण, फोटोमीटर जैव रसायन और विश्लेषणात्मक रसायन विज्ञान में प्रमुख उपकरणों में से एक बन गया है। जलीय विलयन में काम करने के लिए अवशोषण फोटोमीटर लगभग 240 एनएम से 750 एनएम तक तरंग दैर्ध्य से पराबैंगनी और दृश्य श्रेणियों में काम करते हैं।


[[स्पेक्ट्रोफोटोमीटर]] और फिल्टर फोटोमीटर का सिद्धांत यह है कि (जहाँ तक संभव हो) [[ एकरंगा ]] प्रकाश को  कंटेनर (सेल) से होकर गुजरने दिया जाता है जिसमें समाधान युक्त वैकल्पिक रूप से सपाट खिड़कियां होती हैं। यह तब एक प्रकाश संसूचक तक पहुंचता है, जो समान विलायक के साथ लेकिन रंगीन पदार्थ के बिना एक समान सेल से गुजरने के बाद तीव्रता की तुलना में प्रकाश की तीव्रता को मापता है। प्रकाश की तीव्रता के बीच के अनुपात से, रंगीन पदार्थ की प्रकाश को अवशोषित करने की क्षमता (रंगीन पदार्थ का अवशोषण, या किसी दिए गए तरंग दैर्ध्य पर रंगीन पदार्थ के अणुओं के फोटॉन क्रॉस सेक्शन क्षेत्र) को जानना संभव है, गणना करना संभव है बीयर के नियम का उपयोग करके पदार्थ की सांद्रता।
दो प्रकार के प्रकाशमापी का उपयोग किया जाता है: स्पेक्ट्रोप्रकाशमापी और निस्पंदन (प्रकाशिकी) प्रकाशमापी। स्पेक्ट्रोप्रकाशमापी में एक परिभाषित तरंग दैर्ध्य के मोनोक्रोमैटिक प्रकाश प्राप्त करने के लिए मोनोक्रोमेटर (प्रिज्म (प्रकाशिकी) या झंझरी के साथ) का उपयोग किया जाता है। निस्पंदन प्रकाशमापी में, मोनोक्रोमैटिक प्रकाश देने के लिए ऑप्टिकल निस्पंदन का उपयोग किया जाता है। स्पेक्ट्रोप्रकाशमापी इस प्रकार विभिन्न तरंग दैर्ध्य पर अवशोषण को मापने के लिए आसानी से समुच्चय किए जा सकते हैं, और उनका उपयोग अवशोषित पदार्थ के स्पेक्ट्रम को स्कैन करने के लिए भी किया जा सकता है। वे इस तरह से निस्पंदन प्रकाशमापी की तुलना में अधिक लचीले होते हैं, विश्लेषण प्रकाश की उच्च ऑप्टिकल शुद्धता भी देते हैं, और इसलिए वे अनुसंधान उद्देश्यों के लिए अधिमानतः उपयोग किए जाते हैं। फ़िल्टर प्रकाशमापी सस्ते, शक्तिशाली और उपयोग में आसान होते हैं और इसलिए उनका नियमित विश्लेषण के लिए उपयोग किया जाता है। [[माइक्रोटिटर प्लेट]] के लिए प्रकाशमापी निस्पंदन प्रकाशमापी हैं।


दो प्रकार के फोटोमीटर का उपयोग किया जाता है: स्पेक्ट्रोफोटोमीटर और फिल्टर (ऑप्टिक्स) फोटोमीटर। स्पेक्ट्रोफोटोमीटर में एक परिभाषित तरंग दैर्ध्य के मोनोक्रोमैटिक प्रकाश प्राप्त करने के लिए  मोनोक्रोमेटर (प्रिज्म (ऑप्टिक्स) या झंझरी के साथ) का उपयोग किया जाता है। फिल्टर फोटोमीटर में, मोनोक्रोमैटिक प्रकाश देने के लिए ऑप्टिकल फिल्टर का उपयोग किया जाता है। स्पेक्ट्रोफोटोमीटर इस प्रकार विभिन्न तरंग दैर्ध्य पर अवशोषण को मापने के लिए आसानी से सेट किए जा सकते हैं, और उनका उपयोग अवशोषित पदार्थ के स्पेक्ट्रम को स्कैन करने के लिए भी किया जा सकता है। वे इस तरह से फिल्टर फोटोमीटर की तुलना में अधिक लचीले होते हैं, विश्लेषण प्रकाश की उच्च ऑप्टिकल शुद्धता भी देते हैं, और इसलिए वे अनुसंधान उद्देश्यों के लिए अधिमानतः उपयोग किए जाते हैं। फ़िल्टर फोटोमीटर सस्ते, मजबूत और उपयोग में आसान होते हैं और इसलिए उनका नियमित विश्लेषण के लिए उपयोग किया जाता है। [[माइक्रोटिटर प्लेट]]्स के लिए फोटोमीटर फिल्टर फोटोमीटर हैं।
== अवरक्त प्रकाश संचरण प्रकाशमिति ==
{{Main|अवरक्त स्पेक्ट्रोस्कोपी}}


