सतह: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Outermost or uppermost layer of a physical object or space}} {{Other uses}} File:Red Apple.jpg|thumb|right|एक सेब की सतह में...")
 
No edit summary
 
(11 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Short description|Outermost or uppermost layer of a physical object or space}}
{{Short description|Outermost or uppermost layer of a physical object or space}}
{{Other uses}}
{{Other uses}}
[[File:Red Apple.jpg|thumb|right|एक सेब की सतह में विभिन्न बोधगम्य विशेषताएं होती हैं, जैसे वक्रता, चिकनाई, बनावट, रंग और चमक; दृष्टि या स्पर्श द्वारा इन विशेषताओं का अवलोकन करने से वस्तु की पहचान की जा सकती है।]]
[[File:Red Apple.jpg|thumb|right|एक सेब की सतह में विभिन्न बोधगम्य विशेषताएं होती हैं, जैसे वक्रता, चिकनाई, बनावट, रंग और चमक; दृष्टि या स्पर्श द्वारा इन विशेषताओं का अवलोकन करने से वस्तु की पहचान की जा सकती है।|199x199px]]
[[File:Water droplet lying on a damask.jpg|thumb|right|[[जामदानी]] पर पड़ी [[पानी]] की बूंद। कपड़ा के नीचे तैरने से रोकने के लिए भूतल तनाव काफी अधिक है।]]
[[File:Water droplet lying on a damask.jpg|thumb|right|[[जामदानी]] पर पड़ी [[पानी]] की बूंद। कपड़ा के नीचे तैरने से रोकने के लिए भूतल तनाव काफी अधिक है।|194x194px]]
[[File:171879main LimbFlareJan12 lg.jpg|thumb|right|सूर्य, सभी सितारों की तरह, दूर से एक अलग सतह के रूप में दिखाई देता है, लेकिन करीब आने पर कोई निर्धारित सतह नहीं होती है।]]एक सतह, जैसा कि शब्द का सबसे अधिक उपयोग किया जाता है, भौतिक वस्तु या स्थान की सबसे बाहरी या सबसे ऊपर की परत है।<ref>{{cite book |first1 = Penny |last1 = Sparke |first2 = Fiona |last2 = Fisher |name-list-style = amp |title = द रूटलेज कम्पेनियन टू डिजाइन स्टडीज|year = 2016 |location = New York |publisher = [[Routledge]] |page = 124 |isbn = 9781317203285 |oclc = 952155029 }}</ref><ref name="Sorensen">{{cite book |first = Roy |last = Sorensen |title = Seeing Dark Things: The Philosophy of Shadows |year = 2011 |location = Oxford |publisher = [[Oxford University Press]] |page = 45 |isbn = 9780199797134  |oclc = 955163137 }}</ref> यह वस्तु का वह भाग या क्षेत्र है जिसे पहले एक पर्यवेक्षक द्वारा दृश्य धारणा और सोमाटोसेंसरी प्रणाली की इंद्रियों का उपयोग करके माना जा सकता है, और वह हिस्सा है जिसके साथ अन्य सामग्री पहले बातचीत करती है। किसी वस्तु की सतह मात्र एक ज्यामितीय ठोस से अधिक है, लेकिन रंग और गर्मी जैसे बोधगम्य गुणों से भरा हुआ है, फैला हुआ है, या भरा हुआ है।<ref>{{cite book |first = Panayot |last = Butchvarov |title = ज्ञान की अवधारणा|url = https://archive.org/details/conceptofknowled0000butc |url-access = registration |year = 1970 |location = Evanston |publisher = [[Northwestern University Press]] |page = [https://archive.org/details/conceptofknowled0000butc/page/249 249] |isbn = 9780810103191 |oclc = 925168650 }}</ref>
[[File:171879main LimbFlareJan12 lg.jpg|thumb|right|सूर्य, सभी सितारों की तरह, दूर से एक अलग सतह के रूप में दिखाई देता है, लेकिन करीब आने पर कोई निर्धारित सतह नहीं होती है।|206x206px]]'''सतह''', शब्द का सबसे अधिक उपयोग किया जाता है, यह भौतिक वस्तु या स्थान की सबसे बाहरी या सबसे ऊपर की परत है।<ref>{{cite book |first1 = Penny |last1 = Sparke |first2 = Fiona |last2 = Fisher |name-list-style = amp |title = द रूटलेज कम्पेनियन टू डिजाइन स्टडीज|year = 2016 |location = New York |publisher = [[Routledge]] |page = 124 |isbn = 9781317203285 |oclc = 952155029 }}</ref><ref name="Sorensen">{{cite book |first = Roy |last = Sorensen |title = Seeing Dark Things: The Philosophy of Shadows |year = 2011 |location = Oxford |publisher = [[Oxford University Press]] |page = 45 |isbn = 9780199797134  |oclc = 955163137 }}</ref> यह वस्तु का वह भाग या क्षेत्र है जिसे पहले दृष्टि और स्पर्श की इंद्रियों का उपयोग करके पर्यवेक्षक द्वारा माना जा सकता है, और वह भाग है जिसके साथ अन्य सामग्री पहले परस्पर क्रिया करती है। किसी वस्तु की सतह "मात्र ज्यामितीय ठोस" से अधिक है, लेकिन "रंग और गर्मी जैसे बोधगम्य गुणों से भरा हुआ, फैला हुआ, या भरा हुआ है"।<ref>{{cite book |first = Panayot |last = Butchvarov |title = ज्ञान की अवधारणा|url = https://archive.org/details/conceptofknowled0000butc |url-access = registration |year = 1970 |location = Evanston |publisher = [[Northwestern University Press]] |page = [https://archive.org/details/conceptofknowled0000butc/page/249 249] |isbn = 9780810103191 |oclc = 925168650 }}</ref>
सतह की अवधारणा को गणित में, विशेष रूप से [[ज्यामिति]] में अमूर्त और औपचारिक रूप दिया गया है। जिन गुणों पर जोर दिया गया है, उनके आधार पर कई गैर-समतुल्य औपचारिकताएं हैं, जिन्हें सभी सतह कहा जाता है, कभी-कभी कुछ क्वालीफायर के साथ, जैसे [[बीजगणितीय सतह]], चिकनी सतह या [[भग्न सतह]]
सतह की अवधारणा को गणित में, विशेष रूप से [[ज्यामिति]] में अमूर्त और औपचारिक रूप दिया गया है। जिन गुणों पर जोर दिया गया है, उनके आधार पर कई गैर-समतुल्य औपचारिकताएं हैं, जैसे [[बीजगणितीय सतह]], चिकनी सतह या [[भग्न सतह]] कभी-कभी कुछ विशेषण के साथ, यह सभी सतह कहलाते है।


