नेटवर्क विश्लेषण: Difference between revisions

From Vigyanwiki
No edit summary
(Edit)
Line 2: Line 2:


== परिभाषाएँ ==
== परिभाषाएँ ==
{|
{| class="wikitable"
| -Valign = शीर्ष
|+
|'''[[:hi:इलेक्ट्रॉनिक अवयव|अवयव]]'''
| -Valign = शीर्ष
|दो या दो से अधिक टर्मिनलों वाला एक उपकरण जिसमें या जिसमें से करंट प्रवाहित हो सकता है।
| '' '[[नोड (सर्किट) | नोड]]' '' '' एक बिंदु जिस पर दो से अधिक घटकों के टर्मिनलों को शामिल किया जाता है। एक शून्य प्रतिरोध के साथ एक कंडक्टर को विश्लेषण के उद्देश्य के लिए एक नोड माना जाता है।
|-
| -Valign = शीर्ष
|'''[[:hi:नोड (सर्किट)|नोड]]'''
|
|एक बिंदु जिस पर दो से अधिक घटकों के टर्मिनल जुड़ते हैं। पर्याप्त शून्य प्रतिरोध वाले कंडक्टर को विश्लेषण के उद्देश्य के लिए एक नोड माना जाता है।
| -Valign = शीर्ष
|-
|'''डाली'''
| -Valign = शीर्ष
|दो नोड्स में शामिल होने वाले घटक।
| '' '[[पोर्ट (सर्किट थ्योरी) | पोर्ट]]' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''
|-
| -Valign = शीर्ष
|'''[[:hi:जाल विश्लेषण|जाल]]'''
एक सर्किट, इस अर्थ में, एक-पोर्ट नेटवर्क है और विश्लेषण करने के लिए एक तुच्छ मामला है। यदि किसी अन्य सर्किट से कोई कनेक्शन है तो एक गैर-तुच्छ नेटवर्क बन गया है और कम से कम दो बंदरगाहों का अस्तित्व होना चाहिए। अक्सर, "सर्किट" और "नेटवर्क" का उपयोग परस्पर उपयोग किया जाता है, लेकिन कई विश्लेषकों का अर्थ "नेटवर्क" को आरक्षित करता है, जिसमें आदर्श घटकों से मिलकर एक आदर्श मॉडल होता है<ref>{{cite journal |author=Belevitch V |title=Summary of the history of circuit theory |journal=Proceedings of the IRE |volume=50 |issue=5 |pages=849 |date=May 1962 |doi=10.1109/JRPROC.1962.288301 |s2cid=51666316 |author-link=Vitold Belevitch }} का हवाला देते {{cite journal |title=IRE Standards on Circuits: Definitions of Terms for Linear Passive Reciprocal Time Invariant Networks, 1960 |journal=Proceedings of the IRE |volume=48 |issue=9 |pages=1609 |date=September 1960 |doi=10.1109/JRPROC.1960.287676 }}इस परिभाषा को सही ठहराने के लिए। <br /> [[सिडनी डार्लिंगटन]] {{cite journal |author=Darlington S |title=A history of network synthesis and filter theory for circuits composed of resistors, inductors, and capacitors |journal=IEEE Trans. Circuits and Systems |volume=31 |issue=1 |pages=4 |year=1984 |doi= 10.1109/TCS.1984.1085415}}<br /> Belevitch का अनुसरण करता है, लेकिन नोट्स अब "नेटवर्क" के कई बोलचाल के उपयोग भी हैं।</ref>
|एक नेटवर्क के भीतर शाखाओं का एक समूह एक पूर्ण लूप बनाने के लिए जुड़ गया जैसे कि इसके अंदर कोई अन्य लूप नहीं है।
| -Valign = शीर्ष
|-
| '' '[[ट्रांसफर फ़ंक्शन]]' '' || दो बंदरगाहों के बीच धाराओं और/या वोल्टेज का संबंध।सबसे अधिक बार, एक इनपुट पोर्ट और एक आउटपुट पोर्ट पर चर्चा की जाती है और ट्रांसफर फ़ंक्शन को लाभ या क्षीणन के रूप में वर्णित किया जाता है।
|'''[[:hi:पोर्ट (सर्किट सिद्धांत)|पत्तन]]'''
| -Valign = शीर्ष
|दो टर्मिनल जहां एक में करंट दूसरे के बाहर करंट के समान होता है।
| '' 'घटक हस्तांतरण फ़ंक्शन' '' ||आमतौर पर मनमानी सुविधा की बात होती है कि क्या वोल्टेज या करंट को इनपुट माना जाता है)।एक तीन (या अधिक) टर्मिनल घटक में प्रभावी रूप से दो (या अधिक) पोर्ट होते हैं और ट्रांसफर फ़ंक्शन को एकल प्रतिबाधा के रूप में व्यक्त नहीं किया जा सकता है।सामान्य दृष्टिकोण मापदंडों के मैट्रिक्स के रूप में स्थानांतरण फ़ंक्शन को व्यक्त करना है।ये पैरामीटर प्रतिबाधा हो सकते हैं, लेकिन बड़ी संख्या में अन्य दृष्टिकोण हैं (देखें [[दो-पोर्ट नेटवर्क]]])।
|-
|'''[[:hi:विद्युत परिपथ|सर्किट]]'''
|एक [[जनरेटर]] के एक टर्मिनल से लोड घटक के माध्यम से एक करंट और दूसरे टर्मिनल में वापस। एक सर्किट, इस अर्थ में, एक बंदरगाह नेटवर्क है और विश्लेषण करने के लिए एक छोटा मामला है। यदि किसी अन्य सर्किट से कोई संबंध है तो एक गैर-तुच्छ नेटवर्क बनाया गया है और कम से कम दो पोर्ट मौजूद होने चाहिए। अक्सर, "सर्किट" और "नेटवर्क" को एक दूसरे के स्थान पर उपयोग किया जाता है, लेकिन कई विश्लेषक "नेटवर्क" को आदर्श घटकों से युक्त एक आदर्श मॉडल के रूप में सुरक्षित रखते हैं। <ref>{{Cite journal|last=Belevitch V|title=Summary of the history of circuit theory|journal=Proceedings of the IRE|volume=50|issue=5|pages=849|date=May 1962|doi=10.1109/JRPROC.1962.288301|author-link=Vitold Belevitch}} cites {{Cite journal|title=IRE Standards on Circuits: Definitions of Terms for Linear Passive Reciprocal Time Invariant Networks, 1960|journal=Proceedings of the IRE|volume=48|issue=9|pages=1609|date=September 1960|doi=10.1109/JRPROC.1960.287676}}to justify this definition.
 
[[सिडनी डार्लिंगटन|Sidney Darlington]] {{Cite journal|last=Darlington S|title=A history of network synthesis and filter theory for circuits composed of resistors, inductors, and capacitors|journal=IEEE Trans. Circuits and Systems|volume=31|issue=1|pages=4|year=1984|doi=10.1109/TCS.1984.1085415}}
 
follows Belevitch but notes there are now also many colloquial uses of "network".</ref>
|-
|'''[[:hi:अंतरण प्रकार्य|स्थानांतरण प्रकार्य]]'''
|दो बंदरगाहों के बीच धाराओं और/या वोल्टेज का संबंध। अक्सर, एक इनपुट पोर्ट और एक आउटपुट पोर्ट पर चर्चा की जाती है और ट्रांसफर फ़ंक्शन को लाभ या क्षीणन के रूप में वर्णित किया जाता है।
|-
|'''घटक स्थानांतरण समारोह'''
|दो-टर्मिनल घटक (यानी एक-पोर्ट घटक) के लिए, करंट और वोल्टेज को इनपुट और आउटपुट के रूप में लिया जाता है और ट्रांसफर फ़ंक्शन में प्रतिबाधा या प्रवेश की इकाइयाँ होंगी (यह आमतौर पर मनमानी सुविधा का मामला है चाहे वोल्टेज या करंट हो इनपुट माना जाता है)। एक तीन (या अधिक) टर्मिनल घटक में प्रभावी रूप से दो (या अधिक) पोर्ट होते हैं और स्थानांतरण फ़ंक्शन को एकल प्रतिबाधा के रूप में व्यक्त नहीं किया जा सकता है। सामान्य दृष्टिकोण स्थानांतरण फ़ंक्शन को मापदंडों के मैट्रिक्स के रूप में व्यक्त करना है। ये पैरामीटर प्रतिबाधा हो सकते हैं, लेकिन बड़ी संख्या में अन्य दृष्टिकोण हैं ( [[:hi:द्वि-प्रद्वार जालक्रम|दो-पोर्ट नेटवर्क]] देखें)।
|}
|}


Line 24: Line 36:
[[Image:circuit equivalence.png|200px | सही]]
[[Image:circuit equivalence.png|200px | सही]]
{{main|Equivalent impedance transforms}}
{{main|Equivalent impedance transforms}}
नेटवर्क विश्लेषण में एक उपयोगी प्रक्रिया घटकों की संख्या को कम करके नेटवर्क को सरल बनाना है। यह भौतिक घटकों को अन्य संवर्धित घटकों के साथ बदलकर किया जा सकता है जिनका प्रभाव समान है। एक विशेष तकनीक सीधे घटकों की संख्या को कम कर सकती है, उदाहरण के लिए श्रृंखला में प्रतिबाधाओं को मिलाकर। दूसरी ओर, यह केवल फॉर्म को एक में बदल सकता है जिसमें घटकों को बाद के ऑपरेशन में कम किया जा सकता है। उदाहरण के लिए, कोई एक वोल्टेज जनरेटर को एक वर्तमान जनरेटर में बदल सकता है, जो नॉर्टन के प्रमेय का उपयोग करके एक समानांतर प्रतिबाधा भार के साथ जनरेटर के आंतरिक प्रतिरोध को संयोजित करने में सक्षम हो सकता है।
टवर्क विश्लेषण में एक उपयोगी प्रक्रिया घटकों की संख्या को कम करके नेटवर्क को सरल बनाना है। यह भौतिक घटकों को समान प्रभाव वाले अन्य काल्पनिक घटकों के साथ बदलकर किया जा सकता है। एक विशेष तकनीक सीधे घटकों की संख्या को कम कर सकती है, उदाहरण के लिए श्रृंखला में प्रतिबाधाओं को मिलाकर। दूसरी ओर, यह केवल उस रूप को बदल सकता है जिसमें बाद के ऑपरेशन में घटकों को कम किया जा सकता है। उदाहरण के लिए, नॉर्टन के प्रमेय का उपयोग करके एक वोल्टेज जनरेटर को वर्तमान जनरेटर में बदल सकता है ताकि बाद में समानांतर प्रतिबाधा भार के साथ जनरेटर के आंतरिक प्रतिरोध को संयोजित करने में सक्षम हो सके।
 
एक [[प्रतिरोधक सर्किट]] एक सर्किट है जिसमें केवल [[प्रतिरोधक]], आदर्श [[वर्तमान स्रोत]] एस, और आदर्श [[वोल्टेज स्रोत]] एस है। यदि स्रोत स्थिर हैं ([[प्रत्यक्ष वर्तमान | DC]]) स्रोत, परिणाम एक [[प्रत्यक्ष वर्तमान सर्किट | DC सर्किट]] है। एक सर्किट के विश्लेषण में सर्किट में मौजूद वोल्टेज और धाराओं के लिए हल करना होता है। यहां उल्लिखित समाधान सिद्धांत भी [[फासोर (इलेक्ट्रॉनिक्स) | फासोर]] पर भी लागू होते हैं [[#AC सर्किट | एसी सर्किट]] का विश्लेषण।


दो सर्किटों को टर्मिनलों की एक जोड़ी के संबंध में '' 'समतुल्य' '' कहा जाता है, यदि टर्मिनलों में [[वोल्टेज]] और [[वर्तमान (बिजली) | वर्तमान]] एक नेटवर्क के लिए टर्मिनलों के माध्यम से समान है अन्य नेटवर्क के टर्मिनलों पर वोल्टेज और वर्तमान के रूप में संबंध।
एक [[:hi:विद्युत परिपथ|प्रतिरोधक सर्किट]] एक सर्किट होता है जिसमें केवल [[:hi:प्रतिरोधक|प्रतिरोधक]], आदर्श [[:hi:धारा स्रोत|वर्तमान स्रोत]] और आदर्श [[:hi:वोल्टता स्रोत|वोल्टेज स्रोत]] होते हैं। यदि स्रोत स्थिर ( [[:hi:दिष्ट धारा|DC]] ) स्रोत हैं, तो परिणाम एक [[:hi:दिष्ट धारा|DC परिपथ है]] एक सर्किट के विश्लेषण में सर्किट में मौजूद वोल्टेज और धाराओं को हल करना शामिल है। यहां उल्लिखित समाधान सिद्धांत [[:hi:परिपथ विश्लेषण|एसी सर्किट]] के [[:hi:फेजर|चरण]] विश्लेषण पर भी लागू होते हैं।


यदि <गणित> v_2 = v_1 </math> का अर्थ है <ath> i_2 = i_1 </math> सभी के लिए (वास्तविक) मान <math> v_1 </math>, तो टर्मिनलों के संबंध में AB और XY, सर्किट 1 और सर्किट 2 समतुल्य हैं।
दो सर्किट को टर्मिनलों की एक जोड़ी के संबंध में '''समतुल्य''' कहा जाता है यदि एक नेटवर्क के लिए टर्मिनलों के माध्यम से [[:hi:विभवांतर|वोल्टेज]] और टर्मिनलों के माध्यम से [[:hi:विद्युत धारा|करंट]] का संबंध दूसरे नेटवर्क के टर्मिनलों पर वोल्टेज और करंट के समान होता है।


उपरोक्त एक [[एक-पोर्ट]] नेटवर्क के लिए एक पर्याप्त परिभाषा है। एक से अधिक बंदरगाहों के लिए, फिर यह परिभाषित किया जाना चाहिए कि इसी बंदरगाहों के सभी जोड़े के बीच धाराओं और वोल्टेज को एक ही संबंध को सहन करना होगा। उदाहरण के लिए, STAR और DELTA नेटवर्क प्रभावी रूप से तीन पोर्ट नेटवर्क हैं और इसलिए पूरी तरह से उनके समकक्ष को निर्दिष्ट करने के लिए तीन एक साथ समीकरणों की आवश्यकता होती है।
अगर <math>V_2=V_1</math> तात्पर्य <math>I_2=I_1</math> के सभी (वास्तविक) मूल्यों के लिए <math>V_1</math>, तो टर्मिनलों ab और xy के संबंध में, सर्किट 1 और सर्किट 2 समतुल्य हैं।


=== श्रृंखला में और समानांतर में बाधाएं ===
उपरोक्त [[:hi:वन-पोर्ट|एक-पोर्ट]] नेटवर्क के लिए पर्याप्त परिभाषा है। एक से अधिक पोर्ट के लिए, यह परिभाषित किया जाना चाहिए कि संबंधित पोर्ट के सभी जोड़े के बीच की धाराओं और वोल्टेज में समान संबंध होना चाहिए। उदाहरण के लिए, स्टार और डेल्टा नेटवर्क प्रभावी रूप से तीन पोर्ट नेटवर्क हैं और इसलिए उनकी तुल्यता को पूरी तरह से निर्दिष्ट करने के लिए एक साथ तीन समीकरणों की आवश्यकता होती है।
कुछ दो टर्मिनल नेटवर्क के प्रतिबाधा अंततः श्रृंखला में प्रतिबाधा या समानांतर में प्रतिबाधा के क्रमिक अनुप्रयोगों द्वारा एक ही प्रतिबाधा में कम हो सकते हैं।


[[श्रृंखला और समानांतर सर्किट#श्रृंखला सर्किट | श्रृंखला]] में बाधाएँ
=== श्रृंखला में और समानांतर में प्रतिबाधा ===
प्रतिबाधाओं के कुछ दो टर्मिनल नेटवर्क को अंततः श्रृंखला में प्रतिबाधाओं के क्रमिक अनुप्रयोगों या समानांतर में प्रतिबाधाओं द्वारा एकल प्रतिबाधा में कम किया जा सकता है।


[[श्रृंखला और समानांतर सर्किट#समानांतर सर्किट | समानांतर]] में बाधाएं: <गणित> \ frac {1} {z_ \ mathrm {eq}} = \ frac {1} {z_1} + \ frac {1} {Z_2} {Z_2}+ \, \ cdots \, + \ frac {1} {z_n}</math>
श्रृंखला में प्रतिबाधा: <math>Z_\mathrm{eq} = Z_1 + Z_2 + \,\cdots\, + Z_n .</math> [[:hi:श्रेणी और समानांतर परिपथ|समानांतर]] में प्रतिबाधा: <math>\frac{1}{Z_\mathrm{eq}} = \frac{1}{Z_1} + \frac{1}{Z_2} + \,\cdots\, + \frac{1}{Z_n} .</math>समानांतर में केवल दो बाधाओं के लिए उपरोक्त सरलीकृत: <math>Z_\mathrm{eq} = \frac{Z_1Z_2}{Z_1 + Z_2} .</math>


: समानांतर में केवल दो बाधाओं के लिए उपरोक्त सरल: <गणित> z_ \ mathrm {eq} = \ frac {Z_1Z_2} {Z_1 + Z_2}। </math>
=== डेल्टा-वाई परिवर्तन ===
 
=== डेल्टा-वी परिवर्तन ===
{{main|Y-Δ transform}}
{{main|Y-Δ transform}}


[[Image:Delta-Star Transformation.svg|right|400px]]
[[Image:Delta-Star Transformation.svg|right|400px]]


