मोलर बिखराव: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 167: Line 167:
{{QED}}
{{QED}}


{{DEFAULTSORT:Moller Scattering}}[[Category: क्वांटम इलेक्ट्रोडायनामिक्स]] [[Category: बिखराव सिद्धांत]]
{{DEFAULTSORT:Moller Scattering}}
{{particle-stub}}
{{particle-stub}}


 
[[Category:All stub articles|Moller Scattering]]
 
[[Category:Collapse templates|Moller Scattering]]
[[Category: Machine Translated Page]]
[[Category:Created On 20/04/2023|Moller Scattering]]
[[Category:Created On 20/04/2023]]
[[Category:Lua-based templates|Moller Scattering]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page|Moller Scattering]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Moller Scattering]]
[[Category:Pages with maths render errors|Moller Scattering]]
[[Category:Pages with script errors|Moller Scattering]]
[[Category:Particle physics stubs|Moller Scattering]]
[[Category:Sidebars with styles needing conversion|Moller Scattering]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi|Moller Scattering]]
[[Category:Templates Vigyan Ready|Moller Scattering]]
[[Category:Templates generating microformats|Moller Scattering]]
[[Category:Templates that add a tracking category|Moller Scattering]]
[[Category:Templates that are not mobile friendly|Moller Scattering]]
[[Category:Templates that generate short descriptions|Moller Scattering]]
[[Category:Templates using TemplateData|Moller Scattering]]
[[Category:Wikipedia metatemplates|Moller Scattering]]
[[Category:क्वांटम इलेक्ट्रोडायनामिक्स|Moller Scattering]]
[[Category:बिखराव सिद्धांत|Moller Scattering]]

Latest revision as of 11:44, 3 May 2023

Feynman diagrams
t-channel
File:MollerScattering-t.svg
u-channel
File:MollerScattering-u.svg

चुंबकीय प्रकीर्णन का नाम क्वांटम क्षेत्र सिद्धांत में इलेक्ट्रोन के प्रकीर्णन को दिया गया नाम है डैनिश भौतिक विज्ञानी क्रिश्चियन मोलर के नाम पर इसक नाम दिया गया है.और सोलर प्रकीर्णन में आदर्श इलेक्ट्रॉन अन्योन्यक्रिया अनेक परिचित घटनाओं जैसे हीलियम परमाणु में इलेक्ट्रॉनों के प्रतिकर्षण का सैद्धांतिक आधार बनाती है। इससे पूर्व कई कण इलेक्ट्रान के टकराव के लिए विशेष रूप से डिज़ाइन किये गए है, परंतु वर्तमान में इलेक्ट्रानिक पॉज़िट्रॉन टक्कर करने वाले इलेक्ट्रान की डिज़ाइन के रूप में प्रचलित हो गयी थी। फिर भी मॉलर प्रकीर्णन कण अंतःक्रियाओं के सिद्धांत के भीतर एक प्रतिमानात्मक प्रक्रिया के रूप में बनी हुई है।

हम इस प्रक्रिया को सामान्य अंकन में व्यक्त कर सकते हैं, जो अधिकांशतः कण भौतिकी में प्रयोग किया जाता है।

क्वांटम विद्युत् गतिकी में, प्रक्रिया का वर्णन करने वाले दो ट्री-लेवल फेनमैन आरेख हैं जो एक टी-चैनल आरेख की प्रक्रिया का वर्णन करते हैं जिसमें इलेक्ट्रॉन एक फोटॉन और एक समान यू-चैनल आरेख का आदान-प्रदान करते हैं। और इस प्रकार क्रॉसिंग समरूपता, अधिकांशतः फेनमैन आरेखों का मूल्यांकन करने के लिए उपयोग की जाने वाली ट्रिक में से एक है, इस स्थिति में इसका तात्पर्य है कि मॉलर स्कैटरिंग में भाभा प्रकीर्णन इलेक्ट्रॉन-पॉज़िट्रॉन स्कैटरिंग के समान क्रॉस सेक्शन के रूप में होना चाहिए।

इलेक्ट्रोवीक सिद्धांत में प्रक्रिया को इसके अतिरिक्त चार ट्री -स्तरीय आरेखों द्वारा वर्णित किया जाता है और इस प्रकार क्यूईडी से दो और एक समान जोड़ी के रूप में एक फोटॉन के अतिरिक्त जेड बोसोन का आदान-प्रदान होता है। और मौलिक बल विशुद्ध रूप से बाएं हाथ के कणों को दिशा निर्देश प्रदान करता है, लेकिन कमजोर और विद्युत चुम्बकीय बल हमारे द्वारा देखे जाने वाले कणों में मिल जाते हैं। और इस प्रकार फोटॉन निर्माण के रूप में सममित हो जाते है , लेकिन Z बोसोन बाएं हाथ के कणों को दाएं हाथ के कणों के लिए पसंद करता है। इस प्रकार बाएं हाथ के इलेक्ट्रॉनों और दाएं हाथ के इलेक्ट्रॉनों के लिए क्रॉस सेक्शन अलग-अलग रूप में होते हैं। और इस प्रकार अंतर पहली बार 1959 में रूसी भौतिक विज्ञानी याकोव ज़ेल्डोविच द्वारा देखा गया था, लेकिन उस समय उनका मानना ​​​​था कि कि प्रति अरब कुछ सौ भागों में विषमता का उल्लंघन करने वाली समानता का अवलोकन करना बहुत छोटा था। विषमता का उल्लंघन करने वाली इस समता को एक अध्रुवीकृत इलेक्ट्रॉन लक्ष्य के लिए तरल हाइड्रोजन के माध्यम से इलेक्ट्रॉनों के ध्रुवीकृत बीम को फायर करके मापा जा सकता है, उदाहरण के लिए जैसा कि स्टैनफोर्ड रैखिक त्वरक केंद्र, एसएलएसी-ई158 में एक प्रयोग द्वारा किया गया था।[1] मोलर प्रकीर्णन में विषमता होती है।