सतह की अवधारणा और इसके गणितीय अमूर्तता दोनों का व्यापक रूप से भौतिकी, [[अभियांत्रिकी]], [[कंप्यूटर चित्रलेख]] और कई अन्य विषयों में उपयोग किया जाता है, मुख्य रूप से भौतिक वस्तुओं की सतहों का प्रतिनिधित्व करने में। उदाहरण के लिए, एक हवाई जहाज के [[वायुगतिकी]]य गुणों का विश्लेषण करने में, केंद्रीय विचार इसकी सतह के साथ हवा का प्रवाह है। अवधारणा कुछ दार्शनिक प्रश्न भी उठाती है - उदाहरण के लिए, परमाणुओं या अणुओं की परत कितनी मोटी होती है जिसे किसी वस्तु की सतह का हिस्सा माना जा सकता है (यानी, जहां सतह समाप्त होती है और आंतरिक शुरू होती है),<ref name="Sorensen"/><ref>{{cite book |first = Avrum |last = Stroll |title = सतह|url = https://archive.org/details/surfaces00stro |url-access = limited |year = 1988 |location = Minneapolis |publisher = [[University of Minnesota Press]] |page = [https://archive.org/details/surfaces00stro/page/n217 205] |isbn = 9780816616947 |oclc = 925290683 }}</ref> और क्या वस्तुओं में वास्तव में कोई सतह होती है यदि, उप-परमाणु स्तर पर, वे वास्तव में कभी भी अन्य वस्तुओं के संपर्क में नहीं आते हैं।<ref>{{cite book |first1 = Michael |last1 = Plesha |first2 = Gary |last2 = Gray |first3 = Francesco |last3 = Costanzo |name-list-style = amp |title = Engineering Mechanics: Statics and Dynamics |edition =2nd |year = 2012 |location =  New York |publisher = [[McGraw-Hill Higher Education]] |page = 8 |isbn = 9780073380315  |oclc = 801035627 }}</ref>
सतह की अवधारणा और इसके गणितीय अमूर्तता दोनों का व्यापक रूप से भौतिकी, [[अभियांत्रिकी]], [[कंप्यूटर चित्रलेख|कंप्यूटर ग्राफिक्स]] और कई अन्य विषयों में मुख्य रूप से भौतिक वस्तुओं की सतहों का प्रतिनिधित्व करने में उपयोग किया जाता है। उदाहरण के लिए, हवाई जहाज के [[वायुगतिकी]]य गुणों का विश्लेषण करने में, केंद्रीय विचार इसकी सतह के साथ हवा का प्रवाह है। अवधारणा कुछ दार्शनिक प्रश्न भी उठाती है - उदाहरण के लिए, परमाणुओं या अणुओं की परत कितनी मोटी होती है जिसे किसी वस्तु की सतह का हिस्सा माना जा सकता है (अर्थात, जहां सतह समाप्त होती है और आंतरिक आरम्भ होती है),<ref name="Sorensen"/><ref>{{cite book |first = Avrum |last = Stroll |title = सतह|url = https://archive.org/details/surfaces00stro |url-access = limited |year = 1988 |location = Minneapolis |publisher = [[University of Minnesota Press]] |page = [https://archive.org/details/surfaces00stro/page/n217 205] |isbn = 9780816616947 |oclc = 925290683 }}</ref> और क्या वस्तुओं में वास्तव में कोई सतह होती है यदि, उप-परमाणु स्तर पर, वे वास्तव में कभी भी अन्य वस्तुओं के संपर्क में नहीं आते हैं।<ref>{{cite book |first1 = Michael |last1 = Plesha |first2 = Gary |last2 = Gray |first3 = Francesco |last3 = Costanzo |name-list-style = amp |title = Engineering Mechanics: Statics and Dynamics |edition =2nd |year = 2012 |location =  New York |publisher = [[McGraw-Hill Higher Education]] |page = 8 |isbn = 9780073380315  |oclc = 801035627 }}</ref>
== सतहों की धारणा ==