दो से अधिक टर्मिनलों के साथ बाधाओं का एक नेटवर्क एक एकल प्रतिबाधा समकक्ष सर्किट में कम नहीं किया जा सकता है। एक एन-टर्मिनल नेटवर्क, सबसे अच्छे रूप में, '' एन '' प्रतिबाधा (सबसे खराब <Sup> '' '' '' </sup>'' c <सब> 2 ) तक कम हो सकता है। एक तीन टर्मिनल नेटवर्क के लिए, तीनों प्रतिबाधाओं को तीन नोड डेल्टा (Δ) नेटवर्क या चार नोड स्टार (वाई) नेटवर्क के रूप में व्यक्त किया जा सकता है। ये दो नेटवर्क समतुल्य हैं और उनके बीच परिवर्तन नीचे दिए गए हैं। नोड्स की एक मनमानी संख्या के साथ एक सामान्य नेटवर्क को केवल श्रृंखला और समानांतर संयोजनों का उपयोग करके न्यूनतम संख्या में बाधाओं की संख्या में कम नहीं किया जा सकता है। सामान्य तौर पर, Y-Δ और Δ-Y परिवर्तनों का भी उपयोग किया जाना चाहिए। कुछ नेटवर्क के लिए Y-Δ का विस्तार [[#General फॉर्म ऑफ़ नेटवर्क नोड एलिमिनेशन | स्टार-पॉलीगॉन]] परिवर्तनों की भी आवश्यकता हो सकती है।''
दो से अधिक टर्मिनलों के साथ प्रतिबाधा के एक नेटवर्क को एकल प्रतिबाधा समकक्ष सर्किट में कम नहीं किया जा सकता है। एक n-टर्मिनल नेटवर्क, सर्वोत्तम रूप से, ''n'' प्रतिबाधाओं (सबसे खराब <sup>''n''</sup> C <sub>2</sub> ) तक कम किया जा सकता है। तीन टर्मिनल नेटवर्क के लिए, तीन बाधाओं को तीन नोड डेल्टा (Δ) नेटवर्क या चार नोड स्टार (वाई) नेटवर्क के रूप में व्यक्त किया जा सकता है। ये दो नेटवर्क समतुल्य हैं और उनके बीच के परिवर्तन नीचे दिए गए हैं। नोड्स की मनमानी संख्या वाले एक सामान्य नेटवर्क को केवल श्रृंखला और समानांतर संयोजनों का उपयोग करके न्यूनतम संख्या में प्रतिबाधाओं तक कम नहीं किया जा सकता है। सामान्य तौर पर, Y-Δ और Δ-Y रूपांतरणों का भी उपयोग किया जाना चाहिए। कुछ नेटवर्कों के लिए Y-Δ के स्टार-पॉलीगॉन रूपांतरणों के विस्तार की भी आवश्यकता हो सकती है।


तुल्यता के लिए, किसी भी जोड़ी टर्मिनलों के बीच प्रतिबाधा दोनों नेटवर्क के लिए समान होना चाहिए, जिसके परिणामस्वरूप तीन एक साथ समीकरणों का एक सेट होता है। नीचे दिए गए समीकरणों को प्रतिरोध के रूप में व्यक्त किया गया है, लेकिन प्रतिबाधा के साथ सामान्य मामले पर समान रूप से लागू होता है।
तुल्यता के लिए, टर्मिनलों की किसी भी जोड़ी के बीच प्रतिबाधा दोनों नेटवर्क के लिए समान होनी चाहिए, जिसके परिणामस्वरूप तीन समकालिक समीकरणों का एक सेट होता है। नीचे दिए गए समीकरणों को प्रतिरोध के रूप में व्यक्त किया जाता है, लेकिन समान रूप से प्रतिबाधा के साथ सामान्य मामले पर लागू होता है।


==== डेल्टा-टू-स्टार परिवर्तन समीकरण ====
==== डेल्टा-टू-स्टार परिवर्तन समीकरण ====
?
<math>R_a = \frac{R_\mathrm{ac}R_\mathrm{ab}}{R_\mathrm{ac} + R_\mathrm{ab} + R_\mathrm{bc}} </math>
 


?
<math>R_b = \frac{R_\mathrm{ab}R_\mathrm{bc}}{R_\mathrm{ac} + R_\mathrm{ab} + R_\mathrm{bc}} </math>


?


==== स्टार-टू-डेल्टा परिवर्तन समीकरण ====
<math>R_c = \frac{R_\mathrm{bc}R_\mathrm{ac}}{R_\mathrm{ac} + R_\mathrm{ab} + R_\mathrm{bc}} </math>


: <गणित> r_ \ mathrm {ac} = \ frac {r_ar_b + r_br_c + r_cr_a} {r_b}


: <गणित> r_ \ mathrm {ab} = \ frac {r_ar_b + r_br_c + r_cr_a} {r_c}
==== स्टार-टू-डेल्टा परिवर्तन समीकरण ====


: <गणित> r_ \ mathrm {bc} = \ frac {r_ar_b + r_br_c + r_cr_a} {r_a}
==== <math>R_\mathrm{ac} = \frac{R_aR_b + R_bR_c + R_cR_a}{R_b}</math> ====


==== डेल्टा-टू-टू-स्टार परिवर्तन ecations =====
==== <math>R_\mathrm{ac} = \frac{R_aR_b + R_bR_c + R_cR_a}{R_b}</math> ====
: <गणित> r_a = \ frac {r_ \ mathrm \ mathrm \ mathrm \ mathrm \ mathrm \ mathrm \ mathrm \ mathrm \ mathrm \ mathrm \ mathrm}}} </ math> </ math>


?
==== <math>R_\mathrm{bc} = \frac{R_aR_b + R_bR_c + R_cR_a}{R_a}</math> ====


?
=== नेटवर्क नोड उन्मूलन का सामान्य रूप ===
{{main|Star-mesh transform}}


==== स्टार-टू-डेल्टा परिवर्तन समीकरण ====
स्टार-टू-डेल्टा और सीरीज़-रेसिस्टर ट्रांसफॉर्मेशन सामान्य रेसिस्टर नेटवर्क नोड एलिमिनेशन एल्गोरिथम के विशेष मामले हैं। द्वारा जुड़ा हुआ कोई भी नोड <math>N</math> प्रतिरोधक ( <math>R_1</math> .. <math>R_N</math> ) नोड्स '''1''' के लिए। . '''एन''' द्वारा प्रतिस्थापित किया जा सकता है <math>{N \choose 2}</math> शेष को जोड़ने वाले प्रतिरोधक <math>N</math> नोड्स। किन्हीं दो नोड्स के बीच प्रतिरोध <math>x</math> और <math>y</math> द्वारा दिया गया है


: <गणित> r_ \ mathrm {ac} = \ frac {r_ar_b + r_br_c + r_cr_a} {r_b}
<math>R_\mathrm{xy} = R_xR_y\sum_{i=1}^N \frac{1}{R_i}</math>


: <गणित> r_ \ mathrm {ab} = \ frac {r_ar_b + r_br_c + r_cr_a} {r_c}
एक स्टार-टू-डेल्टा के लिए ( <math>N=3</math> ) यह कम हो जाता है:


: <गणित> r_ \ mathrm {bc} = \ frac {r_ar_b + r_br_c + r_cr_a} {r_a}
<math>R_\mathrm{ab} = R_aR_b(\frac 1 R_a+\frac 1 R_b+\frac 1 R_c) = \frac{R_aR_b(R_aR_b+R_aR_c+R_bR_c)}{R_aR_bR_c}=\frac{R_aR_b + R_bR_c + R_cR_a}{R_c}</math>


=== नेटवर्क नोड उन्मूलन का सामान्य रूप ===
एक श्रृंखला में कमी के लिए ( <math>N=2</math> ) यह कम हो जाता है:
{{main|Star-mesh transform}}


स्टार-टू-डेल्टा और सीरीज़-रिजर्वॉटर ट्रांसफॉर्मेशन जनरल रेसिस्टर नेटवर्क नोड एलिमिनेशन एल्गोरिथ्म के विशेष मामले हैं। कोई भी नोड <गणित> n </math> प्रतिरोधों (<Math> r_1 </math> .. <Math> r_n </math>) से जुड़ा हुआ है। 'माथ> {n \ चुनें 2} </math> प्रतिरोधों द्वारा प्रतिस्थापित किया जा सकता है जो शेष <Math> n </Math> नोड्स को इंटरकनेक्ट करता है। किसी भी दो नोड्स <गणित> x </math> और <math> y </math> के बीच प्रतिरोध द्वारा दिया गया है:
<math>R_\mathrm{ab} = R_aR_b(\frac 1 R_a+\frac 1 R_b) = \frac{R_aR_b(R_a+R_b)}{R_aR_b} = R_a+R_b</math>
: <गणित> r_ \ mathrm {xy} = r_xr_y \ sum_ {i = 1}^n \ frac {1} {r_i}
एक स्टार-टू-डेल्टा के लिए (<ath> n = 3 </math>) यह कम हो जाता है:
। R_cr_a} {r_c} </math>
एक श्रृंखला में कमी के लिए (<गणित> n = 2 </math>) यह कम हो जाता है:
एक झूलने वाले अवरोधक के लिए (<ath> n = 1 </math>) इसके परिणामस्वरूप रोकनेवाला के उन्मूलन में परिणाम होता है क्योंकि <ath> {1 \ _ 2} = 0 </math> चुनें।


लटकने वाले रोकनेवाला के लिए ( <math>N=1</math> ) इसके परिणामस्वरूप रोकनेवाला समाप्त हो जाता है क्योंकि <math>{1 \choose 2} = 0</math> .
=== स्रोत परिवर्तन ===
=== स्रोत परिवर्तन ===
[[Image:Sourcetransform.svg|thumb]]
[[Image:Sourcetransform.svg|thumb]]


एक आंतरिक प्रतिबाधा (यानी गैर-आदर्श जनरेटर) के साथ एक जनरेटर को एक आदर्श वोल्टेज जनरेटर या एक आदर्श वर्तमान जनरेटर और प्रतिबाधा के रूप में दर्शाया जा सकता है।ये दो रूप समतुल्य हैं और परिवर्तन नीचे दिए गए हैं।यदि दो नेटवर्क टर्मिनलों एबी के संबंध में बराबर हैं, तो वी और मुझे दोनों नेटवर्क के लिए समान होना चाहिए।इस प्रकार,
एक आंतरिक प्रतिबाधा (यानी गैर-आदर्श जनरेटर) के साथ एक जनरेटर को एक आदर्श वोल्टेज जनरेटर या एक आदर्श वर्तमान जनरेटर प्लस प्रतिबाधा के रूप में दर्शाया जा सकता है। ये दो रूप समतुल्य हैं और रूपांतरण नीचे दिए गए हैं। यदि दो नेटवर्क ab टर्मिनलों के बराबर हैं, तो V और I दोनों नेटवर्क के लिए समान होना चाहिए। इस प्रकार,


: <गणित> v_ \ mathrm {s} = ri_ \ mathrm {s} \, \, \!/गणित>
: <math>V_\mathrm{s} = RI_\mathrm{s}\,\!</math> या <math>I_\mathrm{s} = \frac{V_\mathrm{s}}{R}</math>
* [[नॉर्टन के प्रमेय]] में कहा गया है कि किसी भी दो-टर्मिनल रैखिक नेटवर्क को एक आदर्श वर्तमान जनरेटर और एक समानांतर प्रतिबाधा में कम किया जा सकता है।
** [[:hi:नॉर्टन का प्रमेय|नॉर्टन के प्रमेय में]] कहा गया है कि किसी भी दो-टर्मिनल रैखिक नेटवर्क को एक आदर्श वर्तमान जनरेटर और एक समानांतर प्रतिबाधा में कम किया जा सकता है।
* [[Thévenin के प्रमेय]] में कहा गया है कि किसी भी दो-टर्मिनल रैखिक नेटवर्क को एक आदर्श वोल्टेज जनरेटर और एक श्रृंखला प्रतिबाधा में कम किया जा सकता है।
** [[:hi:थेवेनिन का प्रमेय|थेवेनिन के प्रमेय में]] कहा गया है कि किसी भी दो-टर्मिनल रैखिक नेटवर्क को एक आदर्श वोल्टेज जनरेटर और एक श्रृंखला प्रतिबाधा में कम किया जा सकता
*
*


== सरल नेटवर्क ==
== सरल नेटवर्क ==
कुछ बहुत ही सरल नेटवर्क का विश्लेषण अधिक व्यवस्थित दृष्टिकोण को लागू करने की आवश्यकता के बिना किया जा सकता है।
अधिक व्यवस्थित दृष्टिकोणों को लागू करने की आवश्यकता के बिना कुछ बहुत ही सरल नेटवर्क का विश्लेषण किया जा सकता है।


=== वोल्टेज डिवीजन ऑफ सीरीज़ कंपोनेंट्स ===
=== श्रृंखला घटकों का वोल्टेज विभाजन ===
{{main|voltage division}}
{{main|voltage division}}
N पर विचार करें जो '' 'श्रृंखला' 'में जुड़े हुए हैं।वोल्टेज <गणित> v_i </math> किसी भी प्रतिबाधा के पार <math> z_i </math> है
n प्रतिबाधाओं पर विचार करें जो '''श्रृंखला''' में जुड़े हुए हैं। वोल्टेज <math>V_i</math> किसी भी प्रतिबाधा के पार <math>Z_i</math> है


?
<math>V_i = Z_iI = \left( \frac{Z_i}{Z_1 + Z_2 + \cdots + Z_n} \right)V</math>


=== समानांतर घटकों का वर्तमान विभाजन ===
=== समानांतर घटकों का वर्तमान विभाजन ===
{{main|current division}}
{{main|current division}}
एन प्रवेश पर विचार करें जो '' 'समानांतर' 'में जुड़े हुए हैं।वर्तमान <गणित> i_i </गणित> किसी भी प्रवेश के माध्यम से <math> y_i </math> है
n प्रवेशों पर विचार करें जो '''समानांतर''' में जुड़े हुए हैं। द करेंट <math>I_i</math> किसी भी प्रवेश के माध्यम से <math>Y_i</math> है


?
?


<मैथ> i = 1,2, ..., n। </Math> के लिए
<math>I_i = Y_iV = \left( \frac{Y_i}{Y_1 + Y_2 + \cdots + Y_n} \right)I</math>


==== विशेष मामला: दो समानांतर घटकों का वर्तमान विभाजन ====
==== विशेष मामला: दो समानांतर घटकों का वर्तमान विभाजन ====
?
<math>I_1 = \left( \frac{Z_2}{Z_1 + Z_2} \right)I</math>
 
?


==== विशेष मामला: दो समानांतर घटकों का वर्तमान विभाजन ====
?


?
<math>I_2 = \left( \frac{Z_1}{Z_1 + Z_2} \right)I</math>


== नोडल विश्लेषण ==
== नोडल विश्लेषण ==
{{main|nodal analysis}}
{{main|nodal analysis}}
1. सर्किट में सभी '' 'नोड्स' 'लेबल करें।मनमाने ढंग से संदर्भ के रूप में किसी भी नोड का चयन करें।
1. सर्किट में सभी '''नोड्स''' को लेबल करें। संदर्भ के रूप में मनमाने ढंग से किसी भी नोड का चयन करें।


2. प्रत्येक शेष नोड से संदर्भ के लिए एक वोल्टेज चर को परिभाषित करें।इन वोल्टेज चर को परिभाषित किया जाना चाहिए क्योंकि संदर्भ नोड के संबंध में वोल्टेज उगता है।
2. प्रत्येक शेष नोड से संदर्भ में वोल्टेज चर परिभाषित करें। इन वोल्टेज चर को संदर्भ नोड के संबंध में वोल्टेज बढ़ने के रूप में परिभाषित किया जाना चाहिए।


3. संदर्भ को छोड़कर प्रत्येक नोड के लिए एक [[Kirchhoff के सर्किट कानून | KCL]] समीकरण लिखें।
3. संदर्भ को छोड़कर प्रत्येक नोड के लिए [[:hi:किरचॉफ के परिपथ के नियम|KCL]] समीकरण लिखें।


4. समीकरणों की परिणामी प्रणाली को हल करें।
4. समीकरणों की परिणामी प्रणाली को हल करें।
Line 143: Line 140:
{{main|mesh analysis}}
{{main|mesh analysis}}


[[मेष]] & nbsp; - एक लूप जिसमें एक आंतरिक लूप नहीं है।
[[मेष]]0- एक लूप जिसमें एक आंतरिक लूप नहीं है।


1. सर्किट में "विंडो पैन" की संख्या की गणना करें।प्रत्येक विंडो फलक को एक मेष करंट असाइन करें।
1. सर्किट में "विंडो पैन" की संख्या गिनें। प्रत्येक विंडो पेन में एक मेश करंट असाइन करें।


2. एक [[Kirchhoff के सर्किट कानून | KVL]] लिखें प्रत्येक जाल के लिए समीकरण जिसका वर्तमान अज्ञात है।
2. प्रत्येक जाल के लिए एक [[:hi:किरचॉफ के परिपथ के नियम|KVL]] समीकरण लिखिए जिसका करंट अज्ञात है।


3. परिणामी समीकरणों को हल करें
3. परिणामी समीकरणों को हल करें
Line 154: Line 151:
{{Main|Superposition theorem}}
{{Main|Superposition theorem}}