जहां me इलेक्ट्रॉन द्रव्यमान है, E आने वाले इलेक्ट्रॉन की ऊर्जा दूसरे इलेक्ट्रॉन के संदर्भ फ्रेम में, फर्मी का इंटरेक्शन है। फर्मी का स्थिरांक, 'सूक्ष्म संरचना नियतांक के रूप में है, द्रव्यमान फ्रेम के केंद्र में प्रकीर्णन कोण के रूप में है, और कमजोर मिश्रण कोण है, जिसे वेनबर्ग कोण भी कहा जाता है।

क्यूईडी गणना

इस पृष्ठ पर दिखाए गए दो आरेखों की सहायता से मोलर प्रकीर्णन की गणना ट्री-स्तर पर क्यूईडी के दृष्टिकोण से की जा सकती है। ये दो चित्र क्यूईडी के दृष्टिकोण से अग्रणी क्रम में योगदान देते है। यदि हम मौलिक बल को ध्यान में रखते हैं, जो उच्च ऊर्जा पर विद्युत चुम्बकीय बल के साथ एकीकृत रूप में होता है, और इस प्रकार फिर हमें बोसोन के आदान-प्रदान के लिए दो ट्री-स्तरीय आरेख को सयोजित करना पड़ता है। यहां हम क्रॉस सेक्शन के एक ट्री-लेवल क्यूईडी गणना पर अपना ध्यान केंद्रित करते है, जो शिक्षाप्रद रूप में है, लेकिन संभवतः भौतिक दृष्टिकोण से सबसे यथार्थ विवरण के रूप में नहीं है।

व्युत्पत्ति से पहले, हम 4-आघूर्ण को इस प्रकार लिखते हैं (और आने वाले इलेक्ट्रॉनों के लिए, और बाहर जाने वाले इलेक्ट्रॉनों के लिए, और ) के रूप में दिखाते है

मंडेलस्टम चर के रूप में होते है:

ये मैंडेलस्टैम चर आइडेंटिफिकेशन को संतुष्ट करते हैं: .

इस पृष्ठ पर दो आरेखों के अनुसार, टी-चैनल का मैट्रिक्स तत्व के रूप में होते है

यू-चैनल का मैट्रिक्स अवयवों के रूप में होते है

तो योग के रूप में दर्शाते है

इसलिए,

अध्रुवीकृत क्रॉस सेक्शन की गणना करने के लिए, हम प्रारंभिक स्पिनों पर औसत और अंतिम स्पिनों पर योग करते हैं, कारक 1/4 प्रत्येक आने वाले इलेक्ट्रॉन के लिए 1/2 के साथ सयोजित करते है

जहां हमने संबंध का उपयोग किया है . हम अगली बार निशानों की गणना करते है।

कोष्ठकों में पहला पद के रूप में है

जहाँ , और हमने इसका उपयोग किया है मैट्रिक्स आइडेंटिफिकेशन के रूप में होते है

और विषम संख्या के किसी उत्पाद का वह निशान शून्य के रूप में होता है।

इसी प्रकार दूसरा पद है

का उपयोग -मैट्रिक्स आइडेंटिफिकेशन के रूप में होता है।

और मैंडेलस्टैम चर की आइडेंटिफिकेशन के रूप में , हमें तीसरा अवधि,प्रदान करता है

इसलिए,

हमने यहां जो गति निर्धारित की है, उसमें स्थानापन्न करते है, जो इस रूप में हैं

अंत में हमें अध्रुवीकृत क्रॉस सेक्शन मिलता है
साथ और .

असापेक्षतावादी सीमा में, , के रूप में मिलता है

अति सापेक्षतावादी सीमा में, , के रूप में होता है


संदर्भ

  1. Anthony, P. L.; et al. (Aug 2005). "Precision Measurement of the Weak Mixing Angle in Møller Scattering". Phys. Rev. Lett. American Physical Society. 95 (8): 081601. arXiv:hep-ex/0504049. Bibcode:2005PhRvL..95h1601A. doi:10.1103/PhysRevLett.95.081601. PMID 16196849. S2CID 28919840.


बाहरी संबंध