बहुरेखीय मानचित्र: Difference between revisions
No edit summary |
No edit summary |
||
| (17 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
{{Short description|Vector-valued function of multiple vectors, linear in each argument}} | {{Short description|Vector-valued function of multiple vectors, linear in each argument}}रेखीय बीजगणित में, '''बहुरेखीय मानचित्र''' कई चरों का फलन (गणित) है जो प्रत्येक चर में पृथक रूप से रेखीय फलन होता है। अधिक त्रुटिहीन रूप से, बहु-रेखीय मानचित्र फलन है | ||
:<math>f\colon V_1 \times \cdots \times V_n \to W\text{,}</math> | |||
जहाँ <math>V_1,\ldots,V_n</math> और <math>W</math> निम्नलिखित संपत्ति के साथ सदिशरिक्त स्थान (या [[मॉड्यूल (गणित)]] क्रमविनिमेय वलय पर) हैं: प्रत्येक के लिए <math>i</math>, यदि सभी चर <math>v_i</math> को स्थिर रखा जाता है, तो <math>f(v_1, \ldots, | |||
v_i, \ldots, v_n)</math> का रैखिक फलन <math>v_i</math> है I<ref>{{cite book |author-link=Serge Lang |first=Serge |last=Lang |title=बीजगणित|chapter=XIII. Matrices and Linear Maps §S Determinants |chapter-url=https://books.google.com/books?id=Fge-BwqhqIYC&pg=PA511 |date=2005 |origyear=2002 |publisher=Springer |edition=3rd |isbn=978-0-387-95385-4 |pages=511– |volume=211 |series=Graduate Texts in Mathematics}}</ref> | |||
चर का बहुरेखीय मानचित्र रेखीय मानचित्र है, और दो चरों का द्विरेखीय मानचित्र होता है। सामान्यतः, k चरों के बहुरेखीय मानचित्र को 'k-रैखिक मानचित्र' कहा जाता है। यदि बहुरेखीय मानचित्र का [[कोडोमेन]] अदिशों का क्षेत्र है, तो इसे [[बहुरेखीय रूप]] कहा जाता है। बहुरेखीय मानचित्र और रूप [[बहुरेखीय बीजगणित]] में अध्ययन की मूलभूत वस्तुएँ हैं। | |||
यदि सभी चर | यदि सभी चर स्थान से संबंधित हैं, तो कोई सममित एंटीसिमेट्रिक, और वैकल्पिक k-रैखिक मानचित्रों पर विचार कर सकता है। उत्तरार्द्ध संयोग करता है यदि अंतर्निहित [[अंगूठी (गणित)|वलय (गणित)]] (या [[क्षेत्र (गणित)]]) में दो से भिन्न [[विशेषता (बीजगणित)]] है, अन्यथा पूर्व दो संगयुग्मित होते है। | ||
== उदाहरण == | == उदाहरण == | ||
* कोई भी द्विरेखीय मानचित्र बहुरेखीय मानचित्र होता है। उदाहरण के लिए, सदिश स्थान पर कोई भी आंतरिक उत्पाद | * कोई भी द्विरेखीय मानचित्र बहुरेखीय मानचित्र होता है। उदाहरण के लिए, सदिश स्थान पर कोई भी आंतरिक उत्पाद बहुरेखीय मानचित्र है, जैसा कि सदिशों का क्रॉस उत्पाद <math>\mathbb{R}^3</math> है। | ||
* | * आव्यूह का निर्धारक [[स्क्वायर मैट्रिक्स|वर्ग]] आव्यूह के स्तंभों (या पंक्तियों) का [[वैकल्पिक रूप]] बहुरेखीय फलन है। | ||
* | * यदि <math>F\colon \mathbb{R}^m \to \mathbb{R}^n</math> का C<sup>k</sup> फलन है, तो <math>k\!</math>वें का व्युत्पन्न <math>F\!</math> प्रत्येक बिंदु पर <math>p</math> डोमेन में सममित के रूप में देखा जा सकता है <math>k</math>- का रैखिक फलन <math>D^k\!F\colon \mathbb{R}^m\times\cdots\times\mathbb{R}^m \to \mathbb{R}^n</math> है। | ||
== समन्वय प्रतिनिधित्व == | == समन्वय प्रतिनिधित्व == | ||