इस विधि में, बदले में प्रत्येक जनरेटर के प्रभाव की गणना की जाती है।माना जा रहा है के अलावा अन्य सभी जनरेटर को हटा दिया जाता है और या तो वोल्टेज जनरेटर के मामले में शॉर्ट-सर्किट किया जाता है या वर्तमान जनरेटर के मामले में ओपन-सर्किटेड होता है।किसी विशेष शाखा में कुल वोल्टेज के माध्यम से या कुल वोल्टेज की गणना तब सभी व्यक्तिगत धाराओं या वोल्टेज को संक्षेपित करके की जाती है।
इस पद्धति में, बदले में प्रत्येक जनरेटर के प्रभाव की गणना की जाती है। एक के अलावा अन्य सभी जनरेटर को हटा दिया जाता है और या तो वोल्टेज जनरेटर के मामले में शॉर्ट-सर्किट किया जाता है या करंट जनरेटर के मामले में ओपन-सर्किट किया जाता है। किसी विशेष शाखा के माध्यम से कुल वर्तमान या कुल वोल्टेज की गणना सभी व्यक्तिगत धाराओं या वोल्टेज को जोड़कर की जाती है।


इस पद्धति के लिए एक अंतर्निहित धारणा है कि कुल वर्तमान या वोल्टेज इसके भागों का एक रैखिक सुपरपोजिशन है।इसलिए, यदि गैर-रैखिक घटक मौजूद हैं, तो विधि का उपयोग नहीं किया जा सकता है<ref>Wai-Kai Chen, '' सर्किट विश्लेषण और प्रतिक्रिया एम्पलीफायर थ्योरी '', पी।6-14, सीआरसी प्रेस, 2005 {{ISBN|1420037277}}</ref> पावर्स के सुपरपोजिशन का उपयोग रैखिक सर्किट में भी तत्वों द्वारा खपत कुल शक्ति को खोजने के लिए नहीं किया जा सकता है।पावर कुल वोल्टेज या करंट के वर्ग के अनुसार भिन्न होता है और योग का वर्ग आमतौर पर वर्गों के योग के बराबर नहीं होता है।एक तत्व में कुल शक्ति वोल्टेज और वर्तमान में स्वतंत्र रूप से सुपरपोजिशन को लागू करके और फिर कुल वोल्टेज और वर्तमान से शक्ति की गणना करके पाई जा सकती है।
इस पद्धति के लिए एक अंतर्निहित धारणा है कि कुल धारा या वोल्टेज इसके भागों का एक रैखिक सुपरपोजिशन है। इसलिए, गैर-रैखिक घटक मौजूद होने पर विधि का उपयोग नहीं किया जा सकता है। <ref>Wai-Kai Chen, ''Circuit Analysis and Feedback Amplifier Theory'', p. 6-14, CRC Press, 2005 {{ISBN|1420037277}}.</ref> रेखीय परिपथों में भी तत्वों द्वारा खपत की गई कुल शक्ति का पता लगाने के लिए शक्तियों के सुपरपोजिशन का उपयोग नहीं किया जा सकता है। कुल वोल्टेज या करंट के वर्ग के अनुसार शक्ति भिन्न होती है और योग का वर्ग आमतौर पर वर्गों के योग के बराबर नहीं होता है। एक तत्व में कुल शक्ति को वोल्टेज और वर्तमान में स्वतंत्र रूप से सुपरपोजिशन लागू करके और फिर कुल वोल्टेज और वर्तमान से शक्ति की गणना करके पाया जा सकता है।


== विधि की पसंद ==
== विधि का चुनाव ==
विधि की पसंद<ref>{{cite book |author=Nilsson, J W, Riedel, S A |title=Electric Circuits |publisher=Pearson Prentice Hall |year=2007 |isbn=978-0-13-198925-2 |edition=8th |pages=112–113 |url=https://books.google.com/books?id=sxmM8RFL99wC&q=112&pg=PA112 }}</ref> कुछ हद तक स्वाद की बात है।यदि नेटवर्क विशेष रूप से सरल है या केवल एक विशिष्ट वर्तमान या वोल्टेज की आवश्यकता है, तो कुछ सरल समकक्ष सर्किटों के तदर्थ अनुप्रयोग अधिक व्यवस्थित तरीकों के लिए पुनरावृत्ति के बिना उत्तर प्राप्त कर सकते हैं।
विधि का चुनाव <ref>{{Cite book|last=Nilsson, J W, Riedel, S A|title=Electric Circuits|publisher=Pearson Prentice Hall|year=2007|isbn=978-0-13-198925-2|edition=8th|pages=112–113|url=https://books.google.com/books?id=sxmM8RFL99wC&q=112&pg=PA112}}</ref> कुछ हद तक स्वाद का विषय है। यदि नेटवर्क विशेष रूप से सरल है या केवल एक विशिष्ट धारा या वोल्टेज की आवश्यकता है तो कुछ सरल समकक्ष सर्किटों के तदर्थ अनुप्रयोग अधिक व्यवस्थित तरीकों के बिना उत्तर दे सकते हैं।
* [[नोडल विश्लेषण]]: वोल्टेज चर की संख्या, और इसलिए एक साथ समीकरणों को हल करने के लिए, नोड्स माइनस की संख्या के बराबर है।संदर्भ नोड से जुड़ा प्रत्येक वोल्टेज स्रोत अज्ञात और समीकरणों की संख्या को कम करता है।
* [[नोडल विश्लेषण]]: वोल्टेज चर की संख्या, और इसलिए हल करने के लिए एक साथ समीकरण, नोड्स की संख्या घटा एक के बराबर होती है। संदर्भ नोड से जुड़ा प्रत्येक वोल्टेज स्रोत अज्ञात और समीकरणों की संख्या को एक से कम कर देता है।
* [[मेष विश्लेषण]]: वर्तमान चर की संख्या, और इसलिए एक साथ समीकरणों को हल करने के लिए, मेषों की संख्या के बराबर है।एक जाल में प्रत्येक वर्तमान स्रोत अज्ञात की संख्या को कम कर देता है।मेष विश्लेषण केवल नेटवर्क के साथ उपयोग किया जा सकता है जिसे [[प्लानर ग्राफ | प्लानर]] नेटवर्क के रूप में खींचा जा सकता है, अर्थात्, कोई क्रॉसिंग घटकों के साथ नहीं<ref>{{cite book |author=Nilsson, J W, Riedel, S A |title=Electric Circuits |publisher=Pearson Prentice Hall  |year=2007 |isbn=978-0-13-198925-2 |edition=8th |page=94 |url=https://books.google.com/books?id=sxmM8RFL99wC&pg=PA94 }}</ref>
* [[मेष विश्लेषण]]: वर्तमान चर की संख्या, और इसलिए हल करने के लिए एक साथ समीकरण, मेश की संख्या के बराबर है। जाल में प्रत्येक वर्तमान स्रोत अज्ञात की संख्या को एक से कम कर देता है। मेष विश्लेषण का उपयोग केवल उन नेटवर्कों के साथ किया जा सकता है जिन्हें एक [[:hi:प्लानर ग्राफ|प्लानर]] नेटवर्क के रूप में तैयार किया जा सकता है, अर्थात बिना क्रॉसिंग घटकों के।<ref>{{cite book |author=Nilsson, J W, Riedel, S A |title=Electric Circuits |publisher=Pearson Prentice Hall  |year=2007 |isbn=978-0-13-198925-2 |edition=8th |page=94 |url=https://books.google.com/books?id=sxmM8RFL99wC&pg=PA94 }}</ref>
* [[सुपरपोजिशन प्रमेय | सुपरपोजिशन]] संभवतः सबसे वैचारिक रूप से सरल विधि है, लेकिन तेजी से बड़ी संख्या में समीकरणों और गन्दा प्रतिबाधा संयोजनों की ओर जाता है क्योंकि नेटवर्क बड़ा हो जाता है।
* [[सुपरपोजिशन प्रमेय | सुपरपोजिशन]]: संभवतः सबसे अवधारणात्मक रूप से सरल तरीका है, लेकिन तेजी से बड़ी संख्या में समीकरणों और गन्दा प्रतिबाधा संयोजनों की ओर जाता है क्योंकि नेटवर्क बड़ा हो जाता है।
* [[प्रभावी मध्यम अनुमान]]: यादृच्छिक प्रतिरोधों के उच्च घनत्व से युक्त एक नेटवर्क के लिए, प्रत्येक व्यक्तिगत तत्व के लिए एक सटीक समाधान अव्यावहारिक या असंभव हो सकता है।इसके बजाय, प्रभावी प्रतिरोध और वर्तमान वितरण गुणों को [[ग्राफ (असतत गणित) | ग्राफ]] के संदर्भ में मॉडल किया जा सकता है।<ref>{{Cite journal|last1=Kumar|first1=Ankush|last2=Vidhyadhiraja|first2=N. S.|last3=Kulkarni|first3=G. U .|year=2017|title=Current distribution in conducting nanowire networks|journal=Journal of Applied Physics|volume=122|issue=4|pages=045101|doi=10.1063/1.4985792|bibcode=2017JAP...122d5101K}}</ref>
* [[प्रभावी मध्यम अनुमान]]: यादृच्छिक प्रतिरोधों के उच्च घनत्व वाले नेटवर्क के लिए, प्रत्येक व्यक्तिगत तत्व के लिए एक सटीक समाधान अव्यावहारिक या असंभव हो सकता है। इसके बजाय, प्रभावी प्रतिरोध और वर्तमान वितरण गुणों को [[:hi:ग्राफ (असतत गणित)|ग्राफ]] उपायों और नेटवर्क के ज्यामितीय गुणों के संदर्भ में तैयार किया जा सकता है।<ref>{{Cite journal|last1=Kumar|first1=Ankush|last2=Vidhyadhiraja|first2=N. S.|last3=Kulkarni|first3=G. U .|year=2017|title=Current distribution in conducting nanowire networks|journal=Journal of Applied Physics|volume=122|issue=4|pages=045101|doi=10.1063/1.4985792|bibcode=2017JAP...122d5101K}}</ref>


== स्थानांतरण समारोह ==
== स्थानांतरण प्रकार्य ==
एक [[ट्रांसफर फ़ंक्शन]] एक इनपुट और नेटवर्क के आउटपुट के बीच संबंध को व्यक्त करता है। प्रतिरोधक नेटवर्क के लिए, यह हमेशा एक साधारण वास्तविक संख्या या एक अभिव्यक्ति होगी जो एक वास्तविक संख्या तक उबालती है। प्रतिरोधक नेटवर्क को एक साथ बीजगणितीय समीकरणों की एक प्रणाली द्वारा दर्शाया जाता है। हालांकि, रैखिक नेटवर्क के सामान्य मामले में, नेटवर्क को एक साथ रैखिक अंतर समीकरणों की एक प्रणाली द्वारा दर्शाया जाता है। नेटवर्क विश्लेषण में, सीधे अंतर समीकरणों का उपयोग करने के बजाय, पहले उन पर एक [[लाप्लास ट्रांसफॉर्म]] को पूरा करने के लिए सामान्य अभ्यास है और फिर लाप्लास पैरामीटर एस के संदर्भ में परिणाम व्यक्त करता है, जो सामान्य रूप से है [[जटिल संख्या [जटिल संख्या है | कॉम्प्लेक्स]]इसे [[एस-डोमेन]] में काम करने के रूप में वर्णित किया गया है। समीकरणों के साथ काम करना सीधे समय (या टी) डोमेन में काम करने के रूप में वर्णित किया जाएगा क्योंकि परिणाम अलग -अलग मात्राओं के रूप में व्यक्त किए जाएंगे। लाप्लास रूपांतरण एस-डोमेन और टी-डोमेन के बीच बदलने की गणितीय विधि है।
एक [[:hi:अंतरण प्रकार्य|ट्रांसफर फ़ंक्शन]] एक नेटवर्क के इनपुट और आउटपुट के बीच संबंध को व्यक्त करता है। प्रतिरोधक नेटवर्क के लिए, यह हमेशा एक साधारण वास्तविक संख्या या एक व्यंजक होगा जो एक वास्तविक संख्या तक उबलता है। प्रतिरोधक नेटवर्क एक साथ बीजीय समीकरणों की एक प्रणाली द्वारा दर्शाए जाते हैं। हालांकि, रैखिक नेटवर्क के सामान्य मामले में, नेटवर्क को एक साथ रैखिक अंतर समीकरणों की एक प्रणाली द्वारा दर्शाया जाता है। नेटवर्क विश्लेषण में, सीधे अंतर समीकरणों का उपयोग करने के बजाय, पहले उन पर [[:hi:लाप्लास रूपान्तर|लाप्लास परिवर्तन]] करना और फिर परिणाम को लाप्लास पैरामीटर s के रूप में व्यक्त करना सामान्य अभ्यास है, जो सामान्य रूप से [[:hi:समिश्र संख्या|जटिल]] है। इसे [[:hi:लाप्लास रूपान्तर|एस-डोमेन]] में काम करने के रूप में वर्णित किया गया है। समीकरणों के साथ सीधे काम करना समय (या टी) डोमेन में काम करने के रूप में वर्णित किया जाएगा क्योंकि परिणाम समय बदलती मात्रा के रूप में व्यक्त किए जाएंगे। लाप्लास रूपांतरण एस-डोमेन और टी-डोमेन के बीच रूपांतरण की गणितीय विधि है।


यह दृष्टिकोण [[नियंत्रण सिद्धांत]] में मानक है और एक प्रणाली के [[स्थिर बहुपद | स्थिरता]] का निर्धारण करने के लिए उपयोगी है, उदाहरण के लिए, प्रतिक्रिया के साथ एक एम्पलीफायर में।
यह दृष्टिकोण [[:hi:नियंत्रण सिद्धान्त|नियंत्रण सिद्धांत]] में मानक है और सिस्टम की [[:hi:स्थिर बहुपद|स्थिरता]] का निर्धारण करने के लिए उपयोगी है, उदाहरण के लिए, फीडबैक के साथ एम्पलीफायर में।


=== दो टर्मिनल घटक हस्तांतरण कार्य ===
=== दो टर्मिनल घटक हस्तांतरण कार्य ===
दो टर्मिनल घटकों के लिए स्थानांतरण फ़ंक्शन, या अधिक आम तौर पर गैर-रैखिक तत्वों के लिए, [[संवैधानिक समीकरण]], डिवाइस के वर्तमान इनपुट और इसके पार परिणामी वोल्टेज के बीच संबंध है। ट्रांसफर फ़ंक्शन, z (s), इस प्रकार प्रतिबाधा & nbsp; - ओम्स की इकाइयाँ होंगी। विद्युत नेटवर्क में पाए जाने वाले तीन निष्क्रिय घटकों के लिए, स्थानांतरण कार्य हैं;
दो टर्मिनल घटकों के लिए स्थानांतरण फ़ंक्शन, या अधिक सामान्यतः गैर-रैखिक तत्वों के लिए, [[:hi:संवैधानिक समीकरण|संवैधानिक समीकरण]], डिवाइस के वर्तमान इनपुट और इसके पार परिणामी वोल्टेज के बीच का संबंध है। स्थानांतरण समारोह, Z(s), इस प्रकार प्रतिबाधा की इकाइयाँ होंगी&nbsp;- ओह। विद्युत नेटवर्क में पाए जाने वाले तीन निष्क्रिय घटकों के लिए, स्थानांतरण कार्य हैं;
{|
{|
---
|अवरोध
| रोकनेवाला || <गणित> z (s) = r \, \! </Math>
|<math>Z(s)=R\,\!</math>
---
|-
| Inductor || <Math> z (s) = sl \, \! </Math>
|प्रारंभ करनेवाला
---
|<math>Z(s)=sL\,\!</math>
| कैपेसिटर || <गणित> z (s) = \ frac {1} {sc} </math>
|-
|संधारित्र
|<math>Z(s)=\frac{1}{sC}</math>
|}
|}
 
एक नेटवर्क के लिए जिसमें केवल स्थिर एसी सिग्नल लागू होते हैं, s को '''' से बदल दिया जाता है और ac नेटवर्क सिद्धांत परिणाम से अधिक परिचित मान होते हैं।
एक नेटवर्क के लिए, जिसमें केवल स्थिर एसी सिग्नल लागू होते हैं, एस को '' J and '' और AC नेटवर्क सिद्धांत परिणाम से अधिक परिचित मानों से बदल दिया जाता है।
 
{|
{|
---
|अवरोध
| प्रतिरोधक || <गणित> z (j \ omega) = r \, \! </Math>
|<math>Z(j\omega)=R\,\!</math>
---
|-
| Inductor || <Math> z (j \ omega) = j \ omega l \, \! </Math>
|प्रारंभ करनेवाला
---
|<math>Z(j\omega)=j\omega L\,\!</math>
| कैपेसिटर || <मैथ> z (j \ omega) = \ frac {1} {j \ oMega c} </math>
|-
|संधारित्र
|<math>Z(j\omega)=\frac{1}{j\omega C}</math>
|}
|}


अंत में, एक नेटवर्क के लिए जिसमें केवल स्थिर डीसी लागू किया जाता है, एस को शून्य से बदल दिया जाता है और डीसी नेटवर्क सिद्धांत लागू होता है।
अंत में, एक नेटवर्क के लिए जिसमें केवल स्थिर dc लागू होता है, s को शून्य से बदल दिया जाता है और dc नेटवर्क सिद्धांत लागू होता है।
 
{|
{|
---
|अवरोध
| रोकनेवाला || <गणित> z = r \, \! </Math>
|<math>Z=R\,\!</math>
---
|-
| Inductor || <Math> z = 0 \, \! </Math>
|प्रारंभ करनेवाला
---
|<math>Z=0\,\!</math>
| कैपेसिटर || <मैथ> z = \ infin \, \! </Math>
|-
|संधारित्र
|<math>Z=\infin \,\!</math>
|}
|}