== इन्फ्रारेड लाइट ट्रांसमिशन फोटोमेट्री ==
अवरक्त प्रकाश में स्पेक्ट्रोप्रकाशमिति मुख्य रूप से पदार्थों की संरचना का अध्ययन करने के लिए उपयोग की जाती है, क्योंकि दिए गए समूह परिभाषित तरंग दैर्ध्य पर अवशोषण देते हैं। जलीय घोल में मापन सामान्यतः संभव नहीं है, क्योंकि पानी कुछ तरंग दैर्ध्य दूरी में अवरक्त प्रकाश को दृढ़ता से अवशोषित करता है। इसलिए, अवरक्त [[स्पेक्ट्रोस्कोपी]] या तो [[गैसीय चरण]] (वाष्पशील पदार्थों के लिए) में या अवरक्त दूरी में पारदर्शी नमक के साथ टैबलेट में दबाए गए पदार्थों के साथ किया जाता है। इस उद्देश्य के लिए सामान्यतः [[पोटेशियम ब्रोमाइड]] (KBr) का उपयोग किया जाता है। परीक्षण किए जा रहे पदार्थ को विशेष रूप से शुद्ध किए गए केबीआर के साथ अच्छी तरह मिलाया जाता है और एक पारदर्शी गोली में दबाया जाता है, जिसे प्रकाश की किरण में रखा जाता है। तरंग दैर्ध्य निर्भरता का विश्लेषण सामान्यतः एक मोनोक्रोमेटर का उपयोग करके नहीं किया जाता है जैसा कि यूवी-विज़ में होता है, किन्तु [[इंटरफेरोमीटर]] के उपयोग के साथ एक [[फूरियर रूपांतरण]] [[कलन विधि]] का उपयोग करके हस्तक्षेप पैटर्न का विश्लेषण किया जा सकता है। इस तरह, पूरी तरंग दैर्ध्य दूरी का एक साथ विश्लेषण किया जा सकता है, समय की बचत होती है, और एक मोनोक्रोमेटर की तुलना में एक इंटरफेरोमीटर भी कम खर्चीला होता है। अवरक्त क्षेत्र में अवशोषित प्रकाश अध्ययन किए गए पदार्थ के इलेक्ट्रॉनिक उत्तेजना के अनुरूप नहीं है, किन्तु विभिन्न प्रकार के कंपन उत्तेजनाओं के अनुरूप है। कंपन संबंधी उत्तेजना अणु में विभिन्न समूहों की विशेषता है, जिसे इस तरह से पहचाना जा सकता है। अवरक्त स्पेक्ट्रम में सामान्यतः अधिक संकीर्ण अवशोषण रेखाएँ होती हैं, जो उन्हें मात्रात्मक विश्लेषण के लिए अनुपयुक्त बनाती हैं, किन्तु अणुओं के बारे में अधिक विस्तृत जानकारी देती हैं। कंपन के विभिन्न विधियों की आवृत्तियाँ आइसोटोप के साथ बदलती हैं, और इसलिए अलग-अलग आइसोटोप अलग-अलग चोटियाँ देते हैं। यह अवरक्त स्पेक्ट्रोप्रकाशमिति के साथ नमूने की समस्थानिक संरचना का अध्ययन करना भी संभव बनाता है।
{{Main|Infrared spectroscopy}}
इन्फ्रारेड प्रकाश में स्पेक्ट्रोफोटोमेट्री मुख्य रूप से पदार्थों की संरचना का अध्ययन करने के लिए उपयोग की जाती है, क्योंकि दिए गए समूह परिभाषित तरंग दैर्ध्य पर अवशोषण देते हैं। जलीय घोल में मापन आमतौर पर संभव नहीं है, क्योंकि पानी कुछ तरंग दैर्ध्य रेंज में अवरक्त प्रकाश को दृढ़ता से अवशोषित करता है। इसलिए, इन्फ्रारेड [[स्पेक्ट्रोस्कोपी]] या तो [[गैसीय चरण]] (वाष्पशील पदार्थों के लिए) में या इन्फ्रारेड रेंज में पारदर्शी नमक के साथ टैबलेट में दबाए गए पदार्थों के साथ किया जाता है। इस उद्देश्य के लिए आमतौर पर [[पोटेशियम ब्रोमाइड]] (KBr) का उपयोग किया जाता है। परीक्षण किए जा रहे पदार्थ को विशेष रूप से शुद्ध किए गए केबीआर के साथ अच्छी तरह मिलाया जाता है और एक पारदर्शी गोली में दबाया जाता है, जिसे प्रकाश की किरण में रखा जाता है। तरंग दैर्ध्य निर्भरता का विश्लेषण आम तौर पर एक मोनोक्रोमेटर का उपयोग करके नहीं किया जाता है जैसा कि यूवी-विज़ में होता है, लेकिन  [[इंटरफेरोमीटर]] के उपयोग के साथ। एक [[फूरियर रूपांतरण]] [[कलन विधि]] का उपयोग करके हस्तक्षेप पैटर्न का विश्लेषण किया जा सकता है। इस तरह, पूरी तरंग दैर्ध्य रेंज का एक साथ विश्लेषण किया जा सकता है, समय की बचत होती है, और एक मोनोक्रोमेटर की तुलना में एक इंटरफेरोमीटर भी कम खर्चीला होता है। इन्फ्रारेड क्षेत्र में अवशोषित प्रकाश अध्ययन किए गए पदार्थ के इलेक्ट्रॉनिक उत्तेजना के अनुरूप नहीं है, बल्कि विभिन्न प्रकार के कंपन उत्तेजनाओं के अनुरूप है। कंपन संबंधी उत्तेजना अणु में विभिन्न समूहों की विशेषता है, जिसे इस तरह से पहचाना जा सकता है। इन्फ्रारेड स्पेक्ट्रम में आमतौर पर बहुत संकीर्ण अवशोषण रेखाएँ होती हैं, जो उन्हें मात्रात्मक विश्लेषण के लिए अनुपयुक्त बनाती हैं, लेकिन अणुओं के बारे में बहुत विस्तृत जानकारी देती हैं। कंपन के विभिन्न तरीकों की आवृत्तियाँ आइसोटोप के साथ बदलती हैं, और इसलिए अलग-अलग आइसोटोप अलग-अलग चोटियाँ देते हैं। यह इन्फ्रारेड स्पेक्ट्रोफोटोमेट्री के साथ नमूने की समस्थानिक संरचना का अध्ययन करना भी संभव बनाता है।


