ज्यामिति की नींव: Difference between revisions

From Vigyanwiki
No edit summary
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Study of geometries as axiomatic systems}}
{{short description|Study of geometries as axiomatic systems}}
[[ज्यामिति]] की नींव स्वयंसिद्ध प्रणालियों के रूप में ज्यामिति का अध्ययन है। स्वयंसिद्धों के कई समूह हैं जो [[यूक्लिडियन ज्यामिति]] या [[गैर-यूक्लिडियन ज्यामिति|दूसरा-यूक्लिडियन ज्यामिति]]| दूसरी-यूक्लिडियन ज्यामिति को जन्म देते हैं। ये अध्ययन और ऐतिहासिक महत्व के मौलिक हैं, लेकिन ऐसे बहुत से आधुनिक ज्यामिति हैं जो यूक्लिडियन नहीं हैं जिनका इस दृष्टिकोण से अध्ययन किया जा सकता है। स्वयंसिद्ध ज्यामिति शब्द को किसी भी ज्यामिति पर प्रयुक्त किया जा सकता है जिसे एक [[स्वयंसिद्ध प्रणाली]] से विकसित किया गया है, लेकिन प्रायः इस दृष्टिकोण से अध्ययन किए गए यूक्लिडियन ज्यामिति का अर्थ होता है। सामान्य स्वयंसिद्ध प्रणालियों की पूर्णता और स्वतंत्रता महत्वपूर्ण गणितीय विचार हैं, लेकिन ज्यामिति के शिक्षण के साथ कुछ तथ्यों भी हैं जो खेल में आते हैं।
[[ज्यामिति]] की आधारशिला स्वयंसिद्ध प्रणालियों के रूप में ज्यामिति का अध्ययन है। स्वयंसिद्धों के कई समूह हैं जो [[यूक्लिडियन ज्यामिति]] या [[गैर-यूक्लिडियन ज्यामिति|दूसरा-यूक्लिडियन ज्यामिति]] दूसरी-यूक्लिडियन ज्यामिति को जन्म देते हैं। ये अध्ययन और ऐतिहासिक महत्व के मौलिक हैं, लेकिन ऐसे बहुत से आधुनिक ज्यामिति हैं जो यूक्लिडियन नहीं हैं जिनका इस दृष्टिकोण से अध्ययन किया जा सकता है। स्वयंसिद्ध ज्यामिति शब्द को किसी भी ज्यामिति पर प्रयुक्त किया जा सकता है जिसे [[स्वयंसिद्ध प्रणाली]] से विकसित किया गया है, लेकिन प्रायः इस दृष्टिकोण से अध्ययन किए गए यूक्लिडियन ज्यामिति का अर्थ होता है। सामान्य स्वयंसिद्ध प्रणालियों की पूर्णता और स्वतंत्रता महत्वपूर्ण गणितीय विचार हैं, लेकिन ज्यामिति के शिक्षण के साथ कुछ तथ्यों में भी हैं जो खेल में आते हैं।


== स्वयंसिद्ध प्रणाली ==
== स्वयंसिद्ध प्रणाली ==
{{main|स्वयंसिद्ध प्रणाली}}
{{main|स्वयंसिद्ध प्रणाली}}


प्राचीन ग्रीक विधियों के आधार पर, एक स्वयंसिद्ध प्रणाली गणितीय सत्य को स्थापित करने के विधि का एक औपचारिक वर्णन है जो मान्यताओं के एक निश्चित सेट से बहती है। यद्यपि गणित के किसी भी क्षेत्र में प्रयुक्त होता है, ज्यामिति प्रारंभिक गणित की वह शाखा है जिसमें इस पद्धति को सबसे व्यापक रूप से सफलतापूर्वक प्रयुक्त किया गया है।<ref>{{harvnb|Venema|2006|loc=p. 17}}</ref>
प्राचीन ग्रीक विधियों के आधार पर,स्वयंसिद्ध प्रणाली गणितीय सत्य को स्थापित करने के विधि का औपचारिक वर्णन है जो मान्यताओं के निश्चित सेट से बहती है। यद्यपि गणित के किसी भी क्षेत्र में प्रयुक्त होता है, ज्यामिति प्रारंभिक गणित की वह शाखा है जिसमें इस पद्धति को सबसे व्यापक रूप से सफलतापूर्वक प्रयुक्त किया गया है।<ref>{{harvnb|Venema|2006|loc=p. 17}}</ref>


एक स्वयंसिद्ध प्रणाली के कई घटक हैं।<ref>{{harvnb|Wylie|1964|loc=p. 8}}</ref>
स्वयंसिद्ध प्रणाली के कई घटक हैं।<ref>{{harvnb|Wylie|1964|loc=p. 8}}</ref>
# [[आदिम धारणा|पुरातन धारणा]] (अपरिभाषित शब्द) सबसे बुनियादी विचार हैं। सामान्यतः पर उनमें वस्तुएं और रिश्ते सम्मिलित होते हैं। ज्यामिति में, वस्तुएं ''बिंदु'', ''रेखाएं'' और ''विमान'' जैसी चीजें हैं, जबकि एक मौलिक संबंध ''घटना'' का है - एक वस्तु के मिलने या दूसरे के साथ जुड़ने का। शर्तें स्वयं अपरिभाषित हैं। [[डेविड हिल्बर्ट]] ने एक बार टिप्पणी की थी कि बिंदुओं, रेखाओं और विमानों के अतिरिक्त टेबल, कुर्सियों और बियर मग के बारे में भी बात की जा सकती है।<ref>{{harvnb|Greenberg|1974|loc=p. 59}}</ref> उनकी बात यह है कि पुरातन शब्द केवल खाली गोले हैं, यदि आप चाहें तो स्थान धारक हैं, और कोई आंतरिक गुण नहीं हैं।
# [[आदिम धारणा|पुरातन धारणा]] (अपरिभाषित शब्द) सबसे बुनियादी विचार हैं। सामान्यतः उनमें वस्तुएं और रिश्ते सम्मिलित होते हैं। ज्यामिति में, वस्तुएं ''बिंदु'', ''रेखाएं'' और ''विमान'' जैसी वस्तुये हैं, जबकि मौलिक संबंध ''घटना'' का है वस्तु के मिलने या दूसरे के साथ जुड़ने का शर्तें स्वयं अपरिभाषित हैं। [[डेविड हिल्बर्ट]] ने एक बार टिप्पणी की थी कि बिंदुओं, रेखाओं और विमानों के अतिरिक्त टेबल, कुर्सियों और बियर मग के बारे में भी बात की जा सकती है।<ref>{{harvnb|Greenberg|1974|loc=p. 59}}</ref> उनकी बात यह है कि पुरातन शब्द केवल खाली गोले हैं, यदि आप चाहें तो स्थान धारक हैं, और कोई आंतरिक गुण नहीं हैं।
# अभिगृहीत (या अभिगृहीत करता है) इन पुरातन के बारे में कथन हैं; उदाहरण के लिए, ''कोई भी दो बिंदु केवल एक रेखा के साथ आपस में मिलते हैं'' (अर्थात् किन्हीं दो बिंदुओं के लिए, केवल एक रेखा होती है जो उन दोनों से होकर निकलती है)। अभिगृहीतों को सत्य मान लिया जाता है, सिद्ध नहीं किया जाता। वे ज्यामितीय अवधारणाओं के "बिल्डिंग ब्लॉक्स" हैं, क्योंकि वे उन गुणों को निर्दिष्ट करते हैं जो पुरातन हैं।
# अभिगृहीत (अभिगृहीत करता है) इन पुरातन के बारे में कथन हैं; उदाहरण के लिए, ''कोई भी दो बिंदु केवल रेखा के साथ आपस में मिलते हैं'' (अर्थात् किन्हीं दो बिंदुओं के लिए, केवल एक रेखा होती है जो उन दोनों से होकर निकलती है)। अभिगृहीतों को सत्य मान लिया जाता है, सिद्ध नहीं किया जाता वे ज्यामितीय अवधारणाओं के "भवन ब्लॉक्स" हैं, क्योंकि वे उन गुणों को निर्दिष्ट करते हैं जो पुरातन हैं।
# [[तर्क]] के नियम।
# [[तर्क]] के नियम।
# [[प्रमेय]]<ref>In this context no distinction is made between different categories of theorems. Propositions, lemmas, corollaries, etc. are all treated the same.</ref> अभिगृहीतों के तार्किक परिणाम हैं, अर्थात्, वे कथन जो निगमनात्मक तर्क के नियमों का प्रयोग करके अभिगृहीतों से प्राप्त किए जा सकते हैं।
# [[प्रमेय]]<ref>In this context no distinction is made between different categories of theorems. Propositions, lemmas, corollaries, etc. are all treated the same.</ref> अभिगृहीतों के तार्किक परिणाम हैं, अर्थात्, वे कथन जो निगमनात्मक तर्क के नियमों का प्रयोग करके अभिगृहीतों से प्राप्त किए जा सकते हैं।


एक स्वयंसिद्ध प्रणाली की व्याख्या उस प्रणाली के पुरातन को ठोस अर्थ देने का कुछ विशेष विधि है। यदि अर्थों का यह जुड़ाव प्रणाली के स्वयंसिद्धों को सत्य कथन बनाता है, तो व्याख्या को प्रणाली का 'उदाहरण ' कहा जाता है।<ref>{{harvnb|Venema|2006|loc=p. 19}}</ref> एक उदाहरण   में, प्रणाली के सभी प्रमेय स्वचालित रूप से सत्य कथन होते हैं।
स्वयंसिद्ध प्रणाली की व्याख्या उस प्रणाली के पुरातन को ठोस अर्थ देने का कुछ विशेष विधि है। यदि अर्थों का यह जुड़ाव प्रणाली के स्वयंसिद्धों को सत्य कथन बनाता है, तो व्याख्या को प्रणाली का 'उदाहरण ' कहा जाता है।<ref>{{harvnb|Venema|2006|loc=p. 19}}</ref> एक उदाहरण में, प्रणाली के सभी प्रमेय स्वचालित रूप से सत्य कथन होते हैं।


=== स्वयंसिद्ध प्रणालियों के गुण ===
=== स्वयंसिद्ध प्रणालियों के गुण ===
स्वयंसिद्ध प्रणालियों पर चर्चा करते समय कई गुणों पर प्रायः ध्यान केंद्रित किया जाता है:<ref>{{harvnb|Faber|1983|loc=pp. 105 &ndash; 8}}</ref>
स्वयंसिद्ध प्रणालियों पर चर्चा करते समय कई गुणों पर प्रायः ध्यान केंद्रित किया जाता है:<ref>{{harvnb|Faber|1983|loc=pp. 105 &ndash; 8}}</ref>
* एक स्वयंसिद्ध प्रणाली के स्वयंसिद्धों को संगति कहा जाता है यदि उनसे कोई तार्किक विरोधाभास प्राप्त नहीं किया जा सकता है। सरलतम प्रणालियों को छोड़कर, एक स्वयंसिद्ध प्रणाली में स्थिरता स्थापित करना एक कठिन गुण है। दूसरी ओर, यदि स्वयंसिद्ध प्रणाली के लिए एक [[मॉडल (गणितीय तर्क)|उदाहरण   (गणितीय तर्क)]] उपस्थित है, तो प्रणाली में व्युत्पन्न कोई भी विरोधाभास उदाहरण   में भी व्युत्पन्न होता है, और स्वयंसिद्ध प्रणाली किसी भी प्रणाली के अनुरूप होती है जिसमें उदाहरण   संबंधित होता है। इस संपत्ति (एक उदाहरण   होने) को सापेक्ष स्थिरता या उदाहरण   स्थिरता के रूप में संदर्भित किया जाता है।
* स्वयंसिद्ध प्रणाली के स्वयंसिद्धों को संगति कहा जाता है यदि उनसे कोई तार्किक विरोधाभास प्राप्त नहीं किया जा सकता है। सरलतम प्रणालियों को छोड़कर, स्वयंसिद्ध प्रणाली में स्थिरता स्थापित करना कठिन गुण है। दूसरी ओर, यदि स्वयंसिद्ध प्रणाली के लिए [[मॉडल (गणितीय तर्क)|उदाहरण (गणितीय तर्क)]] उपस्थित है, तो प्रणाली में व्युत्पन्न कोई भी विरोधाभास उदाहरण में भी व्युत्पन्न होता है, और स्वयंसिद्ध प्रणाली किसी भी प्रणाली के अनुरूप होती है जिसमें उदाहरण संबंधित होता है। इस संपत्ति (उदाहरण होने) को सापेक्ष स्थिरता या उदाहरण स्थिरता के रूप में संदर्भित किया जाता है।
* एक स्वयंसिद्ध को [[स्वतंत्रता (गणितीय तर्क)]] कहा जाता है यदि इसे स्वयंसिद्ध प्रणाली के अन्य स्वयंसिद्धों से सिद्ध या अस्vकृत नहीं किया जा सकता है। एक स्वयंसिद्ध प्रणाली को स्वतंत्र कहा जाता है यदि इसके प्रत्येक स्वयंसिद्ध स्वतंत्र हैं। यदि एक सत्य कथन एक स्वयंसिद्ध प्रणाली का [[तार्किक परिणाम]] है, तो यह उस प्रणाली के प्रत्येक उदाहरण   में एक सत्य कथन होगा। यह सिद्ध करने के लिए कि एक अभिगृहीत निकाय के शेष अभिगृहीतों से स्वतंत्र है, शेष अभिगृहीतों के दो उदाहरण   खोजने के लिए पर्याप्त है, जिसके लिए अभिगृहीत एक में सत्य कथन है और दूसरे में असत्य कथन है। शैक्षणिक दृष्टिकोण से स्वतंत्रता हमेशा एक वांछनीय संपत्ति नहीं होती है।
* स्वयंसिद्ध को [[स्वतंत्रता (गणितीय तर्क)]] कहा जाता है यदि इसे स्वयंसिद्ध प्रणाली के अन्य स्वयंसिद्धों से सिद्ध या अस्वीकृत नहीं किया जा सकता है। स्वयंसिद्ध प्रणाली को स्वतंत्र कहा जाता है यदि इसके प्रत्येक स्वयंसिद्ध स्वतंत्र हैं। यदि सत्य कथन स्वयंसिद्ध प्रणाली का [[तार्किक परिणाम]] है, तो यह उस प्रणाली के प्रत्येक उदाहरण में सत्य कथन होगा। यह सिद्ध करने के लिए कि अभिगृहीत निकाय के शेष अभिगृहीतों से स्वतंत्र है, शेष अभिगृहीतों के दो उदाहरण खोजने के लिए पर्याप्त है, जिसके लिए अभिगृहीत में सत्य कथन है और दूसरे में असत्य कथन है। शैक्षणिक दृष्टिकोण से स्वतंत्रता हमेशा वांछनीय संपत्ति नहीं होती है।
* एक स्वयंसिद्ध प्रणाली को [[पूर्णता (तर्क)]] कहा जाता है यदि प्रणाली के संदर्भ में अभिव्यक्त प्रत्येक कथन या तो सिद्ध है या एक सिद्ध निषेध है। इसे बताने का एक और विधि यह है कि कोई भी स्वतंत्र कथन एक पूर्ण स्वयंसिद्ध प्रणाली में नहीं जोड़ा जा सकता है जो उस प्रणाली के स्वयंसिद्धों के अनुरूप हो।
* स्वयंसिद्ध प्रणाली को [[पूर्णता (तर्क)]] कहा जाता है यदि प्रणाली के संदर्भ में अभिव्यक्त प्रत्येक कथन या तो सिद्ध है या सिद्ध निषेध है। इसे बताने की एक और विधि यह है कि कोई भी स्वतंत्र कथन पूर्ण स्वयंसिद्ध प्रणाली में नहीं जोड़ा जा सकता है जो उस प्रणाली के स्वयंसिद्धों के अनुरूप हो।
* एक स्वयंसिद्ध प्रणाली श्रेणीबद्ध सिद्धांत है इतिहास और प्रेरणा यदि प्रणाली के कोई भी दो उदाहरण   समरूपतावाद हैं (अनिवार्य रूप से, प्रणाली के लिए केवल एक उदाहरण   है)। एक श्रेणीबद्ध प्रणाली आवश्यक रूप से पूर्ण है, लेकिन पूर्णता का अर्थ श्रेणीबद्धता नहीं है। कुछ स्थितियों में श्रेणीबद्धता एक वांछनीय संपत्ति नहीं है, क्योंकि श्रेणीबद्ध स्वयंसिद्ध प्रणालियों को सामान्यीकृत नहीं किया जा सकता है। उदाहरण के लिए, [[समूह सिद्धांत]] के लिए स्वयंसिद्ध प्रणाली का मूल्य यह है कि यह श्रेणीबद्ध नहीं है, इसलिए समूह सिद्धांत में परिणाम सिद्ध करने का अर्थ है कि परिणाम समूह सिद्धांत के लिए सभी अलग-अलग उदाहरण ों में मान्य है प्रत्येक दूसरा-समरूपी उदाहरण   में और किसी को परिणाम का खंडन नहीं करना है ।
* स्वयंसिद्ध प्रणाली श्रेणीबद्ध सिद्धांत है इतिहास और प्रेरणा यदि प्रणाली के कोई भी दो उदाहरण समरूपतावाद हैं (अनिवार्य रूप से, प्रणाली के लिए केवल उदाहरण है) श्रेणीबद्ध प्रणाली आवश्यक रूप से पूर्ण है, लेकिन पूर्णता का अर्थ श्रेणीबद्धता नहीं है। कुछ स्थितियों में श्रेणीबद्धता वांछनीय संपत्ति नहीं है, क्योंकि श्रेणीबद्ध स्वयंसिद्ध प्रणालियों को सामान्यीकृत नहीं किया जा सकता है। उदाहरण के लिए, [[समूह सिद्धांत]] के लिए स्वयंसिद्ध प्रणाली का मूल्य यह है कि यह श्रेणीबद्ध नहीं है, इसलिए समूह सिद्धांत में परिणाम सिद्ध करने का अर्थ है कि परिणाम समूह सिद्धांत के लिए सभी अलग-अलग उदाहरण में मान्य है प्रत्येक दूसरा-समरूपी उदाहरण में और किसी को परिणाम का खंडन नहीं करना है ।


==यूक्लिडियन ज्यामिति==
==यूक्लिडियन ज्यामिति==
{{main|यूक्लिडियन ज्यामिति}}
{{main|यूक्लिडियन ज्यामिति}}
[[यूक्लिड]]ियन [[ज्यामिति]] एक गणितीय प्रणाली है जिसका श्रेय [[सिकंदरिया]] [[ग्रीक गणित]] यूक्लिड को दिया जाता है, जिसका वर्णन उन्होंने (चूंकि  आधुनिक मानकों द्वारा दूसरा-कठोर रूप से) ज्यामिति पर अपनी पाठ्यपुस्तक में किया है: यूक्लिड के तत्व। यूक्लिड की विधि में सरल रूप से आकर्षक स्वयंसिद्धों के एक छोटे समूह को ग्रहण करना और इनसे कई अन्य [[प्रस्ताव]]ों (प्रमेयों) को निकालना सम्मिलित है। चूंकि यूक्लिड के कई परिणाम पहले के गणितज्ञों द्वारा बताए गए थे,<ref name="Eves 1963 loc=p. 19">{{harvnb|Eves|1963|loc=p. 19}}</ref> यूक्लिड यह दिखाने वाला पहला व्यक्ति था कि कैसे ये प्रस्ताव एक व्यापक निगमनात्मक और [[तार्किक प्रणाली]] में फिट हो सकते हैं।<ref>{{harvnb|Eves|1963|loc=p. 10}}</ref> तत्वों की प्रारंभिक समतल ज्यामिति से होती है, जो अभी भी माध्यमिक विद्यालय में पहली स्वयंसिद्ध प्रणाली और [[गणितीय प्रमाण]] के पहले उदाहरणों के रूप में पढ़ाया जाता है। यह [[तीन आयाम]]ों की ठोस ज्यामिति पर जाता है। ज्यामितीय भाषा में समझाए गए अधिकांश तत्वों के परिणाम अब [[बीजगणित]] और [[संख्या सिद्धांत]] कहलाते हैं।<ref name="Eves 1963 loc=p. 19"/>
[[यूक्लिड|यूक्लिडियन]] [[ज्यामिति]] गणितीय प्रणाली है जिसका श्रेय [[सिकंदरिया]] [[ग्रीक गणित]] यूक्लिड को दिया जाता है, जिसका वर्णन उन्होंने (आधुनिक मानकों द्वारा दूसरा-कठोर रूप से) ज्यामिति पर अपनी पाठ्यपुस्तक में किया है: यूक्लिड के तत्व यूक्लिड की विधि में सरल रूप से आकर्षक स्वयंसिद्धों के छोटे समूह को ग्रहण करना और इनसे कई अन्य [[प्रस्ताव]] (प्रमेयों) को निकालना सम्मिलित है। चूंकि यूक्लिड के कई परिणाम पहले के गणितज्ञों द्वारा बताए गए थे,<ref name="Eves 1963 loc=p. 19">{{harvnb|Eves|1963|loc=p. 19}}</ref> यूक्लिड यह दिखाने वाला पहला व्यक्ति था कि कैसे ये प्रस्ताव व्यापक निगमनात्मक और [[तार्किक प्रणाली]] में उपयुक्त हो सकते हैं।<ref>{{harvnb|Eves|1963|loc=p. 10}}</ref> तत्वों की प्रारंभिक समतल ज्यामिति से होती है, जो अभी भी माध्यमिक विद्यालय में पहली स्वयंसिद्ध प्रणाली और [[गणितीय प्रमाण]] के पहले उदाहरणों के रूप में पढ़ाया जाता है। यह [[तीन आयाम]] की ठोस ज्यामिति पर जाता है। ज्यामितीय भाषा में समझाए गए अधिकांश तत्वों के परिणाम अब [[बीजगणित]] और [[संख्या सिद्धांत]] कहलाते हैं।<ref name="Eves 1963 loc=p. 19"/>


दो हज़ार से अधिक वर्षों के लिए, विशेषण यूक्लिडियन अनावश्यक था क्योंकि किसी अन्य प्रकार की ज्यामिति की कल्पना नहीं की गई थी। यूक्लिड के स्वयंसिद्ध इतने सरल रूप से स्पष्ट प्रतीत होते हैं ([[समानांतर अभिधारणा]] के संभावित अपवाद के साथ) कि उनसे सिद्ध किसी भी प्रमेय को एक निरपेक्ष, प्रायः आध्यात्मिक, अर्थ में सत्य माना जाता था। आज, तथापि, कई अन्य ज्यामितियाँ, जो यूक्लिडियन नहीं हैं, ज्ञात हैं, सबसे पहले उन्नीसvं शताब्दी की प्रारंभिक में खोजी गई थीं।
दो हज़ार से अधिक वर्षों के लिए, विशेषण यूक्लिडियन अनावश्यक था क्योंकि किसी अन्य प्रकार की ज्यामिति की कल्पना नहीं की गई थी। यूक्लिड के स्वयंसिद्ध इतने सरल रूप से स्पष्ट प्रतीत होते हैं ([[समानांतर अभिधारणा]] के संभावित अपवाद के साथ) कि उनसे सिद्ध किसी भी प्रमेय को निरपेक्ष, प्रायः आध्यात्मिक, अर्थ में सत्य माना जाता था। आज, तथापि कई अन्य ज्यामितियाँ, जो यूक्लिडियन नहीं हैं, ज्ञात हैं, सबसे पहले उन्नीसवी शताब्दी की प्रारंभिक में खोजी गई थीं।


===यूक्लिड के तत्व===
===यूक्लिड के तत्व===
{{main|यूक्लिड के तत्व}}
{{main|यूक्लिड के तत्व}}
यूक्लिड के तत्व एक गणित और ज्यामिति ग्रंथ है जिसमें अलेक्जेंड्रिया सी में प्राचीन ग्रीक गणित यूक्लिड द्वारा लिखी गई 13 पुस्तकें सम्मिलित हैं। 300 ईसा पूर्व। यह परिभाषाओं, अभिधारणाओं (स्वयंसिद्ध), प्रस्तावों (प्रमेयों और [[कम्पास और सीधा निर्माण]]), और प्रस्तावों के गणितीय प्रमाणों का एक संग्रह है। 13 पुस्तकें यूक्लिडियन ज्यामिति और प्रारंभिक संख्या सिद्धांत के प्राचीन यूनानी संस्करण को कवर करती हैं। पिटेन का ऑटोलाइकस 'ऑन द मूविंग स्फीयर के अपवाद के साथ, तत्व सबसे पुराने प्रचलित ग्रीक गणितीय ग्रंथों में से एक है,<ref>{{cite book|last=Boyer|author-link=Carl Benjamin Boyer|year=1991|chapter=Euclid of Alexandria|page=101|quote=ऑटोलाइकस के स्फीयर के अपवाद के साथ, यूक्लिड द्वारा जीवित कार्य सबसे पुराने ग्रीक गणितीय ग्रंथ हैं जो आज भी मौजूद हैं; फिर भी यूक्लिड ने जो लिखा उसका आधा से अधिक खो गया है,}}</ref> और यह गणित का सबसे पुराना उपस्थित स्वयंसिद्ध निगमनात्मक उपचार है। यह तर्क और आधुनिक [[विज्ञान]] के विकास में सहायक सिद्ध हुआ है।
यूक्लिड के तत्व गणित और ज्यामिति ग्रंथ है जिसमें अलेक्जेंड्रिया सी में प्राचीन ग्रीक गणित यूक्लिड द्वारा लिखी गई 13 पुस्तकें सम्मिलित हैं। 300 ईसा पूर्व यह परिभाषाओं, अभिधारणाओं (स्वयंसिद्ध), प्रस्तावों (प्रमेयों और [[कम्पास और सीधा निर्माण]]), और प्रस्तावों के गणितीय प्रमाणों का संग्रह है। 13 पुस्तकें यूक्लिडियन ज्यामिति और प्रारंभिक संख्या सिद्धांत के प्राचीन यूनानी संस्करण को कवर करती हैं। पिटेन का ऑटोलाइकस 'ऑन द मूविंग स्फीयर के अपवाद के साथ, तत्व सबसे पुराने प्रचलित ग्रीक गणितीय ग्रंथों में से एक है,<ref>{{cite book|last=Boyer|author-link=Carl Benjamin Boyer|year=1991|chapter=Euclid of Alexandria|page=101|quote=ऑटोलाइकस के स्फीयर के अपवाद के साथ, यूक्लिड द्वारा जीवित कार्य सबसे पुराने ग्रीक गणितीय ग्रंथ हैं जो आज भी मौजूद हैं; फिर भी यूक्लिड ने जो लिखा उसका आधा से अधिक खो गया है,}}</ref> और यह गणित का सबसे पुराना उपस्थित स्वयंसिद्ध निगमनात्मक उपचार है। यह तर्क और आधुनिक [[विज्ञान]] के विकास में सहायक सिद्ध हुआ है।


यूक्लिड के तत्वों को सबसे सफल माना गया है<ref>Encyclopedia of Ancient Greece (2006) by Nigel Guy Wilson, page 278. Published by Routledge Taylor and Francis Group. Quote:"Euclid's Elements subsequently became the basis of all mathematical education, not only in the Romand and Byzantine periods, but right down to the mid-20th century, and it could be argued that it is the most successful textbook ever written."</ref><ref name="Boyer Author of the Elements">{{cite book|last=Boyer|author-link=Carl Benjamin Boyer|year=1991|chapter=Euclid of Alexandria|page=100|quote=स्कूल में शिक्षकों के रूप में उन्होंने प्रमुख विद्वानों के एक बैंड को बुलाया, जिनमें से यूक्लिड के '' एलिमेंट्स '' ('' स्टोइचिया '') - अब तक लिखी गई सबसे शानदार ढंग से सफल गणित की पाठ्यपुस्तक के लेखक थे।}}</ref> और प्रभावशाली<ref name="Boyer Influence of the Elements">{{cite book|last=Boyer|author-link=Carl Benjamin Boyer|year=1991|chapter=Euclid of Alexandria|page=119|quote=यूक्लिड का 'तत्व' न केवल हमारे पास आने वाला सबसे पहला प्रमुख यूनानी गणितीय कार्य था, बल्कि अब तक की सबसे प्रभावशाली पाठ्यपुस्तक भी था। [...] एलिमेंट्स का पहला मुद्रित संस्करण 1482 में वेनिस में दिखाई दिया, जो गणितीय पुस्तकों के सबसे शुरुआती प्रकारों में से एक है; यह अनुमान लगाया गया है कि तब से अब तक कम से कम एक हजार संस्करण प्रकाशित हो चुके हैं। शायद बाइबल के अलावा कोई भी पुस्तक इतने सारे संस्करणों का दावा नहीं कर सकती है, और निश्चित रूप से किसी भी गणितीय कार्य का प्रभाव यूक्लिड के 'एलिमेंट्स'' के प्रभाव के बराबर नहीं रहा है।}}</ref> पाठ्यपुस्तक कभी लिखा। 1482 में [[वेनिस]] में पहली बार सेट होने के कारण, यह [[छापाखाना]] के आविष्कार के बाद मुद्रित होने वाले सबसे प्रारंभिक गणितीय कार्यों में से एक है और [[कार्ल बेंजामिन बोयर]] द्वारा प्रकाशित संस्करणों की संख्या में [[बाइबिल]] के बाद दूसरे स्थान पर होने का अनुमान लगाया गया था।<ref name="Boyer Influence of the Elements"/>संख्या एक हजार के पार पहुंच चुकी है।<ref>The Historical Roots of Elementary Mathematics by Lucas Nicolaas Hendrik Bunt, Phillip S. Jones, Jack D. Bedient (1988), page 142. Dover publications. Quote:"the ''Elements'' became known to Western Europe via the Arabs and the Moors. There the ''Elements'' became the foundation of mathematical education. More than 1000 editions of the ''Elements'' are known. In all probability it is, next to the ''Bible'', the most widely spread book in the civilization of the Western world."</ref> सदियों से, जब [[ज्यामिति]] को सभी विश्वविद्यालय के छात्रों के पाठ्यक्रम में सम्मिलित किया गया था, यूक्लिड के तत्वों के कम से कम भाग का ज्ञान सभी छात्रों के लिए आवश्यक था। 20vं शताब्दी तक नहीं, जब तक इसकी सामग्री को अन्य स्कूल की पाठ्यपुस्तकों के माध्यम से सार्वभौमिक रूप से पढ़ाया जाता था, तब तक इसे सभी शिक्षित लोगों द्वारा पढ़ी जाने वाली वस्तुये नहीं माना जाता था।<ref>From the introduction by Amit Hagar to ''Euclid and His Modern Rivals'' by Lewis Carroll (2009, Barnes &amp; Noble) pg. xxviii: <blockquote>Geometry emerged as an indispensable part of the standard education of the English gentleman in the eighteenth century; by the Victorian period it was also becoming an important part of the education of artisans, children at Board Schools, colonial subjects and, to a rather lesser degree, women. ... The standard textbook for this purpose was none other than Euclid's ''The Elements''. </blockquote></ref>
यूक्लिड के तत्वों को सबसे सफल माना गया है<ref>Encyclopedia of Ancient Greece (2006) by Nigel Guy Wilson, page 278. Published by Routledge Taylor and Francis Group. Quote:"Euclid's Elements subsequently became the basis of all mathematical education, not only in the Romand and Byzantine periods, but right down to the mid-20th century, and it could be argued that it is the most successful textbook ever written."</ref><ref name="Boyer Author of the Elements">{{cite book|last=Boyer|author-link=Carl Benjamin Boyer|year=1991|chapter=Euclid of Alexandria|page=100|quote=स्कूल में शिक्षकों के रूप में उन्होंने प्रमुख विद्वानों के एक बैंड को बुलाया, जिनमें से यूक्लिड के '' एलिमेंट्स '' ('' स्टोइचिया '') - अब तक लिखी गई सबसे शानदार ढंग से सफल गणित की पाठ्यपुस्तक के लेखक थे।}}</ref> और प्रभावशाली<ref name="Boyer Influence of the Elements">{{cite book|last=Boyer|author-link=Carl Benjamin Boyer|year=1991|chapter=Euclid of Alexandria|page=119|quote=यूक्लिड का 'तत्व' न केवल हमारे पास आने वाला सबसे पहला प्रमुख यूनानी गणितीय कार्य था, बल्कि अब तक की सबसे प्रभावशाली पाठ्यपुस्तक भी था। [...] एलिमेंट्स का पहला मुद्रित संस्करण 1482 में वेनिस में दिखाई दिया, जो गणितीय पुस्तकों के सबसे शुरुआती प्रकारों में से एक है; यह अनुमान लगाया गया है कि तब से अब तक कम से कम एक हजार संस्करण प्रकाशित हो चुके हैं। शायद बाइबल के अलावा कोई भी पुस्तक इतने सारे संस्करणों का दावा नहीं कर सकती है, और निश्चित रूप से किसी भी गणितीय कार्य का प्रभाव यूक्लिड के 'एलिमेंट्स'' के प्रभाव के बराबर नहीं रहा है।}}</ref> पाठ्यपुस्तक कभी लिखा। 1482 में [[वेनिस]] में पहली बार सेट होने के कारण, यह [[छापाखाना]] के आविष्कार के बाद मुद्रित होने वाले सबसे प्रारंभिक गणितीय कार्यों में से एक है और [[कार्ल बेंजामिन बोयर]] द्वारा प्रकाशित संस्करणों की संख्या में [[बाइबिल]] के बाद दूसरे स्थान पर होने का अनुमान लगाया गया था।<ref name="Boyer Influence of the Elements"/> संख्या एक हजार के पार पहुंच चुकी है।<ref>The Historical Roots of Elementary Mathematics by Lucas Nicolaas Hendrik Bunt, Phillip S. Jones, Jack D. Bedient (1988), page 142. Dover publications. Quote:"the ''Elements'' became known to Western Europe via the Arabs and the Moors. There the ''Elements'' became the foundation of mathematical education. More than 1000 editions of the ''Elements'' are known. In all probability it is, next to the ''Bible'', the most widely spread book in the civilization of the Western world."</ref> सदियों से, जब [[ज्यामिति]] को सभी विश्वविद्यालय के छात्रों के पाठ्यक्रम में सम्मिलित किया गया था, यूक्लिड के तत्वों के कम से कम भाग का ज्ञान सभी छात्रों के लिए आवश्यक था। 20वी शताब्दी तक नहीं, जब तक इसकी सामग्री को अन्य स्कूल की पाठ्यपुस्तकों के माध्यम से सार्वभौमिक रूप से पढ़ाया जाता था, तब तक इसे सभी शिक्षित लोगों द्वारा पढ़ी जाने वाली वस्तुये नहीं माना जाता था।<ref>From the introduction by Amit Hagar to ''Euclid and His Modern Rivals'' by Lewis Carroll (2009, Barnes &amp; Noble) pg. xxviii: <blockquote>Geometry emerged as an indispensable part of the standard education of the English gentleman in the eighteenth century; by the Victorian period it was also becoming an important part of the education of artisans, children at Board Schools, colonial subjects and, to a rather lesser degree, women. ... The standard textbook for this purpose was none other than Euclid's ''The Elements''. </blockquote></ref>