=== दो पोर्ट नेटवर्क ट्रांसफर फ़ंक्शन ====
=== दो पोर्ट नेटवर्क ट्रांसफर फ़ंक्शन ====
ट्रांसफर फ़ंक्शंस, सामान्य रूप से, नियंत्रण सिद्धांत में प्रतीक H (s) दिया जाता है।आमतौर पर इलेक्ट्रॉनिक्स में, ट्रांसफर फ़ंक्शन को इनपुट वोल्टेज के आउटपुट वोल्टेज के अनुपात के रूप में परिभाषित किया जाता है और प्रतीक A (s), या अधिक सामान्यतः दिया जाता है (क्योंकि विश्लेषण साइन वेव प्रतिक्रिया के संदर्भ में हमेशा किया जाता है), a (jω), इसलिएवह;
स्थानांतरण कार्य, सामान्य तौर पर, नियंत्रण सिद्धांत में प्रतीक एच (एस) दिए जाते हैं। आमतौर पर इलेक्ट्रॉनिक्स में, ट्रांसफर फ़ंक्शन को आउटपुट वोल्टेज के इनपुट वोल्टेज के अनुपात के रूप में परिभाषित किया जाता है और प्रतीक (एस), या अधिक सामान्यतः दिया जाता है (क्योंकि विश्लेषण हमेशा साइन वेव प्रतिक्रिया के संदर्भ में किया जाता है), A (jω), इसलिए वह;
 
<गणित> a (j \ omega) = \ frac {v_o} {v_i} </math>
 
संदर्भ के आधार पर क्षीणन, या प्रवर्धन के लिए ए स्टैंडिंग।सामान्य तौर पर, यह '' J ‘'' का एक जटिल कार्य होगा, जिसे नेटवर्क में बाधाओं के विश्लेषण और उनके व्यक्तिगत हस्तांतरण कार्यों से प्राप्त किया जा सकता है।कभी -कभी विश्लेषक केवल लाभ के परिमाण में रुचि रखते हैं न कि चरण कोण।इस मामले में जटिल संख्याओं को स्थानांतरण फ़ंक्शन से समाप्त किया जा सकता है और इसे तब लिखा जा सकता है;
 
<गणित> a (\ omega) = \ left |
 
==== दो पोर्ट पैरामीटर ====
{{main|Two-port network}}
दो-पोर्ट नेटवर्क की अवधारणा विश्लेषण के लिए [[ब्लैक बॉक्स]] दृष्टिकोण के रूप में नेटवर्क विश्लेषण में उपयोगी हो सकती है। एक बड़े नेटवर्क में दो-पोर्ट नेटवर्क के व्यवहार को पूरी तरह से आंतरिक संरचना के बारे में कुछ भी बताए बिना पूरी तरह से चित्रित किया जा सकता है। हालांकि, ऐसा करने के लिए ऊपर वर्णित A (J and) की तुलना में अधिक जानकारी होना आवश्यक है। यह दिखाया जा सकता है कि दो-पोर्ट नेटवर्क को पूरी तरह से चिह्नित करने के लिए ऐसे चार मापदंडों की आवश्यकता होती है। ये फॉरवर्ड ट्रांसफर फ़ंक्शन हो सकते हैं, इनपुट प्रतिबाधा, रिवर्स ट्रांसफर फ़ंक्शन (यानी, इनपुट पर दिखाई देने वाला वोल्टेज जब आउटपुट पर एक वोल्टेज लागू होता है) और आउटपुट प्रतिबाधा। कई अन्य हैं (एक पूर्ण सूची के लिए मुख्य लेख देखें), इनमें से एक सभी चार मापदंडों को प्रतिबाधा के रूप में व्यक्त करता है। मैट्रिक्स के रूप में चार मापदंडों को व्यक्त करना सामान्य है;
 
<गणित>
\ {bmatrix} शुरू करें
  V_1 \\
  V_0
\ अंत {bmatrix}
=
\ {bmatrix} शुरू करें
  z (j \ omega) _ {11} & z (j \ omega) _ {12} \\
  z (j \ omega) _ {21} & z (j \ omega) _ {22}
\ अंत {bmatrix}
\ {bmatrix} शुरू करें
  I_1 \\
  I_0
\ अंत {bmatrix}
</गणित>
 
मैट्रिक्स को एक प्रतिनिधि तत्व के लिए संक्षिप्त किया जा सकता है;


<मठ> \ लेफ्ट [z (j \ omega) \ right]
<math>A(j\omega)=\frac{V_o}{V_i}</math>


ये अवधारणाएं दो से अधिक बंदरगाहों के नेटवर्क तक बढ़ाने में सक्षम हैं। हालांकि, यह वास्तव में शायद ही कभी किया जाता है, क्योंकि कई व्यावहारिक मामलों में, बंदरगाहों को विशुद्ध रूप से इनपुट या विशुद्ध रूप से आउटपुट माना जाता है। यदि रिवर्स दिशा हस्तांतरण कार्यों को नजरअंदाज कर दिया जाता है, तो एक मल्टी-पोर्ट नेटवर्क को हमेशा दो-पोर्ट नेटवर्क की संख्या में विघटित किया जा सकता है।
संदर्भ के आधार पर ए क्षीणन, या प्रवर्धन के लिए खड़ा है। सामान्य तौर पर, यह ''jω'' का एक जटिल कार्य होगा, जिसे नेटवर्क में बाधाओं और उनके व्यक्तिगत हस्तांतरण कार्यों के विश्लेषण से प्राप्त किया जा सकता है। कभी-कभी विश्लेषक केवल लाभ के परिमाण में रुचि रखता है, न कि चरण कोण में। इस मामले में सम्मिश्र संख्याओं को स्थानांतरण फ़ंक्शन से समाप्त किया जा सकता है और इसे तब लिखा जा सकता है;


==== वितरित घटक =====
<math>A(\omega)=\left|{\frac{V_o}{V_i}}\right|</math>
जहां एक नेटवर्क असतत घटकों से बना है, दो-पोर्ट नेटवर्क का उपयोग करके विश्लेषण पसंद का मामला है, आवश्यक नहीं है। नेटवर्क को हमेशा वैकल्पिक रूप से इसके व्यक्तिगत घटक हस्तांतरण कार्यों के संदर्भ में विश्लेषण किया जा सकता है। हालांकि, यदि किसी नेटवर्क में [[वितरित-तत्व मॉडल | वितरित घटक]] शामिल हैं, जैसे कि [[ट्रांसमिशन लाइन]] के मामले में, तो व्यक्तिगत घटकों के संदर्भ में विश्लेषण करना संभव नहीं है क्योंकि वे मौजूद नहीं हैं। इसके लिए सबसे आम दृष्टिकोण लाइन को दो-पोर्ट नेटवर्क के रूप में मॉडल करना है और इसे दो-पोर्ट मापदंडों (या उनके बराबर कुछ) का उपयोग करके चिह्नित करना है। इस तकनीक का एक और उदाहरण एक उच्च आवृत्ति ट्रांजिस्टर में आधार क्षेत्र को पार करने वाले वाहक को मॉडलिंग कर रहा है। आधार क्षेत्र को [[गांठ वाले मापदंडों | गांठ वाले घटक]] के बजाय वितरित प्रतिरोध और समाई के रूप में मॉडलिंग की जानी चाहिए।
 
==== छवि विश्लेषण =====
{{Main|Image impedance}}
ट्रांसमिशन लाइनें और कुछ प्रकार के फ़िल्टर डिज़ाइन उनके स्थानांतरण मापदंडों को निर्धारित करने के लिए छवि विधि का उपयोग करते हैं।इस पद्धति में, समान नेटवर्क की एक असीम रूप से लंबे कैस्केड कनेक्टेड श्रृंखला के व्यवहार पर विचार किया जाता है।इनपुट और आउटपुट प्रतिबाधा और आगे और रिवर्स ट्रांसमिशन फ़ंक्शंस की गणना इस असीम रूप से लंबी श्रृंखला के लिए की जाती है।हालांकि प्राप्त किए गए सैद्धांतिक मूल्यों को कभी भी महसूस नहीं किया जा सकता हैव्यवहार में, कई मामलों में वे एक परिमित श्रृंखला के व्यवहार के लिए एक बहुत अच्छे सन्निकटन के रूप में काम करते हैं जब तक कि यह बहुत छोटा नहीं है।


==== दो पोर्ट पैरामीटर ====
==== दो पोर्ट पैरामीटर ====
{{main|Two-port network}}
{{main|Two-port network}}
दो-पोर्ट नेटवर्क की अवधारणा विश्लेषण के लिए [[ब्लैक बॉक्स]] दृष्टिकोण के रूप में नेटवर्क विश्लेषण में उपयोगी हो सकती है। एक बड़े नेटवर्क में दो-पोर्ट नेटवर्क के व्यवहार को पूरी तरह से आंतरिक संरचना के बारे में कुछ भी बताए बिना पूरी तरह से चित्रित किया जा सकता है। हालांकि, ऐसा करने के लिए ऊपर वर्णित A (J and) की तुलना में अधिक जानकारी होना आवश्यक है। यह दिखाया जा सकता है कि दो-पोर्ट नेटवर्क को पूरी तरह से चिह्नित करने के लिए ऐसे चार मापदंडों की आवश्यकता होती है। ये फॉरवर्ड ट्रांसफर फ़ंक्शन हो सकते हैं, इनपुट प्रतिबाधा, रिवर्स ट्रांसफर फ़ंक्शन (यानी, इनपुट पर दिखाई देने वाला वोल्टेज जब आउटपुट पर एक वोल्टेज लागू होता है) और आउटपुट प्रतिबाधा। कई अन्य हैं (एक पूर्ण सूची के लिए मुख्य लेख देखें), इनमें से एक सभी चार मापदंडों को प्रतिबाधा के रूप में व्यक्त करता है। मैट्रिक्स के रूप में चार मापदंडों को व्यक्त करना सामान्य है;
दो-पोर्ट नेटवर्क की अवधारणा विश्लेषण के लिए [[:hi:ब्लैक बॉक्स|ब्लैक बॉक्स]] दृष्टिकोण के रूप में नेटवर्क विश्लेषण में उपयोगी हो सकती है। एक बड़े नेटवर्क में दो-पोर्ट नेटवर्क के व्यवहार को आंतरिक संरचना के बारे में कुछ भी बताए बिना पूरी तरह से चित्रित किया जा सकता है। हालाँकि, ऐसा करने के लिए ऊपर वर्णित केवल A() की तुलना में अधिक जानकारी होना आवश्यक है। यह दिखाया जा सकता है कि दो-पोर्ट नेटवर्क को पूरी तरह से चिह्नित करने के लिए ऐसे चार मापदंडों की आवश्यकता होती है। ये फॉरवर्ड ट्रांसफर फ़ंक्शन, इनपुट प्रतिबाधा, रिवर्स ट्रांसफर फ़ंक्शन (यानी, आउटपुट पर वोल्टेज लागू होने पर इनपुट पर दिखाई देने वाला वोल्टेज) और आउटपुट प्रतिबाधा हो सकता है। कई अन्य हैं (पूरी सूची के लिए मुख्य लेख देखें), इनमें से एक सभी चार मापदंडों को प्रतिबाधा के रूप में व्यक्त करता है। चार मापदंडों को मैट्रिक्स के रूप में व्यक्त करना सामान्य है;


<गणित>
<math>
\ {bmatrix} शुरू करें
\begin{bmatrix}
  V_1 \\
V_1 \\
  V_0
V_0
\ अंत {bmatrix}
\end{bmatrix}
=
=
\ {bmatrix} शुरू करें
\begin{bmatrix}
  z (j \ omega) _ {11} & z (j \ omega) _ {12} \\
z(j\omega)_{11} & z(j\omega)_{12} \\
  z (j \ omega) _ {21} & z (j \ omega) _ {22}
z(j\omega)_{21} & z(j\omega)_{22}
\ अंत {bmatrix}
\end{bmatrix}
\ {bmatrix} शुरू करें
\begin{bmatrix}
  I_1 \\
I_1 \\
  I_0
I_0
\ अंत {bmatrix}
\end{bmatrix}
</गणित>
</math>
 
मैट्रिक्स को एक प्रतिनिधि तत्व के लिए संक्षिप्त किया जा सकता है;
मैट्रिक्स को एक प्रतिनिधि तत्व के लिए संक्षिप्त किया जा सकता है;
<math> \left [z(j\omega) \right] </math> या केवल <math> \left [z \right] </math>
ये अवधारणाएं दो से अधिक बंदरगाहों के नेटवर्क तक विस्तारित होने में सक्षम हैं। हालांकि, यह वास्तविकता में शायद ही कभी किया जाता है, क्योंकि कई व्यावहारिक मामलों में, बंदरगाहों को या तो विशुद्ध रूप से इनपुट या विशुद्ध रूप से आउटपुट माना जाता है। यदि रिवर्स डायरेक्शन ट्रांसफर फ़ंक्शन को अनदेखा किया जाता है, तो एक मल्टी-पोर्ट नेटवर्क को हमेशा कई टू-पोर्ट नेटवर्क में विघटित किया जा सकता है।


<मठ> \ लेफ्ट [z (j \ omega) \ right]
==== वितरित घटक====
 
जहां एक नेटवर्क असतत घटकों से बना होता है, दो-पोर्ट नेटवर्क का उपयोग करके विश्लेषण पसंद का विषय है, आवश्यक नहीं है। नेटवर्क को हमेशा वैकल्पिक रूप से उसके व्यक्तिगत घटक हस्तांतरण कार्यों के संदर्भ में विश्लेषण किया जा सकता है। हालांकि, अगर किसी नेटवर्क में [[:hi:वितरित-तत्व मॉडल|वितरित घटक]] होते हैं, जैसे कि [[:hi:संचरण लाइन|ट्रांसमिशन लाइन]] के मामले में, तो अलग-अलग घटकों के संदर्भ में विश्लेषण करना संभव नहीं है क्योंकि वे मौजूद नहीं हैं। इसके लिए सबसे आम तरीका है कि लाइन को दो-पोर्ट नेटवर्क के रूप में मॉडल किया जाए और दो-पोर्ट मापदंडों (या उनके समकक्ष कुछ) का उपयोग करके इसे चिह्नित किया जाए। इस तकनीक का एक अन्य उदाहरण उच्च आवृत्ति ट्रांजिस्टर में आधार क्षेत्र को पार करने वाले वाहकों को मॉडलिंग कर रहा है। आधार क्षेत्र को [[:hi:गांठदार पैरामीटर|ढेलेदार घटकों]] के बजाय वितरित प्रतिरोध और समाई के रूप में तैयार किया जाना चाहिए।
ये अवधारणाएं दो से अधिक बंदरगाहों के नेटवर्क तक बढ़ाने में सक्षम हैं। हालांकि, यह वास्तव में शायद ही कभी किया जाता है, क्योंकि कई व्यावहारिक मामलों में, बंदरगाहों को विशुद्ध रूप से इनपुट या विशुद्ध रूप से आउटपुट माना जाता है। यदि रिवर्स दिशा हस्तांतरण कार्यों को नजरअंदाज कर दिया जाता है, तो एक मल्टी-पोर्ट नेटवर्क को हमेशा दो-पोर्ट नेटवर्क की संख्या में विघटित किया जा सकता है।
 
==== वितरित घटक =====
जहां एक नेटवर्क असतत घटकों से बना है, दो-पोर्ट नेटवर्क का उपयोग करके विश्लेषण पसंद का मामला है, आवश्यक नहीं है।नेटवर्क को हमेशा वैकल्पिक रूप से इसके व्यक्तिगत घटक हस्तांतरण कार्यों के संदर्भ में विश्लेषण किया जा सकता है।हालांकि, यदि किसी नेटवर्क में [[वितरित-तत्व मॉडल | वितरित घटक]] शामिल हैं, जैसे कि [[ट्रांसमिशन लाइन]] के मामले में, तो व्यक्तिगत घटकों के संदर्भ में विश्लेषण करना संभव नहीं है क्योंकि वे मौजूद नहीं हैं।इसके लिए सबसे आम दृष्टिकोण लाइन को दो-पोर्ट नेटवर्क के रूप में मॉडल करना है और इसे दो-पोर्ट मापदंडों (या उनके बराबर कुछ) का उपयोग करके चिह्नित करना है।इस तकनीक का एक और उदाहरण एक उच्च आवृत्ति ट्रांजिस्टर में आधार क्षेत्र को पार करने वाले वाहक को मॉडलिंग कर रहा है।आधार क्षेत्र को [[गांठ वाले मापदंडों | गांठ वाले घटक]] के बजाय वितरित प्रतिरोध और समाई के रूप में मॉडलिंग की जानी चाहिए।