== परमाणु अवशोषण फोटोमेट्री ==
== परमाणु अवशोषण प्रकाशमिति ==
{{Main|Atomic absorption spectroscopy}}
{{Main|परमाणु अवशोषण स्पेक्ट्रोस्कोपी}}
परमाणु अवशोषण फोटोमीटर फोटोमीटर हैं जो प्रकाश को बहुत गर्म लौ से मापते हैं। विश्लेषण किए जाने वाले समाधान को स्थिर, ज्ञात दर पर ज्वाला में इंजेक्ट किया जाता है। विलयन में धातुएँ ज्वाला में परमाणु रूप में उपस्थित होती हैं। इस प्रकार के फोटोमीटर में मोनोक्रोमैटिक प्रकाश एक डिस्चार्ज लैंप द्वारा उत्पन्न होता है जहां धातु के साथ गैस में डिस्चार्ज होता है। डिस्चार्ज तब धातु की वर्णक्रमीय रेखाओं के अनुरूप तरंग दैर्ध्य के साथ प्रकाश का उत्सर्जन करता है। विश्लेषण की जाने वाली धातु की मुख्य वर्णक्रमीय रेखाओं में से एक को अलग करने के लिए एक फिल्टर का उपयोग किया जा सकता है। लौ में धातु द्वारा प्रकाश को अवशोषित किया जाता है, और मूल समाधान में धातु की एकाग्रता को निर्धारित करने के लिए अवशोषण का उपयोग किया जाता है।
 