किसी वस्तु की सतह वस्तु का वह हिस्सा है जिसे मुख्य रूप से माना जाता है। मनुष्य किसी वस्तु की सतह को देखने की तुलना किसी वस्तु को देखने से करता है। उदाहरण के लिए, एक वाहन को देखने में, सामान्यतः इंजन, इलेक्ट्रॉनिक्स और अन्य आंतरिक संरचनाओं को देखना संभव नहीं होता है, लेकिन वस्तु को अभी भी वाहन के रूप में पहचाना जाता है क्योंकि सतह इसे एक के रूप में पहचानती है।<ref>{{harvp|Butchvarov|1970|p= 253}}.</ref> वैचारिक रूप से, किसी वस्तु की सतह को परमाणुओं की सबसे ऊपरी परत के रूप में परिभाषित किया जा सकता है।<ref>{{harvp|Stroll|1988|p= 54}}.</ref> कई वस्तुओं और जीवों की सतह होती है जो किसी तरह से उनके आंतरिक भाग से अलग होती है। उदाहरण के लिए, सेब के छिलके में सेब के अंदर के गुणों से बहुत अलग गुण होते हैं,<ref>{{harvp|Stroll|1988|p= 81}}.</ref> और रेडियो की बाहरी सतह के आंतरिक भाग से बहुत भिन्न घटक हो सकते हैं। सेब को छीलने से सतह को हटाने का गठन होता है, अंततः अलग सतह को अलग बनावट और उपस्थिति के साथ छोड़ देता है, जिसे छिलके वाले सेब के रूप में पहचाना जा सकता है। इलेक्ट्रॉनिक उपकरण की बाहरी सतह को हटाने से इसका उद्देश्य पहचानने योग्य नहीं हो सकता है। इसके विपरीत, चट्टान की सबसे बाहरी परत या एक गिलास में निहित तरल की सबसे ऊपरी परत को हटाने से पदार्थ या सामग्री को समान संरचना के साथ छोड़ दिया जाता है, केवल मात्रा में थोड़ा कम हो जाता है।