==== छवि विश्लेषण =====
==== छवि विश्लेषण =====
{{Main|Image impedance}}
{{Main|Image impedance}}
ट्रांसमिशन लाइनें और कुछ प्रकार के फ़िल्टर डिज़ाइन उनके स्थानांतरण मापदंडों को निर्धारित करने के लिए छवि विधि का उपयोग करते हैं।इस पद्धति में, समान नेटवर्क की एक असीम रूप से लंबे कैस्केड कनेक्टेड श्रृंखला के व्यवहार पर विचार किया जाता है।इनपुट और आउटपुट प्रतिबाधा और आगे और रिवर्स ट्रांसमिशन फ़ंक्शंस की गणना इस असीम रूप से लंबी श्रृंखला के लिए की जाती है।यद्यपि प्राप्त किए गए सैद्धांतिक मूल्यों को कभी भी व्यवहार में वास्तव में महसूस नहीं किया जा सकता है, कई मामलों में वे एक परिमित श्रृंखला के व्यवहार के लिए एक बहुत अच्छे सन्निकटन के रूप में काम करते हैं जब तक कि यह बहुत छोटा नहीं है।
ट्रांसमिशन लाइन और कुछ प्रकार के फ़िल्टर डिज़ाइन उनके स्थानांतरण मापदंडों को निर्धारित करने के लिए छवि पद्धति का उपयोग करते हैं। इस पद्धति में, समान नेटवर्कों की अनंत लंबी कैस्केड कनेक्टेड श्रृंखला के व्यवहार पर विचार किया जाता है। इनपुट और आउटपुट प्रतिबाधा और आगे और रिवर्स ट्रांसमिशन फ़ंक्शंस की गणना इस असीम लंबी श्रृंखला के लिए की जाती है। यद्यपि इस प्रकार प्राप्त सैद्धांतिक मूल्यों को व्यवहार में कभी भी ठीक से महसूस नहीं किया जा सकता है, कई मामलों में वे एक परिमित श्रृंखला के व्यवहार के लिए बहुत अच्छे सन्निकटन के रूप में काम करते हैं, जब तक कि यह बहुत छोटा न हो।


== गैर-रैखिक नेटवर्क ==
== गैर-रैखिक नेटवर्क ==
अधिकांश इलेक्ट्रॉनिक डिजाइन वास्तव में, गैर-रैखिक हैं।बहुत कम हैं जिनमें कुछ अर्धचालक उपकरण शामिल नहीं हैं।ये हमेशा गैर-रैखिक हैं, एक आदर्श अर्धचालक [[पी-एन जंक्शन]] का स्थानांतरण कार्य बहुत गैर-रैखिक संबंध द्वारा दिया गया है;
अधिकांश इलेक्ट्रॉनिक डिजाइन, वास्तव में, गैर-रैखिक हैं। बहुत कम ऐसे हैं जिनमें कुछ अर्धचालक उपकरण शामिल नहीं हैं। ये हमेशा गैर-रैखिक होते हैं, एक आदर्श अर्धचालक [[:hi:पी एन जंक्शन|पीएन जंक्शन]] का स्थानांतरण कार्य बहुत ही गैर-रैखिक संबंध द्वारा दिया जाता है;


: <गणित> i = i_o (e^{\ frac {v} {v_t}}-1) </math>
: <math>i = I_o (e^{\frac{v}{V_T}}-1)</math>


कहाँ पे;
कहाँ पे;
* '' I '' और '' V '' तात्कालिक वर्तमान और वोल्टेज हैं।
* ''i'' और ''v'' तात्कालिक धारा और वोल्टेज हैं।
* '' I <सब> o </sub> '' एक मनमाना पैरामीटर है जिसे रिवर्स लीकेज करंट कहा जाता है जिसका मूल्य डिवाइस के निर्माण पर निर्भर करता है।
* ''I <sub>o</sub>'' एक मन''</sub>''माना पैरामीटर है जिसे रिवर्स लीकेज करंट कहा जाता है जिसका मूल्य डिवाइस के निर्माण पर निर्भर करता है।
* '' V <सब> t </sub> '' तापमान के लिए एक पैरामीटर आनुपातिक है जिसे थर्मल वोल्टेज कहा जाता है और कमरे के तापमान पर लगभग 25mv के बराबर होता है।
* ''V<sub>T</sub>'' तापमान ''</sub>''के आनुपातिक एक पैरामीटर है जिसे थर्मल वोल्टेज कहा जाता है और कमरे के तापमान पर लगभग 25 एमवी के बराबर होता है।


कई अन्य तरीके हैं जो एक नेटवर्क में गैर-रैखिकता दिखाई दे सकते हैं।रैखिक सुपरपोजिशन का उपयोग करने वाले सभी तरीके विफल हो जाएंगे जब गैर-रैखिक घटक मौजूद होंगे।गैर-रैखिकता से निपटने के लिए कई विकल्प हैं जो सर्किट के प्रकार के आधार पर और विश्लेषक प्राप्त करना चाहते हैं।
ऐसे कई अन्य तरीके हैं जिनसे एक नेटवर्क में गैर-रैखिकता प्रकट हो सकती है। गैर-रैखिक घटक मौजूद होने पर रैखिक सुपरपोजिशन का उपयोग करने वाली सभी विधियां विफल हो जाएंगी। सर्किट के प्रकार और विश्लेषक जो जानकारी प्राप्त करना चाहता है, उसके आधार पर गैर-रैखिकता से निपटने के लिए कई विकल्प हैं।


=== संवैधानिक समीकरण ===
=== संवैधानिक समीकरण ===
[[डायोड]] समीकरण उपरोक्त समीकरण एक [[विद्युत तत्व#गैर-रैखिक तत्वों | तत्व संवैधानिक समीकरण]] का एक उदाहरण है।
उपरोक्त [[:hi:डायोड|डायोड]] समीकरण सामान्य रूप के एक [[:hi:वैद्युत अवयव|तत्व संवैधानिक समीकरण]] का एक उदाहरण है,


: <गणित> f (v, i) = 0 \, </math>
: <math>f(v,i) = 0 \,</math>


यह एक गैर-रैखिक अवरोधक के रूप में सोचा जा सकता है।गैर-रैखिक इंडिक्टर और कैपेसिटर के लिए संबंधित संवैधानिक समीकरण क्रमशः हैं;
इसे एक गैर-रैखिक अवरोधक के रूप में माना जा सकता है। गैर-रैखिक प्रेरक और कैपेसिटर के लिए संगत संवैधानिक समीकरण क्रमशः हैं;


: <गणित> f (v, \ varphi) = 0 \, </math>
:: <math>f(v, \varphi) = 0 \,</math>
: <गणित> f (v, q) = 0 \, </math>
:: <math>f(v, q) = 0 \,</math>


जहां '' f '' कोई मनमाना कार्य है, '' '' 'संग्रहीत चुंबकीय प्रवाह है और' 'q' 'संग्रहीत आवेश है।
जहाँ ''f'' कोई मनमाना ''फलन'' है, संचित चुंबकीय फ्लक्स है और ''q'' संचित आवेश है।


=== अस्तित्व, विशिष्टता और स्थिरता ===
=== अस्तित्व, विशिष्टता और स्थिरता ===
गैर-रैखिक विश्लेषण में एक महत्वपूर्ण विचार विशिष्टता का सवाल है। रैखिक घटकों से बना एक नेटवर्क के लिए हमेशा एक होगा, और केवल एक, सीमा स्थितियों के दिए गए सेट के लिए अद्वितीय समाधान होगा। यह हमेशा गैर-रैखिक सर्किट में मामला नहीं है। उदाहरण के लिए, एक निश्चित वर्तमान के साथ एक रैखिक अवरोधक उस पर लागू होता है, इसके पार वोल्टेज के लिए केवल एक समाधान होता है। दूसरी ओर, गैर-रेखीय [[टनल डायोड]] के पास किसी दिए गए करंट के लिए वोल्टेज के लिए तीन समाधान हैं। यही है, डायोड के माध्यम से वर्तमान के लिए एक विशेष समाधान अद्वितीय नहीं है, अन्य हो सकते हैं, समान रूप से मान्य हो सकते हैं। कुछ मामलों में कोई समाधान नहीं हो सकता है: समाधान के अस्तित्व के प्रश्न पर विचार किया जाना चाहिए।
गैर-रैखिक विश्लेषण में एक महत्वपूर्ण विचार विशिष्टता का प्रश्न है। रैखिक घटकों से बने नेटवर्क के लिए हमेशा एक, और केवल एक, सीमा स्थितियों के दिए गए सेट के लिए अद्वितीय समाधान होगा। गैर-रैखिक सर्किट में हमेशा ऐसा नहीं होता है। उदाहरण के लिए, एक रेखीय रोकनेवाला जिस पर एक निश्चित धारा लगाई जाती है, उसके पार वोल्टेज के लिए केवल एक ही समाधान होता है। दूसरी ओर, गैर-रैखिक [[:hi:टनेल डायोड|सुरंग डायोड]] में किसी दिए गए वर्तमान के लिए वोल्टेज के लिए तीन समाधान होते हैं। यही है, डायोड के माध्यम से वर्तमान के लिए एक विशेष समाधान अद्वितीय नहीं है, अन्य भी हो सकते हैं, समान रूप से मान्य हैं। कुछ मामलों में समाधान बिल्कुल नहीं हो सकता है: समाधान के अस्तित्व के प्रश्न पर विचार किया जाना चाहिए।


एक और महत्वपूर्ण विचार स्थिरता का सवाल है। एक विशेष समाधान मौजूद हो सकता है, लेकिन यह स्थिर नहीं हो सकता है, तेजी से उस बिंदु से थोड़ी सी उत्तेजना पर प्रस्थान कर सकता है। यह दिखाया जा सकता है कि एक नेटवर्क जो सभी स्थितियों के लिए बिल्कुल स्थिर है, में एक होना चाहिए, और केवल एक, शर्तों के प्रत्येक सेट के लिए समाधान<ref>Ljiljana TrajkoviQ, "नॉनलाइनियर सर्किट", '' द इलेक्ट्रिकल इंजीनियरिंग हैंडबुक '' (एड: वाई-काई चेन), पीपी। 79-81, अकादमिक प्रेस, 2005 {{ISBN|0-12-170960-4}}</ref>
एक अन्य महत्वपूर्ण विचार स्थिरता का प्रश्न है। एक विशेष समाधान मौजूद हो सकता है, लेकिन यह स्थिर नहीं हो सकता है, थोड़ी सी भी उत्तेजना पर उस बिंदु से तेजी से प्रस्थान कर सकता है। यह दिखाया जा सकता है कि एक नेटवर्क जो सभी स्थितियों के लिए बिल्कुल स्थिर है, उसके पास शर्तों के प्रत्येक सेट के लिए एक और केवल एक समाधान होना चाहिए। <ref>Ljiljana TrajkoviQ, "नॉनलाइनियर सर्किट", '' द इलेक्ट्रिकल इंजीनियरिंग हैंडबुक '' (एड: वाई-काई चेन), पीपी। 79-81, अकादमिक प्रेस, 2005 {{ISBN|0-12-170960-4}}</ref>


=== तरीके ===
=== तरीके ===

Revision as of 19:03, 5 May 2022

एक नेटवर्क, इलेक्ट्रिकल इंजीनियरिंग और इलेक्ट्रॉनिक्स के संदर्भ में, परस्पर जुड़े घटकों का एक संग्रह है। नेटवर्क विश्लेषण सभी नेटवर्क घटकों के माध्यम से वोल्टेज और धाराओं को खोजने की प्रक्रिया है। इन मूल्यों की गणना के लिए कई तकनीकें हैं। हालांकि, अधिकांश भाग के लिए, तकनीक रैखिक घटकों को मानती है। सिवाय जहां कहा गया है, इस आलेख में वर्णित विधियां केवल रैखिक नेटवर्क विश्लेषण पर लागू होती हैं।

परिभाषाएँ

अवयव दो या दो से अधिक टर्मिनलों वाला एक उपकरण जिसमें या जिसमें से करंट प्रवाहित हो सकता है।
नोड एक बिंदु जिस पर दो से अधिक घटकों के टर्मिनल जुड़ते हैं। पर्याप्त शून्य प्रतिरोध वाले कंडक्टर को विश्लेषण के उद्देश्य के लिए एक नोड माना जाता है।
डाली दो नोड्स में शामिल होने वाले घटक।
जाल एक नेटवर्क के भीतर शाखाओं का एक समूह एक पूर्ण लूप बनाने के लिए जुड़ गया जैसे कि इसके अंदर कोई अन्य लूप नहीं है।
पत्तन दो टर्मिनल जहां एक में करंट दूसरे के बाहर करंट के समान होता है।
सर्किट एक जनरेटर के एक टर्मिनल से लोड घटक के माध्यम से एक करंट और दूसरे टर्मिनल में वापस। एक सर्किट, इस अर्थ में, एक बंदरगाह नेटवर्क है और विश्लेषण करने के लिए एक छोटा मामला है। यदि किसी अन्य सर्किट से कोई संबंध है तो एक गैर-तुच्छ नेटवर्क बनाया गया है और कम से कम दो पोर्ट मौजूद होने चाहिए। अक्सर, "सर्किट" और "नेटवर्क" को एक दूसरे के स्थान पर उपयोग किया जाता है, लेकिन कई विश्लेषक "नेटवर्क" को आदर्श घटकों से युक्त एक आदर्श मॉडल के रूप में सुरक्षित रखते हैं। [1]
स्थानांतरण प्रकार्य दो बंदरगाहों के बीच धाराओं और/या वोल्टेज का संबंध। अक्सर, एक इनपुट पोर्ट और एक आउटपुट पोर्ट पर चर्चा की जाती है और ट्रांसफर फ़ंक्शन को लाभ या क्षीणन के रूप में वर्णित किया जाता है।
घटक स्थानांतरण समारोह दो-टर्मिनल घटक (यानी एक-पोर्ट घटक) के लिए, करंट और वोल्टेज को इनपुट और आउटपुट के रूप में लिया जाता है और ट्रांसफर फ़ंक्शन में प्रतिबाधा या प्रवेश की इकाइयाँ होंगी (यह आमतौर पर मनमानी सुविधा का मामला है चाहे वोल्टेज या करंट हो इनपुट माना जाता है)। एक तीन (या अधिक) टर्मिनल घटक में प्रभावी रूप से दो (या अधिक) पोर्ट होते हैं और स्थानांतरण फ़ंक्शन को एकल प्रतिबाधा के रूप में व्यक्त नहीं किया जा सकता है। सामान्य दृष्टिकोण स्थानांतरण फ़ंक्शन को मापदंडों के मैट्रिक्स के रूप में व्यक्त करना है। ये पैरामीटर प्रतिबाधा हो सकते हैं, लेकिन बड़ी संख्या में अन्य दृष्टिकोण हैं ( दो-पोर्ट नेटवर्क देखें)।

समकक्ष सर्किट

सही

टवर्क विश्लेषण में एक उपयोगी प्रक्रिया घटकों की संख्या को कम करके नेटवर्क को सरल बनाना है। यह भौतिक घटकों को समान प्रभाव वाले अन्य काल्पनिक घटकों के साथ बदलकर किया जा सकता है। एक विशेष तकनीक सीधे घटकों की संख्या को कम कर सकती है, उदाहरण के लिए श्रृंखला में प्रतिबाधाओं को मिलाकर। दूसरी ओर, यह केवल उस रूप को बदल सकता है जिसमें बाद के ऑपरेशन में घटकों को कम किया जा सकता है। उदाहरण के लिए, नॉर्टन के प्रमेय का उपयोग करके एक वोल्टेज जनरेटर को वर्तमान जनरेटर में बदल सकता है ताकि बाद में समानांतर प्रतिबाधा भार के साथ जनरेटर के आंतरिक प्रतिरोध को संयोजित करने में सक्षम हो सके।

एक प्रतिरोधक सर्किट एक सर्किट होता है जिसमें केवल प्रतिरोधक, आदर्श वर्तमान स्रोत और आदर्श वोल्टेज स्रोत होते हैं। यदि स्रोत स्थिर ( DC ) स्रोत हैं, तो परिणाम एक DC परिपथ है । एक सर्किट के विश्लेषण में सर्किट में मौजूद वोल्टेज और धाराओं को हल करना शामिल है। यहां उल्लिखित समाधान सिद्धांत एसी सर्किट के चरण विश्लेषण पर भी लागू होते हैं।

दो सर्किट को टर्मिनलों की एक जोड़ी के संबंध में समतुल्य कहा जाता है यदि एक नेटवर्क के लिए टर्मिनलों के माध्यम से वोल्टेज और टर्मिनलों के माध्यम से करंट का संबंध दूसरे नेटवर्क के टर्मिनलों पर वोल्टेज और करंट के समान होता है।

अगर तात्पर्य के सभी (वास्तविक) मूल्यों के लिए , तो टर्मिनलों ab और xy के संबंध में, सर्किट 1 और सर्किट 2 समतुल्य हैं।

उपरोक्त एक-पोर्ट नेटवर्क के लिए पर्याप्त परिभाषा है। एक से अधिक पोर्ट के लिए, यह परिभाषित किया जाना चाहिए कि संबंधित पोर्ट के सभी जोड़े के बीच की धाराओं और वोल्टेज में समान संबंध होना चाहिए। उदाहरण के लिए, स्टार और डेल्टा नेटवर्क प्रभावी रूप से तीन पोर्ट नेटवर्क हैं और इसलिए उनकी तुल्यता को पूरी तरह से निर्दिष्ट करने के लिए एक साथ तीन समीकरणों की आवश्यकता होती है।

श्रृंखला में और समानांतर में प्रतिबाधा

प्रतिबाधाओं के कुछ दो टर्मिनल नेटवर्क को अंततः श्रृंखला में प्रतिबाधाओं के क्रमिक अनुप्रयोगों या समानांतर में प्रतिबाधाओं द्वारा एकल प्रतिबाधा में कम किया जा सकता है।

श्रृंखला में प्रतिबाधा: समानांतर में प्रतिबाधा: समानांतर में केवल दो बाधाओं के लिए उपरोक्त सरलीकृत:

डेल्टा-वाई परिवर्तन

Delta-Star Transformation.svg

दो से अधिक टर्मिनलों के साथ प्रतिबाधा के एक नेटवर्क को एकल प्रतिबाधा समकक्ष सर्किट में कम नहीं किया जा सकता है। एक n-टर्मिनल नेटवर्क, सर्वोत्तम रूप से, n प्रतिबाधाओं (सबसे खराब n C 2 ) तक कम किया जा सकता है। तीन टर्मिनल नेटवर्क के लिए, तीन बाधाओं को तीन नोड डेल्टा (Δ) नेटवर्क या चार नोड स्टार (वाई) नेटवर्क के रूप में व्यक्त किया जा सकता है। ये दो नेटवर्क समतुल्य हैं और उनके बीच के परिवर्तन नीचे दिए गए हैं। नोड्स की मनमानी संख्या वाले एक सामान्य नेटवर्क को केवल श्रृंखला और समानांतर संयोजनों का उपयोग करके न्यूनतम संख्या में प्रतिबाधाओं तक कम नहीं किया जा सकता है। सामान्य तौर पर, Y-Δ और Δ-Y रूपांतरणों का भी उपयोग किया जाना चाहिए। कुछ नेटवर्कों के लिए Y-Δ के स्टार-पॉलीगॉन रूपांतरणों के विस्तार की भी आवश्यकता हो सकती है।

तुल्यता के लिए, टर्मिनलों की किसी भी जोड़ी के बीच प्रतिबाधा दोनों नेटवर्क के लिए समान होनी चाहिए, जिसके परिणामस्वरूप तीन समकालिक समीकरणों का एक सेट होता है। नीचे दिए गए समीकरणों को प्रतिरोध के रूप में व्यक्त किया जाता है, लेकिन समान रूप से प्रतिबाधा के साथ सामान्य मामले पर लागू होता है।

डेल्टा-टू-स्टार परिवर्तन समीकरण




स्टार-टू-डेल्टा परिवर्तन समीकरण

नेटवर्क नोड उन्मूलन का सामान्य रूप

स्टार-टू-डेल्टा और सीरीज़-रेसिस्टर ट्रांसफॉर्मेशन सामान्य रेसिस्टर नेटवर्क नोड एलिमिनेशन एल्गोरिथम के विशेष मामले हैं। द्वारा जुड़ा हुआ कोई भी नोड प्रतिरोधक ( .. ) नोड्स 1 के लिए। . एन द्वारा प्रतिस्थापित किया जा सकता है शेष को जोड़ने वाले प्रतिरोधक नोड्स। किन्हीं दो नोड्स के बीच प्रतिरोध और द्वारा दिया गया है

एक स्टार-टू-डेल्टा के लिए ( ) यह कम हो जाता है:

एक श्रृंखला में कमी के लिए ( ) यह कम हो जाता है:

लटकने वाले रोकनेवाला के लिए ( ) इसके परिणामस्वरूप रोकनेवाला समाप्त हो जाता है क्योंकि .