तत्व मुख्य रूप से ज्यामिति के पूर्व ज्ञान का व्यवस्थितकरण हैं। यह माना जाता है कि पहले के उपचारों पर इसकी श्रेष्ठता को मान्यता दी गई थी, जिसके परिणामस्वरूप पहले वाले को संरक्षित करने में बहुत कम रुचि थी, और अब वे लगभग सभी खो गए हैं।
तत्व मुख्य रूप से ज्यामिति के पूर्व ज्ञान का व्यवस्थितकरण हैं। यह माना जाता है कि पहले के उपचारों पर इसकी श्रेष्ठता को मान्यता दी गई थी, जिसके परिणामस्वरूप पहले वाले को संरक्षित करने में बहुत कम रुचि थी, और अब वे लगभग सभी खो गए हैं।


पुस्तकें प्रथम-चतुर्थ और छठी समतल ज्यामिति पर चर्चा करती हैं। समतल आकृतियों के बारे में कई परिणाम सिद्ध होते हैं, उदाहरण के लिए, यदि किसी त्रिभुज में दो समान कोण हों, तो कोणों द्वारा अंतरित भुजाएँ बराबर होती हैं। [[पाइथागोरस प्रमेय]] सिद्ध होता है।<ref>Euclid, book I, proposition 47</ref>
पुस्तकें प्रथम-चतुर्थ और छठी समतल ज्यामिति पर चर्चा करती हैं। समतल आकृतियों के बारे में कई परिणाम सिद्ध होते हैं, उदाहरण के लिए, यदि किसी त्रिभुज में दो समान कोण हों, तो कोणों द्वारा अंतरित भुजाएँ बराबर होती हैं। [[पाइथागोरस प्रमेय]] से सिद्ध होता है।<ref>Euclid, book I, proposition 47</ref>


पुस्तकें पाचvं और सातvं-दसv संख्या सिद्धांत से संबंधित हैं, संख्याओं के साथ ज्यामितीय रूप से उनके प्रतिनिधित्व के माध्यम से विभिन्न लंबाई वाले रेखा खंडों के रूप में व्यवहार किया जाता है। अभाज्य संख्या और [[परिमेय संख्या]] और [[अपरिमेय संख्या]] जैसी धारणाएँ प्रस्तुत की जाती हैं। अभाज्य संख्याओं की अनंतता सिद्ध होती है।
पुस्तकें पाचवी और सातवी-दसवी संख्या सिद्धांत से संबंधित हैं, संख्याओं के साथ ज्यामितीय रूप से उनके प्रतिनिधित्व के माध्यम से विभिन्न लंबाई वाले रेखा खंडों के रूप में व्यवहार किया जाता है। अभाज्य संख्या और [[परिमेय संख्या]] और [[अपरिमेय संख्या]] जैसी धारणाएँ प्रस्तुत की जाती हैं। अभाज्य संख्याओं की अनंतता सिद्ध होती है।


पुस्तकें ग्यारहvं-तेरहvं ठोस ज्यामिति से संबंधित हैं। एक विशिष्ट परिणाम शंकु के आयतन और समान ऊंचाई और आधार वाले बेलन के बीच 1:3 का अनुपात है।
पुस्तकें ग्यारहवी-तेरहवी ठोस ज्यामिति से संबंधित हैं। विशिष्ट परिणाम शंकु के आयतन और समान ऊंचाई और आधार वाले बेलन के बीच 1:3 का अनुपात है।


[[File:Parallel postulate en.svg|thumb|समानांतर अभिधारणा: यदि दो रेखाएँ एक तिहाई को इस तरह काटती हैं कि एक तरफ के आंतरिक कोणों का योग दो समकोणों से कम है, तो दोनों रेखाएँ अनिवार्य रूप से उस तरफ एक दूसरे को काटती हैं यदि बहुतअधिक दूर तक बढ़ाया जाए।]]तत्वों की पहली पुस्तक की प्रारंभिक के पास , यूक्लिड समतल ज्यामिति के लिए पांच अवधारणाएँ (स्वयंसिद्ध) देता है, जो निर्माण के संदर्भ में कहा गया है (जैसा कि थॉमस हीथ द्वारा अनुवादित किया गया है):<ref>{{harvnb|Heath|1956|loc=pp. 195 &ndash; 202 (vol 1)}}</ref>
[[File:Parallel postulate en.svg|thumb|समानांतर अभिधारणा: यदि दो रेखाएँ एक तिहाई को इस तरह काटती हैं कि एक तरफ के आंतरिक कोणों का योग दो समकोणों से कम है, तो दोनों रेखाएँ अनिवार्य रूप से उस तरफ एक दूसरे को काटती हैं यदि बहुत अधिक दूर तक बढ़ाया जाए।]]तत्वों की पहली पुस्तक की प्रारंभिक के पास , यूक्लिड समतल ज्यामिति के लिए पांच अवधारणाएँ (स्वयंसिद्ध) देता है, जो निर्माण के संदर्भ में कहा गया है (जैसा कि थॉमस हीथ द्वारा अनुवादित किया गया है):<ref>{{harvnb|Heath|1956|loc=pp. 195 &ndash; 202 (vol 1)}}</ref>
निम्नलिखित को मान लें:
निम्नलिखित को मान लें:
# किसी भी [[बिंदु (ज्यामिति)]] से किसी बिंदु तक [[सीधी रेखा]] खींचना।
# किसी भी [[बिंदु (ज्यामिति)]] से किसी बिंदु तक [[सीधी रेखा]] खींचना।
# एक सीधी रेखा में एक [[रेखा खंड]] को लगातार [विस्तारित] करने के लिए।
# एक सीधी रेखा में एक [[रेखा खंड]] को लगातार [विस्तारित] करने के लिए।
# किसी भी केंद्र और दूरी [त्रिज्या] के साथ एक वृत्त का वर्णन करने के लिए।
# किसी भी केंद्र और दूरी [त्रिज्या] के साथ वृत्त का वर्णन करने के लिए।
# सभी समकोण एक दूसरे के बराबर होते हैं।
# सभी समकोण एक दूसरे के बराबर होते हैं।
# समानांतर अभिधारणा: कि, यदि एक सीधी रेखा दो सीधी रेखाओं पर गिरकर एक ही ओर के आंतरिक कोणों को दो समकोणों से कम बनाती है, तो दो सीधी रेखाएँ, यदि अनिश्चित रूप से बढ़ाई जाती हैं, तो उस तरफ मिलती हैं, जिस ओर दो समकोण कोण कम होते हैं दो समकोण।
# समानांतर अभिधारणा यह है कि, यदि सीधी रेखा दो सीधी रेखाओं पर गिरकर एक ही ओर के आंतरिक कोणों को दो समकोणों से कम बनाती है, तो दो सीधी रेखाएँ, यदि अनिश्चित रूप से बढ़ाई जाती हैं, तो उस तरफ मिलती हैं, जिस ओर दो समकोण कोण कम होते हैं दो समकोण होते है।


यद्यपि यूक्लिड का अभिधारणाओं का कथन केवल स्पष्ट रूप से निर्माणों के अस्तित्व पर जोर देता है, यह भी माना जाता है कि वे अद्वितीय वस्तुओं का उत्पादन करते हैं।
यद्यपि यूक्लिड का अभिधारणाओं का कथन केवल स्पष्ट रूप से निर्माणों के अस्तित्व पर जोर देता है, यह भी माना जाता है कि वे अद्वितीय वस्तुओं का उत्पादन करते हैं।


तत्वों की सफलता मुख्य रूप से यूक्लिड के लिए उपलब्ध अधिकांश गणितीय ज्ञान की तार्किक प्रस्तुति के कारण है। अधिकांश सामग्री उसके लिए मूल नहीं है, चूंकि कई प्रमाण कथित तौर पर उसके हैं। यूक्लिड के अपने विषय के व्यवस्थित विकास, स्वयंसिद्धों के एक छोटे से सेट से लेकर गहरे परिणामों तक, और पूरे तत्वों में उनके दृष्टिकोण की निरंतरता ने लगभग 2,000 वर्षों तक पाठ्यपुस्तक के रूप में इसके उपयोग को प्रोत्साहित किया। तत्व अभी भी आधुनिक ज्यामिति पुस्तकों को प्रभावित करते हैं। इसके अतिरिक्त , इसका तार्किक स्वयंसिद्ध दृष्टिकोण और कठोर प्रमाण गणित की आधारशिला बने हुए हैं।
तत्वों की सफलता मुख्य रूप से यूक्लिड के लिए उपलब्ध अधिकांश गणितीय ज्ञान की तार्किक प्रस्तुति के कारण है। अधिकांश सामग्री उसके लिए मूल नहीं है, चूंकि कई प्रमाण सामान्यतः उसके हैं। यूक्लिड के अपने विषय के व्यवस्थित विकास, स्वयंसिद्धों के एक छोटे से सेट से लेकर गहरे परिणामों तक, और पूरे तत्वों में उनके दृष्टिकोण की निरंतरता ने लगभग 2,000 वर्षों तक पाठ्यपुस्तक के रूप में इसके उपयोग को प्रोत्साहित किया। तत्व अभी भी आधुनिक ज्यामिति पुस्तकों को प्रभावित करते हैं। इसके अतिरिक्त , इसका तार्किक स्वयंसिद्ध दृष्टिकोण और कठोर प्रमाण गणित की आधारशिला बने हुए हैं।


=== यूक्लिड की एक आलोचना ===
=== यूक्लिड की एक आलोचना ===
यूक्लिड के तत्वों को लिखने के बाद से गणितीय कठोरता के मानक बदल गए हैं।<ref>{{harvnb|Venema|2006|loc=p. 11}}</ref> एक स्वयंसिद्ध प्रणाली के प्रति आधुनिक दृष्टिकोण, और दृष्टिकोण, यह प्रकट कर सकते हैं कि यूक्लिड विषय के प्रति अपने दृष्टिकोण में किसी तरह से मैला या लापरवाह था, लेकिन यह एक अनैतिहासिक भ्रम है। दूसरा-यूक्लिडियन ज्यामिति की प्रारंभिक के जवाब में नींव की सावधानी से जांच करने के बाद ही, जिसे अब हम दोष मानते हैं, निकलना प्रारंभ हो गया है। गणितज्ञ और इतिहासकार डब्ल्यू. डब्ल्यू. राउज़ बॉल ने इन आलोचनाओं को परिप्रेक्ष्य में रखा, यह टिप्पणी करते हुए कि तथ्य यह है कि दो हज़ार वर्षों तक [तत्व] इस विषय पर सामान्य पाठ्य-पुस्तक थी, एक मजबूत धारणा को जन्म देती है कि यह उस उद्देश्य के लिए अनुपयुक्त नहीं है।<ref>{{harvnb|Ball|1960|loc=p. 55}}</ref>
यूक्लिड के तत्वों को लिखने के बाद से गणितीय कठोरता के मानक बदल गए हैं।<ref>{{harvnb|Venema|2006|loc=p. 11}}</ref> स्वयंसिद्ध प्रणाली के प्रति आधुनिक दृष्टिकोण, और दृष्टिकोण, यह प्रकट कर सकते हैं कि यूक्लिड विषय के प्रति अपने दृष्टिकोण में किसी तरह से मैला या लापरवाह था, लेकिन यह अनैतिहासिक भ्रम है। दूसरा-यूक्लिडियन ज्यामिति की प्रारंभिक के उत्तर में आधारशिला की सावधानी से जांच करने के बाद ही, जिसे अब हम दोष मानते हैं, निकलना प्रारंभ हो गया है। गणितज्ञ और इतिहासकार डब्ल्यू. डब्ल्यू. राउज़ बॉल ने इन आलोचनाओं को परिप्रेक्ष्य में रखा, यह टिप्पणी करते हुए कि तथ्य यह है कि दो हज़ार वर्षों तक [तत्व] इस विषय पर सामान्य पाठ्य-पुस्तक थी, एक मजबूत धारणा को जन्म देती है कि यह उस उद्देश्य के लिए अनुपयुक्त नहीं है।<ref>{{harvnb|Ball|1960|loc=p. 55}}</ref>


यूक्लिड की प्रस्तुति के कुछ मुख्य मुद्दे हैं:
यूक्लिड की प्रस्तुति के कुछ मुख्य मुद्दे हैं:
* पुरातन धारणा, वस्तुओं और धारणाओं की अवधारणा की मान्यता का अभाव जिसे एक स्वयंसिद्ध प्रणाली के विकास में अपरिभाषित छोड़ दिया जाना चाहिए।<ref>{{harvnb|Wylie|1964|loc=p. 39}}</ref>
* पुरातन धारणा, वस्तुओं और धारणाओं की अवधारणा की मान्यता का अभाव जिसे स्वयंसिद्ध प्रणाली के विकास में अपरिभाषित छोड़ दिया जाना चाहिए।<ref>{{harvnb|Wylie|1964|loc=p. 39}}</ref>
* कुछ प्रमाणों में अध्यारोपण का प्रयोग बिना इस पद्धति का स्वयंसिद्ध औचित्य के।<ref name="Faber 1983 loc=p. 109">{{harvnb|Faber|1983|loc=p. 109}}</ref>
* कुछ प्रमाणों में अध्यारोपण का प्रयोग बिना इस पद्धति का स्वयंसिद्ध औचित्य के।<ref name="Faber 1983 loc=p. 109">{{harvnb|Faber|1983|loc=p. 109}}</ref>
* निरंतरता की अवधारणा का अभाव, जो यूक्लिड द्वारा निर्मित कुछ बिंदुओं और रेखाओं के अस्तित्व को सिद्ध करने के लिए आवश्यक है।<ref name="Faber 1983 loc=p. 109" />* दूसरी अवधारणा में एक सीधी रेखा अनंत है या सीमाहीन है, इस पर स्पष्टता का अभाव।<ref>{{harvnb|Faber|1983|loc=p. 113}}</ref>
* निरंतरता की अवधारणा का अभाव, जो यूक्लिड द्वारा निर्मित कुछ बिंदुओं और रेखाओं के अस्तित्व को सिद्ध करने के लिए आवश्यक है।<ref name="Faber 1983 loc=p. 109" /> दूसरी अवधारणा में सीधी रेखा अनंत है या सीमाहीन है, इस पर स्पष्टता का अभाव।<ref>{{harvnb|Faber|1983|loc=p. 113}}</ref>
* विभिन्न आकृतियों के अंदर और बाहर के बीच अंतर करने के लिए, अन्य बातों के अतिरिक्त , उपयोग की जाने वाली बीच की अवधारणा का अभाव।<ref>{{harvnb|Faber|1983|loc=p. 115}}</ref>
* विभिन्न आकृतियों के अंदर और बाहर के बीच अंतर करने के लिए, अन्य बातों के अतिरिक्त , उपयोग की जाने वाली बीच की अवधारणा का अभाव।<ref>{{harvnb|Faber|1983|loc=p. 115}}</ref>
तत्वों में यूक्लिड की सूक्तियों की सूची संपूर्ण नहीं थी, लेकिन उन सिद्धांतों का प्रतिनिधित्व करती थी जो सबसे महत्वपूर्ण प्रतीत होते थे। उनके प्रमाण प्रायः स्वयंसिद्ध धारणाओं का आह्वान करते हैं जो मूल रूप से स्वयंसिद्धों की उनकी सूची में प्रस्तुत नहीं की गई थीं।<ref>{{harvnb|Heath|1956|loc=p. 62 (vol. I)}}</ref> वह भटकता नहीं है और इस वजह से गलत चीजों को सिद्ध नहीं करता है, क्योंकि वह निहित मान्यताओं का उपयोग कर रहा है, जिसकी वैधता उनके प्रमाणों के साथ आने वाले आरेखों द्वारा उचित प्रतीत होती है। बाद के गणितज्ञों ने यूक्लिड की अंतर्निहित स्वयंसिद्ध मान्यताओं को औपचारिक सूक्तियों की सूची में सम्मिलित किया, जिससे उस सूची का बहुत अधिक विस्तार हुआ।<ref>{{harvnb|Greenberg|1974|loc=p. 57}}</ref>
तत्वों में यूक्लिड की सूक्तियों की सूची संपूर्ण नहीं थी, लेकिन उन सिद्धांतों का प्रतिनिधित्व करती थी जो सबसे महत्वपूर्ण प्रतीत होते थे। उनके प्रमाण प्रायः स्वयंसिद्ध धारणाओं का आह्वान करते हैं जो मूल रूप से स्वयंसिद्धों की उनकी सूची में प्रस्तुत नहीं की गई थीं।<ref>{{harvnb|Heath|1956|loc=p. 62 (vol. I)}}</ref> वह भटकता नहीं है और इस बात से गलत वस्तुओ को सिद्ध नहीं करता है, क्योंकि वह निहित मान्यताओं का उपयोग कर रहा है, जिसकी वैधता उनके प्रमाणों के साथ आने वाले आरेखों द्वारा उचित प्रतीत होती है। बाद के गणितज्ञों ने यूक्लिड की अंतर्निहित स्वयंसिद्ध मान्यताओं को औपचारिक सूक्तियों की सूची में सम्मिलित किया, जिससे उस सूची का बहुत अधिक विस्तार हुआ।<ref>{{harvnb|Greenberg|1974|loc=p. 57}}</ref>


उदाहरण के लिए, पुस्तक 1 ​​के पहले निर्माण में, यूक्लिड ने एक आधार वाक्य का उपयोग किया था जो न तो अभिगृहीत किया गया था और न ही सिद्ध किया गया था: कि त्रिज्या की दूरी पर केंद्र वाले दो वृत्त दो बिंदुओं पर प्रतिच्छेद करेंगे।<ref>{{harvnb|Heath|1956|loc=p. 242 (vol. I)}}</ref> बाद में, चौथे निर्माण में, उन्होंने यह सिद्ध करने के लिए कि यदि दो भुजाएँ और उनके कोण बराबर हैं, तो वे सर्वांगसम हैं; इन विचारों के समय वह अध्यारोपण के कुछ गुणों का उपयोग करता है, लेकिन ग्रंथ में इन गुणों का स्पष्ट रूप से वर्णन नहीं किया गया है। यदि अध्यारोपण को ज्यामितीय प्रमाण की एक वैध विधि माना जाता है, तो सभी ज्यामिति ऐसे प्रमाणों से भरी होंगी। उदाहरण के लिए, तर्कवाक्य I.1 से I.3 तक अध्यारोपण का उपयोग करके तुच्छ रूप से सिद्ध किया जा सकता है।<ref>{{harvnb|Heath|1956|loc=p. 249 (vol. I)}}</ref>
उदाहरण के लिए, पुस्तक प्रथम ​​के पहले निर्माण में, यूक्लिड ने आधार वाक्य का उपयोग किया था जो न तो अभिगृहीत किया गया था और न ही सिद्ध किया गया था: कि त्रिज्या की दूरी पर केंद्र वाले दो वृत्त दो बिंदुओं पर प्रतिच्छेद करेंगे।<ref>{{harvnb|Heath|1956|loc=p. 242 (vol. I)}}</ref> बाद में, चौथे निर्माण में, उन्होंने यह सिद्ध करने के लिए कि यदि दो भुजाएँ और उनके कोण बराबर हैं, तो वे सर्वांगसम हैं; इन विचारों के समय वह अध्यारोपण के कुछ गुणों का उपयोग करता है, लेकिन ग्रंथ में इन गुणों का स्पष्ट रूप से वर्णन नहीं किया गया है। यदि अध्यारोपण को ज्यामितीय प्रमाण की एक वैध विधि माना जाता है, तो सभी ज्यामिति ऐसे प्रमाणों से भरी होंगी। उदाहरण के लिए, तर्कवाक्य प्रथम से तृतीय तक अध्यारोपण का उपयोग करके तुच्छ रूप से सिद्ध किया जा सकता है।<ref>{{harvnb|Heath|1956|loc=p. 249 (vol. I)}}</ref>


यूक्लिड के काम में इन उद्देश्य को हल करने के लिए, बाद के लेखकों ने या तो यूक्लिड की प्रस्तुति में कमियों को भरने का प्रयास किया है - इन प्रयासों में सबसे उल्लेखनीय डेविड हिल्बर्टडी के कारण है। हिल्बर्ट - या स्वयंसिद्ध प्रणाली को विभिन्न अवधारणाओं के आसपास व्यवस्थित करने के लिए, जैसा कि जॉर्ज डेविड बिरखॉफ|जी.डी. बिरखॉफ ने किया है।
यूक्लिड के काम में इन उद्देश्य को हल करने के लिए, बाद के लेखकों ने या तो यूक्लिड की प्रस्तुति में कमियों को भरने का प्रयास किया है - इन प्रयासों में सबसे उल्लेखनीय डेविड हिल्बर्टडी के कारण है। हिल्बर्ट - या स्वयंसिद्ध प्रणाली को विभिन्न अवधारणाओं के आसपास व्यवस्थित करने के लिए, जैसा कि जॉर्ज डेविड बिरखॉफजी.डी. बिरखॉफ ने किया है।


=== पास्च और पीनो ===
=== पास्च और पीनो ===
जर्मन गणितज्ञ [[मोरिट्ज़ पास्च]] (1843-1930) यूक्लिडियन ज्यामिति को एक दृढ़ स्वयंसिद्ध आधार पर रखने के कार्य को पूरा करने वाले पहले व्यक्ति थे।<ref>{{harvnb|Eves|1963|loc=p. 380}}</ref> 1882 में प्रकाशित अपनी पुस्तक, वोरलेसुंगेन उबेर न्यूरे ज्योमेट्री में, पास्च ने आधुनिक स्वयंसिद्ध पद्धति की नींव रखी। उन्होंने पुरातन धारणा की अवधारणा को जन्म दिया (जिसे उन्होंने कर्नबेग्रिफ़ कहा) और स्वयंसिद्धों (केर्न्सटज़ेन) के साथ मिलकर उन्होंने एक औपचारिक प्रणाली का निर्माण किया जो किसी भी सरल प्रभाव से मुक्त है। पास्च के अनुसार, एकमात्र स्थान जहां अंतर्ज्ञान को भूमिका निभानी चाहिए, यह निपटारा करने में है कि पुरातन धारणाएं और सिद्धांत क्या होने चाहिए। इस प्रकार, पास्च के लिए, बिंदु एक पुरातन धारणा है, लेकिन रेखा (सीधी रेखा) नहीं है, क्योंकि हमारे पास बिंदुओं के बारे में अच्छा अंतर्ज्ञान है, लेकिन किसी ने कभी भी अनंत रेखा को देखा या अनुभव नहीं किया है। पास्च ने इसके स्थान पर जिस पुरातन धारणा का उपयोग किया है वह रेखा खंड है।
जर्मन गणितज्ञ [[मोरिट्ज़ पास्च]] (1843-1930) यूक्लिडियन ज्यामिति को दृढ़ स्वयंसिद्ध आधार पर रखने के कार्य को पूरा करने वाले पहले व्यक्ति थे।<ref>{{harvnb|Eves|1963|loc=p. 380}}</ref> 1882 में प्रकाशित अपनी पुस्तक, वोरलेसुंगेन उबेर न्यूरे ज्योमेट्री में, पास्च ने आधुनिक स्वयंसिद्ध पद्धति की आधारशिला रखी। उन्होंने पुरातन धारणा की अवधारणा को जन्म दिया (जिसे उन्होंने कर्नबेग्रिफ़ कहा) और स्वयंसिद्धों (केर्न्सटज़ेन) के साथ मिलकर उन्होंने औपचारिक प्रणाली का निर्माण किया जो किसी भी सरल प्रभाव से मुक्त है। पास्च के अनुसार, एकमात्र स्थान जहां अंतर्ज्ञान को भूमिका निभानी चाहिए, यह समाप्त करने में है कि पुरातन धारणाएं और सिद्धांत क्या होने चाहिए। इस प्रकार, पास्च के लिए, बिंदु पुरातन धारणा है, लेकिन रेखा (सीधी रेखा) नहीं है, क्योंकि हमारे पास बिंदुओं के बारे में अच्छा अंतर्ज्ञान है, लेकिन किसी ने कभी भी अनंत रेखा को देखा या अनुभव नहीं किया है। पास्च ने इसके स्थान पर जिस पुरातन धारणा का उपयोग किया है वह रेखा खंड है।
 
पास्च ने देखा कि एक रेखा पर बिंदुओं का क्रम (या समान रूप से रेखा खंडों के समतुल्य गुण) यूक्लिड के स्वयंसिद्धों द्वारा ठीक से हल नहीं किया गया है; इस प्रकार, पास्च की प्रमेय, जिसमें कहा गया है कि यदि दो रेखा खंड नियंत्रण संबंध धारण करते हैं तो एक तीसरा भी धारण करता है, यूक्लिड के स्वयंसिद्धों से सिद्ध नहीं किया जा सकता है। संबंधित पास्च का अभिगृहीत रेखाओं और त्रिभुजों के प्रतिच्छेदन गुणों से संबंधित है।
 
नींव पर पास्च के काम ने न केवल ज्यामिति में किंतु गणित के व्यापक संदर्भ में कठोरता के मानक निर्धारित किए। उनके सफलता के विचार अब इतने सामान्य हो गए हैं कि यह याद रखना कठिन है कि उनका एक ही प्रवर्तक था। पास्च के काम ने सामान्यतः पर कई अन्य गणितज्ञों को प्रभावित किया, विशेष रूप से डी. हिल्बर्ट और इटली गणितज्ञ जी. पीनो (1858-1932)। ज्यामिति पर पीआनो का 1889 का काम, सामान्यतः  प्रतीकात्मक तर्क (जिसका आविष्कार पीआनो ने किया था) के अंकन में पास्च के ग्रंथ का अनुवाद, बिंदु और बीच की पुरातन  धारणाओं का उपयोग करता है।<ref>{{harvnb|Peano|1889}}</ref> पास्च के लिए आवश्यक पुरातन  धारणाओं और स्वयंसिद्धों के चुनाव में पीआनो अनुभवजन्य बंधन को तोड़ता है। पीआनो के लिए, पूरी प्रणाली विशुद्ध रूप से औपचारिक है, किसी भी अनुभवजन्य इनपुट से अलग है।<ref>{{harvnb|Eves|1963|loc=p. 382}}</ref>


पास्च ने देखा कि रेखा पर बिंदुओं का क्रम (या समान रूप से रेखा खंडों के समतुल्य गुण) यूक्लिड के स्वयंसिद्धों द्वारा ठीक से हल नहीं किया गया है; इस प्रकार, पास्च की प्रमेय, जिसमें कहा गया है कि यदि दो रेखा खंड नियंत्रण संबंध धारण करते हैं तो तीसरा भी धारण करता है, यूक्लिड के स्वयंसिद्धों से सिद्ध नहीं किया जा सकता है। संबंधित पास्च का अभिगृहीत रेखाओं और त्रिभुजों के प्रतिच्छेदन गुणों से संबंधित है।


आधारशिला पर पास्च के काम ने न केवल ज्यामिति में किंतु गणित के व्यापक संदर्भ में कठोरता के मानक निर्धारित किए। उनके सफलता के विचार अब इतने सामान्य हो गए हैं कि यह याद रखना कठिन है कि उनका एक ही प्रवर्तक था। पास्च के काम ने सामान्यतः कई अन्य गणितज्ञों को प्रभावित किया, विशेष रूप से डी. हिल्बर्ट और इटली गणितज्ञ जी. पीनो (1858-1932)। ज्यामिति पर पीआनो का 1889 का काम, सामान्यतः प्रतीकात्मक तर्क (जिसका आविष्कार पीआनो ने किया था) के अंकन में पास्च के ग्रंथ का अनुवाद, बिंदु और बीच की पुरातन धारणाओं का उपयोग करता है।<ref>{{harvnb|Peano|1889}}</ref> पास्च के लिए आवश्यक पुरातन धारणाओं और स्वयंसिद्धों के चुनाव में पीआनो अनुभवजन्य बंधन को तोड़ता है। पीआनो के लिए, पूरी प्रणाली विशुद्ध रूप से औपचारिक है, किसी भी अनुभवजन्य इनपुट से अलग है।<ref>{{harvnb|Eves|1963|loc=p. 382}}</ref>
=== पियरी और जियोमीटर का इटली स्कूल ===
=== पियरी और जियोमीटर का इटली स्कूल ===
इटली गणितज्ञ [[मारियो पियरी]] (1860-1913) ने एक अलग दृष्टिकोण अपनाया और एक ऐसी प्रणाली पर विचार किया जिसमें केवल दो पुरातन धारणाएँ थीं, बिंदु और गति की।<ref>{{harvnb|Eves|1963|loc=p. 383}}</ref> पास्च ने चार प्राथमिक का प्रयोग किया था और पीआनो ने इसे घटाकर तीन कर दिया था, लेकिन ये दोनों दृष्टिकोण बीच की कुछ अवधारणा पर निर्भर थे, जिसे पियरी ने अपनी गति के सूत्रीकरण (ज्यामिति) से बदल दिया। 1905 में पियरी ने [[जटिल संख्या]] [[प्रक्षेपी ज्यामिति]] का पहला स्वयंसिद्ध उपचार दिया जो [[वास्तविक संख्या]] प्रक्षेपी ज्यामिति के निर्माण से प्रारंभ नहीं हुआ।
इटली गणितज्ञ [[मारियो पियरी]] (1860-1913) ने अलग दृष्टिकोण अपनाया और ऐसी प्रणाली पर विचार किया जिसमें केवल दो पुरातन धारणाएँ थीं, बिंदु और गति की।<ref>{{harvnb|Eves|1963|loc=p. 383}}</ref> पास्च ने चार प्राथमिक का प्रयोग किया था और पीआनो ने इसे घटाकर तीन कर दिया था, लेकिन ये दोनों दृष्टिकोण बीच की कुछ अवधारणा पर निर्भर थे, जिसे पियरी ने अपनी गति के सूत्रीकरण (ज्यामिति) से बदल दिया। 1905 में पियरी ने [[जटिल संख्या]] [[प्रक्षेपी ज्यामिति]] का पहला स्वयंसिद्ध उपचार दिया जो [[वास्तविक संख्या]] प्रक्षेपी ज्यामिति के निर्माण से प्रारंभ नहीं हुआ।