== सतहों की धारणा ==
== गणित में ==
गणित में, सतह की सामान्य अवधारणा का गणितीय मॉडल है। यह द्वि-विम समष्टि का सामान्यीकरण है, लेकिन, एक तल के विपरीत, यह घुमावदार हो सकता है; यह सीधी रेखा का सामान्यीकरण करने वाले वक्र के समान है।


किसी वस्तु की सतह वस्तु का वह हिस्सा है जिसे मुख्य रूप से माना जाता है। मनुष्य किसी वस्तु की सतह को देखने की तुलना किसी वस्तु को देखने से करता है। उदाहरण के लिए, एक ऑटोमोबाइल को देखने में, आमतौर पर इंजन, इलेक्ट्रॉनिक्स और अन्य आंतरिक संरचनाओं को देखना संभव नहीं होता है, लेकिन वस्तु को अभी भी एक ऑटोमोबाइल के रूप में पहचाना जाता है क्योंकि सतह इसे एक के रूप में पहचानती है।<ref>{{harvp|Butchvarov|1970|p= 253}}.</ref> वैचारिक रूप से, किसी वस्तु की सतह को परमाणुओं की सबसे ऊपरी परत के रूप में परिभाषित किया जा सकता है।<ref>{{harvp|Stroll|1988|p= 54}}.</ref> कई वस्तुओं और जीवों की एक सतह होती है जो किसी तरह से उनके आंतरिक भाग से अलग होती है। उदाहरण के लिए, सेब के छिलके में सेब के अंदर के गुणों से बहुत अलग गुण होते हैं,<ref>{{harvp|Stroll|1988|p= 81}}.</ref> और एक रेडियो की बाहरी सतह के आंतरिक भाग से बहुत भिन्न घटक हो सकते हैं। सेब को छीलने से सतह को हटाने का गठन होता है, अंततः एक अलग सतह को एक अलग बनावट और उपस्थिति के साथ छोड़ देता है, जिसे छिलके वाले सेब के रूप में पहचाना जा सकता है। इलेक्ट्रॉनिक उपकरण की बाहरी सतह को हटाने से इसका उद्देश्य पहचानने योग्य नहीं हो सकता है। इसके विपरीत, एक चट्टान की सबसे बाहरी परत या एक गिलास में निहित तरल की सबसे ऊपरी परत को हटाने से एक पदार्थ या सामग्री को समान संरचना के साथ छोड़ दिया जाएगा, केवल मात्रा में थोड़ा कम हो जाएगा।
अध्ययन के लिए उपयोग किए जाने वाले संदर्भ और गणितीय उपकरणों के आधार पर कई और सटीक परिभाषाएँ हैं। त्रिविम समष्टि में सबसे सरल गणितीय सतहें द्वि-विम समष्टि और गोले हैं। सतह की सटीक परिभाषा संदर्भ पर निर्भर हो सकती है। सामान्यतः बीजगणितीय ज्यामिति में, सतह स्वयं को पार कर सकती है (और अन्य विशिष्टताएं हो सकती हैं), जबकि, संस्थितिविज्ञान और अवकल ज्यामिति में, ऐसा नहीं हो सकता है।


== गणित में ==
सतह दो आयाम का सामयिक स्थान है; इसका मतलब है कि सतह पर गतिमान बिंदु दो दिशाओं में गति कर सकता है (इसमें स्वतंत्रता की दो डिग्री हैं)। दूसरे शब्दों में, लगभग हर बिंदु के आसपास, समन्वय पैच होता है जिस पर द्वि-आयामी समन्वय प्रणाली परिभाषित होती है। उदाहरण के लिए, पृथ्वी की सतह (आदर्श रूप से) द्वि-आयामी क्षेत्र के समान है, और अक्षांश और देशांतर उस पर द्वि-आयामी निर्देशांक प्रदान करते हैं (ध्रुवों को छोड़कर और 180 वें मेरिडियन के साथ)।
{{excerpt|Surface (mathematics)|template=-more citations needed}}


== भौतिक विज्ञान में{{anchor|In physics}}==
== भौतिक विज्ञान में==
{{see also|Euclidean planes in three-dimensional space#Occurrence in nature}}
{{see also|त्रि-आयामी अंतरिक्ष में यूक्लिडियन विमान # प्रकृति में घटना}}
{{expand section|date=April 2016}}