इस प्रकार है: | |||
:<math>f\colon V_1 \times \cdots \times V_n \to W\text{,}</math> | :<math>f\colon V_1 \times \cdots \times V_n \to W\text{,}</math> | ||
परिमित-आयामी | परिमित-आयामी सदिशरिक्त स्थान के मध्य बहु-रैखिक मानचित्र बनें, जहां <math>V_i\!</math> , <math>d_i\!</math>, और <math>W\!</math> आयाम है यदि हम <math>d\!</math>. आधार चयन करते हैं तो (रैखिक बीजगणित) <math>\{\textbf{e}_{i1},\ldots,\textbf{e}_{id_i}\}</math> प्रत्येक के लिए <math>V_i\!</math> और आधार <math>\{\textbf{b}_1,\ldots,\textbf{b}_d\}</math> के लिए <math>W\!</math> (सदिश के लिए बोल्ड का उपयोग करके), अदिश के संग्रह को परिभाषित कर सकते हैं इसके <math>A_{j_1\cdots j_n}^k</math> द्वारा | ||
:<math>f(\textbf{e}_{1j_1},\ldots,\textbf{e}_{nj_n}) = A_{j_1\cdots j_n}^1\,\textbf{b}_1 + \cdots + A_{j_1\cdots j_n}^d\,\textbf{b}_d.</math> | :<math>f(\textbf{e}_{1j_1},\ldots,\textbf{e}_{nj_n}) = A_{j_1\cdots j_n}^1\,\textbf{b}_1 + \cdots + A_{j_1\cdots j_n}^d\,\textbf{b}_d.</math> | ||
यदि अदिश <math>\{A_{j_1\cdots j_n}^k \mid 1\leq j_i\leq d_i, 1 \leq k \leq d\}</math> पूर्ण रूप से बहु-रेखीय फलन निर्धारित करें <math>f\!</math>. विशेष रूप से है, यदि | |||
:<math>\textbf{v}_i = \sum_{j=1}^{d_i} v_{ij} \textbf{e}_{ij}\!</math> | :<math>\textbf{v}_i = \sum_{j=1}^{d_i} v_{ij} \textbf{e}_{ij}\!</math> | ||
| Line 32: | Line 30: | ||
== उदाहरण == | == उदाहरण == | ||
ट्रिलिनियर फलन इस प्रकार है: | |||
:<math>g\colon R^2 \times R^2 \times R^2 \to R, </math> | :<math>g\colon R^2 \times R^2 \times R^2 \to R, </math> | ||
जहाँ {{math|1=''V<sub>i</sub>'' = ''R''<sup>2</sup>, ''d<sub>i</sub>'' = 2, ''i'' = 1,2,3}}, और {{math|1=''W'' = ''R'', ''d'' = 1}}. | |||
प्रत्येक | प्रत्येक {{mvar|V<sub>i</sub>}} के लिए आधार है: <math>\{\textbf{e}_{i1},\ldots,\textbf{e}_{id_i}\} = \{\textbf{e}_{1}, \textbf{e}_{2}\} = \{(1,0), (0,1)\}.</math> | ||
:<math>g(\textbf{e}_{1i},\textbf{e}_{2j},\textbf{e}_{3k}) = f(\textbf{e}_{i},\textbf{e}_{j},\textbf{e}_{k}) = A_{ijk},</math> | :<math>g(\textbf{e}_{1i},\textbf{e}_{2j},\textbf{e}_{3k}) = f(\textbf{e}_{i},\textbf{e}_{j},\textbf{e}_{k}) = A_{ijk},</math> | ||
जहाँ <math>i,j,k \in \{1,2\}</math>. दूसरे शब्दों में, स्थिर <math>A_{i j k}</math> आधार सदिशों के आठ संभावित त्रिगुणों में से फलन का मान है (चूंकि तीन में से प्रत्येक के लिए दो विकल्प हैं <math>V_i</math>), अर्थात्: | |||
:<math> | :<math> | ||
\{\textbf{e}_1, \textbf{e}_1, \textbf{e}_1\}, | \{\textbf{e}_1, \textbf{e}_1, \textbf{e}_1\}, | ||
| Line 51: | Line 49: | ||
\{\textbf{e}_2, \textbf{e}_2, \textbf{e}_2\}. | \{\textbf{e}_2, \textbf{e}_2, \textbf{e}_2\}. | ||
</math> | </math> | ||
प्रत्येक | प्रत्येक सदिश <math>\textbf{v}_i \in V_i = R^2</math> को आधार सदिश के रैखिक संयोजन के रूप में व्यक्त किया जा सकता है: | ||