पियरी इटली जियोमीटर और तर्कशास्त्रियों के एक समूह का सदस्य था जिसे पियानो ने ट्यूरिन में अपने आसपास इकट्ठा किया था। सहायकों, कनिष्ठ सहयोगियों और अन्य लोगों का यह समूह पीआनो के तार्किक प्रतीकवाद के आधार पर ज्यामिति की नींव को ठोस स्वयंसिद्ध आधार पर रखने के पीआनो के तार्किक-ज्यामितीय कार्यक्रम को पूरा करने के लिए समर्पित था। पियरी के अतिरिक्त [[बुराली-फोर्टी]], [[एलेसेंड्रो पडोआ]] और [[गीनो फानो]] इस समूह में थे। 1900 में पेरिस में एक के बाद एक दो अंतर्राष्ट्रीय सम्मेलन हुए, [[दर्शनशास्त्र की अंतर्राष्ट्रीय कांग्रेस]] और गणितज्ञों की दूसरी अंतर्राष्ट्रीय कांग्रेस। इटली गणितज्ञों का यह समूह इन कांग्रेसों में अपने स्वयंसिद्ध एजेंडे को आगे बढ़ाते हुए बहुत अधिक प्रमाण में था।<ref>Pieri did not attend since he had recently moved to Sicily, but he did have a paper of his read at the Congress of Philosophy.</ref> पडोआ ने हिल्बर्ट की समस्याओं पर डेविड हिल्बर्ट के प्रसिद्ध संबोधन के बाद प्रश्न काल में एक अच्छी तरह से विचार और पीनो दिया, टिप्पणी की कि उनके सहयोगियों ने हिल्बर्ट की दूसरी समस्या को पहले ही हल कर दिया था।
पियरी इटली जियोमीटर और तर्कशास्त्रियों के समूह का सदस्य था जिसे पियानो ने ट्यूरिन में अपने आसपास इकट्ठा किया था। सहायकों, कनिष्ठ सहयोगियों और अन्य लोगों का यह समूह पीआनो के तार्किक प्रतीकवाद के आधार पर ज्यामिति की आधारशिला को ठोस स्वयंसिद्ध आधार पर रखने के पीआनो के तार्किक-ज्यामितीय कार्यक्रम को पूरा करने के लिए समर्पित था। पियरी के अतिरिक्त [[बुराली-फोर्टी]], [[एलेसेंड्रो पडोआ]] और [[गीनो फानो]] इस समूह में थे। 1900 में पेरिस में एक के बाद एक दो अंतर्राष्ट्रीय सम्मेलन हुए, [[दर्शनशास्त्र की अंतर्राष्ट्रीय कांग्रेस]] और गणितज्ञों की दूसरी अंतर्राष्ट्रीय कांग्रेस। इटली गणितज्ञों का यह समूह इन कांग्रेसों में अपने स्वयंसिद्ध मुद्दों को आगे बढ़ाते हुए बहुत अधिक प्रमाण में था।<ref>Pieri did not attend since he had recently moved to Sicily, but he did have a paper of his read at the Congress of Philosophy.</ref> पडोआ ने हिल्बर्ट की समस्याओं पर डेविड हिल्बर्ट के प्रसिद्ध संबोधन के बाद प्रश्न काल में अच्छी तरह से विचार और पीनो दिया, टिप्पणी की कि उनके सहयोगियों ने हिल्बर्ट की दूसरी समस्या को पहले ही हल कर दिया था।


===हिल्बर्ट के स्वयंसिद्ध ===
===हिल्बर्ट के स्वयंसिद्ध ===
{{main|हिल्बर्ट के स्वयंसिद्ध}}
{{main|हिल्बर्ट के स्वयंसिद्ध}}गौटिंगेन विश्वविद्यालय में, 1898-1899 की सर्दियों की अवधि के समय, प्रसिद्ध जर्मन गणितज्ञ डेविड हिल्बर्ट (1862-1943) ने ज्यामिति की आधारशिला पर व्याख्यान का पाठ्यक्रम प्रस्तुत किया। [[फेलिक्स क्लेन]] के अनुरोध पर, प्रोफेसर हिल्बर्ट को कार्ल फ्रेडरिक गॉस के स्मारक के समर्पण समारोह 1899 की गर्मियों के लिए समय पर इस पाठ्यक्रम के लिए व्याख्यान टिप्पणियाँ लिखने के लिए कहा गया था। सी.एफ. गॉस और [[विल्हेम एडवर्ड वेबर]] विश्वविद्यालय में आयोजित होने वाले हैं। पुनर्व्यवस्थित व्याख्यान जून 1899 में [[ज्यामिति की मूल बातें]] (ज्यामिति की आधारशिला) शीर्षक के रूप में प्रकाशित किए गए थे। पुस्तक का प्रभाव तत्काल था।  
[[File:Hilbert.jpg|thumb|{{center|डेविड हिल्बर्ट}}]]गौटिंगेन विश्वविद्यालय में, 1898-1899 की सर्दियों की अवधि के समय, प्रसिद्ध जर्मन गणितज्ञ डेविड हिल्बर्ट (1862-1943) ने ज्यामिति की नींव पर व्याख्यान का एक पाठ्यक्रम प्रस्तुत किया। [[फेलिक्स क्लेन]] के अनुरोध पर, प्रोफेसर हिल्बर्ट को कार्ल फ्रेडरिक गॉस के स्मारक के समर्पण समारोह 1899 की गर्मियों के लिए समय पर इस पाठ्यक्रम के लिए व्याख्यान टिप्पणियाँ लिखने के लिए कहा गया था। सी.एफ. गॉस और [[विल्हेम एडवर्ड वेबर]] विश्वविद्यालय में आयोजित होने वाले हैं। पुनर्व्यवस्थित व्याख्यान जून 1899 में [[ज्यामिति की मूल बातें]] (ज्यामिति की नींव) शीर्षक के रूप में प्रकाशित किए गए थे। पुस्तक का प्रभाव तत्काल था। के अनुसार {{harvtxt|Eves|1963|loc=pp. 384&ndash;5}}:
 
<ब्लॉककोट>


यूक्लिडियन ज्यामिति के लिए एक पोस्टुलेट सेट विकसित करके जो यूक्लिड के स्वयं से आत्मा में बहुत अधिक प्रस्थान नहीं करता है, और न्यूनतम प्रतीकवाद को नियोजित करके, हिल्बर्ट गणितज्ञों को विशुद्ध रूप से काल्पनिक-डिडक्टिव पास्च और पीनो की तुलना में कहीं अधिक समय तक समझाने में सफल रहा। ज्यामिति की प्रकृति। लेकिन हिल्बर्ट के काम का प्रभाव इससे बहुत आगे निकल गया, क्योंकि, लेखक के महान गणितीय अधिकार द्वारा समर्थित, इसने न केवल ज्यामिति के क्षेत्र में, किंतु अनिवार्य रूप से गणित की हर दूसरी शाखा में भी अवधारणात्मक पद्धति को प्रयुक्त किया। हिल्बर्ट की छोटी पुस्तक द्वारा प्रदान की गई गणित की नींव के विकास के लिए प्रोत्साहन को कम करके आंका जाना कठिन है। पास्च और पयानो के कार्यों के अनोखा प्रतीकात्मकता की कमी के कारण, हाई स्कूल ज्यामिति के किसी भी बुद्धिमान छात्र द्वारा हिल्बर्ट के काम को बड़े भाग में पढ़ा जा सकता है।
यूक्लिडियन ज्यामिति के लिए पोस्टुलेट सेट विकसित करके जो यूक्लिड के स्वयं से आत्मा में बहुत अधिक प्रस्थान नहीं करता है, और न्यूनतम प्रतीकवाद को नियोजित करके, हिल्बर्ट गणितज्ञों को विशुद्ध रूप से काल्पनिक-डिडक्टिव पास्च और पीनो की तुलना में कहीं अधिक समय तक समझाने में सफल रहा। ज्यामिति की प्रकृति थी लेकिन हिल्बर्ट के काम का प्रभाव इससे बहुत आगे निकल गया, क्योंकि, लेखक के महान गणितीय अधिकार द्वारा समर्थित, इसने न केवल ज्यामिति के क्षेत्र में, किंतु अनिवार्य रूप से गणित की हर दूसरी शाखा में भी अवधारणात्मक पद्धति को प्रयुक्त किया। हिल्बर्ट की छोटी पुस्तक द्वारा प्रदान की गई गणित की आधारशिला के विकास के लिए प्रोत्साहन को कम करके आंका जाना कठिन है। पास्च और पयानो के कार्यों के अनोखा प्रतीकात्मकता की कमी के कारण, हाई स्कूल ज्यामिति के किसी भी बुद्धिमान छात्र द्वारा हिल्बर्ट के काम को बड़े भाग में पढ़ा जा सकता है।


</ब्लॉककोट>


हिल्बर्ट द्वारा उपयोग किए गए स्वयंसिद्धों को ग्रुंडलागेन के प्रकाशन इतिहास का उल्लेख किए बिना निर्दिष्ट करना कठिन है क्योंकि हिल्बर्ट ने उन्हें कई बार बदला और संशोधित किया। मूल मोनोग्राफ के तुरंत बाद एक फ्रांसीसी अनुवाद आया, जिसमें हिल्बर्ट ने v.2, पूर्णता स्वयंसिद्ध को जोड़ा। हिल्बर्ट द्वारा अधिकृत एक अंग्रेजी अनुवाद, ई.जे. द्वारा बनाया गया था। 1902 में टाउनसेंड और कॉपीराइट।<ref>{{harvnb|Hilbert|1950}}</ref> इस अनुवाद में फ्रेंच अनुवाद में किए गए परिवर्तन सम्मिलित थे और इसलिए इसे दूसरे संस्करण का अनुवाद माना जाता है। हिल्बर्ट ने पाठ में परिवर्तन करना जारी रखा और जर्मन में कई संस्करण सामने आए। हिल्बर्ट के जीवनकाल में प्रदर्शित होने वाला 7वां संस्करण अंतिम था। नए संस्करणों ने 7 वें का अनुसरण किया, लेकिन मुख्य पाठ अनिवार्य रूप से संशोधित नहीं किया गया था। इन संस्करणों में संशोधन परिशिष्ट और पूरक में होते हैं। मूल की तुलना में पाठ में परिवर्तन बड़े थे और एक नया अंग्रेजी अनुवाद ओपन कोर्ट पब्लिशर्स द्वारा कमीशन किया गया था, जिन्होंने टाउनसेंड अनुवाद प्रकाशित किया था। इसलिए, 1971 में 10वें जर्मन संस्करण से लियो उंगर द्वारा दूसरे अंग्रेजी संस्करण का अनुवाद किया गया था।<ref>{{harvnb|Hilbert|1990}}</ref> इस अनुवाद में पॉल बर्नेज़ द्वारा बाद के जर्मन संस्करणों के कई संशोधन और विस्तार सम्मिलित हैं। दो अंग्रेजी अनुवादों के बीच मतभेद न केवल हिल्बर्ट के कारण हैं, किंतु दो अनुवादकों द्वारा किए गए अलग-अलग विकल्पों के कारण भी हैं। आगे जो होगा वह अनगर अनुवाद पर आधारित होगा।
हिल्बर्ट द्वारा उपयोग किए गए स्वयंसिद्धों को ग्रुंडलागेन के प्रकाशन इतिहास का उल्लेख किए बिना निर्दिष्ट करना कठिन है क्योंकि हिल्बर्ट ने उन्हें कई बार बदला और संशोधित किया। मूल मोनोग्राफ के तुरंत बाद फ्रांसीसी अनुवाद आया, जिसमें हिल्बर्ट ने वी2, पूर्णता स्वयंसिद्ध को जोड़ा। हिल्बर्ट द्वारा अधिकृत अंग्रेजी अनुवाद, ई.जे. द्वारा बनाया गया था। 1902 में टाउनसेंड और कॉपीराइट।<ref>{{harvnb|Hilbert|1950}}</ref> इस अनुवाद में फ्रेंच अनुवाद में किए गए परिवर्तन सम्मिलित थे और इसलिए इसे दूसरे संस्करण का अनुवाद माना जाता है। हिल्बर्ट ने पाठ में परिवर्तन करना जारी रखा और जर्मन में कई संस्करण सामने आए। हिल्बर्ट के जीवनकाल में प्रदर्शित होने वाला 7वां संस्करण अंतिम था। नए संस्करणों ने 7 वें का अनुसरण किया, लेकिन मुख्य पाठ अनिवार्य रूप से संशोधित नहीं किया गया था। इन संस्करणों में संशोधन परिशिष्ट और पूरक में होते हैं। मूल की तुलना में पाठ में परिवर्तन बड़े थे और नया अंग्रेजी अनुवाद ओपन कोर्ट पब्लिशर्स द्वारा कमीशन किया गया था, जिन्होंने टाउनसेंड अनुवाद प्रकाशित किया था। इसलिए, 1971 में 10वें जर्मन संस्करण से लियो उंगर द्वारा दूसरे अंग्रेजी संस्करण का अनुवाद किया गया था।<ref>{{harvnb|Hilbert|1990}}</ref> इस अनुवाद में पॉल बर्नेज़ द्वारा बाद के जर्मन संस्करणों के कई संशोधन और विस्तार सम्मिलित हैं। दो अंग्रेजी अनुवादों के बीच मतभेद न केवल हिल्बर्ट के कारण हैं, किंतु दो अनुवादकों द्वारा किए गए अलग-अलग विकल्पों के कारण भी हैं। आगे जो होगा वह अनगर अनुवाद पर आधारित होगा।


हिल्बर्ट की [[स्वयंसिद्ध प्रणाली]] का निर्माण छह पुरातन धारणाओं के साथ किया गया है: बिंदु (ज्यामिति), रेखा (ज्यामिति), तल (गणित), बीच, निहित (रोकथाम), और सर्वांगसमता।
हिल्बर्ट की [[स्वयंसिद्ध प्रणाली]] का निर्माण छह पुरातन धारणाओं के साथ किया गया है: बिंदु (ज्यामिति), रेखा (ज्यामिति), तल (गणित), बीच, निहित (रोकथाम), और सर्वांगसमता।


निम्नलिखित स्वयंसिद्धों में सभी बिंदु, रेखाएँ और तल अलग-अलग हैं जब तक कि अन्यथा न कहा गया हो।
निम्नलिखित स्वयंसिद्धों में सभी बिंदु, रेखाएँ और तल अलग-अलग हैं जब तक कि अन्यथा न कहा गया हो।


:'मैं। घटना'
:
'''प्रथम''' '''घटना'''
'''प्रथम''' '''घटना'''
# हर दो बिंदु A और B के लिए एक रेखा उपस्थित होती है जिसमें ये दोनों सम्मिलित होते हैं। हम AB = a या BA = a लिखते हैं। "सम्मिलित है" के अतिरिक्त हम अभिव्यक्ति के अन्य रूपों को भी नियोजित कर सकते हैं; उदाहरण के लिए, हम कह सकते हैं कि "A, A पर झूठ बोलता है", "A, A का बिंदु है", "A, A से होकर B से होकर जाता है", "A, A को B से जोड़ता है", आदि। यदि A, A पर स्थित है और उसी समय दूसरी रेखा b पर, हम अभिव्यक्ति का भी उपयोग करते हैं: "रेखाओं a और b में बिंदु A सामान्य है," आदि।
# हर दो बिंदु A और B के लिए एक रेखा उपस्थित होती है जिसमें ये दोनों सम्मिलित होते हैं। हम AB = a या BA = a लिखते हैं। "सम्मिलित है" के अतिरिक्त हम अभिव्यक्ति के अन्य रूपों को भी नियोजित कर सकते हैं; उदाहरण के लिए, हम कह सकते हैं कि "A, A पर झूठ बोलता है", "A, A का बिंदु है", "A, A से होकर B से होकर जाता है", "A, A को B से जोड़ता है", आदि। यदि A, A पर स्थित है और उसी समय दूसरी रेखा b पर, हम अभिव्यक्ति का भी उपयोग करते हैं: "रेखाओं a और b में बिंदु A सामान्य है," आदि।
# प्रत्येक दो बिंदुओं के लिए एक से अधिक रेखा उपस्थित नहीं होती है जिसमें वे दोनों सम्मिलित हों; परिणामस्वरूप, यदि AB = a और AC = a, जहाँ B ≠ C, तो भी BC = a।
# प्रत्येक दो बिंदुओं के लिए एक से अधिक रेखा उपस्थित नहीं होती है जिसमें वे दोनों सम्मिलित हों; परिणामस्वरूप, यदि AB = a और AC = a, जहाँ B ≠ C, तो भी BC = a।
# एक रेखा पर कम से कम दो बिंदु होते हैं। कम से कम तीन बिन्दु ऐसे होते हैं जो एक रेखा पर स्थित नहीं होते।
# एक रेखा पर कम से कम दो बिंदु होते हैं। कम से कम तीन बिन्दु ऐसे होते हैं जो एक रेखा पर स्थित नहीं होते।
# प्रत्येक तीन बिंदुओं के लिए A, B, C एक ही रेखा पर स्थित नहीं हैं, वहां एक विमान α उपस्थित है जिसमें ये सभी सम्मिलित हैं। प्रत्येक तल के लिए एक बिंदु होता है जो उस पर स्थित होता है। हम ABC = α लिखते हैं। हम अभिव्यक्ति भी नियोजित करते हैं: "A, B, C, α में झूठ"; "A, B, C α के बिंदु हैं", आदि।
# प्रत्येक तीन बिंदुओं के लिए A, B, C एक ही रेखा पर स्थित नहीं हैं, वहां एक विमान α उपस्थित है जिसमें ये सभी सम्मिलित हैं। प्रत्येक तल के लिए एक बिंदु होता है जो उस पर स्थित होता है। हम ABC = α लिखते हैं। हम अभिव्यक्ति भी नियोजित करते हैं: "A, B, C, α में झूठ"; "A, B, C α के बिंदु हैं", आदि।
# हर तीन बिंदु A, B, C के लिए जो एक ही रेखा में नहीं हैं, एक से अधिक विमान उपस्थित नहीं हैं जो उन सभी को समाहित करते हैं।
# हर तीन बिंदु A, B, C के लिए जो एक ही रेखा में नहीं हैं, एक से अधिक विमान उपस्थित नहीं हैं जो उन सभी को समाहित करते हैं।
# यदि एक रेखा a के दो बिंदु A, B एक समतल α में स्थित हैं, तो a का प्रत्येक बिंदु α में स्थित है। इस मामले में हम कहते हैं: "रेखा विमान α में स्थित है," आदि।
# यदि एक रेखा a के दो बिंदु A, B एक समतल α में स्थित हैं, तो a का प्रत्येक बिंदु α में स्थित है। इस स्थितियों में हम कहते हैं: "रेखा विमान α में स्थित है," आदि।
# यदि दो समतल α, β में एक बिंदु A उभयनिष्ठ है, तो उनके पास कम से कम एक दूसरा बिंदु B उभयनिष्ठ होगा।
# यदि दो समतल α, β में एक बिंदु A उभयनिष्ठ है, तो उनके पास कम से कम एक दूसरा बिंदु B उभयनिष्ठ होगा।
# विमान में कम से कम चार बिंदु उपस्थित नहीं हैं।
# विमान में कम से कम चार बिंदु उपस्थित नहीं हैं।


:''''द्वितीय'''। '''आदेश'''<nowiki/>'
:''''द्वितीय'''। '''आदेश'''<nowiki/>'


# यदि कोई बिंदु B बिंदु A और C के बीच स्थित है, B भी C और A के बीच है, और एक रेखा उपस्थित है जिसमें अलग-अलग बिंदु A,B,C हैं।
# यदि कोई बिंदु B बिंदु A और C के बीच स्थित है, B भी C और A के बीच है, और एक रेखा उपस्थित है जिसमें अलग-अलग बिंदु A,B,C हैं।
# यदि A और C एक रेखा के दो बिंदु हैं, तो A और C के बीच कम से कम एक बिंदु B स्थित है।
# यदि A और C एक रेखा के दो बिंदु हैं, तो A और C के बीच कम से कम एक बिंदु B स्थित है।
# एक रेखा पर स्थित किन्हीं तीन बिंदुओं में से एक से अधिक नहीं है जो अन्य दो के बीच स्थित है।
# एक रेखा पर स्थित किन्हीं तीन बिंदुओं में से एक से अधिक नहीं है जो अन्य दो के बीच स्थित है।
# पास्च का अभिगृहीत: मान लीजिए कि A, B, C तीन बिंदु हैं जो एक ही रेखा में नहीं हैं और a को समतल ABC में पड़ी एक रेखा होने दें और किसी भी बिंदु A, B, C से होकर न गुजरें। फिर, यदि रेखा a खंड AB के एक बिंदु से होकर निकलता है, यह या तो खंड BC के एक बिंदु या खंड AC के एक बिंदु से होकर गुजरेगा।
# पास्च का अभिगृहीत: मान लीजिए कि A, B, C तीन बिंदु हैं जो एक ही रेखा में नहीं हैं और a को समतल ABC में पड़ी रेखा होने दें और किसी भी बिंदु A, B, C से होकर न गुजरें। फिर, यदि रेखा a खंड AB के एक बिंदु से होकर निकलता है, यह या तो खंड BC के एक बिंदु या खंड AC के एक बिंदु से होकर गुजरेगा।


:''''तृतीय। सर्वांगसमता''''
:''''तृतीय। सर्वांगसमता''''
Line 118: Line 114:
# यदि A, B एक रेखा a पर दो बिंदु हैं, और यदि A' उसी या दूसरी रेखा a' पर एक बिंदु है, तो, A' के दिए गए पक्ष पर सीधी रेखा a' पर, हम हमेशा एक पा सकते हैं बिंदु B' जिससे खंड AB, खंड A'B' के सर्वांगसम हो। हम इस संबंध को AB ≅ A' B' लिखकर प्रदर्शित करते हैं। प्रत्येक खंड अपने आप में सर्वांगसम है; अर्थात्, हमारे पास हमेशा AB ≅ AB होता है।<br/>हम उपरोक्त अभिगृहीत को संक्षेप में यह कहकर बता सकते हैं कि प्रत्येक खंड को किसी दी गई सीधी रेखा के दिए गए बिंदु के किसी दिए गए पक्ष पर कम से कम एक विधि से रखा जा सकता है।
# यदि A, B एक रेखा a पर दो बिंदु हैं, और यदि A' उसी या दूसरी रेखा a' पर एक बिंदु है, तो, A' के दिए गए पक्ष पर सीधी रेखा a' पर, हम हमेशा एक पा सकते हैं बिंदु B' जिससे खंड AB, खंड A'B' के सर्वांगसम हो। हम इस संबंध को AB ≅ A' B' लिखकर प्रदर्शित करते हैं। प्रत्येक खंड अपने आप में सर्वांगसम है; अर्थात्, हमारे पास हमेशा AB ≅ AB होता है।<br/>हम उपरोक्त अभिगृहीत को संक्षेप में यह कहकर बता सकते हैं कि प्रत्येक खंड को किसी दी गई सीधी रेखा के दिए गए बिंदु के किसी दिए गए पक्ष पर कम से कम एक विधि से रखा जा सकता है।
# यदि एक खंड AB खंड A'B' के अनुरूप है और खंड A″B″ के भी है, तो खंड A'B' खंड A″B″ के सर्वांगसम है; अर्थात्, यदि AB ≅ A'B' और AB ≅ A″B″, तो A'B' ≅ A″B″।
# यदि एक खंड AB खंड A'B' के अनुरूप है और खंड A″B″ के भी है, तो खंड A'B' खंड A″B″ के सर्वांगसम है; अर्थात्, यदि AB ≅ A'B' और AB ≅ A″B″, तो A'B' ≅ A″B″।
# मान लें कि AB और BC एक रेखा a के दो खंड हैं जिनमें बिंदु B के अतिरिक्त कोई उभयनिष्ठ बिंदु नहीं है, और इसके अतिरिक्त , A'B' और B'C' एक ही या दूसरी रेखा a' के दो खंड हैं। इसी तरह, B 'के अतिरिक्त कोई बिंदु सामान्य नहीं है। तब, यदि AB ≅ A'B' और BC ≅ B'C', तो हमें AC ≅ A'C' प्राप्त होता है।
# मान लें कि AB और BC एक रेखा a के दो खंड हैं जिनमें बिंदु B के अतिरिक्त कोई उभयनिष्ठ बिंदु नहीं है, और इसके अतिरिक्त , A'B' और B'C' एक ही या दूसरी रेखा a' के दो खंड हैं। इसी तरह, B 'के अतिरिक्त कोई बिंदु सामान्य नहीं है। तब, यदि AB ≅ A'B' और BC ≅ B'C', तो हमें AC ≅ A'C' प्राप्त होता है।
# समतल α में कोण ∠ (h,k) दिया जाए और समतल α में एक रेखा a′ दी जाए। यह भी मान लीजिए कि समतल α' में सीधी रेखा a' की एक निश्चित भुजा नियत की गई है। निरूपित इस रेखा के एक बिंदु O' से निकलने वाली सीधी रेखा a' की एक किरण h' द्वारा। तब समतल α' में एक और केवल एक किरण k' होती है, जिससे कोण ∠ (h, k), या ∠ (k, h), कोण ∠ (h′, k′) के सर्वांगसम होता है और उसी समय कोण के सभी आंतरिक बिंदु ∠ (h′, k′) a′ के दिए गए पक्ष पर स्थित होते हैं। हम इस संबंध को ∠ (h, k) ≅ ∠ (h′, k′) चिह्न के माध्यम से व्यक्त करते हैं।
# समतल α में कोण ∠ (h,k) दिया जाए और समतल α में एक रेखा a′ दी जाए। यह भी मान लीजिए कि समतल α' में सीधी रेखा a' की एक निश्चित भुजा नियत की गई है। निरूपित इस रेखा के एक बिंदु O' से निकलने वाली सीधी रेखा a' की एक किरण h' द्वारा। तब समतल α' में एक और केवल एक किरण k' होती है, जिससे कोण ∠ (h, k), या ∠ (k, h), कोण ∠ (h′, k′) के सर्वांगसम होता है और उसी समय कोण के सभी आंतरिक बिंदु ∠ (h′, k′) a′ के दिए गए पक्ष पर स्थित होते हैं। हम इस संबंध को ∠ (h, k) ≅ ∠ (h′, k′) चिह्न के माध्यम से व्यक्त करते हैं।
# यदि कोण ∠ (h, k) कोण ∠ (h′, k′) और कोण ∠ (h″, k″) के अनुरूप है, तो कोण ∠ (h′, k′) सर्वांगसम है कोण ∠ (h″, k″); यानी, अगर ∠ (h, k) ≅ ∠ (h′, k′) और ∠ (h, k) ≅ ∠ (h″, k″), तो ∠ (h′, k′) ≅ ∠ ( H", K")।
# यदि कोण ∠ (h, k) कोण ∠ (h′, k′) और कोण ∠ (h″, k″) के अनुरूप है, तो कोण ∠ (h′, k′) सर्वांगसम है कोण ∠ (h″, k″); यानी, यदि ∠ (h, k) ≅ ∠ (h′, k′) और ∠ (h, k) ≅ ∠ (h″, k″), तो ∠ (h′, k′) ≅ ∠ ( H", K")।


: ''''चतुर्थ। समानताएं''''
: ''''चतुर्थ। समानताएं''''
Line 128: Line 124:
:'''<nowiki/>'पंचम. निरंतरता''''
:'''<nowiki/>'पंचम. निरंतरता''''


# [[आर्किमिडीज़ का स्वयंसिद्ध]]। यदि AB और CD कोई खंड हैं, तो एक संख्या n उपस्थित है, जैसे कि A से B के माध्यम से किरण के साथ A से निर्मित n खंड CD, बिंदु B से आगे निकल जाएगा।
# [[आर्किमिडीज़ का स्वयंसिद्ध]]। यदि AB और CD कोई खंड हैं, तो एक संख्या n उपस्थित है, जैसे कि A से B के माध्यम से किरण के साथ A से निर्मित n खंड CD, बिंदु B से आगे निकल जाएगा।
# रेखा पूर्णता का स्वयंसिद्ध। अपने क्रम और सर्वांगसमता संबंधों के साथ एक रेखा पर बिंदुओं के एक सेट का विस्तार जो मूल तत्वों के साथ-साथ रेखा क्रम और सर्वांगसमता के मौलिक गुणों के बीच उपस्थित संबंधों को संरक्षित करेगा जो एक्सिओम्स प्रथम-तृतीय और पंचम-प्रथम से अनुसरण करता है। असंभव।
# रेखा पूर्णता का स्वयंसिद्ध। अपने क्रम और सर्वांगसमता संबंधों के साथ एक रेखा पर बिंदुओं के एक सेट का विस्तार जो मूल तत्वों के साथ-साथ रेखा क्रम और सर्वांगसमता के मौलिक गुणों के बीच उपस्थित संबंधों को संरक्षित करेगा जो एक्सिओम्स प्रथम-तृतीय और पंचम-प्रथम से अनुसरण करता है। असंभव।


==== हिल्बर्ट के स्वयंसिद्धों में परिवर्तन ====
==== हिल्बर्ट के स्वयंसिद्धों में परिवर्तन ====
जब 1899 के मोनोग्राफ का फ्रेंच में अनुवाद किया गया, तो हिल्बर्ट ने कहा:
जब 1899 के मोनोग्राफ का फ्रेंच में अनुवाद किया गया, तो हिल्बर्ट ने कहा:
:: v.2 पूर्णता का स्वयंसिद्ध। बिंदुओं, सीधी रेखाओं और समतलों की एक प्रणाली में, अन्य तत्वों को इस तरह से जोड़ना असंभव है कि इस प्रकार सामान्यीकृत प्रणाली एक नई ज्यामिति का निर्माण करेगी जो स्वयंसिद्धों के सभी पाँच समूहों का पालन करती है। दूसरे शब्दों में, ज्यामिति के तत्व एक ऐसी प्रणाली बनाते हैं जो विस्तार के लिए अतिसंवेदनशील नहीं है, अगर हम स्वयंसिद्धों के पांच समूहों को मान्य मानते हैं।
:: वी2 पूर्णता का स्वयंसिद् बिंदुओं, सीधी रेखाओं और समतलों की प्रणाली में, अन्य तत्वों को इस तरह से जोड़ना असंभव है कि इस प्रकार सामान्यीकृत प्रणाली नई ज्यामिति का निर्माण करेगी जो स्वयंसिद्धों के सभी पाँच समूहों का पालन करती है। दूसरे शब्दों में, ज्यामिति के तत्व एक ऐसी प्रणाली बनाते हैं जो विस्तार के लिए अतिसंवेदनशील नहीं है, यदि हम स्वयंसिद्धों के पांच समूहों को मान्य मानते हैं।