भौतिकी और [[रसायन विज्ञान]] (सामान्य रूप से [[भौतिक विज्ञान]]) में मानी जाने वाली कई सतहें [[इंटरफ़ेस (मामला)]]पदार्थ) हैं। उदाहरण के लिए, एक सतह दो [[तरल]] पदार्थ (समुद्र की सतह) या एक ठोस (एक गेंद की सतह) की आदर्श सीमा के बीच की आदर्श सीमा हो सकती है। द्रव गतिकी में, [[मुक्त सतह]] के आकार को सतह तनाव द्वारा परिभाषित किया जा सकता है। हालांकि, वे केवल [[मैक्रोस्कोपिक स्केल]] पर सतहें हैं। [[सूक्ष्म पैमाने]] पर, उनकी कुछ मोटाई हो सकती है। [[परमाणु पैमाने]] पर, वे परमाणुओं या [[अणु]]ओं के बीच रिक्त स्थान द्वारा गठित छिद्रों के कारण सतह के रूप में बिल्कुल नहीं दिखते हैं।
भौतिकी और [[रसायन विज्ञान]] (सामान्य रूप से [[भौतिक विज्ञान]]) में मानी जाने वाली कई सतहें [[इंटरफ़ेस (मामला)|अंतरापृष्ठ (मामला)]] पदार्थ) हैं। उदाहरण के लिए, सतह दो [[तरल]] पदार्थ (समुद्र की सतह) या ठोस (एक गेंद की सतह) की आदर्श प्रतिबंधक के बीच की आदर्श सीमांत हो सकती है। द्रव गतिकी में, [[मुक्त सतह|मुक्त पृष्ठ]] के आकार को पृष्ठ तनाव द्वारा परिभाषित किया जा सकता है। चूंकि, वे केवल [[मैक्रोस्कोपिक स्केल|स्थूल मापक]] पर सतहें हैं। [[सूक्ष्म पैमाने|स्थूल मापक]] पर, उनकी कुछ मोटाई हो सकती है। [[परमाणु पैमाने]] पर, वे परमाणुओं या [[अणु]]ओं के बीच रिक्त स्थान द्वारा गठित छिद्रों के कारण सतह के रूप में बिल्कुल नहीं दिखते हैं।


भौतिकी में मानी जाने वाली अन्य सतहें [[ wavefront ]] हैं। इनमें से एक, [[ऑगस्टिन-जीन फ्रेस्नेल]] द्वारा खोजा गया, गणितज्ञों द्वारा तरंग सतह कहा जाता है।
भौतिकी में मानी जाने वाली अन्य सतहें[[ wavefront | तरंगाग्र]] हैं। इनमें से एक, [[ऑगस्टिन-जीन फ्रेस्नेल]] द्वारा खोजा गया, गणितज्ञों द्वारा तरंग सतह कहा जाता है।


[[ दूरबीन ]] के परावर्तक की सतह क्रांति का एक पैराबोलॉइड है।
[[ दूरबीन | दूरबीन]] के परावर्तक की परवलयज का परिवर्तन  है।


अन्य घटनाएं:
अन्य घटनाएं:
* साबुन के बुलबुले, जो [[न्यूनतम सतह]]ों के भौतिक उदाहरण हैं
* साबुन के बुलबुले, जो [[न्यूनतम सतह]] के भौतिक उदाहरण हैं
* [[गुरुत्वाकर्षण]] क्षेत्र में [[समविभव सतह]]
* [[गुरुत्वाकर्षण]] क्षेत्र में [[समविभव सतह]]
* पृथ्वी की सतह
* पृथ्वी की सतह
* [[भूतल विज्ञान]], दो चरणों के अंतरापृष्ठ पर होने वाली भौतिक और रासायनिक घटनाओं का अध्ययन
* [[भूतल विज्ञान]], दो चरणों के अंतरापृष्ठ पर होने वाली भौतिक और रासायनिक घटनाओं का अध्ययन
* [[भूतल मेट्रोलॉजी]]
* [[भूतल मेट्रोलॉजी|भूतल मापिकी]]
* भूतल तरंग, एक यांत्रिक तरंग
* भूतल तरंग, एक यांत्रिक तरंग
* :श्रेणी:वायुमंडलीय सीमाएँ ([[ क्षोभसीमा ]], [[अंतरिक्ष का किनारा]], [[plus]], आदि)
* वायुमंडलीय सीमाएँ ([[ क्षोभसीमा | क्षोभसीमा]], [[अंतरिक्ष का किनारा|सतह का किनारा]], [[plus|प्लास्मास्फीयर]], आदि)