परमाणु अवशोषण प्रकाशमापी प्रकाशमापी हैं जो प्रकाश को अधिक गर्म लौ से मापते हैं। विश्लेषण किए जाने वाले समाधान को स्थिर, ज्ञात दर पर ज्वाला में इंजेक्ट किया जाता है। विलयन में धातुएँ ज्वाला में परमाणु रूप में उपस्थित होती हैं। इस प्रकार के प्रकाशमापी में मोनोक्रोमैटिक प्रकाश एक डिस्चार्ज लैंप द्वारा उत्पन्न होता है जहां धातु के साथ गैस में डिस्चार्ज होता है। डिस्चार्ज तब धातु की वर्णक्रमीय रेखाओं के अनुरूप तरंग दैर्ध्य के साथ प्रकाश का उत्सर्जन करता है। विश्लेषण की जाने वाली धातु की मुख्य वर्णक्रमीय रेखाओं में से एक को अलग करने के लिए एक निस्पंदन का उपयोग किया जा सकता है। लौ में धातु द्वारा प्रकाश को अवशोषित किया जाता है, और मूल समाधान में धातु की एकाग्रता को निर्धारित करने के लिए अवशोषण का उपयोग किया जाता है।  


== यह भी देखें ==
== यह भी देखें ==
*[[रेडियोमेट्री]]
*[[रेडियोमेट्री]]
* [[रमन स्पेक्ट्रोस्कोपी]]
* [[रमन स्पेक्ट्रोस्कोपी]]
*[[फोटोडिटेक्टर]] -ट्रांसड्यूसर जो ऑप्टिकल सिग्नल को स्वीकार करने और ऑप्टिकल सिग्नल के समान जानकारी वाले विद्युत सिग्नल का उत्पादन करने में सक्षम है।
*[[फोटोडिटेक्टर|फोटोसंसूचक]] -ट्रांसड्यूसर जो ऑप्टिकल सिग्नल को स्वीकार करने और ऑप्टिकल सिग्नल के समान जानकारी वाले विद्युत सिग्नल का उत्पादन करने में सक्षम है।


==संदर्भ==
==संदर्भ==
Line 71: Line 74:
''Article partly based on the corresponding article in Swedish Wikipedia''
''Article partly based on the corresponding article in Swedish Wikipedia''


[[Category: विद्युत चुम्बकीय विकिरण मीटर]] [[Category: ऑप्टिकल उपकरण]] [[Category: प्रकाश मापन]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 05/04/2023]]
[[Category:Created On 05/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:ऑप्टिकल उपकरण]]
[[Category:प्रकाश मापन]]
[[Category:विद्युत चुम्बकीय विकिरण मीटर]]

Latest revision as of 17:16, 17 May 2023

Error creating thumbnail:
एक प्रकाशमापी

प्रकाशमापी एक उपकरण है जो पराबैंगनी से लेकर अवरक्त तक और दृश्यमान स्पेक्ट्रम सहित विद्युत प्रकाश विकिरण की बल को मापता है। अधिकांश प्रकाशमापी फोटोरेसिस्टर, फोटोडायोड या फोटोमल्टीप्लायर का उपयोग करके प्रकाश को विद्युत प्रवाह में परिवर्तित करते हैं।

प्रकाशमापी उपाय:

इतिहास

इलेक्ट्रॉनिक प्रकाश संवेदी तत्वों के विकसित होने से पहले, प्रकाशमिति (प्रकाशिकी) आँख द्वारा अनुमान लगाकर की जाती थी। किसी स्रोत के सापेक्ष प्रकाशदार प्रवाह की तुलना मानक स्रोत से की गई थी। प्रकाशमापी को इस तरह रखा जाता है कि जिस स्रोत की जांच की जा रही है, वह मानक स्रोत के सामान हो, क्योंकि मानव आंख समान प्रकाश का न्याय कर सकती है। सापेक्ष प्रकाशदार प्रवाह की गणना तब की जा सकती है क्योंकि प्रकाश दूरी के व्युत्क्रम वर्ग के अनुपात में घट जाती है। ऐसे प्रकाशमापी के मानक उदाहरण में कागज का एक टुकड़ा होता है जिस पर तेल का धब्बा होता है जो कागज को थोड़ा अधिक पारदर्शी बनाता है। जब किसी ओर से धब्बा दिखाई नहीं देता है, तो दोनों ओर से प्रकाश सामान होता है।

1861 तक, तीन प्रकार सामान्य उपयोग में थे।[1] ये रुमफोर्ड के प्रकाशमापी, रिची के प्रकाशमापी और प्रकाशमापी थे जो छाया के विलुप्त होने का उपयोग करते थे, जिसे सबसे स्पष्ट माना जाता था।

रमफोर्ड का प्रकाशमापी

File:Rumfords Photometer.jpg
रमफोर्ड का प्रकाशमापी

रमफोर्ड का प्रकाशमापी (जिसे शैडो प्रकाशमापी भी कहा जाता है) इस सिद्धांत पर निर्भर था कि तेज प्रकाश एक गहरी छाया डालती है। तुलना की जाने वाली दो प्रकाश का उपयोग कागज पर छाया डालने के लिए किया गया था। यदि परछाइयाँ समान गहराई की होती हैं, तो प्रकाश की दूरी में अंतर तीव्रता में अंतर को संकेत करेगा (उदाहरण के लिए दुगनी प्रकाश तीव्रता से चार गुना अधिक होगी)।

रिची का प्रकाशमापी

File:Ritchies Photometer.png
रिची का प्रकाशमापी

रिची का प्रकाशमापी सतहों की समान प्रकाश पर निर्भर करता है। इसमें एक बॉक्स (ए, बी) छह या आठ इंच लंबा और चौड़ाई और गहराई में होता है। मध्य में, लकड़ी का एक टुकड़ा (एफ, ई, जी) ऊपर की ओर झुका हुआ था और सफेद कागज से ढका हुआ था। उपयोगकर्ता की आंख एक बॉक्स के शीर्ष पर एक ट्यूब (डी) के माध्यम से देखती है। उपकरण की ऊंचाई भी स्टैंड (सी) के माध्यम से समायोज्य थी। तुलना करने के लिए प्रकाश को बॉक्स (एम, एन) के किनारे रखा गया था - जो कागज की सतहों को प्रकाशित करता था जिससे आंख दोनों सतहों को साथ देख सके। प्रकाश की स्थिति को बदलकर, दूरी में अंतर के वर्ग के अनुरूप तीव्रता में अंतर के साथ, दोनों सतहों को समान रूप से प्रकाशित करने के लिए बनाया गया था।

छाया विलोपन की विधि

इस प्रकार का प्रकाशमापी इस तथ्य पर निर्भर करता है कि यदि कोई प्रकाश किसी अपारदर्शी वस्तु की छाया को एक सफेद स्क्रीन पर फेंकता है, तो निश्चित दूरी होती है, यदि दूसरा प्रकाश वहां लाया जाता है, तो छाया के सभी निशान मिटा दिए जाते हैं।

प्रकाशमापी का सिद्धांत

अधिकांश प्रकाशमापी फोटोरेसिस्टर्स, फोटोडायोड्स या फोटोमल्टीप्लायरों के साथ प्रकाश का पता लगाते हैं। प्रकाश का विश्लेषण करने के लिए, परिभाषित तरंग दैर्ध्य पर निर्धारण के लिए या प्रकाश के स्पेक्ट्रम के विश्लेषण के लिए प्रकाशमापी फ़िल्टर (प्रकाशिकी) या मोनोक्रोमेटर के माध्यम से पारित होने के बाद प्रकाश को माप सकता है।