यूक्लिडियन ज्यामिति के विकास के लिए इस स्वयंसिद्ध की आवश्यकता नहीं है, लेकिन वास्तविक संख्याओं और एक रेखा पर बिंदुओं के बीच एक आक्षेप स्थापित करने के लिए आवश्यक है।<ref>{{harvnb|Eves|1963|loc=p. 386}}</ref> हिल्बर्ट के स्वयंसिद्ध प्रणाली की निरंतरता के प्रमाण में यह एक आवश्यक घटक था।
यूक्लिडियन ज्यामिति के विकास के लिए इस स्वयंसिद्ध की आवश्यकता नहीं है, लेकिन वास्तविक संख्याओं और एक रेखा पर बिंदुओं के बीच आक्षेप स्थापित करने के लिए आवश्यक है।<ref>{{harvnb|Eves|1963|loc=p. 386}}</ref> हिल्बर्ट के स्वयंसिद्ध प्रणाली की निरंतरता के प्रमाण में यह आवश्यक घटक था।


ग्रंडलागेन के 7वें संस्करण तक, इस अभिगृहीत को ऊपर दी गई रेखा पूर्णता की अभिगृहीत से बदल दिया गया था और पुरानी अभिगृहीत v.2 प्रमेय 32 बन गई।
ग्रंडलागेन के 7वें संस्करण तक, इस अभिगृहीत को ऊपर दी गई रेखा पूर्णता की अभिगृहीत से बदल दिया गया था और पुरानी अभिगृहीत वी.2 प्रमेय 32 बन गई।


इसके अतिरिक्त 1899 मोनोग्राफ (और टाउनसेंड अनुवाद में दिखाई देने वाला) में पाया जाता है:
इसके अतिरिक्त 1899 मोनोग्राफ (और टाउनसेंड अनुवाद में दिखाई देने वाला) में पाया जाता है:
: द्वितीय.4। एक रेखा के किन्हीं भी चार बिंदुओं A, B, C, D को हमेशा लेबल किया जा सकता है जिससे B, A और C के बीच और A और D के बीच भी स्थित हो, और इसके अतिरिक्त , C, A और D के बीच और B और के बीच भी स्थित हो डी।
: द्वितीय रेखा के किन्हीं भी चार बिंदुओं A, B, C, D को हमेशा लेबल किया जा सकता है जिससे B, A और C के बीच और A और D के बीच भी स्थित हो, और इसके अतिरिक्त , C, A और D के बीच और B और के बीच भी स्थित हो।


चुकीं, ई.एच. मूर और आरएल मूर ने स्वतंत्र रूप से सिद्ध किया कि यह स्वयंसिद्ध निरर्थक है, और पूर्व ने इस परिणाम को 1902 में अमेरिकन मैथमैटिकल सोसाइटी के लेन-देन में प्रदर्शित होने वाले एक लेख में प्रकाशित किया।<ref>{{citation|first=E.H.|last=Moore|title=On the projective axioms of geometry|journal=Transactions of the American Mathematical Society|year=1902|volume=3|issue=1|pages=142&ndash;158|doi=10.2307/1986321|jstor=1986321|doi-access=free}}</ref> हिल्बर्ट ने अभिगृहीत को प्रमेय 5 में स्थानांतरित किया और उसी के अनुसार अभिगृहीतों को फिर से क्रमांकित किया (पुराना अभिगृहीत द्वितीय-5 (पास्च का अभिगृहीत) अब द्वितीय-4 बन गया)।
चुकीं, ई.एच. मूर और आरएल मूर ने स्वतंत्र रूप से सिद्ध किया कि यह स्वयंसिद्ध निरर्थक है, और पूर्व ने इस परिणाम को 1902 में अमेरिकन मैथमैटिकल सोसाइटी के लेन-देन में प्रदर्शित होने वाले एक लेख में प्रकाशित किया।<ref>{{citation|first=E.H.|last=Moore|title=On the projective axioms of geometry|journal=Transactions of the American Mathematical Society|year=1902|volume=3|issue=1|pages=142&ndash;158|doi=10.2307/1986321|jstor=1986321|doi-access=free}}</ref> हिल्बर्ट ने अभिगृहीत को प्रमेय 5 में स्थानांतरित किया और उसी के अनुसार अभिगृहीतों को फिर से क्रमांकित किया (पुराना अभिगृहीत द्वितीय-5 (पास्च का अभिगृहीत) अब द्वितीय-4 बन गया)।


जबकि ये परिवर्तन उतने नाटकीय नहीं थे, शेष अधिकांश सूक्तियों को भी पहले सात संस्करणों के समय रूप और या कार्य में संशोधित किया गया था।
जबकि ये परिवर्तन उतने नाटकीय नहीं थे, शेष अधिकांश सूक्तियों को भी पहले सात संस्करणों के समय रूप और या कार्य में संशोधित किया गया था।


==== संगति और स्वतंत्रता ====
==== संगति और स्वतंत्रता ====
स्वयंसिद्धों के एक संतोषजनक सेट की स्थापना से परे जाकर, हिल्बर्ट ने वास्तविक संख्याओं से अपने स्वयंसिद्ध प्रणाली के एक उदाहरण   का निर्माण करके वास्तविक संख्या के सिद्धांत के सापेक्ष अपनी प्रणाली की निरंतरता को भी सिद्ध किया। उन्होंने अपने कुछ स्वयंसिद्धों की स्वतंत्रता को ज्यामिति के उदाहरण   का निर्माण करके सिद्ध किया जो विचाराधीन एक स्वयंसिद्ध को छोड़कर सभी को संतुष्ट करते हैं। इस प्रकार, ऐसे ज्यामिति के उदाहरण हैं जो आर्किमिडीयन स्वयंसिद्ध पंचम.1 (दूसरा-आर्किमिडीयन ज्यामिति) को छोड़कर सभी को संतुष्ट करते हैं, समानांतर स्वयंसिद्ध चतुर्थ.1 (दूसरा-यूक्लिडियन ज्यामिति) को छोड़कर सभी और इसी तरह। उसी तकनीक का उपयोग करते हुए उन्होंने यह भी दिखाया कि कैसे कुछ महत्वपूर्ण प्रमेय कुछ स्वयंसिद्धों पर निर्भर थे और दूसरों से स्वतंत्र थे। उनके कुछ उदाहरण   बहुत ही जटिल थे और अन्य गणितज्ञों ने उन्हें सरल बनाने का प्रयास किया। उदाहरण के लिए, हिल्बर्ट के उदाहरण   ने कुछ स्वयंसिद्धों से डेसार्गेस प्रमेय की स्वतंत्रता दिखाने के लिए अंततः रे मौलटन को दूसरा-डेसार्गेसियन [[मौलटन विमान]] की खोज करने के लिए प्रेरित किया। हिल्बर्ट द्वारा की गई इन जांचों ने वस्तुतः विशवी शताब्दी में अमूर्त ज्यामिति के आधुनिक अध्ययन का उद्घाटन किया।<ref name="Eves 1963 loc=p. 387">{{harvnb|Eves|1963|loc=p. 387}}</ref>
स्वयंसिद्धों के एक संतोषजनक सेट की स्थापना से परे जाकर, हिल्बर्ट ने वास्तविक संख्याओं से अपने स्वयंसिद्ध प्रणाली के उदाहरण का निर्माण करके वास्तविक संख्या के सिद्धांत के सापेक्ष अपनी प्रणाली की निरंतरता को भी सिद्ध किया। उन्होंने अपने कुछ स्वयंसिद्धों की स्वतंत्रता को ज्यामिति के उदाहरण का निर्माण करके सिद्ध किया जो विचाराधीन स्वयंसिद्ध को छोड़कर सभी को संतुष्ट करते हैं। इस प्रकार, ऐसे ज्यामिति के उदाहरण हैं जो आर्किमिडीयन स्वयंसिद्ध पंचम.प्रथम (दूसरा-आर्किमिडीयन ज्यामिति) को छोड़कर सभी को संतुष्ट करते हैं, समानांतर स्वयंसिद्ध चतुर्थ.प्रथम (दूसरा-यूक्लिडियन ज्यामिति) को छोड़कर सभी और इसी तरह। उसी तकनीक का उपयोग करते हुए उन्होंने यह भी दिखाया कि कैसे कुछ महत्वपूर्ण प्रमेय कुछ स्वयंसिद्धों पर निर्भर थे और दूसरों से स्वतंत्र थे। उनके कुछ उदाहरण बहुत ही जटिल थे और अन्य गणितज्ञों ने उन्हें सरल बनाने का प्रयास किया। उदाहरण के लिए, हिल्बर्ट के उदाहरण ने कुछ स्वयंसिद्धों से डेसार्गेस प्रमेय की स्वतंत्रता दिखाने के लिए अंततः रे मौलटन को दूसरा-डेसार्गेसियन [[मौलटन विमान]] की खोज करने के लिए प्रेरित किया। हिल्बर्ट द्वारा की गई इन जांचों ने वस्तुतः विशवी शताब्दी में अमूर्त ज्यामिति के आधुनिक अध्ययन का उद्घाटन किया।<ref name="Eves 1963 loc=p. 387">{{harvnb|Eves|1963|loc=p. 387}}</ref>




=== बिरखॉफ के स्वयंसिद्ध ===
=== बिरखॉफ के स्वयंसिद्ध ===
{{main|बिरखॉफ के स्वयंसिद्ध}}
{{main|बिरखॉफ के स्वयंसिद्ध}}
[[File:George David Birkhoff 1.jpg|thumb|{{center|George David Birkhoff}}]]1932 में, जॉर्ज डेविड बिरखॉफ|जी. डी. बिर्खॉफ ने यूक्लिडियन ज्यामिति के चार सिद्धांतों का एक सेट बनाया जिसे कभी-कभी बिरखॉफ के स्वयंसिद्धों के रूप में संदर्भित किया जाता है।<ref>{{citation|first=George David|last=Birkhoff|author-link=George David Birkhoff|title=A set of postulates for plane geometry|journal=Annals of Mathematics|volume=33|issue=2|year=1932|pages=329&ndash;345|doi=10.2307/1968336|jstor=1968336|hdl=10338.dmlcz/147209|hdl-access=free}}</ref> ये अभिगृहीत सभी बुनियादी ज्यामिति पर आधारित हैं जिन्हें [[वर्नियर स्केल]] और [[चांदा]] के साथ प्रयोगात्मक रूप से सत्यापित किया जा सकता है। हिल्बर्ट के सजातीय दृष्टिकोण से एक कट्टरपंथी प्रस्थान में, बिरखॉफ वास्तविक संख्या प्रणाली पर ज्यामिति की नींव बनाने वाले पहले व्यक्ति थे।<ref>{{harvnb|Venema|2006|loc=p. 400}}</ref> यह शक्तिशाली धारणा है जो इस प्रणाली में कम संख्या में स्वयंसिद्धों की अनुमति देती है।
[[File:George David Birkhoff 1.jpg|thumb|{{center|जॉर्ज डेविड बिरखॉफ}}]]1932 में, जॉर्ज डेविड बिरखॉफजी. डी. बिर्खॉफ ने यूक्लिडियन ज्यामिति के चार सिद्धांतों का एक सेट बनाया जिसे कभी-कभी बिरखॉफ के स्वयंसिद्धों के रूप में संदर्भित किया जाता है।<ref>{{citation|first=George David|last=Birkhoff|author-link=George David Birkhoff|title=A set of postulates for plane geometry|journal=Annals of Mathematics|volume=33|issue=2|year=1932|pages=329&ndash;345|doi=10.2307/1968336|jstor=1968336|hdl=10338.dmlcz/147209|hdl-access=free}}</ref> ये अभिगृहीत सभी बुनियादी ज्यामिति पर आधारित हैं जिन्हें [[वर्नियर स्केल]] और [[चांदा]] के साथ प्रयोगात्मक रूप से सत्यापित किया जा सकता है। हिल्बर्ट के सजातीय दृष्टिकोण से एक कट्टरपंथी प्रस्थान में, बिरखॉफ वास्तविक संख्या प्रणाली पर ज्यामिति की आधारशिला बनाने वाले पहले व्यक्ति थे।<ref>{{harvnb|Venema|2006|loc=p. 400}}</ref> यह शक्तिशाली धारणा है जो इस प्रणाली में कम संख्या में स्वयंसिद्धों की अनुमति देती है।


==== अभिधारणाएँ ====
==== अभिधारणाएँ ====
Line 158: Line 154:
बिरखॉफ चार अपरिभाषित शब्दों का उपयोग करता है: बिंदु, रेखा, दूरी और कोण। उनकी अभिधारणाएं हैं:<ref>{{harvnb|Venema|2006|loc=pp. 400&ndash;1}}</ref>
बिरखॉफ चार अपरिभाषित शब्दों का उपयोग करता है: बिंदु, रेखा, दूरी और कोण। उनकी अभिधारणाएं हैं:<ref>{{harvnb|Venema|2006|loc=pp. 400&ndash;1}}</ref>


अभिधारणा I: रेखा माप की अभिधारणा।
अभिधारणा रेखा माप की अभिधारणा।


किसी भी रेखा के बिंदु ''A'', ''B'', ... को वास्तविक संख्या ''x'' के साथ 1:1 की संगति में रखा जा सकता है जिससे |''x''<sub>''B''</sub>-x<sub>&nbsp;''A''</sub>| = d(A, B) सभी बिंदु A और B के लिए।
किसी भी रेखा के बिंदु ''A'', ''B'', को वास्तविक संख्या ''x'' के साथ 1:1 की संगति में रखा जा सकता है जिससे |''x''<sub>''B''</sub>-x<sub>&nbsp;''A''</sub>| = d(A, B) सभी बिंदु A और B के लिए।


'पोस्टुलेट II: पॉइंट-लाइन पोस्टुलेट'।
'पोस्टुल दूसरा: पॉइंट-लाइन पोस्टुलेट'।


एक और केवल एक सीधी रेखा है, ℓ, जिसमें दो अलग-अलग बिंदु P और Q सम्मिलित हैं।
और केवल सीधी रेखा है, ℓ, जिसमें दो अलग-अलग बिंदु P और Q सम्मिलित हैं।


'अभिधारणा III: कोण माप की अभिधारणा'।
'अभिधारणा तृतीय कोण माप की अभिधारणा'।


किरणें {ℓ, m, n, ...} किसी भी बिंदु O से होकर वास्तविक संख्या a (mod 2π) के साथ 1:1 संगति में रखी जा सकती हैं जिससे यदि A और B ℓ के बिंदु (O के बराबर नहीं) हों और मी, क्रमशः, अंतर एक<sub>''m''</sub>− a(mod 2π) रेखाओं से जुड़ी संख्याओं का ℓ और m है <math>\angle</math>AOB। इसके अतिरिक्त , यदि m पर बिंदु B एक पंक्ति R में निरंतर बदलता रहता है जिसमें शीर्ष O नहीं है, तो संख्या a<sub>''m''</sub> भी निरंतर बदलता रहता है।
किरणें {ℓ, m, n,} किसी भी बिंदु O से होकर वास्तविक संख्या a (एमओडी 2π) के साथ 1:1 संगति में रखी जा सकती हैं जिससे यदि A और B ℓ के बिंदु (O के बराबर नहीं) हों और मी, क्रमशः, अंतर एक<sub>''m''</sub>− a(mod 2π) रेखाओं से जुड़ी संख्याओं का ℓ और m है <math>\angle</math>AOB। इसके अतिरिक्त , यदि m पर बिंदु B एक पंक्ति R में निरंतर बदलता रहता है जिसमें शीर्ष O नहीं है, तो संख्या a<sub>''m''</sub> भी निरंतर बदलता रहता है।


अभिधारणा Iv: समानता की अभिधारणा।
अभिधारणा छठवी: समानता की अभिधारणा।


यदि दो त्रिकोणों में ''ABC'' और ''A'B'C' '' और कुछ स्थिरांक ''k'' > 0, ''d''(''A', B' '') = ' 'KD''(''A, B''), ''D''(''A', C' '') = ''KD''(''A, C'') और <math>\angle</math>BAC'  = ±<math>\angle</math>BAC, पुनः D(B', C' ) = KDB, C), <math>\angle</math>CBA'  = ±<math>\angle</math>CBA, और <math>\angle</math>A'C'B'  = ±<math>\angle</math>ACB।''
यदि दो त्रिकोणों में ''ABC'' और ''A'B'C''' और कुछ स्थिरांक ''k'' > 0, ''d''(''A', B' '') = ' 'KD''(''A, B''), ''D''(''A', C' '') = ''KD''(''A, C'') और <math>\angle</math>BAC' = ±<math>\angle</math>BAC, पुनः D(B', C' ) = KDB, C), <math>\angle</math>CBA' = ±<math>\angle</math>CBA, और <math>\angle</math>A'C'B' = ±<math>\angle</math>ACB।''


=== स्कूल ज्यामिति ===
=== स्कूल ज्यामिति ===
[[File:George Bruce Halsted.jpeg|right|thumb|जॉर्ज ब्रूस हैल्स्टेड]]हाई स्कूल स्तर पर स्वयंसिद्ध दृष्टिकोण से यूक्लिडियन ज्यामिति पढ़ाना बुद्धिमानी है या नहीं, यह बहस का विषय रहा है। ऐसा करने के कई प्रयास किए गए हैं और उनमें से सभी सफल नहीं हुए हैं। 1904 में, [[जॉर्ज ब्रूस हैल्स्टेड]] ने हिल्बर्ट के स्वयंसिद्ध सेट पर आधारित एक हाई स्कूल ज्यामिति पाठ प्रकाशित किया।<ref>{{citation|first=G. B.|last=Halsted|title=Rational Geometry|year=1904|publisher=John Wiley and Sons, Inc.|place=New York}}</ref> इस पाठ की तार्किक आलोचनाओं ने अत्यधिक संशोधित दूसरे संस्करण का नेतृत्व किया।<ref name="Eves 1963 loc=p. 388">{{harvnb|Eves|1963|loc=p. 388}}</ref> रूसी उपग्रह [[स्पुतनिक संकट]] के प्रक्षेपण की प्रतिक्रिया में स्कूल गणित पाठ्यक्रम को संशोधित करने के लिए संयुक्त राज्य अमेरिका में एक आह्वान किया गया था। इस प्रयास से 1960 के [[नया गणित]] प्रोग्राम का उदय हुआ। इसे एक पृष्ठभूमि के रूप में, कई व्यक्तियों और समूहों ने स्वयंसिद्ध दृष्टिकोण के आधार पर ज्यामिति कक्षाओं के लिए पाठ्य सामग्री प्रदान करना प्रारंभ किया।
[[File:George Bruce Halsted.jpeg|right|thumb|जॉर्ज ब्रूस हैल्स्टेड]]हाई स्कूल स्तर पर स्वयंसिद्ध दृष्टिकोण से यूक्लिडियन ज्यामिति पढ़ाना बुद्धिमानी है या नहीं, यह बहस का विषय रहा है। ऐसा करने के कई प्रयास किए गए हैं और उनमें से सभी सफल नहीं हुए हैं। 1904 में, [[जॉर्ज ब्रूस हैल्स्टेड]] ने हिल्बर्ट के स्वयंसिद्ध सेट पर आधारित एक हाई स्कूल ज्यामिति पाठ प्रकाशित किया।<ref>{{citation|first=G. B.|last=Halsted|title=Rational Geometry|year=1904|publisher=John Wiley and Sons, Inc.|place=New York}}</ref> इस पाठ की तार्किक आलोचनाओं ने अत्यधिक संशोधित दूसरे संस्करण का नेतृत्व किया।<ref name="Eves 1963 loc=p. 388">{{harvnb|Eves|1963|loc=p. 388}}</ref> रूसी उपग्रह [[स्पुतनिक संकट]] के प्रक्षेपण की प्रतिक्रिया में स्कूल गणित पाठ्यक्रम को संशोधित करने के लिए संयुक्त राज्य अमेरिका में एक आह्वान किया गया था। इस प्रयास से 1960 के [[नया गणित]] प्रोग्राम का उदय हुआ। इसे पृष्ठभूमि के रूप में, कई व्यक्तियों और समूहों ने स्वयंसिद्ध दृष्टिकोण के आधार पर ज्यामिति कक्षाओं के लिए पाठ्य सामग्री प्रदान करना प्रारंभ किया।


====मैक लेन के स्वयंसिद्ध ====
====मैक लेन के स्वयंसिद्ध ====
[[File:Saunders MacLane.jpg|left|thumb|सॉन्डर्स मैक लेन]][[सॉन्डर्स मैक लेन]] (1909-2005), एक गणितज्ञ,<ref>among his several achievements, he is the cofounder (with [[Samuel Eilenberg]]) of [[Category theory]].</ref> 1959 में एक पेपर लिखा जिसमें उन्होंने बिरखॉफ के उपचार की भावना में यूक्लिडियन ज्यामिति के लिए स्वयंसिद्धों का एक सेट प्रस्तावित किया, जिसमें रेखा खंडों के साथ वास्तविक संख्याओं को जोड़ने के लिए एक दूरी समारोह का उपयोग किया गया था।<ref>{{citation|first=Saunders|last=Mac Lane|title=Metric postulates for plane geometry|journal=American Mathematical Monthly|volume=66|issue=7|year=1959|pages=543&ndash;555|doi=10.2307/2309851|jstor=2309851}}</ref> बिरखॉफ की प्रणाली पर स्कूल स्तर के उपचार को आधार बनाने का यह पहला प्रयास नहीं था, वास्तव में, बिरखॉफ और राल्फ बीटली ने 1940 में एक हाई स्कूल टेक्स्ट लिखा था।<ref>{{citation|first1=G.D.|last1=Birkhoff|first2=R.|last2=Beatley|title=Basic Geometry|year=1940|publisher=Scott, Foresman and Company|place=Chicago}} [Reprint of 3rd edition: American Mathematical Society, 2000. {{ISBN|978-0-8218-2101-5}}]</ref> जिसने यूक्लिडियन ज्यामिति को पांच स्वयंसिद्धों और रेखा खंडों और कोणों को मापने की क्षमता से विकसित किया। चूंकि , हाई स्कूल के दर्शकों के लिए उपचार को गियर करने के लिए, कुछ गणितीय और तार्किक तर्कों को या तो अनदेखा कर दिया गया या उन्हें समाप्त कर दिया गया।<ref name="Eves 1963 loc=p. 388"/>
[[File:Saunders MacLane.jpg|left|thumb|सॉन्डर्स मैक लेन]][[सॉन्डर्स मैक लेन]] (1909-2005), एक गणितज्ञ,<ref>among his several achievements, he is the cofounder (with [[Samuel Eilenberg]]) of [[Category theory]].</ref> 1959 में पेपर लिखा जिसमें उन्होंने बिरखॉफ के उपचार की भावना में यूक्लिडियन ज्यामिति के लिए स्वयंसिद्धों का सेट प्रस्तावित किया, जिसमें रेखा खंडों के साथ वास्तविक संख्याओं को जोड़ने के लिए दूरी समारोह का उपयोग किया गया था।<ref>{{citation|first=Saunders|last=Mac Lane|title=Metric postulates for plane geometry|journal=American Mathematical Monthly|volume=66|issue=7|year=1959|pages=543&ndash;555|doi=10.2307/2309851|jstor=2309851}}</ref> बिरखॉफ की प्रणाली पर स्कूल स्तर के उपचार को आधार बनाने का यह पहला प्रयास नहीं था, वास्तव में, बिरखॉफ और राल्फ बीटली ने 1940 में हाई स्कूल टेक्स्ट लिखा था।<ref>{{citation|first1=G.D.|last1=Birkhoff|first2=R.|last2=Beatley|title=Basic Geometry|year=1940|publisher=Scott, Foresman and Company|place=Chicago}} [Reprint of 3rd edition: American Mathematical Society, 2000. {{ISBN|978-0-8218-2101-5}}]</ref> जिसने यूक्लिडियन ज्यामिति को पांच स्वयंसिद्धों और रेखा खंडों और कोणों को मापने की क्षमता से विकसित किया। चूंकि, हाई स्कूल के दर्शकों के लिए उपचार को गियर करने के लिए, कुछ गणितीय और तार्किक तर्कों को या तो अनदेखा कर दिया गया या उन्हें समाप्त कर दिया गया।<ref name="Eves 1963 loc=p. 388"/>


मैक लेन की प्रणाली में चार पुरातन धारणाएँ (अपरिभाषित शब्द) हैं: बिंदु, दूरी, रेखा और कोण माप। 14 अभिगृहीत भी हैं, चार दूरी फलन के गुण देते हैं, चार रेखाओं के गुणों का वर्णन करते हैं, चार चर्चा कोण (जो इस उपचार में निर्देशित कोण हैं), एक समानता अभिगृहीत (अनिवार्य रूप से बिरखॉफ के समान) और एक निरंतरता अभिगृहीत जो कर सकते हैं [[क्रॉसबार प्रमेय]] और इसके विलोम को प्राप्त करने के लिए उपयोग किया जाता है।<ref>{{harvnb|Venema|2006|loc=pp. 401&ndash;2}}</ref> स्वयंसिद्धों की बढ़ी हुई संख्या के विकास में प्रारंभिक प्रमाणों का पालन करना आसान बनाने का शैक्षणिक लाभ है और एक परिचित [[मीट्रिक (गणित)]] का उपयोग बुनियादी सामग्री के माध्यम से तेजी से उन्नति की अनुमति देता है जिससे विषय के अधिक दिलचस्प पहलुओं को जल्द से जल्द प्राप्त किया जा सके। .
मैक लेन की प्रणाली में चार पुरातन धारणाएँ (अपरिभाषित शब्द) हैं: बिंदु, दूरी, रेखा और कोण माप। 14 अभिगृहीत भी हैं, चार दूरी फलन के गुण देते हैं, चार रेखाओं के गुणों का वर्णन करते हैं, चार चर्चा कोण (जो इस उपचार में निर्देशित कोण हैं), एक समानता अभिगृहीत (अनिवार्य रूप से बिरखॉफ के समान) और एक निरंतरता अभिगृहीत जो कर सकते हैं [[क्रॉसबार प्रमेय]] और इसके विलोम को प्राप्त करने के लिए उपयोग किया जाता है।<ref>{{harvnb|Venema|2006|loc=pp. 401&ndash;2}}</ref> स्वयंसिद्धों की बढ़ी हुई संख्या के विकास में प्रारंभिक प्रमाणों का पालन करना आसान बनाने का शैक्षणिक लाभ है और परिचित [[मीट्रिक (गणित)]] का उपयोग बुनियादी सामग्री के माध्यम से तेजी से उन्नति की अनुमति देता है जिससे विषय के अधिक दिलचस्प पहलुओं को जल्द से जल्द प्राप्त किया जा सके। .


====एसएमएसजी ([[स्कूल गणित अध्ययन समूह]]) स्वयंसिद्ध ====
====एसएमएसजी ([[स्कूल गणित अध्ययन समूह]]) स्वयंसिद्ध ====


1960 के दशक में यूक्लिडियन ज्यामिति के लिए सिद्धांतों का एक नया सेट, अमेरिकी हाई स्कूल ज्यामिति पाठ्यक्रमों के लिए उपयुक्त, स्कूल गणित अध्ययन समूह (एसएमएसजी) द्वारा नए गणित पाठ्यक्रम के एक भाग के रूप में प्रस्तुत किया गया था। स्वयंसिद्धों का यह सेट ज्यामितीय मूल सिद्धांतों में त्वरित प्रवेश प्राप्त करने के लिए वास्तविक संख्याओं का उपयोग करने के बिरखॉफ उदाहरण   का अनुसरण करता है। चुकीं, जबकि बिरखॉफ़ ने उपयोग किए गए स्वयंसिद्धों की संख्या को कम करने की प्रयास की, और अधिकांश लेखक अपने उपचारों में स्वयंसिद्धों की स्वतंत्रता से चिंतित थे, एसएमएसजी स्वयंसिद्ध सूची को शैक्षणिक कारणों से जानबूझकर बड़ा और निरर्थक बना दिया गया था।<ref name="Venema 2006 loc=p. 55">{{harvnb|Venema|2006|loc=p. 55}}</ref> एसएमएसजी ने इन स्वयंसिद्धों का उपयोग करते हुए केवल माइमोग्राफ किया हुआ पाठ तैयार किया,<ref>{{citation|last=School Mathematics Study Group (SMSG)|title=Geometry, Parts 1 and 2 (Student Text)|year=1961|publisher=Yale University Press|place=New Haven and London}}</ref> लेकिन एडविन ई. मोइज़, एसएमएसजी के सदस्य, ने इस प्रणाली पर आधारित एक हाई स्कूल टेक्स्ट लिखा,<ref>{{citation|first1=Edwin E.|last1=Moise|first2=Floyd L.|last2=Downs|title=Geometry|year=1991|publisher=Addison–Wesley|place=Reading, MA}}</ref> और एक कॉलेज स्तर का पाठ, {{harvtxt|मोइज़|1974}}, कुछ अतिरेक को हटाकर और अधिक परिष्कृत दर्शकों के लिए स्वयंसिद्धों में किए गए संशोधनों के साथ।<ref>{{harvnb|Venema|2006|loc=p. 403}}</ref>
1960 के दशक में यूक्लिडियन ज्यामिति के लिए सिद्धांतों का एक नया सेट, अमेरिकी हाई स्कूल ज्यामिति पाठ्यक्रमों के लिए उपयुक्त, स्कूल गणित अध्ययन समूह (एसएमएसजी) द्वारा नए गणित पाठ्यक्रम के एक भाग के रूप में प्रस्तुत किया गया था। स्वयंसिद्धों का यह सेट ज्यामितीय मूल सिद्धांतों में त्वरित प्रवेश प्राप्त करने के लिए वास्तविक संख्याओं का उपयोग करने के बिरखॉफ उदाहरण का अनुसरण करता है। चुकीं, बिरखॉफ़ ने उपयोग किए गए स्वयंसिद्धों की संख्या को कम करने की प्रयास की, और अधिकांश लेखक अपने उपचारों में स्वयंसिद्धों की स्वतंत्रता से चिंतित थे, एसएमएसजी स्वयंसिद्ध सूची को शैक्षणिक कारणों से जानबूझकर बड़ा और निरर्थक बना दिया गया था।<ref name="Venema 2006 loc=p. 55">{{harvnb|Venema|2006|loc=p. 55}}</ref> एसएमएसजी ने इन स्वयंसिद्धों का उपयोग करते हुए केवल माइमोग्राफ किया हुआ पाठ तैयार किया,<ref>{{citation|last=School Mathematics Study Group (SMSG)|title=Geometry, Parts 1 and 2 (Student Text)|year=1961|publisher=Yale University Press|place=New Haven and London}}</ref> लेकिन एडविन ई. मोइज़, एसएमएसजी के सदस्य, ने इस प्रणाली पर आधारित हाई स्कूल टेक्स्ट लिखा,<ref>{{citation|first1=Edwin E.|last1=Moise|first2=Floyd L.|last2=Downs|title=Geometry|year=1991|publisher=Addison–Wesley|place=Reading, MA}}</ref> और कॉलेज स्तर का पाठ, {{harvtxt|मोइज़|1974}}, कुछ अतिरेक को बदलकर और अधिक परिष्कृत दर्शकों के लिए स्वयंसिद्धों में किए गए संशोधनों के साथ थे।<ref>{{harvnb|Venema|2006|loc=p. 403}}</ref>


आठ अपरिभाषित शब्द हैं: बिंदु, रेखा, समतल, झूठ, कोण माप, दूरी, क्षेत्रफल और आयतन। इस प्रणाली के 22 स्वयंसिद्धों को संदर्भ में आसानी के लिए अलग-अलग नाम दिए गए हैं। इनमें पाया जाना है: रूलर पोस्टुलेट, रूलर प्लेसमेंट पोस्टुलेट, प्लेन सेपरेशन पोस्टुलेट, एंगल एडिशन पोस्टुलेट, [[साइड एंगल साइड]] (एसएएस) पोस्टुलेट, पैरेलल पोस्टुलेट (प्लेफेयर के स्वयंसिद्ध | प्लेफेयर के रूप में), और कैवलियरी का सिद्धांत है.<ref>{{harvnb|Venema|2006|loc=pp. 403&ndash;4}}</ref>
आठ अपरिभाषित शब्द हैं: बिंदु, रेखा, समतल, झूठ, कोण माप, दूरी, क्षेत्रफल और आयतन। इस प्रणाली के 22 स्वयंसिद्धों को संदर्भ में सरलता के लिए अलग-अलग नाम दिए गए हैं। इनमें पाया जाना है: रूलर पोस्टुलेट, रूलर प्लेसमेंट पोस्टुलेट, प्लेन सेपरेशन पोस्टुलेट, एंगल एडिशन पोस्टुलेट, [[साइड एंगल साइड]] (एसएएस) पोस्टुलेट, पैरेलल पोस्टुलेट (प्लेफेयर के स्वयंसिद्ध | प्लेफेयर के रूप में), और कैवलियरी का सिद्धांत है.<ref>{{harvnb|Venema|2006|loc=pp. 403&ndash;4}}</ref>