स्रोत परिवर्तन

Sourcetransform.svg

एक आंतरिक प्रतिबाधा (यानी गैर-आदर्श जनरेटर) के साथ एक जनरेटर को एक आदर्श वोल्टेज जनरेटर या एक आदर्श वर्तमान जनरेटर प्लस प्रतिबाधा के रूप में दर्शाया जा सकता है। ये दो रूप समतुल्य हैं और रूपांतरण नीचे दिए गए हैं। यदि दो नेटवर्क ab टर्मिनलों के बराबर हैं, तो V और I दोनों नेटवर्क के लिए समान होना चाहिए। इस प्रकार,

या
    • नॉर्टन के प्रमेय में कहा गया है कि किसी भी दो-टर्मिनल रैखिक नेटवर्क को एक आदर्श वर्तमान जनरेटर और एक समानांतर प्रतिबाधा में कम किया जा सकता है।
    • थेवेनिन के प्रमेय में कहा गया है कि किसी भी दो-टर्मिनल रैखिक नेटवर्क को एक आदर्श वोल्टेज जनरेटर और एक श्रृंखला प्रतिबाधा में कम किया जा सकता

सरल नेटवर्क

अधिक व्यवस्थित दृष्टिकोणों को लागू करने की आवश्यकता के बिना कुछ बहुत ही सरल नेटवर्क का विश्लेषण किया जा सकता है।

श्रृंखला घटकों का वोल्टेज विभाजन

n प्रतिबाधाओं पर विचार करें जो श्रृंखला में जुड़े हुए हैं। वोल्टेज किसी भी प्रतिबाधा के पार है

समानांतर घटकों का वर्तमान विभाजन

n प्रवेशों पर विचार करें जो समानांतर में जुड़े हुए हैं। द करेंट किसी भी प्रवेश के माध्यम से है

?

विशेष मामला: दो समानांतर घटकों का वर्तमान विभाजन


नोडल विश्लेषण

1. सर्किट में सभी नोड्स को लेबल करें। संदर्भ के रूप में मनमाने ढंग से किसी भी नोड का चयन करें।

2. प्रत्येक शेष नोड से संदर्भ में वोल्टेज चर परिभाषित करें। इन वोल्टेज चर को संदर्भ नोड के संबंध में वोल्टेज बढ़ने के रूप में परिभाषित किया जाना चाहिए।

3. संदर्भ को छोड़कर प्रत्येक नोड के लिए KCL समीकरण लिखें।

4. समीकरणों की परिणामी प्रणाली को हल करें।

मेष विश्लेषण

मेष0- एक लूप जिसमें एक आंतरिक लूप नहीं है।

1. सर्किट में "विंडो पैन" की संख्या गिनें। प्रत्येक विंडो पेन में एक मेश करंट असाइन करें।

2. प्रत्येक जाल के लिए एक KVL समीकरण लिखिए जिसका करंट अज्ञात है।

3. परिणामी समीकरणों को हल करें

सुपरपोजिशन

इस पद्धति में, बदले में प्रत्येक जनरेटर के प्रभाव की गणना की जाती है। एक के अलावा अन्य सभी जनरेटर को हटा दिया जाता है और या तो वोल्टेज जनरेटर के मामले में शॉर्ट-सर्किट किया जाता है या करंट जनरेटर के मामले में ओपन-सर्किट किया जाता है। किसी विशेष शाखा के माध्यम से कुल वर्तमान या कुल वोल्टेज की गणना सभी व्यक्तिगत धाराओं या वोल्टेज को जोड़कर की जाती है।

इस पद्धति के लिए एक अंतर्निहित धारणा है कि कुल धारा या वोल्टेज इसके भागों का एक रैखिक सुपरपोजिशन है। इसलिए, गैर-रैखिक घटक मौजूद होने पर विधि का उपयोग नहीं किया जा सकता है। [2] रेखीय परिपथों में भी तत्वों द्वारा खपत की गई कुल शक्ति का पता लगाने के लिए शक्तियों के सुपरपोजिशन का उपयोग नहीं किया जा सकता है। कुल वोल्टेज या करंट के वर्ग के अनुसार शक्ति भिन्न होती है और योग का वर्ग आमतौर पर वर्गों के योग के बराबर नहीं होता है। एक तत्व में कुल शक्ति को वोल्टेज और वर्तमान में स्वतंत्र रूप से सुपरपोजिशन लागू करके और फिर कुल वोल्टेज और वर्तमान से शक्ति की गणना करके पाया जा सकता है।

विधि का चुनाव

विधि का चुनाव [3] कुछ हद तक स्वाद का विषय है। यदि नेटवर्क विशेष रूप से सरल है या केवल एक विशिष्ट धारा या वोल्टेज की आवश्यकता है तो कुछ सरल समकक्ष सर्किटों के तदर्थ अनुप्रयोग अधिक व्यवस्थित तरीकों के बिना उत्तर दे सकते हैं।

  • नोडल विश्लेषण: वोल्टेज चर की संख्या, और इसलिए हल करने के लिए एक साथ समीकरण, नोड्स की संख्या घटा एक के बराबर होती है। संदर्भ नोड से जुड़ा प्रत्येक वोल्टेज स्रोत अज्ञात और समीकरणों की संख्या को एक से कम कर देता है।
  • मेष विश्लेषण: वर्तमान चर की संख्या, और इसलिए हल करने के लिए एक साथ समीकरण, मेश की संख्या के बराबर है। जाल में प्रत्येक वर्तमान स्रोत अज्ञात की संख्या को एक से कम कर देता है। मेष विश्लेषण का उपयोग केवल उन नेटवर्कों के साथ किया जा सकता है जिन्हें एक प्लानर नेटवर्क के रूप में तैयार किया जा सकता है, अर्थात बिना क्रॉसिंग घटकों के।[4]
  • सुपरपोजिशन: संभवतः सबसे अवधारणात्मक रूप से सरल तरीका है, लेकिन तेजी से बड़ी संख्या में समीकरणों और गन्दा प्रतिबाधा संयोजनों की ओर जाता है क्योंकि नेटवर्क बड़ा हो जाता है।
  • प्रभावी मध्यम अनुमान: यादृच्छिक प्रतिरोधों के उच्च घनत्व वाले नेटवर्क के लिए, प्रत्येक व्यक्तिगत तत्व के लिए एक सटीक समाधान अव्यावहारिक या असंभव हो सकता है। इसके बजाय, प्रभावी प्रतिरोध और वर्तमान वितरण गुणों को ग्राफ उपायों और नेटवर्क के ज्यामितीय गुणों के संदर्भ में तैयार किया जा सकता है।[5]

स्थानांतरण प्रकार्य

एक ट्रांसफर फ़ंक्शन एक नेटवर्क के इनपुट और आउटपुट के बीच संबंध को व्यक्त करता है। प्रतिरोधक नेटवर्क के लिए, यह हमेशा एक साधारण वास्तविक संख्या या एक व्यंजक होगा जो एक वास्तविक संख्या तक उबलता है। प्रतिरोधक नेटवर्क एक साथ बीजीय समीकरणों की एक प्रणाली द्वारा दर्शाए जाते हैं। हालांकि, रैखिक नेटवर्क के सामान्य मामले में, नेटवर्क को एक साथ रैखिक अंतर समीकरणों की एक प्रणाली द्वारा दर्शाया जाता है। नेटवर्क विश्लेषण में, सीधे अंतर समीकरणों का उपयोग करने के बजाय, पहले उन पर लाप्लास परिवर्तन करना और फिर परिणाम को लाप्लास पैरामीटर s के रूप में व्यक्त करना सामान्य अभ्यास है, जो सामान्य रूप से जटिल है। इसे एस-डोमेन में काम करने के रूप में वर्णित किया गया है। समीकरणों के साथ सीधे काम करना समय (या टी) डोमेन में काम करने के रूप में वर्णित किया जाएगा क्योंकि परिणाम समय बदलती मात्रा के रूप में व्यक्त किए जाएंगे। लाप्लास रूपांतरण एस-डोमेन और टी-डोमेन के बीच रूपांतरण की गणितीय विधि है।

यह दृष्टिकोण नियंत्रण सिद्धांत में मानक है और सिस्टम की स्थिरता का निर्धारण करने के लिए उपयोगी है, उदाहरण के लिए, फीडबैक के साथ एम्पलीफायर में।

दो टर्मिनल घटक हस्तांतरण कार्य

दो टर्मिनल घटकों के लिए स्थानांतरण फ़ंक्शन, या अधिक सामान्यतः गैर-रैखिक तत्वों के लिए, संवैधानिक समीकरण, डिवाइस के वर्तमान इनपुट और इसके पार परिणामी वोल्टेज के बीच का संबंध है। स्थानांतरण समारोह, Z(s), इस प्रकार प्रतिबाधा की इकाइयाँ होंगी - ओह। विद्युत नेटवर्क में पाए जाने वाले तीन निष्क्रिय घटकों के लिए, स्थानांतरण कार्य हैं;

अवरोध
प्रारंभ करनेवाला
संधारित्र

एक नेटवर्क के लिए जिसमें केवल स्थिर एसी सिग्नल लागू होते हैं, s को से बदल दिया जाता है और ac नेटवर्क सिद्धांत परिणाम से अधिक परिचित मान होते हैं।

अवरोध
प्रारंभ करनेवाला
संधारित्र

अंत में, एक नेटवर्क के लिए जिसमें केवल स्थिर dc लागू होता है, s को शून्य से बदल दिया जाता है और dc नेटवर्क सिद्धांत लागू होता है।

अवरोध
प्रारंभ करनेवाला
संधारित्र

दो पोर्ट नेटवर्क ट्रांसफर फ़ंक्शन =

स्थानांतरण कार्य, सामान्य तौर पर, नियंत्रण सिद्धांत में प्रतीक एच (एस) दिए जाते हैं। आमतौर पर इलेक्ट्रॉनिक्स में, ट्रांसफर फ़ंक्शन को आउटपुट वोल्टेज के इनपुट वोल्टेज के अनुपात के रूप में परिभाषित किया जाता है और प्रतीक ए (एस), या अधिक सामान्यतः दिया जाता है (क्योंकि विश्लेषण हमेशा साइन वेव प्रतिक्रिया के संदर्भ में किया जाता है), A (jω), इसलिए वह;

संदर्भ के आधार पर ए क्षीणन, या प्रवर्धन के लिए खड़ा है। सामान्य तौर पर, यह का एक जटिल कार्य होगा, जिसे नेटवर्क में बाधाओं और उनके व्यक्तिगत हस्तांतरण कार्यों के विश्लेषण से प्राप्त किया जा सकता है। कभी-कभी विश्लेषक केवल लाभ के परिमाण में रुचि रखता है, न कि चरण कोण में। इस मामले में सम्मिश्र संख्याओं को स्थानांतरण फ़ंक्शन से समाप्त किया जा सकता है और इसे तब लिखा जा सकता है;

दो पोर्ट पैरामीटर

दो-पोर्ट नेटवर्क की अवधारणा विश्लेषण के लिए ब्लैक बॉक्स दृष्टिकोण के रूप में नेटवर्क विश्लेषण में उपयोगी हो सकती है। एक बड़े नेटवर्क में दो-पोर्ट नेटवर्क के व्यवहार को आंतरिक संरचना के बारे में कुछ भी बताए बिना पूरी तरह से चित्रित किया जा सकता है। हालाँकि, ऐसा करने के लिए ऊपर वर्णित केवल A(jω) की तुलना में अधिक जानकारी होना आवश्यक है। यह दिखाया जा सकता है कि दो-पोर्ट नेटवर्क को पूरी तरह से चिह्नित करने के लिए ऐसे चार मापदंडों की आवश्यकता होती है। ये फॉरवर्ड ट्रांसफर फ़ंक्शन, इनपुट प्रतिबाधा, रिवर्स ट्रांसफर फ़ंक्शन (यानी, आउटपुट पर वोल्टेज लागू होने पर इनपुट पर दिखाई देने वाला वोल्टेज) और आउटपुट प्रतिबाधा हो सकता है। कई अन्य हैं (पूरी सूची के लिए मुख्य लेख देखें), इनमें से एक सभी चार मापदंडों को प्रतिबाधा के रूप में व्यक्त करता है। चार मापदंडों को मैट्रिक्स के रूप में व्यक्त करना सामान्य है;

मैट्रिक्स को एक प्रतिनिधि तत्व के लिए संक्षिप्त किया जा सकता है;

या केवल

ये अवधारणाएं दो से अधिक बंदरगाहों के नेटवर्क तक विस्तारित होने में सक्षम हैं। हालांकि, यह वास्तविकता में शायद ही कभी किया जाता है, क्योंकि कई व्यावहारिक मामलों में, बंदरगाहों को या तो विशुद्ध रूप से इनपुट या विशुद्ध रूप से आउटपुट माना जाता है। यदि रिवर्स डायरेक्शन ट्रांसफर फ़ंक्शन को अनदेखा किया जाता है, तो एक मल्टी-पोर्ट नेटवर्क को हमेशा कई टू-पोर्ट नेटवर्क में विघटित किया जा सकता है।

वितरित घटक

जहां एक नेटवर्क असतत घटकों से बना होता है, दो-पोर्ट नेटवर्क का उपयोग करके विश्लेषण पसंद का विषय है, आवश्यक नहीं है। नेटवर्क को हमेशा वैकल्पिक रूप से उसके व्यक्तिगत घटक हस्तांतरण कार्यों के संदर्भ में विश्लेषण किया जा सकता है। हालांकि, अगर किसी नेटवर्क में वितरित घटक होते हैं, जैसे कि ट्रांसमिशन लाइन के मामले में, तो अलग-अलग घटकों के संदर्भ में विश्लेषण करना संभव नहीं है क्योंकि वे मौजूद नहीं हैं। इसके लिए सबसे आम तरीका है कि लाइन को दो-पोर्ट नेटवर्क के रूप में मॉडल किया जाए और दो-पोर्ट मापदंडों (या उनके समकक्ष कुछ) का उपयोग करके इसे चिह्नित किया जाए। इस तकनीक का एक अन्य उदाहरण उच्च आवृत्ति ट्रांजिस्टर में आधार क्षेत्र को पार करने वाले वाहकों को मॉडलिंग कर रहा है। आधार क्षेत्र को ढेलेदार घटकों के बजाय वितरित प्रतिरोध और समाई के रूप में तैयार किया जाना चाहिए।

छवि विश्लेषण =

ट्रांसमिशन लाइन और कुछ प्रकार के फ़िल्टर डिज़ाइन उनके स्थानांतरण मापदंडों को निर्धारित करने के लिए छवि पद्धति का उपयोग करते हैं। इस पद्धति में, समान नेटवर्कों की अनंत लंबी कैस्केड कनेक्टेड श्रृंखला के व्यवहार पर विचार किया जाता है। इनपुट और आउटपुट प्रतिबाधा और आगे और रिवर्स ट्रांसमिशन फ़ंक्शंस की गणना इस असीम लंबी श्रृंखला के लिए की जाती है। यद्यपि इस प्रकार प्राप्त सैद्धांतिक मूल्यों को व्यवहार में कभी भी ठीक से महसूस नहीं किया जा सकता है, कई मामलों में वे एक परिमित श्रृंखला के व्यवहार के लिए बहुत अच्छे सन्निकटन के रूप में काम करते हैं, जब तक कि यह बहुत छोटा न हो।