== कंप्यूटर ग्राफिक्स में ==
== कंप्यूटर ग्राफिक्स में ==
{{main|Computer representation of surfaces}}
{{main|सतहों का कंप्यूटर प्रतिनिधित्व}}
{{expand section|date=April 2016}}


कंप्यूटर ग्राफिक्स में मुख्य चुनौतियों में से एक सतहों का यथार्थवादी सिमुलेशन बनाना है। [[3 डी कंप्यूटर ग्राफिक्स]] (सीएएक्स) के तकनीकी अनुप्रयोगों जैसे [[कंप्यूटर एडेड डिजाइन]] और कंप्यूटर [[कंप्यूटर सहायतायुक्त विनिर्माण]] में, सतह वस्तुओं का प्रतिनिधित्व करने का एक तरीका है। अन्य तरीके वायरफ्रेम (रेखाएं और वक्र) और ठोस हैं। बिंदु बादलों को कभी-कभी किसी वस्तु का प्रतिनिधित्व करने के लिए अस्थायी तरीके के रूप में भी उपयोग किया जाता है, जिसमें तीन स्थायी प्रतिनिधित्वों में से एक या अधिक बनाने के लिए बिंदुओं का उपयोग करने का लक्ष्य होता है।
कंप्यूटर ग्राफिक्स में मुख्य चुनौतियों में से सतहों का यथार्थवादी अनुकरण बनाना है। [[3 डी कंप्यूटर ग्राफिक्स]] (CAx) के तकनीकी अनुप्रयोगों जैसे [[कंप्यूटर एडेड डिजाइन|कम्प्यूटर-साधित अभिकल्प]] और कंप्यूटर [[कंप्यूटर सहायतायुक्त विनिर्माण]] में, सतह वस्तुओं का प्रतिनिधित्व करने का तरीका है। अन्य तरीके वायरफ्रेम (रेखाएं और वक्र) और ठोस हैं। बिंदु अभ्र को कभी-कभी किसी वस्तु का प्रतिनिधित्व करने के लिए अस्थायी तरीके के रूप में भी उपयोग किया जाता है, जिसमें तीन स्थायी प्रतिनिधित्वों में से एक या अधिक बनाने के लिए बिंदुओं का उपयोग करने का लक्ष्य होता है।


==संदर्भ==
==संदर्भ==
Line 45: Line 45:


{{Authority control}}
{{Authority control}}
[[Category: सतहें| सतहें]] [[Category: ज्यामितीय आकार]] [[Category: व्यापक अवधारणा वाले लेख]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 03/04/2023]]
[[Category:Created On 03/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:ज्यामितीय आकार]]
[[Category:व्यापक अवधारणा वाले लेख]]
[[Category:सतहें| सतहें]]

Latest revision as of 14:40, 28 August 2023

एक सेब की सतह में विभिन्न बोधगम्य विशेषताएं होती हैं, जैसे वक्रता, चिकनाई, बनावट, रंग और चमक; दृष्टि या स्पर्श द्वारा इन विशेषताओं का अवलोकन करने से वस्तु की पहचान की जा सकती है।
जामदानी पर पड़ी पानी की बूंद। कपड़ा के नीचे तैरने से रोकने के लिए भूतल तनाव काफी अधिक है।
सूर्य, सभी सितारों की तरह, दूर से एक अलग सतह के रूप में दिखाई देता है, लेकिन करीब आने पर कोई निर्धारित सतह नहीं होती है।

सतह, शब्द का सबसे अधिक उपयोग किया जाता है, यह भौतिक वस्तु या स्थान की सबसे बाहरी या सबसे ऊपर की परत है।[1][2] यह वस्तु का वह भाग या क्षेत्र है जिसे पहले दृष्टि और स्पर्श की इंद्रियों का उपयोग करके पर्यवेक्षक द्वारा माना जा सकता है, और वह भाग है जिसके साथ अन्य सामग्री पहले परस्पर क्रिया करती है। किसी वस्तु की सतह "मात्र ज्यामितीय ठोस" से अधिक है, लेकिन "रंग और गर्मी जैसे बोधगम्य गुणों से भरा हुआ, फैला हुआ, या भरा हुआ है"।[3]