:<math>\textbf{v}_i = \sum_{j=1}^{2} v_{ij} \textbf{e}_{ij} = v_{i1} \times \textbf{e}_1 + v_{i2} \times \textbf{e}_2 = v_{i1} \times (1, 0) + v_{i2} \times (0, 1).</math> | :<math>\textbf{v}_i = \sum_{j=1}^{2} v_{ij} \textbf{e}_{ij} = v_{i1} \times \textbf{e}_1 + v_{i2} \times \textbf{e}_2 = v_{i1} \times (1, 0) + v_{i2} \times (0, 1).</math> | ||
| Line 70: | Line 68: | ||
== टेंसर उत्पादों से संबंध == | == टेंसर उत्पादों से संबंध == | ||
बहुरेखीय | बहुरेखीय मानचित्र के मध्य स्वाभाविक रूप से पत्राचार होता है: | ||
:<math>f\colon V_1 \times \cdots \times V_n \to W\text{,}</math> | :<math>f\colon V_1 \times \cdots \times V_n \to W\text{,}</math> | ||
और रैखिक | और रैखिक मानचित्र | ||
:<math>F\colon V_1 \otimes \cdots \otimes V_n \to W\text{,}</math> | :<math>F\colon V_1 \otimes \cdots \otimes V_n \to W\text{,}</math> | ||
जहाँ <math>V_1 \otimes \cdots \otimes V_n\!</math> के [[टेंसर उत्पाद]] को दर्शाता है <math>V_1,\ldots,V_n</math> फलनों के मध्य संबंध <math>f\!</math> और <math>F\!</math> सूत्र द्वारा दिया गया है: | |||
:<math>f(v_1,\ldots,v_n)=F(v_1\otimes \cdots \otimes v_n).</math> | :<math>f(v_1,\ldots,v_n)=F(v_1\otimes \cdots \otimes v_n).</math> | ||
== n×n आव्यूहों पर बहुरेखीय फलन == | |||
== n×n | आव्यूह की पंक्तियों (या समतुल्य रूप से स्थान) को फलन के रूप में पहचान के साथ कम्यूटेटिव वलय K पर n × n आव्यूह पर बहुरेखीय फलन पर विचार किया जा सकता है, मान लीजिए {{math|''A''}} ऐसा आव्यूह है और ai, 1 ≤ i ≤ n, A की पंक्तियाँ हैं और फिर बहुरेखीय फलन {{math|''D''}} के रूप में लिखा जा सकता है: | ||
:<math>D(A) = D(a_{1},\ldots,a_{n}),</math> | :<math>D(A) = D(a_{1},\ldots,a_{n}),</math> | ||
| Line 88: | Line 85: | ||
:<math>D(a_{1},\ldots,c a_{i} + a_{i}',\ldots,a_{n}) = c D(a_{1},\ldots,a_{i},\ldots,a_{n}) + D(a_{1},\ldots,a_{i}',\ldots,a_{n}).</math> | :<math>D(a_{1},\ldots,c a_{i} + a_{i}',\ldots,a_{n}) = c D(a_{1},\ldots,a_{i},\ldots,a_{n}) + D(a_{1},\ldots,a_{i}',\ldots,a_{n}).</math> | ||
यदि <math>\hat{e}_j</math> पहचान आव्यूह की j पंक्ति का प्रतिनिधित्व करते हैं, हम प्रत्येक पंक्ति ai को योग के रूप में व्यक्त कर सकते हैं: | |||
:<math>a_{i} = \sum_{j=1}^n A(i,j)\hat{e}_{j}.</math> | :<math>a_{i} = \sum_{j=1}^n A(i,j)\hat{e}_{j}.</math> | ||
की बहुरेखीयता का उपयोग | D की बहुरेखीयता का उपयोग करके हम D(A) को इस रूप में फिर से लिखते हैं जैसा | ||
:<math> | :<math> | ||
| Line 97: | Line 94: | ||
= \sum_{j=1}^n A(1,j) D(\hat{e}_{j},a_2,\ldots,a_n). | = \sum_{j=1}^n A(1,j) D(\hat{e}_{j},a_2,\ldots,a_n). | ||
</math> | </math> | ||
प्रत्येक के लिए इस प्रतिस्थापन को | प्रत्येक ai के लिए इस प्रतिस्थापन को प्रारम्भ रखते हुए, हम प्राप्त कर सकते हैं {{math|1 ≤ ''i'' ≤ ''n''}}, | ||
:<math> | :<math> | ||