====यूसीएसएमपी ([[शिकागो स्कूल गणित परियोजना विश्वविद्यालय]]) स्वयंसिद्ध ====
====यूसीएसएमपी ([[शिकागो स्कूल गणित परियोजना विश्वविद्यालय]]) स्वयंसिद्ध ====
चूंकि गणित के नए पाठ्यक्रम में भारी परिवर्तन किया गया है या छोड़ दिया गया है, संयुक्त राज्य अमेरिका में ज्यामिति का भाग अपेक्षाकृत स्थिर बना हुआ है। आधुनिक अमेरिकी हाई स्कूल की पाठ्यपुस्तकें स्वयंसिद्ध प्रणालियों का उपयोग करती हैं जो कि बहुत अधिक तक एसएमएसजी के समान हैं। उदाहरण के लिए, यूनिवर्सिटी ऑफ शिकागो स्कूल मैथेमेटिक्स प्रोजेक्ट (यूसीएसएमपी) द्वारा तैयार किए गए पाठ एक ऐसी प्रणाली का उपयोग करते हैं, जो भाषा के कुछ अद्यतनीकरण के अतिरिक्त , मुख्य रूप से एसएमएसजी प्रणाली से भिन्न होती है, जिसमें इसके प्रतिबिंब पोस्टुलेट के जिससे कुछ [[परिवर्तन (फ़ंक्शन)]] अवधारणाएँ सम्मिलित होती हैं।<ref name="Venema 2006 loc=p. 55"/>
चूंकि गणित के नए पाठ्यक्रम में भारी परिवर्तन किया गया है या छोड़ दिया गया है, संयुक्त राज्य अमेरिका में ज्यामिति का भाग अपेक्षाकृत स्थिर बना हुआ है। आधुनिक अमेरिकी हाई स्कूल की पाठ्यपुस्तकें स्वयंसिद्ध प्रणालियों का उपयोग करती हैं जो कि बहुत अधिक तक एसएमएसजी के समान हैं। उदाहरण के लिए, यूनिवर्सिटी ऑफ शिकागो स्कूल मैथेमेटिक्स प्रोजेक्ट (यूसीएसएमपी) द्वारा तैयार किए गए पाठ ऐसी प्रणाली का उपयोग करते हैं, जो भाषा के कुछ अद्यतनीकरण के अतिरिक्त , मुख्य रूप से एसएमएसजी प्रणाली से भिन्न होती है, जिसमें इसके प्रतिबिंब पोस्टुलेट के जिससे कुछ [[परिवर्तन (फ़ंक्शन)]] अवधारणाएँ सम्मिलित होती हैं।<ref name="Venema 2006 loc=p. 55"/>


केवल तीन अपरिभाषित शब्द हैं: बिंदु, रेखा और तल। आठ अवधारणाएं हैं, लेकिन इनमें से अधिकांश के कई भाग हैं (जिन्हें इस प्रणाली में सामान्यतः पर धारणा कहा जाता है)। इन भागों को गिनने पर इस तंत्र में 32 अभिगृहीत हैं। अभिधारणाओं में बिन्दु-रेखा-तल अभिधारणा, त्रिभुज असमानता अभिधारणा, दूरी के अभिधारणाएं, कोण मापन, संगत कोण, क्षेत्रफल और आयतन, और परावर्तन अभिधारणा पाई जा सकती है। एसएमएसजी प्रणाली के एसएएस अभिधारणा के प्रतिस्थापन के रूप में प्रतिबिम्ब अभिधारणा का उपयोग किया जाता है।<ref>{{harvnb|Venema|2006|loc=pp. 405 &ndash; 7}}</ref>
केवल तीन अपरिभाषित शब्द हैं: बिंदु, रेखा और तल। आठ अवधारणाएं हैं, लेकिन इनमें से अधिकांश के कई भाग हैं (जिन्हें इस प्रणाली में सामान्यतः पर धारणा कहा जाता है)। इन भागों को गिनने पर इस तंत्र में 32 अभिगृहीत हैं। अभिधारणाओं में बिन्दु-रेखा-तल अभिधारणा, त्रिभुज असमानता अभिधारणा, दूरी के अभिधारणाएं, कोण मापन, संगत कोण, क्षेत्रफल और आयतन, और परावर्तन अभिधारणा पाई जा सकती है। एसएमएसजी प्रणाली के एसएएस अभिधारणा के प्रतिस्थापन के रूप में प्रतिबिम्ब अभिधारणा का उपयोग किया जाता है।<ref>{{harvnb|Venema|2006|loc=pp. 405 &ndash; 7}}</ref>
Line 197: Line 193:


=== अन्य प्रणालियाँ ===
=== अन्य प्रणालियाँ ===
[[ओसवाल्ड वेब्लेन]] (1880 - 1960) ने 1904 में एक नई स्वयंसिद्ध प्रणाली प्रदान की, जब उन्होंने बीच की अवधारणा को बदल दिया, जैसा कि हिल्बर्ट और पास ने एक नए पुरातन , आदेश के साथ प्रयोग किया था। इसने हिल्बर्ट द्वारा उपयोग किए जाने वाले कई पुरातन शब्दों को परिभाषित इकाई बनने की अनुमति दी, पुरातन धारणाओं की संख्या को दो, बिंदु और क्रम तक कम कर दिया।<ref name="Eves 1963 loc=p. 387"/>
[[ओसवाल्ड वेब्लेन]] (1880 - 1960) ने 1904 में नई स्वयंसिद्ध प्रणाली प्रदान की, जब उन्होंने बीच की अवधारणा को बदल दिया, जैसा कि हिल्बर्ट और पास के नए पुरातन , आदेश के साथ प्रयोग किया था। इसने हिल्बर्ट द्वारा उपयोग किए जाने वाले कई पुरातन शब्दों को परिभाषित इकाई बनने की अनुमति दी, पुरातन धारणाओं की संख्या को दो, बिंदु और क्रम तक कम कर दिया।<ref name="Eves 1963 loc=p. 387"/>


यूक्लिडियन ज्यामिति के लिए कई अन्य स्वयंसिद्ध प्रणालियाँ पिछले कुछ वर्षों में प्रस्तावित की गई हैं। इनमें से कई की तुलना हेनरी जॉर्ज फोर्डर द्वारा 1927 के मोनोग्राफ में पाई जा सकती है।<ref>{{citation|first=H.G.|last=Forder|title=The Foundations of Euclidean Geometry|journal=Nature|volume=123|issue=3089|pages=44|year=1927|publisher=Cambridge University Press|place=New York|bibcode=1928Natur.123...44.|doi=10.1038/123044a0|s2cid=4093478}} (reprinted by Dover, 1958)</ref> फोर्डर भी अलग-अलग प्रणालियों से सिद्धांतों को जोड़कर, बिंदु और व्यवस्था के दो पुरातन विचारों के आधार पर अपना स्वयं का उपचार देता है। वह पुरातन बिंदु और सर्वांगसमता के आधार पर पियरी की प्रणालियों में से एक (1909 से) का अधिक सारगर्भित उपचार भी प्रदान करता है।<ref name="Eves 1963 loc=p. 388"/>
यूक्लिडियन ज्यामिति के लिए कई अन्य स्वयंसिद्ध प्रणालियाँ पिछले कुछ वर्षों में प्रस्तावित की गई हैं। इनमें से कई की तुलना हेनरी जॉर्ज फोर्डर द्वारा 1927 के मोनोग्राफ में पाई जा सकती है।<ref>{{citation|first=H.G.|last=Forder|title=The Foundations of Euclidean Geometry|journal=Nature|volume=123|issue=3089|pages=44|year=1927|publisher=Cambridge University Press|place=New York|bibcode=1928Natur.123...44.|doi=10.1038/123044a0|s2cid=4093478}} (reprinted by Dover, 1958)</ref> फोर्डर भी अलग-अलग प्रणालियों से सिद्धांतों को जोड़कर, बिंदु और व्यवस्था के दो पुरातन विचारों के आधार पर अपना स्वयं का उपचार देता है। वह पुरातन बिंदु और सर्वांगसमता के आधार पर पियरी की प्रणालियों में से एक (1909 से) का अधिक सारगर्भित उपचार भी प्रदान करता है।<ref name="Eves 1963 loc=p. 388"/>


पीआनो से प्रारंभ होकर, यूक्लिडियन ज्यामिति की स्वयंसिद्ध नींव के विषय में तर्कशास्त्रियों के बीच रुचि का एक समानांतर धागा रहा है। यह आंशिक रूप से स्वयंसिद्धों का वर्णन करने के लिए प्रयुक्त अंकन में देखा जा सकता है। पिएरी ने दावा किया कि तथापि उन्होंने ज्यामिति की पारंपरिक भाषा में लिखा हो, वे हमेशा पीआनो द्वारा प्रस्तुत किए गए तार्किक संकेतन के संदर्भ में सोचते थे, और उस औपचारिकता का उपयोग यह देखने के लिए करते थे कि चीजों को कैसे सिद्ध किया जाए। इस प्रकार के अंकन का एक विशिष्ट उदाहरण एडवर्ड वर्मिली हंटिंगटन|ई. के काम में पाया जा सकता है। v. हंटिंगटन (1874 - 1952) जिन्होंने 1913 में,<ref>{{citation|first=E.V.|last=Huntington|title=A set of postulates for abstract geometry, expressed in terms of the simple relation of inclusion|journal=Mathematische Annalen|volume=73|issue=4|year=1913|pages=522&ndash;559|doi=10.1007/bf01455955|s2cid=119440414|url=https://zenodo.org/record/1428276}}</ref> क्षेत्र और समावेशन (एक क्षेत्र दूसरे के अन्दर स्थित) की पुरातन धारणाओं के आधार पर त्रि-आयामी यूक्लिडियन ज्यामिति का एक स्वयंसिद्ध उपचार प्रस्तुत किया।<ref name="Eves 1963 loc=p. 388"/>अंकन से परे ज्यामिति के सिद्धांत की तार्किक संरचना में भी रुचि है। [[अल्फ्रेड टार्स्की]] ने सिद्ध किया कि ज्यामिति का एक भाग, जिसे उन्होंने प्राथमिक ज्यामिति कहा था, एक प्रथम क्रम तार्किक सिद्धांत है (तर्स्की के स्वयंसिद्धों को देखें)।
पीआनो से प्रारंभ होकर, यूक्लिडियन ज्यामिति की स्वयंसिद्ध आधारशिला के विषय में तर्कशास्त्रियों के बीच रुचि का समानांतर धागा रहा है। यह आंशिक रूप से स्वयंसिद्धों का वर्णन करने के लिए प्रयुक्त अंकन में देखा जा सकता है। पिएरी ने दावा किया कि तथापि उन्होंने ज्यामिति की पारंपरिक भाषा में लिखा हो, वे हमेशा पीआनो द्वारा प्रस्तुत किए गए तार्किक संकेतन के संदर्भ में सोचते थे, और उस औपचारिकता का उपयोग यह देखने के लिए करते थे कि वस्तुये को कैसे सिद्ध किया जाए। इस प्रकार के अंकन का विशिष्ट उदाहरण एडवर्ड वर्मिली हंटिंगटनई. के काम में पाया जा सकता है। वी. हंटिंगटन (1874 - 1952) जिन्होंने 1913 में,<ref>{{citation|first=E.V.|last=Huntington|title=A set of postulates for abstract geometry, expressed in terms of the simple relation of inclusion|journal=Mathematische Annalen|volume=73|issue=4|year=1913|pages=522&ndash;559|doi=10.1007/bf01455955|s2cid=119440414|url=https://zenodo.org/record/1428276}}</ref> क्षेत्र और समावेशन (एक क्षेत्र दूसरे के अन्दर स्थित) की पुरातन धारणाओं के आधार पर त्रि-आयामी यूक्लिडियन ज्यामिति का एक स्वयंसिद्ध उपचार प्रस्तुत किया।<ref name="Eves 1963 loc=p. 388"/>अंकन से परे ज्यामिति के सिद्धांत की तार्किक संरचना में भी रुचि है। [[अल्फ्रेड टार्स्की]] ने सिद्ध किया कि ज्यामिति का एक भाग है, जिसे उन्होंने प्राथमिक ज्यामिति कहा था, प्रथम क्रम तार्किक सिद्धांत है।(तर्स्की के स्वयंसिद्धों को देखें)।


यूक्लिडियन ज्यामिति की स्वयंसिद्ध नींव के आधुनिक पाठ उपचार एच.जी. फोर्डर और गिल्बर्ट डी ब्योरेगार्ड रॉबिन्सन|गिल्बर्ट डी बी रॉबिन्सन के पैटर्न का पालन करते हैं<ref>{{citation|first=G. de B.|last=Robinson|title=The Foundations of Geometry|publisher=University of Toronto Press|place=Toronto|year=1946|edition=2nd|series=Mathematical Expositions No. 1}}</ref> जो अलग-अलग प्रणालियों के स्वयंसिद्धों को मिलते और मिलाते हैं जिससे अलग-अलग प्रभाव पैदा किए जा सकें। {{harvtxt|वेनेमा|2006}} इस दृष्टिकोण का एक आधुनिक उदाहरण है।
यूक्लिडियन ज्यामिति की स्वयंसिद्ध आधारशिला के आधुनिक पाठ उपचार एच.जी. फोर्डर और गिल्बर्ट डी ब्योरेगार्ड रॉबिन्सन गिल्बर्ट डी बी रॉबिन्सन के पैटर्न का पालन करते हैं<ref>{{citation|first=G. de B.|last=Robinson|title=The Foundations of Geometry|publisher=University of Toronto Press|place=Toronto|year=1946|edition=2nd|series=Mathematical Expositions No. 1}}</ref> जो अलग-अलग प्रणालियों के स्वयंसिद्धों को मिलते और मिलाते हैं जिससे अलग-अलग प्रभाव पैदा किए जा सकें। {{harvtxt|वेनेमा|2006}} इस दृष्टिकोण का आधुनिक उदाहरण है।


==दूसरा-यूक्लिडियन ज्यामिति==
==दूसरा-यूक्लिडियन ज्यामिति==
{{main|गैर-यूक्लिडियन ज्यामिति}}
{{main|गैर-यूक्लिडियन ज्यामिति}}


<ब्लॉककोट>


विज्ञान में गणित की भूमिका और हमारे सभी विश्वासों के लिए वैज्ञानिक ज्ञान के निहितार्थ को ध्यान में रखते हुए, गणित की प्रकृति के बारे में मनुष्य की समझ में क्रांतिकारी परिवर्तन का अर्थ विज्ञान, दर्शन के सिद्धांतों, धार्मिक और नैतिक सिद्धांतों की उनकी समझ में क्रांतिकारी परिवर्तन हो सकता है। विश्वास, और, वास्तव में, सभी बौद्धिक अनुशासन है।<ref>{{citation|first=Morris|last=Kline|title=Mathematics for the Nonmathematician|year=1967|publisher=Dover|place=New York|isbn=0-486-24823-2|page=[https://archive.org/details/mathematicsforno00klin/page/474 474]|url=https://archive.org/details/mathematicsforno00klin/page/474}}</ref>
विज्ञान में गणित की भूमिका और हमारे सभी विश्वासों के लिए वैज्ञानिक ज्ञान के निहितार्थ को ध्यान में रखते हुए, गणित की प्रकृति के बारे में मनुष्य की समझ में क्रांतिकारी परिवर्तन का अर्थ विज्ञान, दर्शन के सिद्धांतों, धार्मिक और नैतिक सिद्धांतों की उनकी समझ में क्रांतिकारी परिवर्तन हो सकता है। विश्वास, और, वास्तव में, सभी बौद्धिक अनुशासन है।<ref>{{citation|first=Morris|last=Kline|title=Mathematics for the Nonmathematician|year=1967|publisher=Dover|place=New York|isbn=0-486-24823-2|page=[https://archive.org/details/mathematicsforno00klin/page/474 474]|url=https://archive.org/details/mathematicsforno00klin/page/474}}</ref>


</ब्लॉककोट>


उन्नीसवी शताब्दी के पूर्वार्द्ध में ज्यामिति के क्षेत्र में एक क्रांति हुई जो खगोल विज्ञान में कोपर्निकन क्रांति के रूप में वैज्ञानिक रूप से महत्वपूर्ण थी और हमारे सोचने के विधि पर इसके प्रभाव के रूप में विकास के डार्विनियन सिद्धांत के रूप में दार्शनिक रूप से गहन थी। यह दूसरा-यूक्लिडियन ज्यामिति की खोज का परिणाम था।<ref>{{harvnb|Greenberg|1974|loc=p. 1}}</ref> यूक्लिड के समय से प्रारंभ होकर, दो हज़ार से अधिक वर्षों के लिए, भौतिक अंतरिक्ष के बारे में स्व-स्पष्ट सत्य माने जाने वाले सिद्धांतों को ज्यामिति पर आधारित माना जाता था। जियोमीटरों ने सोचा कि वे त्रुटि की संभावना के बिना उनसे अन्य, अधिक अस्पष्ट सत्यों को निकाल रहे हैं। अतिशयोक्तिपूर्ण ज्यामिति के विकास के साथ यह दृष्टिकोण अस्थिर हो गया। अब ज्यामिति की दो असंगत प्रणालियाँ थीं (और अधिक बाद में आईं) जो स्व-संगत थीं और अवलोकन योग्य भौतिक दुनिया के अनुकूल थीं। इस बिंदु से, ज्यामिति और भौतिक स्थान के बीच संबंध की पूरी चर्चा बहुत अधिक भिन्न अर्थों में की जाने लगी।{{harv|मोइज़|1974|loc=p. 388}}
उन्नीसवी शताब्दी के पूर्वार्द्ध में ज्यामिति के क्षेत्र में क्रांति हुई जो खगोल विज्ञान में कोपर्निकन क्रांति के रूप में वैज्ञानिक रूप से महत्वपूर्ण थी और हमारे विचार के विधि पर इसके प्रभाव के रूप में विकास के डार्विनियन सिद्धांत के रूप में दार्शनिक रूप से गहन थी। यह दूसरा-यूक्लिडियन ज्यामिति की खोज का परिणाम था।<ref>{{harvnb|Greenberg|1974|loc=p. 1}}</ref> यूक्लिड के समय से प्रारंभ होकर, दो हज़ार से अधिक वर्षों के लिए, भौतिक अंतरिक्ष के बारे में स्व-स्पष्ट सत्य माने जाने वाले सिद्धांतों को ज्यामिति पर आधारित माना जाता था। जियोमीटरों ने सोचा कि वे त्रुटि की संभावना के बिना उनसे अन्य, अधिक अस्पष्ट सत्यों को निकाल रहे हैं। अतिशयोक्तिपूर्ण ज्यामिति के विकास के साथ यह दृष्टिकोण अस्थिर हो गया। अब ज्यामिति की दो असंगत प्रणालियाँ थीं (और अधिक बाद में आईं) जो स्व-संगत थीं और अवलोकन योग्य भौतिक दुनिया के अनुकूल थीं। इस बिंदु से, ज्यामिति और भौतिक स्थान के बीच संबंध की पूरी चर्चा बहुत अधिक भिन्न अर्थों में की जाने लगी।{{harv|मोइज़|1974|loc=p. 388}}


एक दूसरी-यूक्लिडियन ज्यामिति प्राप्त करने के लिए, समानांतर अवधारणा (या इसके समतुल्य) को इसके निषेध द्वारा प्रतिस्थापित किया जाना चाहिए। Playfair के स्वयंसिद्ध रूप को [[नकार]]ना, क्योंकि यह एक मिश्रित कथन है (... एक और केवल एक उपस्थित है ...), दो तरीकों से किया जा सकता है। या तो दी गई रेखा के समानांतर बिंदु से जाने वाली एक से अधिक रेखा उपस्थित होगी या दी गई रेखा के समानांतर बिंदु से कोई रेखा उपस्थित नहीं होगी। पहले मामले में, समानांतर अभिधारणा (या इसके समतुल्य) को बयान के साथ प्रतिस्थापित करना एक विमान में, एक बिंदु P और एक रेखा ℓ दी गई है जो P से नहीं निकलती है, P के माध्यम से दो रेखाएँ उपस्थित हैं जो ℓ से नहीं मिलती हैं और अन्य सभी को रखती हैं स्वयंसिद्ध, [[अतिशयोक्तिपूर्ण ज्यामिति]] उत्पन्न करता है।<ref>while only two lines are postulated, it is easily shown that there must be an infinite number of such lines.</ref> दूसरी स्थिति इतनी आसानी से नहीं हल नहीं होती। केवल समानांतर अभिधारणा को कथन से प्रतिस्थापित करने पर, एक समतल में, एक बिंदु P और एक रेखा ℓ दिए जाने पर, जो P से होकर नहीं निकलती है, P से होकर जाने वाली सभी रेखाएँ ℓ से मिलती हैं, अभिगृहीतों का एक सुसंगत समुच्चय नहीं देता है। यह इस प्रकार है क्योंकि पूर्ण ज्यामिति में समांतर रेखाएं उपस्थित हैं,<ref>Book I Proposition 27 of Euclid's ''Elements''</ref> लेकिन यह कथन कहेगा कि कोई समानांतर रेखाएँ नहीं हैं। खय्याम, सैचेरी और लैम्बर्ट इस समस्या के बारे में जानते थे (एक अलग रूप में) और उनके द्वारा इसे अस्वीकार करने का आधार था, जिसे ओट्यूस एंगल केस के रूप में जाना जाता था। सिद्धांतों का एक सुसंगत सेट प्राप्त करने के लिए जिसमें कोई समानांतर रेखा न होने के बारे में यह स्वयंसिद्ध सम्मिलित है, कुछ अन्य स्वयंसिद्धों को ठीक किया जाना चाहिए। किए जाने वाले समायोजन उपयोग की जा रही स्वयंसिद्ध प्रणाली पर निर्भर करते हैं। दूसरों के बीच इन परिवर्तनों का यूक्लिड के दूसरे अभिधारणा को इस कथन से संशोधित करने का प्रभाव होगा कि रेखा खंडों को अनिश्चित काल तक इस कथन तक बढ़ाया जा सकता है कि रेखाएँ अबाधित हैं। [[रीमैन]] की [[अण्डाकार ज्यामिति]] इस स्वयंसिद्ध को संतुष्ट करने वाली सबसे प्राकृतिक ज्यामिति के रूप में उभरती है।
दूसरी-यूक्लिडियन ज्यामिति प्राप्त करने के लिए, समानांतर अवधारणा (या इसके समतुल्य) को इसके निषेध द्वारा प्रतिस्थापित किया जाना चाहिए। निष्पक्षता से खेलो के स्वयंसिद्ध रूप को [[नकार]]ना, क्योंकि यह मिश्रित कथन है (और केवल उपस्थित है ), दो विधियों से किया जा सकता है। या तो दी गई रेखा के समानांतर बिंदु से जाने वाली एक से अधिक रेखा उपस्थित होगी या दी गई रेखा के समानांतर बिंदु से कोई रेखा उपस्थित नहीं होगी। पहले स्थितियों में, समानांतर अभिधारणा (या इसके समतुल्य) को कथन के साथ प्रतिस्थापित करना एक विमान में, बिंदु P और एक रेखा ℓ दी गई है जो P से नहीं निकलती है, P के माध्यम से दो रेखाएँ उपस्थित हैं जो ℓ से नहीं मिलती हैं और अन्य सभी को रखती हैं स्वयंसिद्ध, [[अतिशयोक्तिपूर्ण ज्यामिति]] उत्पन्न करता है।<ref>while only two lines are postulated, it is easily shown that there must be an infinite number of such lines.</ref> दूसरी स्थिति इतनी सरलता से नहीं हल नहीं होती। केवल समानांतर अभिधारणा को कथन से प्रतिस्थापित करने पर, एक समतल में, बिंदु P और एक रेखा ℓ दिए जाने पर, जो P से होकर नहीं निकलती है, P से होकर जाने वाली सभी रेखाएँ ℓ से मिलती हैं, अभिगृहीतों का सुसंगत समुच्चय नहीं देता है। यह इस प्रकार है क्योंकि पूर्ण ज्यामिति में समांतर रेखाएं उपस्थित हैं,<ref>Book I Proposition 27 of Euclid's ''Elements''</ref> लेकिन यह कथन कहेगा कि कोई समानांतर रेखाएँ नहीं हैं। खय्याम, सैचेरी और लैम्बर्ट इस समस्या के बारे में जानते थे (अलग रूप में) और उनके द्वारा इसे अस्वीकार करने का आधार था, जिसे ओट्यूस एंगल केस के रूप में जाना जाता था। सिद्धांतों का सुसंगत सेट प्राप्त करने के लिए जिसमें कोई समानांतर रेखा न होने के बारे में यह स्वयंसिद्ध सम्मिलित है, कुछ अन्य स्वयंसिद्धों को ठीक किया जाना चाहिए। किए जाने वाले समायोजन उपयोग की जा रही स्वयंसिद्ध प्रणाली पर निर्भर करते हैं। दूसरों के बीच इन परिवर्तनों का यूक्लिड के दूसरे अभिधारणा को इस कथन से संशोधित करने का प्रभाव होगा कि रेखा खंडों को अनिश्चित काल तक इस कथन तक बढ़ाया जा सकता है कि रेखाएँ अबाधित हैं। [[रीमैन]] की [[अण्डाकार ज्यामिति]] इस स्वयंसिद्ध को संतुष्ट करने वाली सबसे प्राकृतिक ज्यामिति के रूप में उभरती है।


यह [[कार्ल फ्रेडरिक गॉस]] थे जिन्होंने दूसरा-यूक्लिडियन ज्यामिति शब्द गढ़ा था।<ref>Felix Klein, ''Elementary Mathematics from an Advanced Standpoint: Geometry'', Dover, 1948 (reprint of English translation of 3rd Edition, 1940. First edition in German, 1908) pg. 176</ref> वह अपने स्वयं के अप्रकाशित कार्य का उल्लेख कर रहे थे, जिसे आज हम अतिशयोक्तिपूर्ण ज्यामिति कहते हैं। कई लेखक अभी भी दूसरा-यूक्लिडियन ज्यामिति और अतिशयोक्तिपूर्ण ज्यामिति को पर्यायवाची मानते हैं। 1871 में, फेलिक्स क्लेन, 1852 में [[आर्थर केली]] द्वारा चर्चा की गई मीट्रिक को अनुकूलित करके, मीट्रिक गुणों को एक प्रक्षेपीय सेटिंग में लाने में सक्षम था और इस प्रकार प्रक्षेपीय ज्यामिति की छतरी के नीचे हाइपरबॉलिक, यूक्लिडियन और अंडाकार ज्यामिति के उपचार को एकीकृत करने में सक्षम था।<ref>F. Klein, Über die sogenannte nichteuklidische Geometrie, ''Mathematische Annalen'', '''4'''(1871).</ref> क्लेन अतिशयोक्तिपूर्ण और अण्डाकार शब्दों के लिए जिम्मेदार है (अपनी प्रणाली में उन्होंने यूक्लिडियन ज्यामिति परवलयिक कहा, एक शब्द जो समय की कसौटी पर पूर्ण नहीं उतरा है और आज केवल कुछ विषयों में उपयोग किया जाता है।) उनके प्रभाव के कारण सामान्य उपयोग हुआ है। शब्द दूसरा-यूक्लिडियन ज्यामिति का अर्थ अतिपरवलयिक या अण्डाकार ज्यामिति है।
यह [[कार्ल फ्रेडरिक गॉस]] थे जिन्होंने दूसरा-यूक्लिडियन ज्यामिति शब्द गढ़ा था।<ref>Felix Klein, ''Elementary Mathematics from an Advanced Standpoint: Geometry'', Dover, 1948 (reprint of English translation of 3rd Edition, 1940. First edition in German, 1908) pg. 176</ref> वह अपने स्वयं के अप्रकाशित कार्य का उल्लेख कर रहे थे, जिसे आज हम अतिशयोक्तिपूर्ण ज्यामिति कहते हैं। कई लेखक अभी भी दूसरा-यूक्लिडियन ज्यामिति और अतिशयोक्तिपूर्ण ज्यामिति को पर्यायवाची मानते हैं। 1871 में, फेलिक्स क्लेन, 1852 में [[आर्थर केली]] द्वारा चर्चा की गई मीट्रिक को अनुकूलित करके, मीट्रिक गुणों को एक प्रक्षेपीय सेटिंग में लाने में सक्षम था और इस प्रकार प्रक्षेपीय ज्यामिति की छतरी के नीचे हाइपरबॉलिक, यूक्लिडियन और अंडाकार ज्यामिति के उपचार को एकीकृत करने में सक्षम था।<ref>F. Klein, Über die sogenannte nichteuklidische Geometrie, ''Mathematische Annalen'', '''4'''(1871).</ref> क्लेन अतिशयोक्तिपूर्ण और अण्डाकार शब्दों के लिए जिम्मेदार है (अपनी प्रणाली में उन्होंने यूक्लिडियन ज्यामिति परवलयिक कहा, एक शब्द जो समय की विश्वास पर पूर्ण नहीं उतरा है और आज केवल कुछ विषयों में उपयोग किया जाता है।) उनके प्रभाव के कारण सामान्य उपयोग हुआ है। शब्द दूसरा-यूक्लिडियन ज्यामिति का अर्थ अतिपरवलयिक या अण्डाकार ज्यामिति है।


कुछ गणितज्ञ ऐसे हैं जो ज्यामिति की सूची का विस्तार करेंगे जिन्हें विभिन्न तरीकों से दूसरा-यूक्लिडियन कहा जाना चाहिए। अन्य विषयों में, विशेष रूप से [[गणितीय भौतिकी]], जहां क्लेन का प्रभाव उतना मजबूत नहीं था, दूसरा-यूक्लिडियन शब्द का अर्थ प्रायः यूक्लिडियन नहीं होता है।
कुछ गणितज्ञ ऐसे हैं जो ज्यामिति की सूची का विस्तार करेंगे जिन्हें विभिन्न विधियों से दूसरा-यूक्लिडियन कहा जाना चाहिए। अन्य विषयों में, विशेष रूप से [[गणितीय भौतिकी]], जहां क्लेन का प्रभाव उतना मजबूत नहीं था, दूसरा-यूक्लिडियन शब्द का अर्थ प्रायः यूक्लिडियन नहीं होता है।


===यूक्लिड की समानांतर अभिधारणा===
===यूक्लिड की समानांतर अभिधारणा===
{{main|Parallel postulate}}
{{main|समानांतर अभिधारणा}}
दो हज़ार वर्षों तक, यूक्लिड की पहली चार अभिधारणाओं का उपयोग करते हुए समानांतर अभिधारणा को सिद्ध करने के लिए कई प्रयास किए गए। एक संभावित कारण है कि इस तरह के प्रमाण की अत्यधिक मांग की गई थी, पहले चार अभिधारणाओं के विपरीत, समानांतर अभिधारणा स्वतः स्पष्ट नहीं है। यदि तत्वों में अभिधारणाओं को सूचीबद्ध करने का क्रम महत्वपूर्ण है, तो यह इंगित करता है कि यूक्लिड ने इस अभिधारणा को केवल तभी सम्मिलित किया जब उसे एहसास हुआ कि वह इसे सिद्ध नहीं कर सकता या इसके बिना आगे नहीं बढ़ सकता।<ref>{{Citation|title=History of the Parallel Postulate|journal=The American Mathematical Monthly|volume=27|issue=1|pages=16–23|date=Jan 1920|author=Florence P. Lewis|doi=10.2307/2973238|publisher=The American Mathematical Monthly, Vol. 27, No. 1|postscript=.|jstor=2973238}}</ref> अन्य चार अभिधारणाओं में से पाँचvं अभिधारणा को सिद्ध करने के लिए कई प्रयास किए गए, उनमें से कई को प्रमाण के रूप में लंबे समय तक स्vकार किया गया जब तक कि गलती का पता नहीं चला। निरपवाद रूप से गलती कुछ 'स्पष्ट' संपत्ति मान रही थी जो पाँचvं अभिधारणा के समतुल्य निकली। अंततः यह महसूस किया गया कि यह अभिधारणा अन्य चार से सिद्ध नहीं हो सकती है। के अनुसार {{harvtxt|Trudeau|1987|loc=p. 154}} समानांतर अवधारणा (पोस्टुलेट 5) के बारे में यह राय प्रिंट में दिखाई देती है:
 