सतह की अवधारणा को गणित में, विशेष रूप से ज्यामिति में अमूर्त और औपचारिक रूप दिया गया है। जिन गुणों पर जोर दिया गया है, उनके आधार पर कई गैर-समतुल्य औपचारिकताएं हैं, जैसे बीजगणितीय सतह, चिकनी सतह या भग्न सतह कभी-कभी कुछ विशेषण के साथ, यह सभी सतह कहलाते है।

सतह की अवधारणा और इसके गणितीय अमूर्तता दोनों का व्यापक रूप से भौतिकी, अभियांत्रिकी, कंप्यूटर ग्राफिक्स और कई अन्य विषयों में मुख्य रूप से भौतिक वस्तुओं की सतहों का प्रतिनिधित्व करने में उपयोग किया जाता है। उदाहरण के लिए, हवाई जहाज के वायुगतिकीय गुणों का विश्लेषण करने में, केंद्रीय विचार इसकी सतह के साथ हवा का प्रवाह है। अवधारणा कुछ दार्शनिक प्रश्न भी उठाती है - उदाहरण के लिए, परमाणुओं या अणुओं की परत कितनी मोटी होती है जिसे किसी वस्तु की सतह का हिस्सा माना जा सकता है (अर्थात, जहां सतह समाप्त होती है और आंतरिक आरम्भ होती है),[2][4] और क्या वस्तुओं में वास्तव में कोई सतह होती है यदि, उप-परमाणु स्तर पर, वे वास्तव में कभी भी अन्य वस्तुओं के संपर्क में नहीं आते हैं।[5]

सतहों की धारणा

किसी वस्तु की सतह वस्तु का वह हिस्सा है जिसे मुख्य रूप से माना जाता है। मनुष्य किसी वस्तु की सतह को देखने की तुलना किसी वस्तु को देखने से करता है। उदाहरण के लिए, एक वाहन को देखने में, सामान्यतः इंजन, इलेक्ट्रॉनिक्स और अन्य आंतरिक संरचनाओं को देखना संभव नहीं होता है, लेकिन वस्तु को अभी भी वाहन के रूप में पहचाना जाता है क्योंकि सतह इसे एक के रूप में पहचानती है।[6] वैचारिक रूप से, किसी वस्तु की सतह को परमाणुओं की सबसे ऊपरी परत के रूप में परिभाषित किया जा सकता है।[7] कई वस्तुओं और जीवों की सतह होती है जो किसी तरह से उनके आंतरिक भाग से अलग होती है। उदाहरण के लिए, सेब के छिलके में सेब के अंदर के गुणों से बहुत अलग गुण होते हैं,[8] और रेडियो की बाहरी सतह के आंतरिक भाग से बहुत भिन्न घटक हो सकते हैं। सेब को छीलने से सतह को हटाने का गठन होता है, अंततः अलग सतह को अलग बनावट और उपस्थिति के साथ छोड़ देता है, जिसे छिलके वाले सेब के रूप में पहचाना जा सकता है। इलेक्ट्रॉनिक उपकरण की बाहरी सतह को हटाने से इसका उद्देश्य पहचानने योग्य नहीं हो सकता है। इसके विपरीत, चट्टान की सबसे बाहरी परत या एक गिलास में निहित तरल की सबसे ऊपरी परत को हटाने से पदार्थ या सामग्री को समान संरचना के साथ छोड़ दिया जाता है, केवल मात्रा में थोड़ा कम हो जाता है।

गणित में

गणित में, सतह की सामान्य अवधारणा का गणितीय मॉडल है। यह द्वि-विम समष्टि का सामान्यीकरण है, लेकिन, एक तल के विपरीत, यह घुमावदार हो सकता है; यह सीधी रेखा का सामान्यीकरण करने वाले वक्र के समान है।

अध्ययन के लिए उपयोग किए जाने वाले संदर्भ और गणितीय उपकरणों के आधार पर कई और सटीक परिभाषाएँ हैं। त्रिविम समष्टि में सबसे सरल गणितीय सतहें द्वि-विम समष्टि और गोले हैं। सतह की सटीक परिभाषा संदर्भ पर निर्भर हो सकती है। सामान्यतः बीजगणितीय ज्यामिति में, सतह स्वयं को पार कर सकती है (और अन्य विशिष्टताएं हो सकती हैं), जबकि, संस्थितिविज्ञान और अवकल ज्यामिति में, ऐसा नहीं हो सकता है।