गैर-रैखिक नेटवर्क

अधिकांश इलेक्ट्रॉनिक डिजाइन, वास्तव में, गैर-रैखिक हैं। बहुत कम ऐसे हैं जिनमें कुछ अर्धचालक उपकरण शामिल नहीं हैं। ये हमेशा गैर-रैखिक होते हैं, एक आदर्श अर्धचालक पीएन जंक्शन का स्थानांतरण कार्य बहुत ही गैर-रैखिक संबंध द्वारा दिया जाता है;

कहाँ पे;

  • i और v तात्कालिक धारा और वोल्टेज हैं।
  • I o एक मनमाना पैरामीटर है जिसे रिवर्स लीकेज करंट कहा जाता है जिसका मूल्य डिवाइस के निर्माण पर निर्भर करता है।
  • VT तापमान के आनुपातिक एक पैरामीटर है जिसे थर्मल वोल्टेज कहा जाता है और कमरे के तापमान पर लगभग 25 एमवी के बराबर होता है।

ऐसे कई अन्य तरीके हैं जिनसे एक नेटवर्क में गैर-रैखिकता प्रकट हो सकती है। गैर-रैखिक घटक मौजूद होने पर रैखिक सुपरपोजिशन का उपयोग करने वाली सभी विधियां विफल हो जाएंगी। सर्किट के प्रकार और विश्लेषक जो जानकारी प्राप्त करना चाहता है, उसके आधार पर गैर-रैखिकता से निपटने के लिए कई विकल्प हैं।

संवैधानिक समीकरण

उपरोक्त डायोड समीकरण सामान्य रूप के एक तत्व संवैधानिक समीकरण का एक उदाहरण है,

इसे एक गैर-रैखिक अवरोधक के रूप में माना जा सकता है। गैर-रैखिक प्रेरक और कैपेसिटर के लिए संगत संवैधानिक समीकरण क्रमशः हैं;

जहाँ f कोई मनमाना फलन है, संचित चुंबकीय फ्लक्स है और q संचित आवेश है।

अस्तित्व, विशिष्टता और स्थिरता

गैर-रैखिक विश्लेषण में एक महत्वपूर्ण विचार विशिष्टता का प्रश्न है। रैखिक घटकों से बने नेटवर्क के लिए हमेशा एक, और केवल एक, सीमा स्थितियों के दिए गए सेट के लिए अद्वितीय समाधान होगा। गैर-रैखिक सर्किट में हमेशा ऐसा नहीं होता है। उदाहरण के लिए, एक रेखीय रोकनेवाला जिस पर एक निश्चित धारा लगाई जाती है, उसके पार वोल्टेज के लिए केवल एक ही समाधान होता है। दूसरी ओर, गैर-रैखिक सुरंग डायोड में किसी दिए गए वर्तमान के लिए वोल्टेज के लिए तीन समाधान होते हैं। यही है, डायोड के माध्यम से वर्तमान के लिए एक विशेष समाधान अद्वितीय नहीं है, अन्य भी हो सकते हैं, समान रूप से मान्य हैं। कुछ मामलों में समाधान बिल्कुल नहीं हो सकता है: समाधान के अस्तित्व के प्रश्न पर विचार किया जाना चाहिए।

एक अन्य महत्वपूर्ण विचार स्थिरता का प्रश्न है। एक विशेष समाधान मौजूद हो सकता है, लेकिन यह स्थिर नहीं हो सकता है, थोड़ी सी भी उत्तेजना पर उस बिंदु से तेजी से प्रस्थान कर सकता है। यह दिखाया जा सकता है कि एक नेटवर्क जो सभी स्थितियों के लिए बिल्कुल स्थिर है, उसके पास शर्तों के प्रत्येक सेट के लिए एक और केवल एक समाधान होना चाहिए। [6]

तरीके

स्विचिंग नेटवर्क का बूलियन विश्लेषण

एक स्विचिंग डिवाइस वह है जहां दो विपरीत राज्यों का उत्पादन करने के लिए गैर-रैखिकता का उपयोग किया जाता है। उदाहरण के लिए, डिजिटल सर्किट में सीएमओएस डिवाइस, उनके आउटपुट को सकारात्मक या नकारात्मक आपूर्ति रेल से जुड़े होते हैं और डिवाइस स्विच करने पर एक क्षणिक अवधि के दौरान बीच में कभी भी कुछ भी नहीं पाया जाता है। यहां गैर-रैखिकता को चरम पर डिज़ाइन किया गया है, और विश्लेषक उस तथ्य का लाभ उठा सकते हैं। इस प्रकार के नेटवर्क का विश्लेषण बूलियन बीजगणित का उपयोग करके दो राज्यों ("पर"/"ऑफ", "पॉजिटिव"/"नकारात्मक" या जो भी राज्यों का उपयोग किया जा रहा है) का उपयोग करके किया जा सकता है। बूलियन स्थिरांक "0" और "1"।

इस विश्लेषण में संक्रमणों को नजरअंदाज कर दिया जाता है, साथ ही डिवाइस की स्थिति और नाममात्र की स्थिति के बीच किसी भी मामूली विसंगति के साथ एक बूलियन मूल्य को सौंपा गया है। उदाहरण के लिए, बूलियन "1" को +5V की स्थिति में सौंपा जा सकता है। डिवाइस का आउटपुट +4.5V हो सकता है लेकिन विश्लेषक अभी भी इसे बूलियन "1" मानता है। डिवाइस निर्माता आमतौर पर अपनी डेटा शीट में मानों की एक श्रृंखला को निर्दिष्ट करेंगे जिन्हें अपरिभाषित माना जाता है (यानी परिणाम अप्रत्याशित होगा)।

संक्रमण पूरी तरह से विश्लेषक के लिए निर्बाध नहीं हैं। स्विचिंग की अधिकतम दर एक राज्य से दूसरे राज्य में संक्रमण की गति से निर्धारित होती है। विश्लेषक के लिए खुशी की बात है, कई उपकरणों के लिए अधिकांश संक्रमण उपकरणों के रैखिक भाग में होता है, ट्रांसफर फ़ंक्शन और रैखिक विश्लेषण को कम से कम अनुमानित उत्तर प्राप्त करने के लिए लागू किया जा सकता है।

यह गणितीय रूप से संभव है बूलियन बीजगणित दो से अधिक राज्यों के पास है। इलेक्ट्रॉनिक्स में इन के लिए बहुत अधिक उपयोग नहीं किया गया है, हालांकि तीन-राज्य उपकरणों को सामान्य रूप से आम है।

पूर्वाग्रह और संकेत विश्लेषण का पृथक्करण

इस तकनीक का उपयोग किया जाता है जहां सर्किट का संचालन अनिवार्य रूप से रैखिक होना है, लेकिन इसे लागू करने के लिए उपयोग किए जाने वाले उपकरण गैर-रैखिक हैं। एक ट्रांजिस्टर एम्पलीफायर इस तरह के नेटवर्क का एक उदाहरण है। इस तकनीक का सार विश्लेषण को दो भागों में अलग करना है। सबसे पहले, डीसी पूर्वाग्रह का विश्लेषण कुछ गैर-रैखिक विधि का उपयोग करके किया जाता है। यह सर्किट के quiescent संचालन बिंदु स्थापित करता है। दूसरे, छोटे सिग्नल सर्किट की विशेषताओं का रेखीय नेटवर्क विश्लेषण का उपयोग करके विश्लेषण किया जाता है। इन दोनों चरणों के लिए उपयोग किए जा सकने वाले तरीकों के उदाहरण नीचे दिए गए हैं।

डीसी विश्लेषण की ग्राफिकल विधि =

एक महान कई सर्किट डिजाइनों में, डीसी पूर्वाग्रह को एक अवरोधक (या संभवतः प्रतिरोधों का एक नेटवर्क) के माध्यम से एक गैर-रैखिक घटक को खिलाया जाता है। चूंकि प्रतिरोध रैखिक घटक हैं, इसलिए इसके स्थानांतरण फ़ंक्शन के एक ग्राफ से गैर-रैखिक डिवाइस के quiescent ऑपरेटिंग बिंदु को निर्धारित करना विशेष रूप से आसान है। विधि निम्नानुसार है: रैखिक नेटवर्क विश्लेषण से आउटपुट ट्रांसफर फ़ंक्शन (जो आउटपुट करंट के खिलाफ आउटपुट वोल्टेज है) की गणना रोकनेवाला (एस) के नेटवर्क के लिए की जाती है और उन्हें ड्राइविंग करने वाले जनरेटर। यह एक सीधी रेखा होगी (जिसे लोड लाइन कहा जाता है) और गैर-रैखिक डिवाइस के ट्रांसफर फ़ंक्शन प्लॉट पर आसानी से सुपरिम्पोज किया जा सकता है। वह बिंदु जहां लाइन्स क्रॉस क्विसेस ऑपरेटिंग पॉइंट है।

शायद सबसे आसान व्यावहारिक विधि (रैखिक) नेटवर्क ओपन सर्किट वोल्टेज और शॉर्ट सर्किट करंट की गणना करना है और इन्हें गैर-रैखिक डिवाइस के ट्रांसफर फ़ंक्शन पर प्लॉट करना है। इन दो बिंदुओं में शामिल होने वाली सीधी रेखा नेटवर्क का स्थानांतरण फ़ंक्शन है।

वास्तव में, सर्किट का डिजाइनर उस वर्णित के लिए रिवर्स दिशा में आगे बढ़ेगा। गैर-रैखिक डिवाइस के लिए निर्माताओं डेटा शीट में प्रदान किए गए एक भूखंड से शुरू, डिजाइनर वांछित ऑपरेटिंग बिंदु का चयन करेगा और फिर इसे प्राप्त करने के लिए आवश्यक रैखिक घटक मानों की गणना करेगा।

इस पद्धति का उपयोग करना अभी भी संभव है यदिडिवाइस के पक्षपाती होने के कारण इसका पूर्वाग्रह एक अन्य डिवाइस के माध्यम से खिलाया जाता है जो स्वयं गैर-रैखिक & nbsp;-उदाहरण के लिए एक डायोड है।हालांकि इस मामले में, डिवाइस पर नेटवर्क ट्रांसफर फ़ंक्शन का प्लॉट अब एक सीधी रेखा नहीं होगी और परिणामस्वरूप करने के लिए अधिक थकाऊ है।

छोटा सिग्नल समकक्ष सर्किट

इस विधि का उपयोग किया जा सकता है, जहां एक नेटवर्क में इनपुट और आउटपुट सिग्नल का विचलन गैर-रेखीय उपकरणों के स्थानांतरण फ़ंक्शन के एक पर्याप्त रैखिक हिस्से के भीतर रहता है, या फिर इतने छोटे होते हैं कि स्थानांतरण फ़ंक्शन के वक्र को रैखिक माना जा सकता है। इन विशिष्ट स्थितियों के एक सेट के तहत, गैर-रैखिक उपकरण को एक समान रैखिक नेटवर्क द्वारा दर्शाया जा सकता है। यह याद रखना चाहिए कि यह समकक्ष सर्किट पूरी तरह से उल्लेखनीय है और केवल छोटे सिग्नल विचलन के लिए मान्य है। यह डिवाइस के डीसी बायसिंग के लिए पूरी तरह से अनुचित है।

एक साधारण दो-टर्मिनल डिवाइस के लिए, छोटे सिग्नल समतुल्य सर्किट दो घटकों से अधिक नहीं हो सकते हैं। ऑपरेटिंग पॉइंट (जिसे डायनेमिक रेजिस्टेंस कहा जाता है) पर V/I वक्र के ढलान के बराबर एक प्रतिरोध, और वक्र के लिए स्पर्शरेखा। एक जनरेटर, क्योंकि यह स्पर्शरेखा, सामान्य रूप से, मूल से गुजरती नहीं होगी। अधिक टर्मिनलों के साथ, अधिक जटिल समकक्ष सर्किट की आवश्यकता होती है।

ट्रांजिस्टर निर्माताओं के बीच छोटे सिग्नल समकक्ष सर्किट को निर्दिष्ट करने का एक लोकप्रिय रूप दो-पोर्ट नेटवर्क मापदंडों का उपयोग करना है, जिन्हें [एच] पैरामीटर के रूप में जाना जाता है। ये [z] मापदंडों के साथ चार मापदंडों का एक मैट्रिक्स है, लेकिन [एच] मापदंडों के मामले में वे बाधाओं, प्रवेश, वर्तमान लाभ और वोल्टेज लाभ का एक संकर मिश्रण हैं। इस मॉडल में तीन टर्मिनल ट्रांजिस्टर को दो पोर्ट नेटवर्क माना जाता है, इसका एक टर्मिनल दोनों बंदरगाहों के लिए आम है। [एच] पैरामीटर काफी अलग हैं, जिसके आधार पर टर्मिनल को आम के रूप में चुना जाता है। ट्रांजिस्टर के लिए सबसे महत्वपूर्ण पैरामीटर आमतौर पर कॉमन एमिटर कॉन्फ़िगरेशन में आगे वर्तमान लाभ, एच <सब> 21 है। यह डेटा शीट पर H Fe नामित किया गया है।

दो-पोर्ट मापदंडों के संदर्भ में छोटे सिग्नल समतुल्य सर्किट पर निर्भर जनरेटर की अवधारणा की ओर जाता है। यही है, एक वोल्टेज या वर्तमान जनरेटर का मान सर्किट में एक वोल्टेज या वर्तमान में अन्य जगह पर रैखिक रूप से निर्भर करता है। उदाहरण के लिए [z] पैरामीटर मॉडल इस आरेख में दिखाए गए अनुसार वोल्टेज जनरेटर पर निर्भर करता है;

[z] पैरामीटर समतुल्य सर्किट आश्रित वोल्टेज जनरेटर दिखा रहा है

हमेशा दो-पोर्ट पैरामीटर समतुल्य सर्किट में निर्भर जनरेटर होंगे। यह [एच] मापदंडों के साथ -साथ [z] और किसी अन्य प्रकार पर भी लागू होता है। बड़े रैखिक नेटवर्क विश्लेषण में समीकरणों को विकसित करते समय इन निर्भरता को संरक्षित किया जाना चाहिए।

टुकड़े टुकड़े रैखिक विधि

इस विधि में, गैर-रैखिक डिवाइस का स्थानांतरण फ़ंक्शन क्षेत्रों में टूट गया है। इनमें से प्रत्येक क्षेत्र एक सीधी रेखा द्वारा अनुमानित है। इस प्रकार, स्थानांतरण फ़ंक्शन एक विशेष बिंदु तक रैखिक होगा जहां एक असंतोष होगा। इस बिंदु से पहले स्थानांतरण फ़ंक्शन फिर से रैखिक होगा लेकिन एक अलग ढलान के साथ।

इस पद्धति का एक प्रसिद्ध अनुप्रयोग एक पीएन जंक्शन डायोड के स्थानांतरण फ़ंक्शन का अनुमान है। एक आदर्श डायोड का स्थानांतरण फ़ंक्शन इस (गैर-रैखिक) अनुभाग के शीर्ष पर दिया गया है। हालांकि, इस सूत्र का उपयोग शायद ही कभी नेटवर्क विश्लेषण में किया जाता है, इसके बजाय एक टुकड़े -टुकड़े सन्निकटन का उपयोग किया जा रहा है। यह देखा जा सकता है कि डायोड वर्तमान तेजी से कम हो जाता है -i <सब> o जैसा कि वोल्टेज गिरता है। यह वर्तमान, अधिकांश उद्देश्यों के लिए, इतना छोटा है कि इसे नजरअंदाज किया जा सकता है। बढ़ते वोल्टेज के साथ, वर्तमान तेजी से बढ़ता है। डायोड को घातीय वक्र के घुटने तक एक खुले सर्किट के रूप में तैयार किया गया है, फिर इस बिंदु के रूप में पिछलेअर्धचालक सामग्री के थोक प्रतिरोध के बराबर एक अवरोधक।

संक्रमण बिंदु वोल्टेज के लिए आमतौर पर स्वीकृत मान सिलिकॉन उपकरणों के लिए 0.7V और जर्मेनियम उपकरणों के लिए 0.3V हैं। डायोड का एक और भी सरल मॉडल, जिसे कभी -कभी स्विचिंग एप्लिकेशन में उपयोग किया जाता है, आगे के वोल्टेज के लिए शॉर्ट सर्किट है और रिवर्स वोल्टेज के लिए ओपन सर्किट है।

एक आगे के पक्षपाती पीएन जंक्शन का मॉडल लगभग निरंतर 0.7V है, जो एम्पलीफायर डिजाइन में ट्रांजिस्टर बेस-एमिटर जंक्शन वोल्टेज के लिए एक बहुत उपयोग किया जाता है।

टुकड़े टुकड़े विधि उस रैखिक नेटवर्क विश्लेषण तकनीकों में छोटे सिग्नल विधि के समान है, केवल तभी लागू किया जा सकता है जब सिग्नल कुछ सीमाओं के भीतर रहता है। यदि सिग्नल एक असंतोष बिंदु को पार करता है तो मॉडल अब रैखिक विश्लेषण उद्देश्यों के लिए मान्य नहीं है। मॉडल को छोटे सिग्नल पर लाभ होता है, हालांकि, यह सिग्नल और डीसी पूर्वाग्रह के लिए समान रूप से लागू होता है। इसलिए इन दोनों का एक ही संचालन में विश्लेषण किया जा सकता है और रैखिक रूप से सुपरइम्पोज़ेबल होगा।