<ब्लॉककोट>
दो हज़ार वर्षों तक, यूक्लिड की पहली चार अभिधारणाओं का उपयोग करते हुए समानांतर अभिधारणा को सिद्ध करने के लिए कई प्रयास किए गए। संभावित कारण है कि इस तरह के प्रमाण की अत्यधिक मांग की गई थी, पहले चार अभिधारणाओं के विपरीत, समानांतर अभिधारणा स्वतः स्पष्ट नहीं है। यदि तत्वों में अभिधारणाओं को सूचीबद्ध करने का क्रम महत्वपूर्ण है, तो यह इंगित करता है कि यूक्लिड ने इस अभिधारणा को केवल तभी सम्मिलित किया जब उसे अनुभूति हुआ कि वह इसे सिद्ध नहीं कर सकता या इसके बिना आगे नहीं बढ़ सकता।<ref>{{Citation|title=History of the Parallel Postulate|journal=The American Mathematical Monthly|volume=27|issue=1|pages=16–23|date=Jan 1920|author=Florence P. Lewis|doi=10.2307/2973238|publisher=The American Mathematical Monthly, Vol. 27, No. 1|postscript=.|jstor=2973238}}</ref> अन्य चार अभिधारणाओं में से पाँचवी अभिधारणा को सिद्ध करने के लिए कई प्रयास किए गए, उनमें से कई को प्रमाण के रूप में लंबे समय तक स्वीकार किया गया जब तक कि गलती का पता नहीं चला। निरपवाद रूप से गलती कुछ 'स्पष्ट' संपत्ति मान रही थी जो पाँचवी अभिधारणा के समतुल्य निकली। अंततः यह अनुभूति किया गया कि यह अभिधारणा अन्य चार से सिद्ध नहीं हो सकती है। के अनुसार {{harvtxt|ट्रुडो|1987|loc=p. 154}} समानांतर अवधारणा (पोस्टुलेट 5) के बारे में यह राय प्रिंट में दिखाई देती है
जाहिर तौर पर ऐसा करने वाले पहले व्यक्ति जी.एस. क्लुगेल (1739-1812) थे, जो गौटिंगेन विश्वविद्यालय में डॉक्टरेट के छात्र थे, उन्होंने अपने शिक्षक ए.जी. कस्टनर के सहयोग से, पूर्व के 1763 के शोध प्रबंध कोनाटुम प्रेसीपुरम प्रमेयियम पैरेलारम डिमोनस्ट्रांडी रिकेंसियो (सबसे प्रसिद्ध की समीक्षा) में समानता के सिद्धांत को प्रदर्शित करने का प्रयास)। इस कार्य में क्लुगेल ने अभिधारणा 5 (सैकेरी सहित) को सिद्ध करने के लिए 28 प्रयासों की जांच की, उन सभी को त्रुटिपूर्ण पाया, और यह राय प्रस्तुत की कि अभिधारणा 5 अप्राप्य है और केवल हमारी इंद्रियों के निर्णय द्वारा समर्थित है।
 
</ब्लॉककोट>
सामान्यतः ऐसा करने वाले पहले व्यक्ति जी.एस. क्लुगेल (1739-1812) थे, जो गौटिंगेन विश्वविद्यालय में डॉक्टरेट के छात्र थे, उन्होंने अपने शिक्षक ए.जी. कस्टनर के सहयोग से, पूर्व के 1763 के शोध प्रबंध कोनाटुम प्रेसीपुरम प्रमेयियम पैरेलारम डिमोनस्ट्रांडी रिकेंसियो (सबसे प्रसिद्ध की समीक्षा) में समानता के सिद्धांत को प्रदर्शित करने का प्रयास इस कार्य में क्लुगेल ने अभिधारणा 5 (सैकेरी सहित) को सिद्ध करने के लिए 28 प्रयासों की जांच की, उन सभी को त्रुटिपूर्ण पाया, और यह राय प्रस्तुत की कि अभिधारणा 5 अप्राप्य है और केवल हमारी इंद्रियों के निर्णय द्वारा समर्थित है।
 
 
19वी शताब्दी की प्रारंभिक अंतत: दूसरा-यूक्लिडियन ज्यामिति के निर्माण में निर्णायक कदमों की साक्षी बनेगी। लगभग 1813, कार्ल फ्रेडरिक गॉस और स्वतंत्र रूप से 1818 के आसपास, नियम के जर्मन प्रोफेसर [[फर्डिनेंड कार्ल श्वेकार्ट]]<ref>In a letter of December 1818, Ferdinand Karl Schweikart (1780–1859) sketched a few insights into non-Euclidean geometry.  The letter was forwarded to Gauss in 1819 by Gauss's former student Gerling.  In his reply to Gerling, Gauss praised Schweikart and mentioned his own, earlier research into non-Euclidean geometry.</ref> दूसरा-यूक्लिडियन ज्यामिति के मूल विचारों पर काम किया था, लेकिन न तो कोई परिणाम प्रकाशित किया। फिर, 1830 के आसपास, [[हंगरी]] के गणितज्ञ जानोस बोल्याई और [[रूस|रुसी]] गणितज्ञ [[निकोलाई इवानोविच लोबाचेव्स्की]] ने अलग-अलग ग्रंथों को प्रकाशित किया, जिसे आज हम अतिशयोक्तिपूर्ण ज्यामिति कहते हैं। परिणाम स्वरुप ,अतिशयोक्तिपूर्ण ज्यामिति को बोल्यई-लोबाचेवस्कियन ज्यामिति कहा जाता है, क्योंकि दोनों गणितज्ञ, एक दूसरे से स्वतंत्र, दूसरा-यूक्लिडियन ज्यामिति के मूल लेखक हैं। कार्ल फ्रेडरिक गॉस ने बोल्याई के पिता का उल्लेख किया, जब छोटे बोल्याई के काम को दिखाया गया, कि उन्होंने कई साल पहले ऐसी ज्यामिति विकसित की थी,<ref>In the letter to Wolfgang (Farkas) Bolyai of March 6, 1832 Gauss claims to have worked on the problem for thirty or thirty-five years {{harv|Faber|1983|loc=p. 162}}. In his 1824 letter to Taurinus {{harv|Faber|1983|loc=p. 158}} he claimed that he had been working on the problem for over 30 years and provided enough detail to show that he actually had worked out the details. According to {{harvtxt|Faber|1983|loc=p. 156}} it wasn't until around 1813 that Gauss had come to accept the existence of a new geometry.</ref> चूंकि उन्होंने प्रकाशित नहीं किया। जबकि लोबाचेवस्की ने समानांतर अभिधारणा को नकारते हुए एक दूसरा-यूक्लिडियन ज्यामिति का निर्माण किया, बोल्याई ने ज्यामिति का काम किया जहां पैरामीटर k के आधार पर यूक्लिडियन और हाइपरबोलिक ज्यामिति दोनों संभव हैं। बोल्याई अपने काम का अंत यह कहते हुए करते हैं कि केवल गणितीय तर्क के माध्यम से यह ख़त्म करना करना संभव नहीं है कि भौतिक ब्रह्मांड की ज्यामिति यूक्लिडियन है या दूसरा-यूक्लिडियन; यह भौतिक विज्ञान के लिए कार्य है।


19vं शताब्दी की प्रारंभिक  अंतत: दूसरा-यूक्लिडियन ज्यामिति के निर्माण में निर्णायक कदमों की साक्षी बनेगी। लगभग 1813, कार्ल फ्रेडरिक गॉस और स्वतंत्र रूप से 1818 के आसपास, कानून के जर्मन प्रोफेसर [[फर्डिनेंड कार्ल श्वेकार्ट]]<ref>In a letter of December 1818, Ferdinand Karl Schweikart (1780–1859) sketched a few insights into non-Euclidean geometry.  The letter was forwarded to Gauss in 1819 by Gauss's former student Gerling.  In his reply to Gerling, Gauss praised Schweikart and mentioned his own, earlier research into non-Euclidean geometry.</ref> दूसरा-यूक्लिडियन ज्यामिति के मूल विचारों पर काम किया था, लेकिन न तो कोई परिणाम प्रकाशित किया। फिर, 1830 के आसपास, [[हंगरी]] के गणितज्ञ जानोस बोल्याई और [[रूस]]ी गणितज्ञ [[निकोलाई इवानोविच लोबाचेव्स्की]] ने अलग-अलग ग्रंथों को प्रकाशित किया, जिसे आज हम अतिशयोक्तिपूर्ण ज्यामिति कहते हैं। नतीजतन, अतिशयोक्तिपूर्ण ज्यामिति को बोल्यई-लोबाचेवस्कियन ज्यामिति कहा जाता है, क्योंकि दोनों गणितज्ञ, एक दूसरे से स्वतंत्र, दूसरा-यूक्लिडियन ज्यामिति के मूल लेखक हैं। कार्ल फ्रेडरिक गॉस ने बोल्याई के पिता का उल्लेख किया, जब छोटे बोल्याई के काम को दिखाया गया, कि उन्होंने कई साल पहले ऐसी ज्यामिति विकसित की थी,<ref>In the letter to Wolfgang (Farkas) Bolyai of March 6, 1832 Gauss claims to have worked on the problem for thirty or thirty-five years {{harv|Faber|1983|loc=p. 162}}. In his 1824 letter to Taurinus {{harv|Faber|1983|loc=p. 158}} he claimed that he had been working on the problem for over 30 years and provided enough detail to show that he actually had worked out the details. According to {{harvtxt|Faber|1983|loc=p. 156}} it wasn't until around 1813 that Gauss had come to accept the existence of a new geometry.</ref> चूंकि  उन्होंने प्रकाशित नहीं किया। जबकि लोबाचेवस्की ने समानांतर अभिधारणा को नकारते हुए एक दूसरा-यूक्लिडियन ज्यामिति का निर्माण किया, बोल्याई ने एक ज्यामिति का काम किया जहां एक पैरामीटर k के आधार पर यूक्लिडियन और हाइपरबोलिक ज्यामिति दोनों संभव हैं। बोल्याई अपने काम का अंत यह कहते हुए करते हैं कि केवल गणितीय तर्क के माध्यम से यह निपटारा करना  करना संभव नहीं है कि भौतिक ब्रह्मांड की ज्यामिति यूक्लिडियन है या दूसरा-यूक्लिडियन; यह भौतिक विज्ञान के लिए एक कार्य है।
यूक्लिड के अन्य अभिगृहीतों से समानांतर अवधारणा की स्वतंत्रता (गणितीय तर्क) को अंततः 1868 में [[यूजेनियो बेल्ट्रामी]] द्वारा प्रदर्शित किया गया था।<ref>Beltrami, Eugenio (1868) "Teoria fondamentale degli spazî di curvatura costante", ''Annali di Matematica Pura et Applicata'', Series II '''2''':232&ndash;255.</ref>
यूक्लिड के अन्य अभिगृहीतों से समानांतर अवधारणा की स्वतंत्रता (गणितीय तर्क) को अंततः 1868 में [[यूजेनियो बेल्ट्रामी]] द्वारा प्रदर्शित किया गया था।<ref>Beltrami, Eugenio (1868) "Teoria fondamentale degli spazî di curvatura costante", ''Annali di Matematica Pura et Applicata'', Series II '''2''':232&ndash;255.</ref>
समानांतर अभिधारणा के विभिन्न प्रयास किए गए प्रमाणों ने प्रमेयों की एक लंबी सूची तैयार की जो समानांतर अभिधारणा के समतुल्य हैं। यहाँ तुल्यता का अर्थ है कि ज्यामिति के अन्य अभिगृहीतों की उपस्थिति में इनमें से प्रत्येक प्रमेय को सत्य माना जा सकता है और अभिगृहीतों के इस परिवर्तित समुच्चय से समानांतर अभिधारणा को सिद्ध किया जा सकता है। यह तार्किक तुल्यता के समान नहीं है।<ref>An appropriate example of logical equivalence is given by Playfair's axiom and Euclid I.30 (see [[Playfair's axiom#Transitivity of parallelism]]).</ref> यूक्लिडियन ज्यामिति के लिए स्वयंसिद्धों के विभिन्न सेटों में, इनमें से कोई भी यूक्लिडियन समानांतर अभिधारणा को प्रतिस्थापित कर सकता है।<ref>For instance, Hilbert uses Playfair's axiom while Birkhoff uses the theorem about similar but not congruent triangles.</ref> निम्नलिखित आंशिक सूची इनमें से कुछ प्रमेयों को इंगित करती है जो ऐतिहासिक रुचि के हैं।<ref>attributions are due to {{harvnb|Trudeau|1987|loc=pp. 128&ndash;9}}</ref>
समानांतर अभिधारणा के विभिन्न प्रयास किए गए प्रमाणों ने प्रमेयों की एक लंबी सूची तैयार की जो समानांतर अभिधारणा के समतुल्य हैं। यहाँ तुल्यता का अर्थ है कि ज्यामिति के अन्य अभिगृहीतों की उपस्थिति में इनमें से प्रत्येक प्रमेय को सत्य माना जा सकता है और अभिगृहीतों के इस परिवर्तित समुच्चय से समानांतर अभिधारणा को सिद्ध किया जा सकता है। यह तार्किक तुल्यता के समान नहीं है।<ref>An appropriate example of logical equivalence is given by Playfair's axiom and Euclid I.30 (see [[Playfair's axiom#Transitivity of parallelism]]).</ref> यूक्लिडियन ज्यामिति के लिए स्वयंसिद्धों के विभिन्न सेटों में, इनमें से कोई भी यूक्लिडियन समानांतर अभिधारणा को प्रतिस्थापित कर सकता है।<ref>For instance, Hilbert uses Playfair's axiom while Birkhoff uses the theorem about similar but not congruent triangles.</ref> निम्नलिखित आंशिक सूची इनमें से कुछ प्रमेयों को इंगित करती है जो ऐतिहासिक रुचि के हैं।<ref>attributions are due to {{harvnb|Trudeau|1987|loc=pp. 128&ndash;9}}</ref>
# समानांतर सीधी रेखाएँ समान दूरी पर होती हैं। (पोसिडोनियोस, पहली शताब्दी ई.पू.)
# समानांतर सीधी रेखाएँ समान दूरी पर होती हैं। (पोसिडोनियोस, पहली शताब्दी ई.पू.)
# किसी दी गई सीधी रेखा से समदूरस्थ सभी बिंदु, उसके एक तरफ, एक सीधी रेखा बनाते हैं। (क्रिस्टोफ क्लेवियस, 1574)
# किसी दी गई सीधी रेखा से समदूरस्थ सभी बिंदु, उसके एक तरफ,सीधी रेखा बनाते हैं। (क्रिस्टोफ क्लेवियस, 1574)
# प्लेफेयर का स्वयंसिद्ध। एक तल में, अधिकतम एक रेखा होती है जिसे किसी दिए गए रेखा के समांतर एक बाहरी बिंदु से होकर खींचा जा सकता है। ([[बंद किया हुआ]], 5vं शताब्दी, लेकिन जॉन प्लेफेयर द्वारा लोकप्रिय, 18vं शताब्दी के अंत में)
# प्लेफेयर का स्वयंसिद्ध एक तल में, अधिकतम एक रेखा होती है जिसे किसी दिए गए रेखा के समांतर एक बाहरी बिंदु से होकर खींचा जा सकता है। ([[बंद किया हुआ]], पाचवीं शताब्दी, लेकिन जॉन प्लेफेयर द्वारा लोकप्रिय, 18वी शताब्दी के अंत में)
# प्रत्येक त्रिभुज में [[कोण]]ों का योग 180° होता है (गेरोलामो सचेरी, 1733; एड्रियन-मैरी लिजेंड्रे, 19vं सदी की प्रारंभिक में)
# प्रत्येक त्रिभुज में [[कोण]] का योग 180° होता है (गेरोलामो सचेरी, 1733; एड्रियन-मैरी लिजेंड्रे, 19वी सदी की प्रारंभिक में)
# एक त्रिभुज का अस्तित्व है जिसके कोणों का योग 180° होता है। (जेरोलामो सैचेरी, 1733; एड्रियन-मैरी लिजेंड्रे, 19vं शताब्दी के प्रारंभ में)
# त्रिभुज का अस्तित्व है जिसके कोणों का योग 180° होता है। (जेरोलामो सैचेरी, 1733; एड्रियन-मैरी लिजेंड्रे, 19वी शताब्दी के प्रारंभ में)
# [[समानता (ज्यामिति)]] की एक जोड़ी उपस्थित है, लेकिन [[सर्वांगसमता (ज्यामिति)]], [[त्रिकोण]] नहीं है। (जेरोलामो सचेरी, 1733)
# [[समानता (ज्यामिति)]] की एक जोड़ी उपस्थित है, लेकिन [[सर्वांगसमता (ज्यामिति)]], [[त्रिकोण]] नहीं है। (जेरोलामो सचेरी, 1733)
# हर त्रिकोण को परिचालित किया जा सकता है। (एड्रियन-मैरी लीजेंड्रे, फार्कस बोल्याई, 19vं सदी की प्रारंभिक में)
# हर त्रिकोण को परिचालित किया जा सकता है। (एड्रियन-मैरी लीजेंड्रे, फार्कस बोल्याई, 19वी सदी की प्रारंभिक में)
# यदि किसी चतुर्भुज के तीन कोण [[समकोण]] हों, तो चौथा कोण भी समकोण होता है। (एलेक्सिस-क्लाउड क्लेराट, 1741; जोहान हेनरिक लैम्बर्ट, 1766)
# यदि किसी चतुर्भुज के तीन कोण [[समकोण]] हों, तो चौथा कोण भी समकोण होता है। (एलेक्सिस-क्लाउड क्लेराट, 1741; जोहान हेनरिक लैम्बर्ट, 1766)
# एक चतुर्भुज का अस्तित्व है जिसके सभी कोण समकोण हैं। (गेरालामो सचेरी, 1733)
# एक चतुर्भुज का अस्तित्व है जिसके सभी कोण समकोण हैं। (गेरालामो सचेरी, 1733)
Line 244: Line 241:
# त्रिभुज के क्षेत्रफल (ज्यामिति) की कोई ऊपरी सीमा नहीं है। (कार्ल फ्रेडरिक गॉस, 1799)
# त्रिभुज के क्षेत्रफल (ज्यामिति) की कोई ऊपरी सीमा नहीं है। (कार्ल फ्रेडरिक गॉस, 1799)
# सचेरी चतुर्भुज के शिखर कोण 90° हैं। (गेरालामो सचेरी, 1733)
# सचेरी चतुर्भुज के शिखर कोण 90° हैं। (गेरालामो सचेरी, 1733)
# प्रोक्लस 'स्वयंसिद्ध। यदि एक रेखा दो समानांतर रेखाओं में से एक को काटती है, जो दोनों मूल रेखा के समतलीय हैं, तो यह दूसरे को भी काटती है। (प्रोक्लस, 5vं शताब्दी)
# प्रोक्लस 'स्वयंसिद्ध। यदि एक रेखा दो समानांतर रेखाओं में से एक को काटती है, जो दोनों मूल रेखा के समतलीय हैं, तो यह दूसरे को भी काटती है। (प्रोक्लस, 5वी शताब्दी)


=== तटस्थ (या निरपेक्ष) ज्यामिति ===
=== तटस्थ (या निरपेक्ष) ज्यामिति ===
{{main|Absolute geometry}}
{{main|निरपेक्ष ज्यामिति}}
निरपेक्ष ज्यामिति एक स्वयंसिद्ध प्रणाली पर आधारित एक ज्यामिति है जिसमें यूक्लिडियन ज्यामिति देने वाले सभी स्वयंसिद्धों को सम्मिलित किया जाता है, सिवाय इसके कि समांतर अभिधारणा या इसके किसी भी विकल्प को छोड़कर।<ref>Use a complete set of axioms for Euclidean geometry such as [[Hilbert's axioms]] or another modern equivalent {{harv|Faber|1983|loc=p. 131}}. Euclid's original set of axioms is ambiguous and not complete, it does not form a basis for Euclidean geometry.</ref> यह शब्द 1832 में जानोस बोल्याई द्वारा प्रस्तुत किया गया था।<ref>In "''Appendix exhibiting the absolute science of space: independent of the truth or falsity of Euclid's Axiom XI (by no means previously decided)''" {{harv|Faber|1983|loc=p. 161}}</ref> इसे कभी-कभी तटस्थ ज्यामिति कहा जाता है,<ref>Greenberg cites W. Prenowitz and M. Jordan (Greenberg, p. xvi) for having used the term ''neutral geometry'' to refer to that part of Euclidean geometry that does not depend on Euclid's parallel postulate.  He says that the word ''absolute'' in ''absolute geometry'' misleadingly implies that all other geometries depend on it.</ref> क्योंकि यह समानांतर अभिधारणा के संबंध में तटस्थ है।
 
निरपेक्ष ज्यामिति एक स्वयंसिद्ध प्रणाली पर आधारित एक ज्यामिति है जिसमें यूक्लिडियन ज्यामिति देने वाले सभी स्वयंसिद्धों को सम्मिलित किया जाता है, इसके अतिरिक्त इसके कि समांतर अभिधारणा या इसके किसी भी विकल्प को छोड़कर।<ref>Use a complete set of axioms for Euclidean geometry such as [[Hilbert's axioms]] or another modern equivalent {{harv|Faber|1983|loc=p. 131}}. Euclid's original set of axioms is ambiguous and not complete, it does not form a basis for Euclidean geometry.</ref> यह शब्द 1832 में जानोस बोल्याई द्वारा प्रस्तुत किया गया था।<ref>In "''Appendix exhibiting the absolute science of space: independent of the truth or falsity of Euclid's Axiom XI (by no means previously decided)''" {{harv|Faber|1983|loc=p. 161}}</ref> इसे कभी-कभी तटस्थ ज्यामिति कहा जाता है,<ref>Greenberg cites W. Prenowitz and M. Jordan (Greenberg, p. xvi) for having used the term ''neutral geometry'' to refer to that part of Euclidean geometry that does not depend on Euclid's parallel postulate.  He says that the word ''absolute'' in ''absolute geometry'' misleadingly implies that all other geometries depend on it.</ref> क्योंकि यह समानांतर अभिधारणा के संबंध में तटस्थ है।


==== अन्य ज्यामिति से संबंध ====
==== अन्य ज्यामिति से संबंध ====
यूक्लिड के तत्वों|यूक्लिड के तत्वों में, पहले 28 तर्कवाक्य और प्रस्ताव I.31 समानांतर अवधारणा का उपयोग करने से बचते हैं, और इसलिए निरपेक्ष ज्यामिति में मान्य प्रमेय हैं।<ref>{{harvnb|Trudeau|1987|loc=p. 44}}</ref> प्रस्ताव I.31 समानांतर रेखाओं (निर्माण द्वारा) के अस्तित्व को सिद्ध करता है। साथ ही, सैचेरी-लीजेंड्रे प्रमेय, जिसमें कहा गया है कि एक त्रिभुज में कोणों का योग अधिकतम 180° होता है, को सिद्ध किया जा सकता है।
यूक्लिड के तत्वों यूक्लिड के तत्वों में, पहले 28 तर्कवाक्य और प्रस्ताव प्रथम समानांतर अवधारणा का उपयोग करने से बचते हैं, और इसलिए निरपेक्ष ज्यामिति में मान्य प्रमेय हैं।<ref>{{harvnb|Trudeau|1987|loc=p. 44}}</ref> प्रस्ताव प्रथम समानांतर रेखाओं (निर्माण द्वारा) के अस्तित्व को सिद्ध करता है। साथ ही, सैचेरी-लीजेंड्रे प्रमेय, जिसमें कहा गया है कि एक त्रिभुज में कोणों का योग अधिकतम 180° होता है, को सिद्ध किया जा सकता है।


निरपेक्ष ज्यामिति के प्रमेय अतिशयोक्तिपूर्ण ज्यामिति के साथ-साथ यूक्लिडियन ज्यामिति में भी प्रयुक्त होते हैं।<ref>Absolute geometry is, in fact, the intersection of hyperbolic geometry and Euclidean geometry when these are regarded as sets of propositions.</ref>
निरपेक्ष ज्यामिति के प्रमेय अतिशयोक्तिपूर्ण ज्यामिति के साथ-साथ यूक्लिडियन ज्यामिति में भी प्रयुक्त होते हैं।<ref>Absolute geometry is, in fact, the intersection of hyperbolic geometry and Euclidean geometry when these are regarded as sets of propositions.</ref>
निरपेक्ष ज्यामिति अण्डाकार ज्यामिति के साथ असंगत है: अण्डाकार ज्यामिति में कोई समानांतर रेखाएँ नहीं होती हैं, लेकिन निरपेक्ष ज्यामिति में समानांतर रेखाएँ उपस्थित होती हैं। साथ ही, अण्डाकार ज्यामिति में, किसी त्रिभुज में कोणों का योग 180° से अधिक होता है।
 
निरपेक्ष ज्यामिति अण्डाकार ज्यामिति के साथ असंगत है: अण्डाकार ज्यामिति में कोई समानांतर रेखाएँ नहीं होती हैं, लेकिन निरपेक्ष ज्यामिति में समानांतर रेखाएँ उपस्थित होती हैं। साथ ही, अण्डाकार ज्यामिति में, किसी त्रिभुज में कोणों का योग 180° से अधिक होता है।


==== अधूरापन ====
==== अधूरापन ====
तार्किक रूप से, अभिगृहीत एक पूर्ण सिद्धांत नहीं बनाते हैं क्योंकि अभिगृहीत प्रणाली को असंगत बनाए बिना कोई अतिरिक्त स्वतंत्र अभिगृहीत जोड़ सकता है। समांतरता के बारे में अलग-अलग स्वयंसिद्धों को जोड़कर पूर्ण ज्यामिति का विस्तार किया जा सकता है और यूक्लिडियन और अतिशयोक्तिपूर्ण ज्यामिति को जन्म देते हुए असंगत लेकिन सुसंगत स्वयंसिद्ध प्रणालियों को प्राप्त किया जा सकता है। इस प्रकार निरपेक्ष ज्यामिति का प्रत्येक प्रमेय अतिशयोक्तिपूर्ण ज्यामिति और यूक्लिडियन ज्यामिति का एक प्रमेय है। चुकीं इसका विलोम सत्य नहीं है। इसके अतिरिक्त , पूर्ण ज्यामिति एक [[श्रेणीबद्ध सिद्धांत]] नहीं है, क्योंकि इसमें ऐसे उदाहरण   हैं जो आइसोमोर्फिक नहीं हैं।{{citation needed|date=October 2013}}
तार्किक रूप से, अभिगृहीत एक पूर्ण सिद्धांत नहीं बनाते हैं क्योंकि अभिगृहीत प्रणाली को असंगत बनाए बिना कोई अतिरिक्त स्वतंत्र अभिगृहीत जोड़ सकता है। समांतरता के बारे में अलग-अलग स्वयंसिद्धों को जोड़कर पूर्ण ज्यामिति का विस्तार किया जा सकता है और यूक्लिडियन और अतिशयोक्तिपूर्ण ज्यामिति को जन्म देते हुए असंगत लेकिन सुसंगत स्वयंसिद्ध प्रणालियों को प्राप्त किया जा सकता है। इस प्रकार निरपेक्ष ज्यामिति का प्रत्येक प्रमेय अतिशयोक्तिपूर्ण ज्यामिति और यूक्लिडियन ज्यामिति का एक प्रमेय है। चुकीं इसका विलोम सत्य नहीं है। इसके अतिरिक्त , पूर्ण ज्यामिति एक [[श्रेणीबद्ध सिद्धांत]] नहीं है, क्योंकि इसमें ऐसे उदाहरण हैं जो आइसोमोर्फिक नहीं हैं।{{citation needed|date=October 2013}}




=== अतिशयोक्तिपूर्ण ज्यामिति ===
=== अतिशयोक्तिपूर्ण ज्यामिति ===
{{main|Hyperbolic geometry}}
{{main|अतिशयोक्तिपूर्ण ज्यामिति}}
अतिशयोक्ति[[पूर्ण ज्यामिति]] के स्वयंसिद्ध दृष्टिकोण में (जिसे लोबाचेवस्कियन ज्यामिति या बोल्याई-लोबाचेवस्कियन ज्यामिति भी कहा जाता है), पूर्ण ज्यामिति देने वाले स्वयंसिद्धों में एक अतिरिक्त स्वयंसिद्ध जोड़ा जाता है। नया अभिगृहीत ''लोबचेवस्की का समानांतर अभिधारणा'' है (जिसे ''अतिपरवलयिक ज्यामिति की विशेषता अभिधारणा'' के रूप में भी जाना जाता है):<ref>{{harvnb|Faber|1983|loc=p. 167}}</ref>
अतिशयोक्ति[[पूर्ण ज्यामिति]] के स्वयंसिद्ध दृष्टिकोण में (जिसे लोबाचेवस्कियन ज्यामिति या बोल्याई-लोबाचेवस्कियन ज्यामिति भी कहा जाता है), पूर्ण ज्यामिति देने वाले स्वयंसिद्धों में एक अतिरिक्त स्वयंसिद्ध जोड़ा जाता है। नया अभिगृहीत ''लोबचेवस्की का समानांतर अभिधारणा'' है (जिसे ''अतिपरवलयिक ज्यामिति की विशेषता अभिधारणा'' के रूप में भी जाना जाता है):<ref>{{harvnb|Faber|1983|loc=p. 167}}</ref>
: किसी दिए गए रेखा पर नहीं एक बिंदु के माध्यम से उपस्थित है (इस बिंदु और रेखा द्वारा निर्धारित विमान में) कम से कम दो रेखाएं जो दी गई रेखा से नहीं मिलती हैं।
: किसी दिए गए रेखा पर नहीं एक बिंदु के माध्यम से उपस्थित है (इस बिंदु और रेखा द्वारा निर्धारित विमान में) कम से कम दो रेखाएं जो दी गई रेखा से नहीं मिलती हैं।
इस जोड़ के साथ, स्वयंसिद्ध प्रणाली अब पूरी हो गई है।
इस जोड़ के साथ, स्वयंसिद्ध प्रणाली अब पूरी हो गई है।