D(A) = \sum_{1\le k_1 \le n} \ldots \sum_{1\le k_i \le n} \ldots \sum_{1\le k_n \le n} A(1,k_{1})A(2,k_{2})\dots A(n,k_{n}) D(\hat{e}_{k_{1}},\dots,\hat{e}_{k_{n}}). | D(A) = \sum_{1\le k_1 \le n} \ldots \sum_{1\le k_i \le n} \ldots \sum_{1\le k_n \le n} A(1,k_{1})A(2,k_{2})\dots A(n,k_{n}) D(\hat{e}_{k_{1}},\dots,\hat{e}_{k_{n}}). | ||
</math> | </math> | ||
इसलिए, {{math|''D''(''A'')}} विशिष्ट रूप से | इसलिए, {{math|''D''(''A'')}} विशिष्ट रूप से निर्धारित होता है कि D कैसे संचालित होता है <math>\hat{e}_{k_{1}},\dots,\hat{e}_{k_{n}}</math>. | ||
== उदाहरण == | == उदाहरण == | ||
2×2 | 2×2 आव्यूह की स्थिति में: | ||
:<math> | :<math> | ||
D(A) = A_{1,1}A_{1,2}D(\hat{e}_1,\hat{e}_1) + A_{1,1}A_{2,2}D(\hat{e}_1,\hat{e}_2) + A_{1,2}A_{2,1}D(\hat{e}_2,\hat{e}_1) + A_{1,2}A_{2,2}D(\hat{e}_2,\hat{e}_2) \, | D(A) = A_{1,1}A_{1,2}D(\hat{e}_1,\hat{e}_1) + A_{1,1}A_{2,2}D(\hat{e}_1,\hat{e}_2) + A_{1,2}A_{2,1}D(\hat{e}_2,\hat{e}_1) + A_{1,2}A_{2,2}D(\hat{e}_2,\hat{e}_2) \, | ||
</math> | </math> | ||
जहाँ <math>\hat{e}_1 = [1,0]</math> और <math>\hat{e}_2 = [0,1]</math> यदि प्रतिबंधित करते हैं तब <math>D</math> वैकल्पिक फलन होता है, <math>D(\hat{e}_1,\hat{e}_1) = D(\hat{e}_2,\hat{e}_2) = 0</math> और <math>D(\hat{e}_2,\hat{e}_1) = -D(\hat{e}_1,\hat{e}_2) = -D(I)</math>. दे <math>D(I) = 1</math> हमें 2×2 आव्यूहों पर निर्धारक फलन प्राप्त होता है: | |||
:<math> D(A) = A_{1,1}A_{2,2} - A_{1,2}A_{2,1} .</math> | :<math> D(A) = A_{1,1}A_{2,2} - A_{1,2}A_{2,1} .</math> | ||
| Line 116: | Line 113: | ||
== गुण == | == गुण == | ||
* | * जब भी इसका तर्क शून्य होता है तो बहुरेखीय मानचित्र का मान शून्य होता है | | ||
== यह भी देखें == | == यह भी देखें == | ||
| Line 122: | Line 119: | ||
* बहुरेखीय रूप | * बहुरेखीय रूप | ||
* [[सजातीय बहुपद]] | * [[सजातीय बहुपद]] | ||
* [[सजातीय कार्य]] | * [[सजातीय कार्य|सजातीय फलन]] | ||
* [[ टेन्सर ]] | * [[ टेन्सर ]] | ||
==संदर्भ== | ==संदर्भ== | ||
<references/> | <references/> | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Created On 25/04/2023]] | [[Category:Created On 25/04/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:बहुरेखीय बीजगणित]] | |||
Latest revision as of 15:19, 30 October 2023
रेखीय बीजगणित में, बहुरेखीय मानचित्र कई चरों का फलन (गणित) है जो प्रत्येक चर में पृथक रूप से रेखीय फलन होता है। अधिक त्रुटिहीन रूप से, बहु-रेखीय मानचित्र फलन है
जहाँ और निम्नलिखित संपत्ति के साथ सदिशरिक्त स्थान (या मॉड्यूल (गणित) क्रमविनिमेय वलय पर) हैं: प्रत्येक के लिए , यदि सभी चर को स्थिर रखा जाता है, तो का रैखिक फलन है I[1]
चर का बहुरेखीय मानचित्र रेखीय मानचित्र है, और दो चरों का द्विरेखीय मानचित्र होता है। सामान्यतः, k चरों के बहुरेखीय मानचित्र को 'k-रैखिक मानचित्र' कहा जाता है। यदि बहुरेखीय मानचित्र का कोडोमेन अदिशों का क्षेत्र है, तो इसे बहुरेखीय रूप कहा जाता है। बहुरेखीय मानचित्र और रूप बहुरेखीय बीजगणित में अध्ययन की मूलभूत वस्तुएँ हैं।