सतह दो आयाम का सामयिक स्थान है; इसका मतलब है कि सतह पर गतिमान बिंदु दो दिशाओं में गति कर सकता है (इसमें स्वतंत्रता की दो डिग्री हैं)। दूसरे शब्दों में, लगभग हर बिंदु के आसपास, समन्वय पैच होता है जिस पर द्वि-आयामी समन्वय प्रणाली परिभाषित होती है। उदाहरण के लिए, पृथ्वी की सतह (आदर्श रूप से) द्वि-आयामी क्षेत्र के समान है, और अक्षांश और देशांतर उस पर द्वि-आयामी निर्देशांक प्रदान करते हैं (ध्रुवों को छोड़कर और 180 वें मेरिडियन के साथ)।

भौतिक विज्ञान में

भौतिकी और रसायन विज्ञान (सामान्य रूप से भौतिक विज्ञान) में मानी जाने वाली कई सतहें अंतरापृष्ठ (मामला) पदार्थ) हैं। उदाहरण के लिए, सतह दो तरल पदार्थ (समुद्र की सतह) या ठोस (एक गेंद की सतह) की आदर्श प्रतिबंधक के बीच की आदर्श सीमांत हो सकती है। द्रव गतिकी में, मुक्त पृष्ठ के आकार को पृष्ठ तनाव द्वारा परिभाषित किया जा सकता है। चूंकि, वे केवल स्थूल मापक पर सतहें हैं। स्थूल मापक पर, उनकी कुछ मोटाई हो सकती है। परमाणु पैमाने पर, वे परमाणुओं या अणुओं के बीच रिक्त स्थान द्वारा गठित छिद्रों के कारण सतह के रूप में बिल्कुल नहीं दिखते हैं।

भौतिकी में मानी जाने वाली अन्य सतहें तरंगाग्र हैं। इनमें से एक, ऑगस्टिन-जीन फ्रेस्नेल द्वारा खोजा गया, गणितज्ञों द्वारा तरंग सतह कहा जाता है।

दूरबीन के परावर्तक की परवलयज का परिवर्तन है।

अन्य घटनाएं:

कंप्यूटर ग्राफिक्स में

कंप्यूटर ग्राफिक्स में मुख्य चुनौतियों में से सतहों का यथार्थवादी अनुकरण बनाना है। 3 डी कंप्यूटर ग्राफिक्स (CAx) के तकनीकी अनुप्रयोगों जैसे कम्प्यूटर-साधित अभिकल्प और कंप्यूटर कंप्यूटर सहायतायुक्त विनिर्माण में, सतह वस्तुओं का प्रतिनिधित्व करने का तरीका है। अन्य तरीके वायरफ्रेम (रेखाएं और वक्र) और ठोस हैं। बिंदु अभ्र को कभी-कभी किसी वस्तु का प्रतिनिधित्व करने के लिए अस्थायी तरीके के रूप में भी उपयोग किया जाता है, जिसमें तीन स्थायी प्रतिनिधित्वों में से एक या अधिक बनाने के लिए बिंदुओं का उपयोग करने का लक्ष्य होता है।

संदर्भ

  1. Sparke, Penny & Fisher, Fiona (2016). द रूटलेज कम्पेनियन टू डिजाइन स्टडीज. New York: Routledge. p. 124. ISBN 9781317203285. OCLC 952155029.
  2. 2.0 2.1 Sorensen, Roy (2011). Seeing Dark Things: The Philosophy of Shadows. Oxford: Oxford University Press. p. 45. ISBN 9780199797134. OCLC 955163137.
  3. Butchvarov, Panayot (1970). ज्ञान की अवधारणा. Evanston: Northwestern University Press. p. 249. ISBN 9780810103191. OCLC 925168650.
  4. Stroll, Avrum (1988). सतह. Minneapolis: University of Minnesota Press. p. 205. ISBN 9780816616947. OCLC 925290683.
  5. Plesha, Michael; Gray, Gary & Costanzo, Francesco (2012). Engineering Mechanics: Statics and Dynamics (2nd ed.). New York: McGraw-Hill Higher Education. p. 8. ISBN 9780073380315. OCLC 801035627.
  6. Butchvarov (1970), p. 253.
  7. Stroll (1988), p. 54.
  8. Stroll (1988), p. 81.