यद्यपि नया स्वयंसिद्ध केवल दो रेखाओं के अस्तित्व पर जोर देता है, यह आसानी से स्थापित हो जाता है कि दिए गए बिंदु के माध्यम से अनंत संख्या में रेखाएँ हैं जो दी गई रेखा से नहीं मिलती हैं। इस प्रचुरता को देखते हुए, इस सेटिंग में शब्दावली से सावधान रहना चाहिए, क्योंकि समानांतर रेखा शब्द का अब यूक्लिडियन ज्यामिति में अद्वितीय अर्थ नहीं है। विशेष रूप से, पी को किसी दिए गए रेखा पर नहीं होने दें <math>\ell</math>. मान लीजिए PA, P से खींचा गया लंब है <math>\ell</math> (बिंदु ए पर बैठक)। P से होकर जाने वाली रेखाएँ दो वर्गों में आती हैं, वे जो मिलती हैं <math>\ell</math> और जो नहीं करते हैं। हाइपरबोलिक ज्योमेट्री की विशेषता का कहना है कि बाद के प्रकार की कम से कम दो पंक्तियाँ हैं। उन पंक्तियों का जो नहीं मिलतीं <math>\ell</math>, PA के साथ सबसे छोटा कोण बनाने वाली एक रेखा (PA के प्रत्येक तरफ) होगी। कभी-कभी इन पंक्तियों को P से होकर जाने वाली पहली पंक्तियाँ कहा जाता है जो नहीं मिलतीं <math>\ell</math> और विभिन्न प्रकार से सीमित, असिम्प्टोटिक या समानांतर रेखाएँ कहलाती हैं (जब इस अंतिम शब्द का उपयोग किया जाता है, तो ये <u>केवल</u> समानांतर रेखाएँ होती हैं)। P से होकर जाने वाली अन्य सभी रेखाएँ जो नहीं मिलतीं <math>\ell</math> अप्रतिच्छेदी या अतिसमांतर रेखाएँ कहलाती हैं।
यद्यपि नया स्वयंसिद्ध केवल दो रेखाओं के अस्तित्व पर जोर देता है, यह सरलता से स्थापित हो जाता है कि दिए गए बिंदु के माध्यम से अनंत संख्या में रेखाएँ हैं जो दी गई रेखा से नहीं मिलती हैं। इस प्रचुरता को देखते हुए, इस सेटिंग में शब्दावली से सावधान रहना चाहिए, क्योंकि समानांतर रेखा शब्द का अब यूक्लिडियन ज्यामिति में अद्वितीय अर्थ नहीं है। विशेष रूप से, पी को किसी दिए गए रेखा पर नहीं होने दें <math>\ell</math>. मान लीजिए PA, P से खींचा गया लंब है <math>\ell</math> (बिंदु ए पर बैठक)। P से होकर जाने वाली रेखाएँ दो वर्गों में आती हैं, वे जो मिलती हैं <math>\ell</math> और जो नहीं करते हैं। हाइपरबोलिक ज्योमेट्री की विशेषता का कहना है कि बाद के प्रकार की कम से कम दो पंक्तियाँ हैं। उन पंक्तियों का जो नहीं मिलतीं <math>\ell</math>, PA के साथ सबसे छोटा कोण बनाने वाली एक रेखा (PA के प्रत्येक तरफ) होगी। कभी-कभी इन पंक्तियों को P से होकर जाने वाली पहली पंक्तियाँ कहा जाता है जो नहीं मिलतीं <math>\ell</math> और विभिन्न प्रकार से सीमित, असिम्प्टोटिक या समानांतर रेखाएँ कहलाती हैं (जब इस अंतिम शब्द का उपयोग किया जाता है, तो ये <u>केवल</u> समानांतर रेखाएँ होती हैं)। P से होकर जाने वाली अन्य सभी रेखाएँ जो नहीं मिलतीं <math>\ell</math> अप्रतिच्छेदी या अतिसमांतर रेखाएँ कहलाती हैं।


चूँकि अतिशयोक्तिपूर्ण ज्यामिति और यूक्लिडियन ज्यामिति दोनों पूर्ण ज्यामिति के स्वयंसिद्धों पर निर्मित हैं, वे कई गुणों और प्रस्तावों को साझा करते हैं। चूंकि , यूक्लिडियन ज्यामिति के समानांतर अभिधारणा को अतिपरवलयिक ज्यामिति के विशिष्ट अभिधारणा के साथ बदलने के परिणाम नाटकीय हो सकते हैं। इनमें से कुछ का उल्लेख करने के लिए:
चूँकि अतिशयोक्तिपूर्ण ज्यामिति और यूक्लिडियन ज्यामिति दोनों पूर्ण ज्यामिति के स्वयंसिद्धों पर निर्मित हैं, वे कई गुणों और प्रस्तावों को बाटा करते हैं। चूंकि , यूक्लिडियन ज्यामिति के समानांतर अभिधारणा को अतिपरवलयिक ज्यामिति के विशिष्ट अभिधारणा के साथ बदलने के परिणाम नाटकीय हो सकते हैं। इनमें से कुछ का उल्लेख करने के लिए:


[[File:Lambert quadrilateral.svg|upright|thumb|{{center|Lambert quadrilateral in hyperbolic geometry}}]]* [[लैम्बर्ट चतुर्भुज]] एक ऐसा चतुर्भुज है जिसमें तीन समकोण होते हैं। लैम्बर्ट चतुर्भुज का चौथा कोण तीव्र कोण है यदि ज्यामिति अतिशयोक्तिपूर्ण है, और एक समकोण है यदि ज्यामिति यूक्लिडियन है। इसके अतिरिक्त , केवल यूक्लिडियन ज्यामिति में ही [[आयत]]ें उपस्थित हो सकती हैं (समानांतर अभिधारणा के समतुल्य कथन)।
[[File:Lambert quadrilateral.svg|upright|thumb|{{center|अतिशयोक्तिपूर्ण ज्यामिति में लैम्बर्ट चतुर्भुज}}]]* [[लैम्बर्ट चतुर्भुज]] एक ऐसा चतुर्भुज है जिसमें तीन समकोण होते हैं। लैम्बर्ट चतुर्भुज का चौथा कोण तीव्र कोण है यदि ज्यामिति अतिशयोक्तिपूर्ण है, और एक समकोण है यदि ज्यामिति यूक्लिडियन है। इसके अतिरिक्त , केवल यूक्लिडियन ज्यामिति में ही [[आयत]]ें उपस्थित हो सकती हैं (समानांतर अभिधारणा के समतुल्य कथन)।
* सैचेरी चतुर्भुज एक ऐसा चतुर्भुज होता है जिसकी दो भुजाएँ समान लंबाई की होती हैं, दोनों एक भुजा के लम्बवत् होती हैं जिसे आधार कहा जाता है। सैचेरी चतुर्भुज के अन्य दो कोण शिखर कोण कहलाते हैं और उनका माप समान होता है। यदि ज्यामिति अतिशयोक्तिपूर्ण है, तो सैचेरी चतुर्भुज के शिखर कोण तीव्र होते हैं, और यदि ज्यामिति यूक्लिडियन है तो समकोण होते हैं।
* सैचेरी चतुर्भुज एक ऐसा चतुर्भुज होता है जिसकी दो भुजाएँ समान लंबाई की होती हैं, दोनों एक भुजा के लम्बवत् होती हैं जिसे आधार कहा जाता है। सैचेरी चतुर्भुज के अन्य दो कोण शिखर कोण कहलाते हैं और उनका माप समान होता है। यदि ज्यामिति अतिशयोक्तिपूर्ण है, तो सैचेरी चतुर्भुज के शिखर कोण तीव्र होते हैं, और यदि ज्यामिति यूक्लिडियन है तो समकोण होते हैं।
* यदि ज्यामिति अतिशयोक्तिपूर्ण है तो किसी भी त्रिभुज के कोणों के मापों का योग 180° से कम होता है और यदि ज्यामिति यूक्लिडियन है तो 180° के बराबर होता है। त्रिभुज का दोष (ज्यामिति) संख्यात्मक मान (180° - त्रिभुज के कोणों के माप का योग) है। इस परिणाम को इस प्रकार भी कहा जा सकता है: अतिशयोक्तिपूर्ण ज्यामिति में त्रिभुजों का दोष धनात्मक होता है, और यूक्लिडियन ज्यामिति में त्रिभुजों का दोष शून्य होता है।
* यदि ज्यामिति अतिशयोक्तिपूर्ण है तो किसी भी त्रिभुज के कोणों के मापों का योग 180° से कम होता है और यदि ज्यामिति यूक्लिडियन है तो 180° के बराबर होता है। त्रिभुज का दोष (ज्यामिति) संख्यात्मक मान (180° - त्रिभुज के कोणों के माप का योग) है। इस परिणाम को इस प्रकार भी कहा जा सकता है: अतिशयोक्तिपूर्ण ज्यामिति में त्रिभुजों का दोष धनात्मक होता है, और यूक्लिडियन ज्यामिति में त्रिभुजों का दोष शून्य होता है।
* अतिशयोक्तिपूर्ण ज्यामिति में एक त्रिभुज का क्षेत्र परिबद्ध होता है जबकि यूक्लिडियन ज्यामिति में मनमाने ढंग से बड़े क्षेत्रों के साथ त्रिभुज उपस्थित होते हैं।
* अतिशयोक्तिपूर्ण ज्यामिति में एक त्रिभुज का क्षेत्र परिबद्ध होता है जबकि यूक्लिडियन ज्यामिति में मनमाने ढंग से बड़े क्षेत्रों के साथ त्रिभुज उपस्थित होते हैं।
* एक ही तरफ बिंदुओं का सेट और दी गई सीधी रेखा से समान रूप से दूर यूक्लिडियन ज्यामिति में एक रेखा बनाते हैं, लेकिन हाइपरबोलिक ज्यामिति में नहीं (वे एक हाइपरसाइकल (ज्यामिति) बनाते हैं।)
* एक ही तरफ बिंदुओं का सेट और दी गई सीधी रेखा से समान रूप से दूर यूक्लिडियन ज्यामिति में एक रेखा बनाते हैं, लेकिन हाइपरबोलिक ज्यामिति में नहीं (वे एक हाइपरसाइकल (ज्यामिति) बनाते हैं।)


इस स्थिति के पैरोकार कि यूक्लिडियन ज्यामिति एकमात्र और एकमात्र सच्ची ज्यामिति है, जब 1868 में प्रकाशित एक संस्मरण में, निरंतर वक्रता के रिक्त स्थान का मौलिक सिद्धांत, एक झटका लगा।<ref>{{citation|first=Eugenio|last=Beltrami|title=Teoria fondamentale degli spazii di curvatura costante| journal= Annali di Matematica Pura ed Applicata|series=Series II|volume=2|year=1868|pages=232–255|doi=10.1007/BF02419615|s2cid=120773141|url=https://zenodo.org/record/2243105}}</ref> यूजेनियो बेल्ट्रामी ने किसी भी आयाम के लिए अतिशयोक्तिपूर्ण और यूक्लिडियन ज्यामिति की [[समानता]] का एक सार प्रमाण दिया। उन्होंने इसे दूसरा-यूक्लिडियन ज्यामिति के कई उदाहरण ों को प्रस्तुत करके पूरा किया, जिन्हें अब बेल्ट्रामी-क्लेन उदाहरण , पॉइंकेयर डिस्क उदाहरण   और पॉइंकेयर हाफ-प्लेन उदाहरण   के रूप में जाना जाता है, साथ ही उनसे संबंधित परिवर्तनों के साथ। हाफ-प्लेन उदाहरण   के लिए, बेल्ट्रामी ने [[अंतर ज्यामिति]] पर [[गैसपार्ड मोंगे]] के ग्रंथ में [[लिओविले]] द्वारा एक नोट का हवाला दिया। बेल्ट्रामी ने यह भी दिखाया कि एन-डायमेंशनल यूक्लिडियन ज्यामिति को (n + 1)-डायमेंशनल [[अतिशयोक्तिपूर्ण स्थान]] के [[राशिफल]] पर महसूस किया जाता है, इसलिए यूक्लिडियन और दूसरा-यूक्लिडियन ज्यामिति की संगति के बीच तार्किक संबंध सममित है।
इस स्थिति के पैरोकार कि यूक्लिडियन ज्यामिति एकमात्र और एकमात्र सच्ची ज्यामिति है, जब 1868 में प्रकाशित एक संस्मरण में, निरंतर वक्रता के रिक्त स्थान का मौलिक सिद्धांत, एक झटका लगा।<ref>{{citation|first=Eugenio|last=Beltrami|title=Teoria fondamentale degli spazii di curvatura costante| journal= Annali di Matematica Pura ed Applicata|series=Series II|volume=2|year=1868|pages=232–255|doi=10.1007/BF02419615|s2cid=120773141|url=https://zenodo.org/record/2243105}}</ref> यूजेनियो बेल्ट्रामी ने किसी भी आयाम के लिए अतिशयोक्तिपूर्ण और यूक्लिडियन ज्यामिति की [[समानता]] का एक सार प्रमाण दिया। उन्होंने इसे दूसरा-यूक्लिडियन ज्यामिति के कई उदाहरण को प्रस्तुत करके पूरा किया, जिन्हें अब बेल्ट्रामी-क्लेन उदाहरण , पॉइंकेयर डिस्क उदाहरण और पॉइंकेयर हाफ-प्लेन उदाहरण के रूप में जाना जाता है, साथ ही उनसे संबंधित परिवर्तनों के साथ। हाफ-प्लेन उदाहरण के लिए, बेल्ट्रामी ने [[अंतर ज्यामिति]] पर [[गैसपार्ड मोंगे]] के ग्रंथ में [[लिओविले]] द्वारा एक नोट का हवाला दिया। बेल्ट्रामी ने यह भी दिखाया कि एन-डायमेंशनल यूक्लिडियन ज्यामिति को (n + 1)-डायमेंशनल [[अतिशयोक्तिपूर्ण स्थान]] के [[राशिफल]] पर महसूस किया जाता है, इसलिए यूक्लिडियन और दूसरा-यूक्लिडियन ज्यामिति की संगति के बीच तार्किक संबंध सममित है।


=== अण्डाकार ज्यामिति ===
=== अण्डाकार ज्यामिति ===
{{main|Elliptic geometry}}
{{main|अण्डाकार ज्यामिति}}
समानांतर अभिधारणा को संशोधित करने का दूसरा विधि यह मान लेना है कि समतल में कोई समानांतर रेखाएँ नहीं हैं। अतिशयोक्तिपूर्ण ज्यामिति के साथ स्थिति के विपरीत, जहां हम केवल एक नया स्वयंसिद्ध जोड़ते हैं, हम इस कथन को निरपेक्ष ज्यामिति के स्वयंसिद्धों के लिए एक नए स्वयंसिद्ध के रूप में जोड़कर एक सुसंगत प्रणाली प्राप्त नहीं कर सकते। यह इस प्रकार है क्योंकि समानांतर रेखाएँ निरपेक्ष ज्यामिति में सिद्ध रूप से उपस्थित हैं। अन्य स्वयंसिद्धों को बदलना होगा।
समानांतर अभिधारणा को संशोधित करने का दूसरा विधि यह मान लेना है कि समतल में कोई समानांतर रेखाएँ नहीं हैं। अतिशयोक्तिपूर्ण ज्यामिति के साथ स्थिति के विपरीत, जहां हम केवल एक नया स्वयंसिद्ध जोड़ते हैं, हम इस कथन को निरपेक्ष ज्यामिति के स्वयंसिद्धों के लिए एक नए स्वयंसिद्ध के रूप में जोड़कर एक सुसंगत प्रणाली प्राप्त नहीं कर सकते। यह इस प्रकार है क्योंकि समानांतर रेखाएँ निरपेक्ष ज्यामिति में सिद्ध रूप से उपस्थित हैं। अन्य स्वयंसिद्धों को बदलना होगा।
 
हिल्बर्ट के स्वयंसिद्धों के साथ प्रारंभ करने के लिए आवश्यक परिवर्तनों में हिल्बर्ट के क्रम के चार सिद्धांतों को हटाना और उन्हें एक नए अपरिभाषित संबंध से संबंधित अलगाव के इन सात सिद्धांतों के साथ बदलना सम्मिलित है।<ref>{{harvnb|Greenberg|2007|loc=pp. 541–4}}</ref>


हिल्बर्ट के स्वयंसिद्धों के साथ प्रारंभ करने के लिए आवश्यक परिवर्तनों में हिल्बर्ट के क्रम के चार सिद्धांतों को हटाना और उन्हें एक नए अपरिभाषित संबंध से संबंधित अलगाव के इन सात सिद्धांतों के साथ बदलना सम्मिलित  है।<ref>{{harvnb|Greenberg|2007|loc=pp. 541–4}}</ref>
चार बिंदुओं, A, B, C और D के बीच एक अपरिभाषित (पुरातन धारणा) संबंध है, जिसे (A,C ,B,D) द्वारा निरूपित किया जाता है और इसे A और C अलग B और D के रूप में पढ़ा जाता है,<ref>Visualize four points on a circle which in counter-clockwise order are ''A'', ''B'', ''C'' and ''D''.</ref> इन स्वयंसिद्धों को संतुष्ट करना:
चार बिंदुओं, A, B, C और D के बीच एक अपरिभाषित (पुरातन धारणा) संबंध है, जिसे (A,C|B,D) द्वारा निरूपित किया जाता है और इसे A और C अलग B और D के रूप में पढ़ा जाता है,<ref>Visualize four points on a circle which in counter-clockwise order are ''A'', ''B'', ''C'' and ''D''.</ref> इन स्वयंसिद्धों को संतुष्ट करना:
# यदि (A,B,C,D), तो बिंदु A, B, C और D संरेखी और भिन्न हैं।
# यदि (A,B|C,D), तो बिंदु A, B, C और D संरेखी और भिन्न हैं।
# यदि ABCD तो (CDAB) और (BADC)
# अगर (ए,बी|सी,डी), तो (सी,डी|ए,बी) और (बी,ए|डी,सी)
# यदि ABCD, तो नहीं ACBD
# अगर (ए, बी | सी, डी), तो नहीं (ए, सी | बी, डी)।
# यदि बिंदु ABC और D [[समरेख]] और अलग हैं तो ABCD या ACBD या (ADBC)
# यदि बिंदु ए, बी, सी और डी [[समरेख]] और अलग हैं तो (ए, बी | सी, डी) या (ए, सी | बी, डी) या (ए, डी | बी, सी)
# यदि बिंदु A, B, और C समरेख और अलग हैं, तो एक बिंदु D उपस्थित है जैसे कि (A,BC,D)
# यदि बिंदु A, B, और C समरेख और अलग हैं, तो एक बिंदु D उपस्थित है जैसे कि (A,B|C,D)
# किन्हीं पांच अलग-अलग समरेख बिंदुओं A, B, C, D और E के लिए, यदि (A,B,D,E), तो या तो (A,B,C,D) या (A,B,C,E).
# किन्हीं पांच अलग-अलग समरेख बिंदुओं A, B, C, D और E के लिए, यदि (A,B|D,E), तो या तो (A,B|C,D) या (A,B|C,E).
# [[परिप्रेक्ष्य]] अलगाव को बनाए रखता है।
# [[परिप्रेक्ष्य]] अलगाव को बनाए रखता है।


चूंकि हिल्बर्ट की बीच की धारणा को हटा दिया गया है, जो शब्द उस अवधारणा का उपयोग करके परिभाषित किए गए थे उन्हें फिर से परिभाषित करने की आवश्यकता है।<ref>This reenforces the futility of attempting to "fix" Euclid's axioms to obtain this geometry. Changes need to be made in the unstated assumptions of Euclid.</ref> इस प्रकार, एक रेखा खंड AB को बिंदु A और B के रूप में परिभाषित किया गया है और पूर्ण ज्यामिति में A और B के बीच के सभी बिंदुओं को फिर से बनाने की आवश्यकता है। इस नई ज्यामिति में एक रेखा खंड तीन संरेख बिंदुओं A, B और C द्वारा निर्धारित किया जाता है और इसमें वे तीन बिंदु होते हैं और सभी बिंदु A और C द्वारा B से अलग नहीं होते हैं। आगे के परिणाम हैं। चूंकि दो बिंदु विशिष्ट रूप से एक रेखा खंड का निर्धारण नहीं करते हैं, तीन असंरेख बिंदु एक अद्वितीय त्रिकोण का निर्धारण नहीं करते हैं, और त्रिकोण की परिभाषा को सुधारना होगा।
चूंकि हिल्बर्ट की बीच की धारणा को हटा दिया गया है, जो शब्द उस अवधारणा का उपयोग करके परिभाषित किए गए थे उन्हें फिर से परिभाषित करने की आवश्यकता है।<ref>This reenforces the futility of attempting to "fix" Euclid's axioms to obtain this geometry. Changes need to be made in the unstated assumptions of Euclid.</ref> इस प्रकार, रेखाखंड AB को बिंदु A और B के रूप में परिभाषित किया गया है और पूर्ण ज्यामिति में A और B के बीच के सभी बिंदुओं को फिर से बनाने की आवश्यकता है। इस नई ज्यामिति में एक रेखा खंड तीन संरेख बिंदुओं A, B और C द्वारा निर्धारित किया जाता है और इसमें वे तीन बिंदु होते हैं और सभी बिंदु A और C द्वारा B से अलग नहीं होते हैं। आगे के परिणाम हैं। चूंकि दो बिंदु विशिष्ट रूप से एक रेखा खंड का निर्धारण नहीं करते हैं, तीन असंरेख बिंदु एक अद्वितीय त्रिकोण का निर्धारण नहीं करते हैं, और त्रिकोण की परिभाषा को सुधारना होगा।


एक बार जब इन धारणाओं को फिर से परिभाषित कर लिया जाता है, तो निरपेक्ष ज्यामिति (घटना, सर्वांगसमता और निरंतरता) के अन्य स्वयंसिद्ध सभी समझ में आते हैं और अकेले रह जाते हैं। समांतर रेखाओं के दूसरा-अस्तित्व पर नए सिद्धांत के साथ-साथ हमारे पास एक नई ज्यामिति देने वाले सिद्धांतों की एक सतत प्रणाली है। परिणामी ज्यामिति को (विमान) अण्डाकार ज्यामिति कहा जाता है।
एक बार जब इन धारणाओं को फिर से परिभाषित कर लिया जाता है, तो निरपेक्ष ज्यामिति (घटना, सर्वांगसमता और निरंतरता) के अन्य स्वयंसिद्ध सभी समझ में आते हैं और अकेले रह जाते हैं। समांतर रेखाओं के दूसरा-अस्तित्व पर नए सिद्धांत के साथ-साथ हमारे पास एक नई ज्यामिति देने वाले सिद्धांतों की एक सतत प्रणाली है। परिणामी ज्यामिति को (विमान) अण्डाकार ज्यामिति कहा जाता है।


[[File:Saccheri quads.svg|150px|thumb|{{center|Saccheri quadrilaterals in Euclidean, Elliptic and Hyperbolic geometry}}]]तथापिअण्डाकार ज्यामिति निरपेक्ष ज्यामिति का विस्तार नहीं है (जैसा कि यूक्लिडियन और हाइपरबोलिक ज्यामिति हैं), तीन ज्यामिति के प्रस्तावों में एक निश्चित समरूपता है जो एक गहरे संबंध को दर्शाता है जो फेलिक्स क्लेन द्वारा देखा गया था। इस संपत्ति को प्रदर्शित करने वाले कुछ प्रस्ताव हैं:
[[File:Saccheri quads.svg|150px|thumb|{{center|यूक्लिडियन, एलिप्टिक और हाइपरबोलिक ज्योमेट्री में सैचेरी चतुर्भुज}}]]तथापि अण्डाकार ज्यामिति निरपेक्ष ज्यामिति का विस्तार नहीं है (जैसा कि यूक्लिडियन और हाइपरबोलिक ज्यामिति हैं), तीन ज्यामिति के प्रस्तावों में एक निश्चित समरूपता है जो गहरे संबंध को दर्शाता है जो फेलिक्स क्लेन द्वारा देखा गया था। इस संपत्ति को प्रदर्शित करने वाले कुछ प्रस्ताव हैं:


* लैम्बर्ट चतुर्भुज का चौथा कोण अण्डाकार ज्यामिति में एक [[अधिक कोण]] है।
* लैम्बर्ट चतुर्भुज का चौथा कोण अण्डाकार ज्यामिति में एक [[अधिक कोण]] है।
Line 306: Line 306:


==== गोलाकार ज्यामिति ====
==== गोलाकार ज्यामिति ====
{{main|Spherical geometry}}
{{main|गोलाकार ज्यामिति}}




Line 312: Line 312:


===प्रक्षेपी ज्यामिति===
===प्रक्षेपी ज्यामिति===
{{main|Projective geometry}}
{{main|प्रक्षेपी ज्यामिति}}




=== Affine ज्यामिति ===
=== अफिन ज्यामिति ===
{{main|Affine geometry}}
{{main|अफिन ज्यामिति}}




=== आदेशित ज्यामिति ===
=== आदेशित ज्यामिति ===
{{main|Ordered geometry}}
{{main|आदेशित ज्यामिति}}
निरपेक्ष ज्यामिति क्रमबद्ध ज्यामिति का एक विस्तार है, और इस प्रकार, क्रमबद्ध ज्यामिति में सभी प्रमेय निरपेक्ष ज्यामिति में हैं। इसका उलट सत्य नहीं है। निरपेक्ष ज्यामिति यूक्लिड के अभिगृहीत (या उनके समतुल्य) के पहले चार को ग्रहण करती है, जो कि एफाइन ज्यामिति के विपरीत है, जो यूक्लिड के तीसरे और चौथे अभिगृहीत को नहीं मानता है। आदेशित ज्यामिति निरपेक्ष और सजातीय ज्यामिति दोनों का एक सामान्य आधार है।<ref>Coxeter, pgs.&nbsp;175–176</ref>
निरपेक्ष ज्यामिति क्रमबद्ध ज्यामिति का एक विस्तार है, और इस प्रकार, क्रमबद्ध ज्यामिति में सभी प्रमेय निरपेक्ष ज्यामिति में हैं। इसका उलट सत्य नहीं है। निरपेक्ष ज्यामिति यूक्लिड के अभिगृहीत (या उनके समतुल्य) के पहले चार को ग्रहण करती है, जो कि एफाइन ज्यामिति के विपरीत है, जो यूक्लिड के तीसरे और चौथे अभिगृहीत को नहीं मानता है। आदेशित ज्यामिति निरपेक्ष और सजातीय ज्यामिति दोनों का सामान्य आधार है।<ref>Coxeter, pgs.&nbsp;175–176</ref>




=== परिमित ज्यामिति ===
=== परिमित ज्यामिति ===
{{main|Finite geometry}}
{{main|परिमित ज्यामिति
 
}}




Line 421: Line 423:


{{Authority control}}
{{Authority control}}
[[Category:ज्यामिति की नींव| ]]
[[Category:गणित की बुनियाद]]
[[Category: गणित का इतिहास]]


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with unsourced statements from October 2013]]
[[Category:CS1 errors]]
[[Category:Collapse templates]]
[[Category:Created On 15/12/2022]]
[[Category:Created On 15/12/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:गणित का इतिहास]]
[[Category:गणित की बुनियाद]]
[[Category:ज्यामिति की नींव| ]]

Latest revision as of 11:29, 16 February 2023

ज्यामिति की आधारशिला स्वयंसिद्ध प्रणालियों के रूप में ज्यामिति का अध्ययन है। स्वयंसिद्धों के कई समूह हैं जो यूक्लिडियन ज्यामिति या दूसरा-यूक्लिडियन ज्यामिति दूसरी-यूक्लिडियन ज्यामिति को जन्म देते हैं। ये अध्ययन और ऐतिहासिक महत्व के मौलिक हैं, लेकिन ऐसे बहुत से आधुनिक ज्यामिति हैं जो यूक्लिडियन नहीं हैं जिनका इस दृष्टिकोण से अध्ययन किया जा सकता है। स्वयंसिद्ध ज्यामिति शब्द को किसी भी ज्यामिति पर प्रयुक्त किया जा सकता है जिसे स्वयंसिद्ध प्रणाली से विकसित किया गया है, लेकिन प्रायः इस दृष्टिकोण से अध्ययन किए गए यूक्लिडियन ज्यामिति का अर्थ होता है। सामान्य स्वयंसिद्ध प्रणालियों की पूर्णता और स्वतंत्रता महत्वपूर्ण गणितीय विचार हैं, लेकिन ज्यामिति के शिक्षण के साथ कुछ तथ्यों में भी हैं जो खेल में आते हैं।

स्वयंसिद्ध प्रणाली

प्राचीन ग्रीक विधियों के आधार पर,स्वयंसिद्ध प्रणाली गणितीय सत्य को स्थापित करने के विधि का औपचारिक वर्णन है जो मान्यताओं के निश्चित सेट से बहती है। यद्यपि गणित के किसी भी क्षेत्र में प्रयुक्त होता है, ज्यामिति प्रारंभिक गणित की वह शाखा है जिसमें इस पद्धति को सबसे व्यापक रूप से सफलतापूर्वक प्रयुक्त किया गया है।[1]

स्वयंसिद्ध प्रणाली के कई घटक हैं।[2]

  1. पुरातन धारणा (अपरिभाषित शब्द) सबसे बुनियादी विचार हैं। सामान्यतः उनमें वस्तुएं और रिश्ते सम्मिलित होते हैं। ज्यामिति में, वस्तुएं बिंदु, रेखाएं और विमान जैसी वस्तुये हैं, जबकि मौलिक संबंध घटना का है वस्तु के मिलने या दूसरे के साथ जुड़ने का शर्तें स्वयं अपरिभाषित हैं। डेविड हिल्बर्ट ने एक बार टिप्पणी की थी कि बिंदुओं, रेखाओं और विमानों के अतिरिक्त टेबल, कुर्सियों और बियर मग के बारे में भी बात की जा सकती है।[3] उनकी बात यह है कि पुरातन शब्द केवल खाली गोले हैं, यदि आप चाहें तो स्थान धारक हैं, और कोई आंतरिक गुण नहीं हैं।
  2. अभिगृहीत (अभिगृहीत करता है) इन पुरातन के बारे में कथन हैं; उदाहरण के लिए, कोई भी दो बिंदु केवल रेखा के साथ आपस में मिलते हैं (अर्थात् किन्हीं दो बिंदुओं के लिए, केवल एक रेखा होती है जो उन दोनों से होकर निकलती है)। अभिगृहीतों को सत्य मान लिया जाता है, सिद्ध नहीं किया जाता वे ज्यामितीय अवधारणाओं के "भवन ब्लॉक्स" हैं, क्योंकि वे उन गुणों को निर्दिष्ट करते हैं जो पुरातन हैं।
  3. तर्क के नियम।
  4. प्रमेय[4] अभिगृहीतों के तार्किक परिणाम हैं, अर्थात्, वे कथन जो निगमनात्मक तर्क के नियमों का प्रयोग करके अभिगृहीतों से प्राप्त किए जा सकते हैं।

स्वयंसिद्ध प्रणाली की व्याख्या उस प्रणाली के पुरातन को ठोस अर्थ देने का कुछ विशेष विधि है। यदि अर्थों का यह जुड़ाव प्रणाली के स्वयंसिद्धों को सत्य कथन बनाता है, तो व्याख्या को प्रणाली का 'उदाहरण ' कहा जाता है।[5] एक उदाहरण में, प्रणाली के सभी प्रमेय स्वचालित रूप से सत्य कथन होते हैं।

स्वयंसिद्ध प्रणालियों के गुण

स्वयंसिद्ध प्रणालियों पर चर्चा करते समय कई गुणों पर प्रायः ध्यान केंद्रित किया जाता है:[6]