स्विचिंग नेटवर्क का बूलियन विश्लेषण

एक स्विचिंग डिवाइस वह है जहां दो विपरीत राज्यों का उत्पादन करने के लिए गैर-रैखिकता का उपयोग किया जाता है। उदाहरण के लिए, डिजिटल सर्किट में सीएमओएस डिवाइस, उनके आउटपुट को सकारात्मक या नकारात्मक आपूर्ति रेल से जुड़े होते हैं और डिवाइस स्विच करने पर एक क्षणिक अवधि के दौरान बीच में कभी भी कुछ भी नहीं पाया जाता है। यहां गैर-रैखिकता को चरम पर डिज़ाइन किया गया है, और विश्लेषक उस तथ्य का लाभ उठा सकते हैं। इस प्रकार के नेटवर्क का विश्लेषण बूलियन बीजगणित का उपयोग करके दो राज्यों ("पर"/"ऑफ", "पॉजिटिव"/"नकारात्मक" या जो भी राज्यों का उपयोग किया जा रहा है) का उपयोग करके किया जा सकता है। बूलियन स्थिरांक "0" और "1"।

इस विश्लेषण में संक्रमणों को नजरअंदाज कर दिया जाता है, साथ ही डिवाइस की स्थिति और नाममात्र की स्थिति के बीच किसी भी मामूली विसंगति के साथ एक बूलियन मूल्य को सौंपा गया है। उदाहरण के लिए, बूलियन "1" को +5V की स्थिति में सौंपा जा सकता है। डिवाइस का आउटपुट +4.5V हो सकता है लेकिन विश्लेषक अभी भी इसे बूलियन "1" मानता है। डिवाइस निर्माता आमतौर पर अपनी डेटा शीट में मानों की एक श्रृंखला को निर्दिष्ट करेंगे जिन्हें अपरिभाषित माना जाता है (यानी परिणाम अप्रत्याशित होगा)।

संक्रमण पूरी तरह से विश्लेषक के लिए निर्बाध नहीं हैं। स्विचिंग की अधिकतम दर एक राज्य से दूसरे राज्य में संक्रमण की गति से निर्धारित होती है। विश्लेषक के लिए खुशी की बात है, कई उपकरणों के लिए अधिकांश संक्रमण उपकरणों के रैखिक भाग में होता है, ट्रांसफर फ़ंक्शन और रैखिक विश्लेषण को कम से कम अनुमानित उत्तर प्राप्त करने के लिए लागू किया जा सकता है।

यह गणितीय रूप से संभव है बूलियन बीजगणित दो से अधिक राज्यों के पास है। इलेक्ट्रॉनिक्स में इन के लिए बहुत अधिक उपयोग नहीं किया गया है, हालांकि तीन-राज्य उपकरणों को सामान्य रूप से आम है।

पूर्वाग्रह और संकेत विश्लेषण का पृथक्करण

इस तकनीक का उपयोग किया जाता है जहां सर्किट का संचालन अनिवार्य रूप से रैखिक होना है, लेकिन इसे लागू करने के लिए उपयोग किए जाने वाले उपकरण गैर-रैखिक हैं।एक ट्रांजिस्टर एम्पलीफायर इस तरह के नेटवर्क का एक उदाहरण है।इस तकनीक का सार विश्लेषण को दो भागों में अलग करना है।सबसे पहले, डीसी पूर्वाग्रह का विश्लेषण कुछ गैर-रैखिक विधि का उपयोग करके किया जाता है।यह सर्किट के quiescent संचालन बिंदु स्थापित करता है।दूसरे, छोटे सिग्नल सर्किट की विशेषताओं का रेखीय नेटवर्क विश्लेषण का उपयोग करके विश्लेषण किया जाता है।इन दोनों चरणों के लिए उपयोग किए जा सकने वाले तरीकों के उदाहरण नीचे दिए गए हैं।

डीसी विश्लेषण की ग्राफिकल विधि =

एक महान कई सर्किट डिजाइनों में, डीसी पूर्वाग्रह को एक अवरोधक (या संभवतः प्रतिरोधों का एक नेटवर्क) के माध्यम से एक गैर-रैखिक घटक को खिलाया जाता है। चूंकि प्रतिरोध रैखिक घटक हैं, इसलिए इसके स्थानांतरण फ़ंक्शन के एक ग्राफ से गैर-रैखिक डिवाइस के quiescent ऑपरेटिंग बिंदु को निर्धारित करना विशेष रूप से आसान है। विधि निम्नानुसार है: रैखिक नेटवर्क विश्लेषण से आउटपुट ट्रांसफर फ़ंक्शन (जो आउटपुट करंट के खिलाफ आउटपुट वोल्टेज है) की गणना रोकनेवाला (एस) के नेटवर्क के लिए की जाती है और उन्हें ड्राइविंग करने वाले जनरेटर। यह एक सीधी रेखा होगी (जिसे लोड लाइन कहा जाता है) और गैर-रैखिक डिवाइस के ट्रांसफर फ़ंक्शन प्लॉट पर आसानी से सुपरिम्पोज किया जा सकता है। वह बिंदु जहां लाइन्स क्रॉस क्विसेस ऑपरेटिंग पॉइंट है।

शायद सबसे आसान व्यावहारिक विधि (रैखिक) नेटवर्क ओपन सर्किट वोल्टेज और शॉर्ट सर्किट करंट की गणना करना है और इन्हें गैर-रैखिक डिवाइस के ट्रांसफर फ़ंक्शन पर प्लॉट करना है। इन दो बिंदुओं में शामिल होने वाली सीधी रेखा नेटवर्क का स्थानांतरण फ़ंक्शन है।

वास्तव में, सर्किट का डिजाइनर उस वर्णित के लिए रिवर्स दिशा में आगे बढ़ेगा। गैर-रैखिक डिवाइस के लिए निर्माताओं डेटा शीट में प्रदान किए गए एक भूखंड से शुरू, डिजाइनर वांछित ऑपरेटिंग बिंदु का चयन करेगा और फिर इसे प्राप्त करने के लिए आवश्यक रैखिक घटक मानों की गणना करेगा।

इस पद्धति का उपयोग करना अभी भी संभव है यदि डिवाइस को पक्षपाती किया जा रहा है, तो इसके पूर्वाग्रह को किसी अन्य डिवाइस के माध्यम से खिलाया गया है जो स्वयं गैर-रैखिक & nbsp;-उदाहरण के लिए एक डायोड है। हालांकि इस मामले में, डिवाइस पर नेटवर्क ट्रांसफर फ़ंक्शन का प्लॉट अब एक सीधी रेखा नहीं होगी और परिणामस्वरूप करने के लिए अधिक थकाऊ है।

छोटा सिग्नल समकक्ष सर्किट

इस विधि का उपयोग किया जा सकता है, जहां एक नेटवर्क में इनपुट और आउटपुट सिग्नल का विचलन गैर-रेखीय उपकरणों के स्थानांतरण फ़ंक्शन के एक पर्याप्त रैखिक हिस्से के भीतर रहता है, या फिर इतने छोटे होते हैं कि स्थानांतरण फ़ंक्शन के वक्र को रैखिक माना जा सकता है। इन विशिष्ट स्थितियों के एक सेट के तहत, गैर-रैखिक उपकरण को एक समान रैखिक नेटवर्क द्वारा दर्शाया जा सकता है। यह याद रखना चाहिए कि यह समकक्ष सर्किट पूरी तरह से उल्लेखनीय है और केवल छोटे सिग्नल विचलन के लिए मान्य है। यह डिवाइस के डीसी बायसिंग के लिए पूरी तरह से अनुचित है।

एक साधारण दो-टर्मिनल डिवाइस के लिए, छोटे सिग्नल समतुल्य सर्किट दो घटकों से अधिक नहीं हो सकते हैं। ऑपरेटिंग पॉइंट (जिसे डायनेमिक रेजिस्टेंस कहा जाता है) पर V/I वक्र के ढलान के बराबर एक प्रतिरोध, और वक्र के लिए स्पर्शरेखा। एक जनरेटर, क्योंकि यह स्पर्शरेखा, सामान्य रूप से, मूल से गुजरती नहीं होगी। अधिक टर्मिनलों के साथ, अधिक जटिल समकक्ष सर्किट की आवश्यकता होती है।

ट्रांजिस्टर निर्माताओं के बीच छोटे सिग्नल समकक्ष सर्किट को निर्दिष्ट करने का एक लोकप्रिय रूप दो-पोर्ट नेटवर्क मापदंडों का उपयोग करना है, जिन्हें [एच] पैरामीटर के रूप में जाना जाता है। ये [z] मापदंडों के साथ चार मापदंडों का एक मैट्रिक्स है, लेकिन [एच] मापदंडों के मामले में वे बाधाओं, प्रवेश, वर्तमान लाभ और वोल्टेज लाभ का एक संकर मिश्रण हैं। इस मॉडल में तीन टर्मिनल ट्रांजिस्टर को दो पोर्ट नेटवर्क माना जाता है, इसका एक टर्मिनल दोनों बंदरगाहों के लिए आम है। [एच] पैरामीटर काफी अलग हैं, जिसके आधार पर टर्मिनल को आम के रूप में चुना जाता है। ट्रांजिस्टर के लिए सबसे महत्वपूर्ण पैरामीटर आमतौर पर कॉमन एमिटर कॉन्फ़िगरेशन में आगे वर्तमान लाभ, एच <सब> 21 है। यह डेटा शीट पर H Fe नामित किया गया है।

दो-पोर्ट मापदंडों के संदर्भ में छोटे सिग्नल समतुल्य सर्किट पर निर्भर जनरेटर की अवधारणा की ओर जाता है। यही है, एक वोल्टेज या वर्तमान जनरेटर का मान सर्किट में एक वोल्टेज या वर्तमान में अन्य जगह पर रैखिक रूप से निर्भर करता है। उदाहरण के लिए [z] पैरामीटर मॉडल इस आरेख में दिखाए गए अनुसार वोल्टेज जनरेटर पर निर्भर करता है;

[z] पैरामीटर समतुल्य सर्किट आश्रित वोल्टेज जनरेटर दिखा रहा है

हमेशा दो-पोर्ट पैरामीटर समतुल्य सर्किट में निर्भर जनरेटर होंगे।यह [एच] मापदंडों के साथ -साथ [z] और किसी अन्य प्रकार पर भी लागू होता है।बड़े रैखिक नेटवर्क विश्लेषण में समीकरणों को विकसित करते समय इन निर्भरता को संरक्षित किया जाना चाहिए।

टुकड़े टुकड़े रैखिक विधि

इस विधि में, गैर-रैखिक डिवाइस का स्थानांतरण फ़ंक्शन क्षेत्रों में टूट गया है। इनमें से प्रत्येक क्षेत्र एक सीधी रेखा द्वारा अनुमानित है। इस प्रकार, स्थानांतरण फ़ंक्शन एक विशेष बिंदु तक रैखिक होगा जहां एक असंतोष होगा। इस बिंदु से पहले स्थानांतरण फ़ंक्शन फिर से रैखिक होगा लेकिन एक अलग ढलान के साथ।

इस पद्धति का एक प्रसिद्ध अनुप्रयोग एक पीएन जंक्शन डायोड के स्थानांतरण फ़ंक्शन का अनुमान है। एक आदर्श डायोड का स्थानांतरण फ़ंक्शन इस (गैर-रैखिक) अनुभाग के शीर्ष पर दिया गया है। हालांकि, इस सूत्र का उपयोग शायद ही कभी नेटवर्क विश्लेषण में किया जाता है, इसके बजाय एक टुकड़े -टुकड़े सन्निकटन का उपयोग किया जा रहा है। यह देखा जा सकता है कि डायोड वर्तमान तेजी से कम हो जाता है -i <सब> o जैसा कि वोल्टेज गिरता है। यह वर्तमान, अधिकांश उद्देश्यों के लिए, इतना छोटा है कि इसे नजरअंदाज किया जा सकता है। बढ़ते वोल्टेज के साथ, वर्तमान तेजी से बढ़ता है। डायोड को घातीय वक्र के घुटने तक एक खुले सर्किट के रूप में तैयार किया गया है, फिर इस बिंदु को अर्धचालक सामग्री के बल्क प्रतिरोध के बराबर रोकनेवाला के रूप में पिछले किया गया है।

संक्रमण बिंदु वोल्टेज के लिए आमतौर पर स्वीकृत मान सिलिकॉन उपकरणों के लिए 0.7V और जर्मेनियम उपकरणों के लिए 0.3V हैं। डायोड का एक और भी सरल मॉडल, जिसे कभी -कभी स्विचिंग एप्लिकेशन में उपयोग किया जाता है, आगे के वोल्टेज के लिए शॉर्ट सर्किट है और रिवर्स वोल्टेज के लिए ओपन सर्किट है।

एक आगे के पक्षपाती पीएन जंक्शन का मॉडल लगभग निरंतर 0.7V है, जो एम्पलीफायर डिजाइन में ट्रांजिस्टर बेस-एमिटर जंक्शन वोल्टेज के लिए एक बहुत उपयोग किया जाता है।

टुकड़े टुकड़े विधि उस रैखिक नेटवर्क विश्लेषण तकनीकों में छोटे सिग्नल विधि के समान है, केवल तभी लागू किया जा सकता है जब सिग्नल कुछ सीमाओं के भीतर रहता है। यदि सिग्नल एक असंतोष बिंदु को पार करता है तो मॉडल अब रैखिक विश्लेषण उद्देश्यों के लिए मान्य नहीं है। मॉडल को छोटे सिग्नल पर लाभ होता है, हालांकि, यह सिग्नल और डीसी पूर्वाग्रह के लिए समान रूप से लागू होता है। इसलिए इन दोनों का एक ही संचालन में विश्लेषण किया जा सकता है और रैखिक रूप से सुपरइम्पोज़ेबल होगा।

समय-अलग-अलग घटक

रैखिक विश्लेषण में, नेटवर्क के घटकों को अपरिवर्तनीय माना जाता है, लेकिन कुछ सर्किटों में यह लागू नहीं होता है, जैसे कि स्वीप ऑसिलेटर, वोल्टेज नियंत्रित एम्पलीफायर एस, और चर इलेक्ट्रॉनिक फ़िल्टर। इक्विलाइज़र।कई परिस्थितियों में घटक मूल्य में परिवर्तन आवधिक है।उदाहरण के लिए, एक आवधिक संकेत के साथ उत्साहित एक गैर-रैखिक घटक, समय-समय पर रैखिक घटक के रूप में दर्शाया जा सकता है।सिडनी डार्लिंगटन ने इस तरह के आवधिक समय अलग -अलग सर्किटों का विश्लेषण करने की एक विधि का खुलासा किया।उन्होंने विहित सर्किट रूपों को विकसित किया जो रोनाल्ड एम। फोस्टर के विहित रूपों के अनुरूप हैं और विल्हेम कॉयर का उपयोग रैखिक सर्किट के विश्लेषण के लिए किया जाता है[7]

वेक्टर सर्किट सिद्धांत =

वेक्टरल धाराओं के लिए स्केलर मात्रा के आधार पर सर्किट सिद्धांत का सामान्यीकरण स्पिन सर्किट जैसे नए विकसित सर्किट के लिए एक आवश्यकता है[clarification needed] सामान्यीकृत सर्किट चर में चार घटक होते हैं: स्केलर करंट और वेक्टर स्पिन करंट एक्स, वाई और जेड दिशाओं में।वोल्टेज और धाराएं प्रत्येक वेक्टर मात्रा बन जाती हैं, जिसमें 4x4 स्पिन चालन मैट्रिक्स के रूप में वर्णित चालन के साथ वेक्टर मात्रा बन जाती है[citation needed]

See also

References

  1. Belevitch V (May 1962). "Summary of the history of circuit theory". Proceedings of the IRE. 50 (5): 849. doi:10.1109/JRPROC.1962.288301. cites "IRE Standards on Circuits: Definitions of Terms for Linear Passive Reciprocal Time Invariant Networks, 1960". Proceedings of the IRE. 48 (9): 1609. September 1960. doi:10.1109/JRPROC.1960.287676.to justify this definition. Sidney Darlington Darlington S (1984). "A history of network synthesis and filter theory for circuits composed of resistors, inductors, and capacitors". IEEE Trans. Circuits and Systems. 31 (1): 4. doi:10.1109/TCS.1984.1085415. follows Belevitch but notes there are now also many colloquial uses of "network".
  2. Wai-Kai Chen, Circuit Analysis and Feedback Amplifier Theory, p. 6-14, CRC Press, 2005 ISBN 1420037277.
  3. Nilsson, J W, Riedel, S A (2007). Electric Circuits (8th ed.). Pearson Prentice Hall. pp. 112–113. ISBN 978-0-13-198925-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. Nilsson, J W, Riedel, S A (2007). Electric Circuits (8th ed.). Pearson Prentice Hall. p. 94. ISBN 978-0-13-198925-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, G. U . (2017). "Current distribution in conducting nanowire networks". Journal of Applied Physics. 122 (4): 045101. Bibcode:2017JAP...122d5101K. doi:10.1063/1.4985792.
  6. Ljiljana TrajkoviQ, "नॉनलाइनियर सर्किट", द इलेक्ट्रिकल इंजीनियरिंग हैंडबुक (एड: वाई-काई चेन), पीपी। 79-81, अकादमिक प्रेस, 2005 ISBN 0-12-170960-4
  7. US patent 3265973, Sidney Darlington, Irwin W. Sandberg, "Synthesis of two-port networks having periodically time-varying elements", issued 1966-08-09 

External links