फोटॉन गणना

कुछ प्रकाशमापी आने वाले उज्ज्वल प्रवाह के अतिरिक्त अलग-अलग फोटोन की गणना करके प्रकाश को मापते हैं। ऑपरेटिंग सिद्धांत समान हैं किन्तु परिणाम W·cm−2·sr−1 के अतिरिक्त फोटॉन/सेमी2 या फोटॉन·cm−2·sr−1 जैसी इकाइयों में दिए गए हैं |

उनकी अलग-अलग फोटॉन गणना प्रकृति के कारण, ये उपकरण अवलोकनों तक सीमित हैं जहां विकिरण कम है। विकिरण इसके संबंधित संसूचक रीडआउट इलेक्ट्रॉनिक्स के समय के संकल्प से सीमित है। वर्तमान विधि के साथ यह मेगाहर्ट्ज़ दूरी में है। अधिकतम विकिरण भी संसूचक के थ्रूपुट और गेन मापदण्ड द्वारा सीमित है।

एनआईआर, दृश्यमान और पराबैंगनी तरंग दैर्ध्य में फोटॉन गणना उपकरणों में प्रकाश संवेदन तत्व पर्याप्त संवेदनशीलता प्राप्त करने के लिए फोटोमल्टीप्लायर है।

एयरबोर्न और स्पेस-आधारित रिमोट सेंसिंग में ऐसे फोटॉन काउंटरों का उपयोग विद्युत चुम्बकीय वर्णक्रम जैसे एक्स-रे से दूर पराबैंगनी तक की ऊपरी पहुंच में किया जाता है। यह सामान्यतः मापी जाने वाली वस्तुओं की कम उज्ज्वल तीव्रता के साथ-साथ कम आवृत्तियों पर प्रकाश की तरंग जैसी प्रकृति की तुलना में इसकी कण जैसी प्रकृति का उपयोग करके उच्च ऊर्जा पर प्रकाश को मापने में कठिनाई के कारण होता है। इसके विपरीत, रेडियोमीटर सामान्यतः दृश्यमान प्रकाश से अवरक्त चूंकि आकाशवाणी आवृति दूरी रिमोट सेंसिंग के लिए उपयोग किए जाते हैं, ।

फोटोग्राफी

फोटोग्राफी में सही एक्सपोज़र (फ़ोटोग्राफ़ी) निर्धारित करने के लिए फ़ोटोमीटर का उपयोग किया जाता है। आधुनिक कैमरों में, प्रकाशमापी सामान्यतः अंतर्निहित होता है। चूंकि छवि के विभिन्न भागों की प्रकाश अलग-अलग होती है, उन्नत प्रकाशमापी संभावित छवि के विभिन्न भागों में प्रकाश की तीव्रता को मापते हैं और अंतिम छवि के लिए सबसे उपयुक्त एक्सपोजर निर्धारित करने के लिए एल्गोरिदम का उपयोग करते हैं। इच्छित चित्र के प्रकार के अनुसार एल्गोरिद्म को अनुकूलित करना (पैमाइश प्रणाली देखें)। ऐतिहासिक रूप से, प्रकाशमापी कैमरे से अलग था और एक्सपोजर मीटर के रूप में जाना जाता था। तब उन्नत प्रकाशमापी का उपयोग या तो संभावित चित्र से प्रकाश को मापने के लिए किया जा सकता है, चित्र के तत्वों से मापने के लिए यह पता लगाने के लिए कि चित्र के सबसे महत्वपूर्ण भाग इष्टतम रूप से सामने आए हैं, या घटना प्रकाश को दृश्य में मापने के लिए एक एकीकृत एडाप्टर के साथ आये है।

दृश्य प्रकाश परावर्तन प्रकाशमिति

परावर्तन प्रकाशमापी तरंग दैर्ध्य के कार्य के रूप में सतह के परावर्तन को मापता है। सतह को सफेद प्रकाश से प्रकाशित किया जाता है, और परावर्तित प्रकाश को एक मोनोक्रोमेटर से निकलना के बाद मापा जाता है। इस प्रकार के माप में मुख्य रूप से व्यावहारिक अनुप्रयोग होते हैं, उदाहरण के लिए पेंट उद्योग में सतह के रंग को निष्पक्ष रूप से चिह्नित करने के लिए।