यदि सभी चर स्थान से संबंधित हैं, तो कोई सममित एंटीसिमेट्रिक, और वैकल्पिक k-रैखिक मानचित्रों पर विचार कर सकता है। उत्तरार्द्ध संयोग करता है यदि अंतर्निहित वलय (गणित) (या क्षेत्र (गणित)) में दो से भिन्न विशेषता (बीजगणित) है, अन्यथा पूर्व दो संगयुग्मित होते है।
उदाहरण
- कोई भी द्विरेखीय मानचित्र बहुरेखीय मानचित्र होता है। उदाहरण के लिए, सदिश स्थान पर कोई भी आंतरिक उत्पाद बहुरेखीय मानचित्र है, जैसा कि सदिशों का क्रॉस उत्पाद है।
- आव्यूह का निर्धारक वर्ग आव्यूह के स्तंभों (या पंक्तियों) का वैकल्पिक रूप बहुरेखीय फलन है।
- यदि का Ck फलन है, तो वें का व्युत्पन्न प्रत्येक बिंदु पर डोमेन में सममित के रूप में देखा जा सकता है - का रैखिक फलन है।
समन्वय प्रतिनिधित्व
इस प्रकार है:
परिमित-आयामी सदिशरिक्त स्थान के मध्य बहु-रैखिक मानचित्र बनें, जहां , , और आयाम है यदि हम . आधार चयन करते हैं तो (रैखिक बीजगणित) प्रत्येक के लिए और आधार के लिए (सदिश के लिए बोल्ड का उपयोग करके), अदिश के संग्रह को परिभाषित कर सकते हैं इसके द्वारा
यदि अदिश पूर्ण रूप से बहु-रेखीय फलन निर्धारित करें . विशेष रूप से है, यदि
के लिए , तब
उदाहरण
ट्रिलिनियर फलन इस प्रकार है:
जहाँ Vi = R2, di = 2, i = 1,2,3, और W = R, d = 1.
प्रत्येक Vi के लिए आधार है:
जहाँ . दूसरे शब्दों में, स्थिर आधार सदिशों के आठ संभावित त्रिगुणों में से फलन का मान है (चूंकि तीन में से प्रत्येक के लिए दो विकल्प हैं ), अर्थात्:
प्रत्येक सदिश को आधार सदिश के रैखिक संयोजन के रूप में व्यक्त किया जा सकता है:
तीन सदिशों के मनमाने संग्रह पर फलन मान के रूप में व्यक्त किया जा सकता है
या, विस्तारित रूप में
टेंसर उत्पादों से संबंध
बहुरेखीय मानचित्र के मध्य स्वाभाविक रूप से पत्राचार होता है:
और रैखिक मानचित्र
जहाँ के टेंसर उत्पाद को दर्शाता है फलनों के मध्य संबंध और सूत्र द्वारा दिया गया है:
n×n आव्यूहों पर बहुरेखीय फलन
आव्यूह की पंक्तियों (या समतुल्य रूप से स्थान) को फलन के रूप में पहचान के साथ कम्यूटेटिव वलय K पर n × n आव्यूह पर बहुरेखीय फलन पर विचार किया जा सकता है, मान लीजिए A ऐसा आव्यूह है और ai, 1 ≤ i ≤ n, A की पंक्तियाँ हैं और फिर बहुरेखीय फलन D के रूप में लिखा जा सकता है:
संतुष्टि देने वाला
यदि पहचान आव्यूह की j पंक्ति का प्रतिनिधित्व करते हैं, हम प्रत्येक पंक्ति ai को योग के रूप में व्यक्त कर सकते हैं:
D की बहुरेखीयता का उपयोग करके हम D(A) को इस रूप में फिर से लिखते हैं जैसा
प्रत्येक ai के लिए इस प्रतिस्थापन को प्रारम्भ रखते हुए, हम प्राप्त कर सकते हैं 1 ≤ i ≤ n,
इसलिए, D(A) विशिष्ट रूप से निर्धारित होता है कि D कैसे संचालित होता है .
उदाहरण
2×2 आव्यूह की स्थिति में:
जहाँ और यदि प्रतिबंधित करते हैं तब वैकल्पिक फलन होता है, और . दे हमें 2×2 आव्यूहों पर निर्धारक फलन प्राप्त होता है:
गुण
- जब भी इसका तर्क शून्य होता है तो बहुरेखीय मानचित्र का मान शून्य होता है |
यह भी देखें
- बीजगणितीय रूप
- बहुरेखीय रूप
- सजातीय बहुपद
- सजातीय फलन
- टेन्सर
संदर्भ
- ↑ Lang, Serge (2005) [2002]. "XIII. Matrices and Linear Maps §S Determinants". बीजगणित. Graduate Texts in Mathematics. Vol. 211 (3rd ed.). Springer. pp. 511–. ISBN 978-0-387-95385-4.