यूवी और दृश्यमान प्रकाश संचरण प्रकाशमिति

ये विलयन में रंगीन पदार्थों के दिए गए तरंग दैर्ध्य (या तरंग दैर्ध्य की दी गई सीमा) के प्रकाश के अवशोषण को मापने के लिए ऑप्टिकल उपकरण हैं। प्रकाश के अवशोषण से, बीयर का नियम समाधान में रंगीन पदार्थ की एकाग्रता की गणना करना संभव बनाता है। इसके विस्तृत अनुप्रयोग और इसकी विश्वसनीयता और शक्तिशाली के कारण, प्रकाशमापी जैव रसायन और विश्लेषणात्मक रसायन विज्ञान में प्रमुख उपकरणों में से एक बन गया है। जलीय विलयन में काम करने के लिए अवशोषण प्रकाशमापी लगभग 240 एनएम से 750 एनएम तक तरंग दैर्ध्य से पराबैंगनी और दृश्य श्रेणियों में काम करते हैं।

स्पेक्ट्रोप्रकाशमापी और निस्पंदन प्रकाशमापी का सिद्धांत यह है कि (जहाँ तक संभव हो) एकरंगा प्रकाश को कंटेनर (सेल) से होकर निकलना दिया जाता है जिसमें समाधान युक्त वैकल्पिक रूप से सपाट खिड़कियां होती हैं। यह तब एक प्रकाश संसूचक तक पहुंचता है, जो समान विलायक के साथ किन्तु रंगीन पदार्थ के बिना एक समान सेल से निकलना के बाद तीव्रता की तुलना में प्रकाश की तीव्रता को मापता है। प्रकाश की तीव्रता के मध्य के अनुपात से, रंगीन पदार्थ की प्रकाश को अवशोषित करने की क्षमता (रंगीन पदार्थ का अवशोषण, या किसी दिए गए तरंग दैर्ध्य पर रंगीन पदार्थ के अणुओं के फोटॉन क्रॉस सेक्शन क्षेत्र) को जानना संभव है, बीयर के नियम का उपयोग करके पदार्थ की सांद्रता की गणना करना संभव है।

दो प्रकार के प्रकाशमापी का उपयोग किया जाता है: स्पेक्ट्रोप्रकाशमापी और निस्पंदन (प्रकाशिकी) प्रकाशमापी। स्पेक्ट्रोप्रकाशमापी में एक परिभाषित तरंग दैर्ध्य के मोनोक्रोमैटिक प्रकाश प्राप्त करने के लिए मोनोक्रोमेटर (प्रिज्म (प्रकाशिकी) या झंझरी के साथ) का उपयोग किया जाता है। निस्पंदन प्रकाशमापी में, मोनोक्रोमैटिक प्रकाश देने के लिए ऑप्टिकल निस्पंदन का उपयोग किया जाता है। स्पेक्ट्रोप्रकाशमापी इस प्रकार विभिन्न तरंग दैर्ध्य पर अवशोषण को मापने के लिए आसानी से समुच्चय किए जा सकते हैं, और उनका उपयोग अवशोषित पदार्थ के स्पेक्ट्रम को स्कैन करने के लिए भी किया जा सकता है। वे इस तरह से निस्पंदन प्रकाशमापी की तुलना में अधिक लचीले होते हैं, विश्लेषण प्रकाश की उच्च ऑप्टिकल शुद्धता भी देते हैं, और इसलिए वे अनुसंधान उद्देश्यों के लिए अधिमानतः उपयोग किए जाते हैं। फ़िल्टर प्रकाशमापी सस्ते, शक्तिशाली और उपयोग में आसान होते हैं और इसलिए उनका नियमित विश्लेषण के लिए उपयोग किया जाता है। माइक्रोटिटर प्लेट के लिए प्रकाशमापी निस्पंदन प्रकाशमापी हैं।

अवरक्त प्रकाश संचरण प्रकाशमिति

अवरक्त प्रकाश में स्पेक्ट्रोप्रकाशमिति मुख्य रूप से पदार्थों की संरचना का अध्ययन करने के लिए उपयोग की जाती है, क्योंकि दिए गए समूह परिभाषित तरंग दैर्ध्य पर अवशोषण देते हैं। जलीय घोल में मापन सामान्यतः संभव नहीं है, क्योंकि पानी कुछ तरंग दैर्ध्य दूरी में अवरक्त प्रकाश को दृढ़ता से अवशोषित करता है। इसलिए, अवरक्त स्पेक्ट्रोस्कोपी या तो गैसीय चरण (वाष्पशील पदार्थों के लिए) में या अवरक्त दूरी में पारदर्शी नमक के साथ टैबलेट में दबाए गए पदार्थों के साथ किया जाता है। इस उद्देश्य के लिए सामान्यतः पोटेशियम ब्रोमाइड (KBr) का उपयोग किया जाता है। परीक्षण किए जा रहे पदार्थ को विशेष रूप से शुद्ध किए गए केबीआर के साथ अच्छी तरह मिलाया जाता है और एक पारदर्शी गोली में दबाया जाता है, जिसे प्रकाश की किरण में रखा जाता है। तरंग दैर्ध्य निर्भरता का विश्लेषण सामान्यतः एक मोनोक्रोमेटर का उपयोग करके नहीं किया जाता है जैसा कि यूवी-विज़ में होता है, किन्तु इंटरफेरोमीटर के उपयोग के साथ एक फूरियर रूपांतरण कलन विधि का उपयोग करके हस्तक्षेप पैटर्न का विश्लेषण किया जा सकता है। इस तरह, पूरी तरंग दैर्ध्य दूरी का एक साथ विश्लेषण किया जा सकता है, समय की बचत होती है, और एक मोनोक्रोमेटर की तुलना में एक इंटरफेरोमीटर भी कम खर्चीला होता है। अवरक्त क्षेत्र में अवशोषित प्रकाश अध्ययन किए गए पदार्थ के इलेक्ट्रॉनिक उत्तेजना के अनुरूप नहीं है, किन्तु विभिन्न प्रकार के कंपन उत्तेजनाओं के अनुरूप है। कंपन संबंधी उत्तेजना अणु में विभिन्न समूहों की विशेषता है, जिसे इस तरह से पहचाना जा सकता है। अवरक्त स्पेक्ट्रम में सामान्यतः अधिक संकीर्ण अवशोषण रेखाएँ होती हैं, जो उन्हें मात्रात्मक विश्लेषण के लिए अनुपयुक्त बनाती हैं, किन्तु अणुओं के बारे में अधिक विस्तृत जानकारी देती हैं। कंपन के विभिन्न विधियों की आवृत्तियाँ आइसोटोप के साथ बदलती हैं, और इसलिए अलग-अलग आइसोटोप अलग-अलग चोटियाँ देते हैं। यह अवरक्त स्पेक्ट्रोप्रकाशमिति के साथ नमूने की समस्थानिक संरचना का अध्ययन करना भी संभव बनाता है।

परमाणु अवशोषण प्रकाशमिति

परमाणु अवशोषण प्रकाशमापी प्रकाशमापी हैं जो प्रकाश को अधिक गर्म लौ से मापते हैं। विश्लेषण किए जाने वाले समाधान को स्थिर, ज्ञात दर पर ज्वाला में इंजेक्ट किया जाता है। विलयन में धातुएँ ज्वाला में परमाणु रूप में उपस्थित होती हैं। इस प्रकार के प्रकाशमापी में मोनोक्रोमैटिक प्रकाश एक डिस्चार्ज लैंप द्वारा उत्पन्न होता है जहां धातु के साथ गैस में डिस्चार्ज होता है। डिस्चार्ज तब धातु की वर्णक्रमीय रेखाओं के अनुरूप तरंग दैर्ध्य के साथ प्रकाश का उत्सर्जन करता है। विश्लेषण की जाने वाली धातु की मुख्य वर्णक्रमीय रेखाओं में से एक को अलग करने के लिए एक निस्पंदन का उपयोग किया जा सकता है। लौ में धातु द्वारा प्रकाश को अवशोषित किया जाता है, और मूल समाधान में धातु की एकाग्रता को निर्धारित करने के लिए अवशोषण का उपयोग किया जाता है।

यह भी देखें

संदर्भ

  1. Draper, John William (1861). रसायन विज्ञान पर एक पाठ्यपुस्तक. NY: Harper and Brothers. p. 78.

Article partly based on the corresponding article in Swedish Wikipedia