  • स्वयंसिद्ध प्रणाली के स्वयंसिद्धों को संगति कहा जाता है यदि उनसे कोई तार्किक विरोधाभास प्राप्त नहीं किया जा सकता है। सरलतम प्रणालियों को छोड़कर, स्वयंसिद्ध प्रणाली में स्थिरता स्थापित करना कठिन गुण है। दूसरी ओर, यदि स्वयंसिद्ध प्रणाली के लिए उदाहरण (गणितीय तर्क) उपस्थित है, तो प्रणाली में व्युत्पन्न कोई भी विरोधाभास उदाहरण में भी व्युत्पन्न होता है, और स्वयंसिद्ध प्रणाली किसी भी प्रणाली के अनुरूप होती है जिसमें उदाहरण संबंधित होता है। इस संपत्ति (उदाहरण होने) को सापेक्ष स्थिरता या उदाहरण स्थिरता के रूप में संदर्भित किया जाता है।
  • स्वयंसिद्ध को स्वतंत्रता (गणितीय तर्क) कहा जाता है यदि इसे स्वयंसिद्ध प्रणाली के अन्य स्वयंसिद्धों से सिद्ध या अस्वीकृत नहीं किया जा सकता है। स्वयंसिद्ध प्रणाली को स्वतंत्र कहा जाता है यदि इसके प्रत्येक स्वयंसिद्ध स्वतंत्र हैं। यदि सत्य कथन स्वयंसिद्ध प्रणाली का तार्किक परिणाम है, तो यह उस प्रणाली के प्रत्येक उदाहरण में सत्य कथन होगा। यह सिद्ध करने के लिए कि अभिगृहीत निकाय के शेष अभिगृहीतों से स्वतंत्र है, शेष अभिगृहीतों के दो उदाहरण खोजने के लिए पर्याप्त है, जिसके लिए अभिगृहीत में सत्य कथन है और दूसरे में असत्य कथन है। शैक्षणिक दृष्टिकोण से स्वतंत्रता हमेशा वांछनीय संपत्ति नहीं होती है।
  • स्वयंसिद्ध प्रणाली को पूर्णता (तर्क) कहा जाता है यदि प्रणाली के संदर्भ में अभिव्यक्त प्रत्येक कथन या तो सिद्ध है या सिद्ध निषेध है। इसे बताने की एक और विधि यह है कि कोई भी स्वतंत्र कथन पूर्ण स्वयंसिद्ध प्रणाली में नहीं जोड़ा जा सकता है जो उस प्रणाली के स्वयंसिद्धों के अनुरूप हो।
  • स्वयंसिद्ध प्रणाली श्रेणीबद्ध सिद्धांत है इतिहास और प्रेरणा यदि प्रणाली के कोई भी दो उदाहरण समरूपतावाद हैं (अनिवार्य रूप से, प्रणाली के लिए केवल उदाहरण है) श्रेणीबद्ध प्रणाली आवश्यक रूप से पूर्ण है, लेकिन पूर्णता का अर्थ श्रेणीबद्धता नहीं है। कुछ स्थितियों में श्रेणीबद्धता वांछनीय संपत्ति नहीं है, क्योंकि श्रेणीबद्ध स्वयंसिद्ध प्रणालियों को सामान्यीकृत नहीं किया जा सकता है। उदाहरण के लिए, समूह सिद्धांत के लिए स्वयंसिद्ध प्रणाली का मूल्य यह है कि यह श्रेणीबद्ध नहीं है, इसलिए समूह सिद्धांत में परिणाम सिद्ध करने का अर्थ है कि परिणाम समूह सिद्धांत के लिए सभी अलग-अलग उदाहरण में मान्य है प्रत्येक दूसरा-समरूपी उदाहरण में और किसी को परिणाम का खंडन नहीं करना है ।

यूक्लिडियन ज्यामिति

यूक्लिडियन ज्यामिति गणितीय प्रणाली है जिसका श्रेय सिकंदरिया ग्रीक गणित यूक्लिड को दिया जाता है, जिसका वर्णन उन्होंने (आधुनिक मानकों द्वारा दूसरा-कठोर रूप से) ज्यामिति पर अपनी पाठ्यपुस्तक में किया है: यूक्लिड के तत्व यूक्लिड की विधि में सरल रूप से आकर्षक स्वयंसिद्धों के छोटे समूह को ग्रहण करना और इनसे कई अन्य प्रस्ताव (प्रमेयों) को निकालना सम्मिलित है। चूंकि यूक्लिड के कई परिणाम पहले के गणितज्ञों द्वारा बताए गए थे,[7] यूक्लिड यह दिखाने वाला पहला व्यक्ति था कि कैसे ये प्रस्ताव व्यापक निगमनात्मक और तार्किक प्रणाली में उपयुक्त हो सकते हैं।[8] तत्वों की प्रारंभिक समतल ज्यामिति से होती है, जो अभी भी माध्यमिक विद्यालय में पहली स्वयंसिद्ध प्रणाली और गणितीय प्रमाण के पहले उदाहरणों के रूप में पढ़ाया जाता है। यह तीन आयाम की ठोस ज्यामिति पर जाता है। ज्यामितीय भाषा में समझाए गए अधिकांश तत्वों के परिणाम अब बीजगणित और संख्या सिद्धांत कहलाते हैं।[7]

दो हज़ार से अधिक वर्षों के लिए, विशेषण यूक्लिडियन अनावश्यक था क्योंकि किसी अन्य प्रकार की ज्यामिति की कल्पना नहीं की गई थी। यूक्लिड के स्वयंसिद्ध इतने सरल रूप से स्पष्ट प्रतीत होते हैं (समानांतर अभिधारणा के संभावित अपवाद के साथ) कि उनसे सिद्ध किसी भी प्रमेय को निरपेक्ष, प्रायः आध्यात्मिक, अर्थ में सत्य माना जाता था। आज, तथापि कई अन्य ज्यामितियाँ, जो यूक्लिडियन नहीं हैं, ज्ञात हैं, सबसे पहले उन्नीसवी शताब्दी की प्रारंभिक में खोजी गई थीं।

यूक्लिड के तत्व

यूक्लिड के तत्व गणित और ज्यामिति ग्रंथ है जिसमें अलेक्जेंड्रिया सी में प्राचीन ग्रीक गणित यूक्लिड द्वारा लिखी गई 13 पुस्तकें सम्मिलित हैं। 300 ईसा पूर्व यह परिभाषाओं, अभिधारणाओं (स्वयंसिद्ध), प्रस्तावों (प्रमेयों और कम्पास और सीधा निर्माण), और प्रस्तावों के गणितीय प्रमाणों का संग्रह है। 13 पुस्तकें यूक्लिडियन ज्यामिति और प्रारंभिक संख्या सिद्धांत के प्राचीन यूनानी संस्करण को कवर करती हैं। पिटेन का ऑटोलाइकस 'ऑन द मूविंग स्फीयर के अपवाद के साथ, तत्व सबसे पुराने प्रचलित ग्रीक गणितीय ग्रंथों में से एक है,[9] और यह गणित का सबसे पुराना उपस्थित स्वयंसिद्ध निगमनात्मक उपचार है। यह तर्क और आधुनिक विज्ञान के विकास में सहायक सिद्ध हुआ है।

यूक्लिड के तत्वों को सबसे सफल माना गया है[10][11] और प्रभावशाली[12] पाठ्यपुस्तक कभी लिखा। 1482 में वेनिस में पहली बार सेट होने के कारण, यह छापाखाना के आविष्कार के बाद मुद्रित होने वाले सबसे प्रारंभिक गणितीय कार्यों में से एक है और कार्ल बेंजामिन बोयर द्वारा प्रकाशित संस्करणों की संख्या में बाइबिल के बाद दूसरे स्थान पर होने का अनुमान लगाया गया था।[12] संख्या एक हजार के पार पहुंच चुकी है।[13] सदियों से, जब ज्यामिति को सभी विश्वविद्यालय के छात्रों के पाठ्यक्रम में सम्मिलित किया गया था, यूक्लिड के तत्वों के कम से कम भाग का ज्ञान सभी छात्रों के लिए आवश्यक था। 20वी शताब्दी तक नहीं, जब तक इसकी सामग्री को अन्य स्कूल की पाठ्यपुस्तकों के माध्यम से सार्वभौमिक रूप से पढ़ाया जाता था, तब तक इसे सभी शिक्षित लोगों द्वारा पढ़ी जाने वाली वस्तुये नहीं माना जाता था।[14]

तत्व मुख्य रूप से ज्यामिति के पूर्व ज्ञान का व्यवस्थितकरण हैं। यह माना जाता है कि पहले के उपचारों पर इसकी श्रेष्ठता को मान्यता दी गई थी, जिसके परिणामस्वरूप पहले वाले को संरक्षित करने में बहुत कम रुचि थी, और अब वे लगभग सभी खो गए हैं।

पुस्तकें प्रथम-चतुर्थ और छठी समतल ज्यामिति पर चर्चा करती हैं। समतल आकृतियों के बारे में कई परिणाम सिद्ध होते हैं, उदाहरण के लिए, यदि किसी त्रिभुज में दो समान कोण हों, तो कोणों द्वारा अंतरित भुजाएँ बराबर होती हैं। पाइथागोरस प्रमेय से सिद्ध होता है।[15]

पुस्तकें पाचवी और सातवी-दसवी संख्या सिद्धांत से संबंधित हैं, संख्याओं के साथ ज्यामितीय रूप से उनके प्रतिनिधित्व के माध्यम से विभिन्न लंबाई वाले रेखा खंडों के रूप में व्यवहार किया जाता है। अभाज्य संख्या और परिमेय संख्या और अपरिमेय संख्या जैसी धारणाएँ प्रस्तुत की जाती हैं। अभाज्य संख्याओं की अनंतता सिद्ध होती है।

पुस्तकें ग्यारहवी-तेरहवी ठोस ज्यामिति से संबंधित हैं। विशिष्ट परिणाम शंकु के आयतन और समान ऊंचाई और आधार वाले बेलन के बीच 1:3 का अनुपात है।

समानांतर अभिधारणा: यदि दो रेखाएँ एक तिहाई को इस तरह काटती हैं कि एक तरफ के आंतरिक कोणों का योग दो समकोणों से कम है, तो दोनों रेखाएँ अनिवार्य रूप से उस तरफ एक दूसरे को काटती हैं यदि बहुत अधिक दूर तक बढ़ाया जाए।

तत्वों की पहली पुस्तक की प्रारंभिक के पास , यूक्लिड समतल ज्यामिति के लिए पांच अवधारणाएँ (स्वयंसिद्ध) देता है, जो निर्माण के संदर्भ में कहा गया है (जैसा कि थॉमस हीथ द्वारा अनुवादित किया गया है):[16]

निम्नलिखित को मान लें:

  1. किसी भी बिंदु (ज्यामिति) से किसी बिंदु तक सीधी रेखा खींचना।
  2. एक सीधी रेखा में एक रेखा खंड को लगातार [विस्तारित] करने के लिए।
  3. किसी भी केंद्र और दूरी [त्रिज्या] के साथ वृत्त का वर्णन करने के लिए।
  4. सभी समकोण एक दूसरे के बराबर होते हैं।
  5. समानांतर अभिधारणा यह है कि, यदि सीधी रेखा दो सीधी रेखाओं पर गिरकर एक ही ओर के आंतरिक कोणों को दो समकोणों से कम बनाती है, तो दो सीधी रेखाएँ, यदि अनिश्चित रूप से बढ़ाई जाती हैं, तो उस तरफ मिलती हैं, जिस ओर दो समकोण कोण कम होते हैं दो समकोण होते है।

यद्यपि यूक्लिड का अभिधारणाओं का कथन केवल स्पष्ट रूप से निर्माणों के अस्तित्व पर जोर देता है, यह भी माना जाता है कि वे अद्वितीय वस्तुओं का उत्पादन करते हैं।

तत्वों की सफलता मुख्य रूप से यूक्लिड के लिए उपलब्ध अधिकांश गणितीय ज्ञान की तार्किक प्रस्तुति के कारण है। अधिकांश सामग्री उसके लिए मूल नहीं है, चूंकि कई प्रमाण सामान्यतः उसके हैं। यूक्लिड के अपने विषय के व्यवस्थित विकास, स्वयंसिद्धों के एक छोटे से सेट से लेकर गहरे परिणामों तक, और पूरे तत्वों में उनके दृष्टिकोण की निरंतरता ने लगभग 2,000 वर्षों तक पाठ्यपुस्तक के रूप में इसके उपयोग को प्रोत्साहित किया। तत्व अभी भी आधुनिक ज्यामिति पुस्तकों को प्रभावित करते हैं। इसके अतिरिक्त , इसका तार्किक स्वयंसिद्ध दृष्टिकोण और कठोर प्रमाण गणित की आधारशिला बने हुए हैं।

यूक्लिड की एक आलोचना

यूक्लिड के तत्वों को लिखने के बाद से गणितीय कठोरता के मानक बदल गए हैं।[17] स्वयंसिद्ध प्रणाली के प्रति आधुनिक दृष्टिकोण, और दृष्टिकोण, यह प्रकट कर सकते हैं कि यूक्लिड विषय के प्रति अपने दृष्टिकोण में किसी तरह से मैला या लापरवाह था, लेकिन यह अनैतिहासिक भ्रम है। दूसरा-यूक्लिडियन ज्यामिति की प्रारंभिक के उत्तर में आधारशिला की सावधानी से जांच करने के बाद ही, जिसे अब हम दोष मानते हैं, निकलना प्रारंभ हो गया है। गणितज्ञ और इतिहासकार डब्ल्यू. डब्ल्यू. राउज़ बॉल ने इन आलोचनाओं को परिप्रेक्ष्य में रखा, यह टिप्पणी करते हुए कि तथ्य यह है कि दो हज़ार वर्षों तक [तत्व] इस विषय पर सामान्य पाठ्य-पुस्तक थी, एक मजबूत धारणा को जन्म देती है कि यह उस उद्देश्य के लिए अनुपयुक्त नहीं है।[18]

यूक्लिड की प्रस्तुति के कुछ मुख्य मुद्दे हैं:

  • पुरातन धारणा, वस्तुओं और धारणाओं की अवधारणा की मान्यता का अभाव जिसे स्वयंसिद्ध प्रणाली के विकास में अपरिभाषित छोड़ दिया जाना चाहिए।[19]
  • कुछ प्रमाणों में अध्यारोपण का प्रयोग बिना इस पद्धति का स्वयंसिद्ध औचित्य के।[20]
  • निरंतरता की अवधारणा का अभाव, जो यूक्लिड द्वारा निर्मित कुछ बिंदुओं और रेखाओं के अस्तित्व को सिद्ध करने के लिए आवश्यक है।[20] दूसरी अवधारणा में सीधी रेखा अनंत है या सीमाहीन है, इस पर स्पष्टता का अभाव।[21]
  • विभिन्न आकृतियों के अंदर और बाहर के बीच अंतर करने के लिए, अन्य बातों के अतिरिक्त , उपयोग की जाने वाली बीच की अवधारणा का अभाव।[22]

तत्वों में यूक्लिड की सूक्तियों की सूची संपूर्ण नहीं थी, लेकिन उन सिद्धांतों का प्रतिनिधित्व करती थी जो सबसे महत्वपूर्ण प्रतीत होते थे। उनके प्रमाण प्रायः स्वयंसिद्ध धारणाओं का आह्वान करते हैं जो मूल रूप से स्वयंसिद्धों की उनकी सूची में प्रस्तुत नहीं की गई थीं।[23] वह भटकता नहीं है और इस बात से गलत वस्तुओ को सिद्ध नहीं करता है, क्योंकि वह निहित मान्यताओं का उपयोग कर रहा है, जिसकी वैधता उनके प्रमाणों के साथ आने वाले आरेखों द्वारा उचित प्रतीत होती है। बाद के गणितज्ञों ने यूक्लिड की अंतर्निहित स्वयंसिद्ध मान्यताओं को औपचारिक सूक्तियों की सूची में सम्मिलित किया, जिससे उस सूची का बहुत अधिक विस्तार हुआ।[24]

उदाहरण के लिए, पुस्तक प्रथम ​​के पहले निर्माण में, यूक्लिड ने आधार वाक्य का उपयोग किया था जो न तो अभिगृहीत किया गया था और न ही सिद्ध किया गया था: कि त्रिज्या की दूरी पर केंद्र वाले दो वृत्त दो बिंदुओं पर प्रतिच्छेद करेंगे।[25] बाद में, चौथे निर्माण में, उन्होंने यह सिद्ध करने के लिए कि यदि दो भुजाएँ और उनके कोण बराबर हैं, तो वे सर्वांगसम हैं; इन विचारों के समय वह अध्यारोपण के कुछ गुणों का उपयोग करता है, लेकिन ग्रंथ में इन गुणों का स्पष्ट रूप से वर्णन नहीं किया गया है। यदि अध्यारोपण को ज्यामितीय प्रमाण की एक वैध विधि माना जाता है, तो सभी ज्यामिति ऐसे प्रमाणों से भरी होंगी। उदाहरण के लिए, तर्कवाक्य प्रथम से तृतीय तक अध्यारोपण का उपयोग करके तुच्छ रूप से सिद्ध किया जा सकता है।[26]

यूक्लिड के काम में इन उद्देश्य को हल करने के लिए, बाद के लेखकों ने या तो यूक्लिड की प्रस्तुति में कमियों को भरने का प्रयास किया है - इन प्रयासों में सबसे उल्लेखनीय डेविड हिल्बर्टडी के कारण है। हिल्बर्ट - या स्वयंसिद्ध प्रणाली को विभिन्न अवधारणाओं के आसपास व्यवस्थित करने के लिए, जैसा कि जॉर्ज डेविड बिरखॉफजी.डी. बिरखॉफ ने किया है।

पास्च और पीनो

जर्मन गणितज्ञ मोरिट्ज़ पास्च (1843-1930) यूक्लिडियन ज्यामिति को दृढ़ स्वयंसिद्ध आधार पर रखने के कार्य को पूरा करने वाले पहले व्यक्ति थे।[27] 1882 में प्रकाशित अपनी पुस्तक, वोरलेसुंगेन उबेर न्यूरे ज्योमेट्री में, पास्च ने आधुनिक स्वयंसिद्ध पद्धति की आधारशिला रखी। उन्होंने पुरातन धारणा की अवधारणा को जन्म दिया (जिसे उन्होंने कर्नबेग्रिफ़ कहा) और स्वयंसिद्धों (केर्न्सटज़ेन) के साथ मिलकर उन्होंने औपचारिक प्रणाली का निर्माण किया जो किसी भी सरल प्रभाव से मुक्त है। पास्च के अनुसार, एकमात्र स्थान जहां अंतर्ज्ञान को भूमिका निभानी चाहिए, यह समाप्त करने में है कि पुरातन धारणाएं और सिद्धांत क्या होने चाहिए। इस प्रकार, पास्च के लिए, बिंदु पुरातन धारणा है, लेकिन रेखा (सीधी रेखा) नहीं है, क्योंकि हमारे पास बिंदुओं के बारे में अच्छा अंतर्ज्ञान है, लेकिन किसी ने कभी भी अनंत रेखा को देखा या अनुभव नहीं किया है। पास्च ने इसके स्थान पर जिस पुरातन धारणा का उपयोग किया है वह रेखा खंड है।

पास्च ने देखा कि रेखा पर बिंदुओं का क्रम (या समान रूप से रेखा खंडों के समतुल्य गुण) यूक्लिड के स्वयंसिद्धों द्वारा ठीक से हल नहीं किया गया है; इस प्रकार, पास्च की प्रमेय, जिसमें कहा गया है कि यदि दो रेखा खंड नियंत्रण संबंध धारण करते हैं तो तीसरा भी धारण करता है, यूक्लिड के स्वयंसिद्धों से सिद्ध नहीं किया जा सकता है। संबंधित पास्च का अभिगृहीत रेखाओं और त्रिभुजों के प्रतिच्छेदन गुणों से संबंधित है।

आधारशिला पर पास्च के काम ने न केवल ज्यामिति में किंतु गणित के व्यापक संदर्भ में कठोरता के मानक निर्धारित किए। उनके सफलता के विचार अब इतने सामान्य हो गए हैं कि यह याद रखना कठिन है कि उनका एक ही प्रवर्तक था। पास्च के काम ने सामान्यतः कई अन्य गणितज्ञों को प्रभावित किया, विशेष रूप से डी. हिल्बर्ट और इटली गणितज्ञ जी. पीनो (1858-1932)। ज्यामिति पर पीआनो का 1889 का काम, सामान्यतः प्रतीकात्मक तर्क (जिसका आविष्कार पीआनो ने किया था) के अंकन में पास्च के ग्रंथ का अनुवाद, बिंदु और बीच की पुरातन धारणाओं का उपयोग करता है।[28] पास्च के लिए आवश्यक पुरातन धारणाओं और स्वयंसिद्धों के चुनाव में पीआनो अनुभवजन्य बंधन को तोड़ता है। पीआनो के लिए, पूरी प्रणाली विशुद्ध रूप से औपचारिक है, किसी भी अनुभवजन्य इनपुट से अलग है।[29]

पियरी और जियोमीटर का इटली स्कूल

इटली गणितज्ञ मारियो पियरी (1860-1913) ने अलग दृष्टिकोण अपनाया और ऐसी प्रणाली पर विचार किया जिसमें केवल दो पुरातन धारणाएँ थीं, बिंदु और गति की।[30] पास्च ने चार प्राथमिक का प्रयोग किया था और पीआनो ने इसे घटाकर तीन कर दिया था, लेकिन ये दोनों दृष्टिकोण बीच की कुछ अवधारणा पर निर्भर थे, जिसे पियरी ने अपनी गति के सूत्रीकरण (ज्यामिति) से बदल दिया। 1905 में पियरी ने जटिल संख्या प्रक्षेपी ज्यामिति का पहला स्वयंसिद्ध उपचार दिया जो वास्तविक संख्या प्रक्षेपी ज्यामिति के निर्माण से प्रारंभ नहीं हुआ।

पियरी इटली जियोमीटर और तर्कशास्त्रियों के समूह का सदस्य था जिसे पियानो ने ट्यूरिन में अपने आसपास इकट्ठा किया था। सहायकों, कनिष्ठ सहयोगियों और अन्य लोगों का यह समूह पीआनो के तार्किक प्रतीकवाद के आधार पर ज्यामिति की आधारशिला को ठोस स्वयंसिद्ध आधार पर रखने के पीआनो के तार्किक-ज्यामितीय कार्यक्रम को पूरा करने के लिए समर्पित था। पियरी के अतिरिक्त बुराली-फोर्टी, एलेसेंड्रो पडोआ और गीनो फानो इस समूह में थे। 1900 में पेरिस में एक के बाद एक दो अंतर्राष्ट्रीय सम्मेलन हुए, दर्शनशास्त्र की अंतर्राष्ट्रीय कांग्रेस और गणितज्ञों की दूसरी अंतर्राष्ट्रीय कांग्रेस। इटली गणितज्ञों का यह समूह इन कांग्रेसों में अपने स्वयंसिद्ध मुद्दों को आगे बढ़ाते हुए बहुत अधिक प्रमाण में था।[31] पडोआ ने हिल्बर्ट की समस्याओं पर डेविड हिल्बर्ट के प्रसिद्ध संबोधन के बाद प्रश्न काल में अच्छी तरह से विचार और पीनो दिया, टिप्पणी की कि उनके सहयोगियों ने हिल्बर्ट की दूसरी समस्या को पहले ही हल कर दिया था।

हिल्बर्ट के स्वयंसिद्ध

गौटिंगेन विश्वविद्यालय में, 1898-1899 की सर्दियों की अवधि के समय, प्रसिद्ध जर्मन गणितज्ञ डेविड हिल्बर्ट (1862-1943) ने ज्यामिति की आधारशिला पर व्याख्यान का पाठ्यक्रम प्रस्तुत किया। फेलिक्स क्लेन के अनुरोध पर, प्रोफेसर हिल्बर्ट को कार्ल फ्रेडरिक गॉस के स्मारक के समर्पण समारोह 1899 की गर्मियों के लिए समय पर इस पाठ्यक्रम के लिए व्याख्यान टिप्पणियाँ लिखने के लिए कहा गया था। सी.एफ. गॉस और विल्हेम एडवर्ड वेबर विश्वविद्यालय में आयोजित होने वाले हैं। पुनर्व्यवस्थित व्याख्यान जून 1899 में ज्यामिति की मूल बातें (ज्यामिति की आधारशिला) शीर्षक के रूप में प्रकाशित किए गए थे। पुस्तक का प्रभाव तत्काल था।


यूक्लिडियन ज्यामिति के लिए पोस्टुलेट सेट विकसित करके जो यूक्लिड के स्वयं से आत्मा में बहुत अधिक प्रस्थान नहीं करता है, और न्यूनतम प्रतीकवाद को नियोजित करके, हिल्बर्ट गणितज्ञों को विशुद्ध रूप से काल्पनिक-डिडक्टिव पास्च और पीनो की तुलना में कहीं अधिक समय तक समझाने में सफल रहा। ज्यामिति की प्रकृति थी लेकिन हिल्बर्ट के काम का प्रभाव इससे बहुत आगे निकल गया, क्योंकि, लेखक के महान गणितीय अधिकार द्वारा समर्थित, इसने न केवल ज्यामिति के क्षेत्र में, किंतु अनिवार्य रूप से गणित की हर दूसरी शाखा में भी अवधारणात्मक पद्धति को प्रयुक्त किया। हिल्बर्ट की छोटी पुस्तक द्वारा प्रदान की गई गणित की आधारशिला के विकास के लिए प्रोत्साहन को कम करके आंका जाना कठिन है। पास्च और पयानो के कार्यों के अनोखा प्रतीकात्मकता की कमी के कारण, हाई स्कूल ज्यामिति के किसी भी बुद्धिमान छात्र द्वारा हिल्बर्ट के काम को बड़े भाग में पढ़ा जा सकता है।


हिल्बर्ट द्वारा उपयोग किए गए स्वयंसिद्धों को ग्रुंडलागेन के प्रकाशन इतिहास का उल्लेख किए बिना निर्दिष्ट करना कठिन है क्योंकि हिल्बर्ट ने उन्हें कई बार बदला और संशोधित किया। मूल मोनोग्राफ के तुरंत बाद फ्रांसीसी अनुवाद आया, जिसमें हिल्बर्ट ने वी2, पूर्णता स्वयंसिद्ध को जोड़ा। हिल्बर्ट द्वारा अधिकृत अंग्रेजी अनुवाद, ई.जे. द्वारा बनाया गया था। 1902 में टाउनसेंड और कॉपीराइट।[32] इस अनुवाद में फ्रेंच अनुवाद में किए गए परिवर्तन सम्मिलित थे और इसलिए इसे दूसरे संस्करण का अनुवाद माना जाता है। हिल्बर्ट ने पाठ में परिवर्तन करना जारी रखा और जर्मन में कई संस्करण सामने आए। हिल्बर्ट के जीवनकाल में प्रदर्शित होने वाला 7वां संस्करण अंतिम था। नए संस्करणों ने 7 वें का अनुसरण किया, लेकिन मुख्य पाठ अनिवार्य रूप से संशोधित नहीं किया गया था। इन संस्करणों में संशोधन परिशिष्ट और पूरक में होते हैं। मूल की तुलना में पाठ में परिवर्तन बड़े थे और नया अंग्रेजी अनुवाद ओपन कोर्ट पब्लिशर्स द्वारा कमीशन किया गया था, जिन्होंने टाउनसेंड अनुवाद प्रकाशित किया था। इसलिए, 1971 में 10वें जर्मन संस्करण से लियो उंगर द्वारा दूसरे अंग्रेजी संस्करण का अनुवाद किया गया था।[33] इस अनुवाद में पॉल बर्नेज़ द्वारा बाद के जर्मन संस्करणों के कई संशोधन और विस्तार सम्मिलित हैं। दो अंग्रेजी अनुवादों के बीच मतभेद न केवल हिल्बर्ट के कारण हैं, किंतु दो अनुवादकों द्वारा किए गए अलग-अलग विकल्पों के कारण भी हैं। आगे जो होगा वह अनगर अनुवाद पर आधारित होगा।

हिल्बर्ट की स्वयंसिद्ध प्रणाली का निर्माण छह पुरातन धारणाओं के साथ किया गया है: बिंदु (ज्यामिति), रेखा (ज्यामिति), तल (गणित), बीच, निहित (रोकथाम), और सर्वांगसमता।

निम्नलिखित स्वयंसिद्धों में सभी बिंदु, रेखाएँ और तल अलग-अलग हैं जब तक कि अन्यथा न कहा गया हो।

प्रथम घटना

  1. हर दो बिंदु A और B के लिए एक रेखा उपस्थित होती है जिसमें ये दोनों सम्मिलित होते हैं। हम AB = a या BA = a लिखते हैं। "सम्मिलित है" के अतिरिक्त हम अभिव्यक्ति के अन्य रूपों को भी नियोजित कर सकते हैं; उदाहरण के लिए, हम कह सकते हैं कि "A, A पर झूठ बोलता है", "A, A का बिंदु है", "A, A से होकर B से होकर जाता है", "A, A को B से जोड़ता है", आदि। यदि A, A पर स्थित है और उसी समय दूसरी रेखा b पर, हम अभिव्यक्ति का भी उपयोग करते हैं: "रेखाओं a और b में बिंदु A सामान्य है," आदि।
  2. प्रत्येक दो बिंदुओं के लिए एक से अधिक रेखा उपस्थित नहीं होती है जिसमें वे दोनों सम्मिलित हों; परिणामस्वरूप, यदि AB = a और AC = a, जहाँ B ≠ C, तो भी BC = a।
  3. एक रेखा पर कम से कम दो बिंदु होते हैं। कम से कम तीन बिन्दु ऐसे होते हैं जो एक रेखा पर स्थित नहीं होते।
  4. प्रत्येक तीन बिंदुओं के लिए A, B, C एक ही रेखा पर स्थित नहीं हैं, वहां एक विमान α उपस्थित है जिसमें ये सभी सम्मिलित हैं। प्रत्येक तल के लिए एक बिंदु होता है जो उस पर स्थित होता है। हम ABC = α लिखते हैं। हम अभिव्यक्ति भी नियोजित करते हैं: "A, B, C, α में झूठ"; "A, B, C α के बिंदु हैं", आदि।
  5. हर तीन बिंदु A, B, C के लिए जो एक ही रेखा में नहीं हैं, एक से अधिक विमान उपस्थित नहीं हैं जो उन सभी को समाहित करते हैं।
  6. यदि एक रेखा a के दो बिंदु A, B एक समतल α में स्थित हैं, तो a का प्रत्येक बिंदु α में स्थित है। इस स्थितियों में हम कहते हैं: "रेखा विमान α में स्थित है," आदि।
  7. यदि दो समतल α, β में एक बिंदु A उभयनिष्ठ है, तो उनके पास कम से कम एक दूसरा बिंदु B उभयनिष्ठ होगा।
  8. विमान में कम से कम चार बिंदु उपस्थित नहीं हैं।
'द्वितीयआदेश'
  1. यदि कोई बिंदु B बिंदु A और C के बीच स्थित है, B भी C और A के बीच है, और एक रेखा उपस्थित है जिसमें अलग-अलग बिंदु A,B,C हैं।
  2. यदि A और C एक रेखा के दो बिंदु हैं, तो A और C के बीच कम से कम एक बिंदु B स्थित है।
  3. एक रेखा पर स्थित किन्हीं तीन बिंदुओं में से एक से अधिक नहीं है जो अन्य दो के बीच स्थित है।
  4. पास्च का अभिगृहीत: मान लीजिए कि A, B, C तीन बिंदु हैं जो एक ही रेखा में नहीं हैं और a को समतल ABC में पड़ी रेखा होने दें और किसी भी बिंदु A, B, C से होकर न गुजरें। फिर, यदि रेखा a खंड AB के एक बिंदु से होकर निकलता है, यह या तो खंड BC के एक बिंदु या खंड AC के एक बिंदु से होकर गुजरेगा।
'तृतीय। सर्वांगसमता'
  1. यदि A, B एक रेखा a पर दो बिंदु हैं, और यदि A' उसी या दूसरी रेखा a' पर एक बिंदु है, तो, A' के दिए गए पक्ष पर सीधी रेखा a' पर, हम हमेशा एक पा सकते हैं बिंदु B' जिससे खंड AB, खंड A'B' के सर्वांगसम हो। हम इस संबंध को AB ≅ A' B' लिखकर प्रदर्शित करते हैं। प्रत्येक खंड अपने आप में सर्वांगसम है; अर्थात्, हमारे पास हमेशा AB ≅ AB होता है।
    हम उपरोक्त अभिगृहीत को संक्षेप में यह कहकर बता सकते हैं कि प्रत्येक खंड को किसी दी गई सीधी रेखा के दिए गए बिंदु के किसी दिए गए पक्ष पर कम से कम एक विधि से रखा जा सकता है।
  2. यदि एक खंड AB खंड A'B' के अनुरूप है और खंड A″B″ के भी है, तो खंड A'B' खंड A″B″ के सर्वांगसम है; अर्थात्, यदि AB ≅ A'B' और AB ≅ A″B″, तो A'B' ≅ A″B″।
  3. मान लें कि AB और BC एक रेखा a के दो खंड हैं जिनमें बिंदु B के अतिरिक्त कोई उभयनिष्ठ बिंदु नहीं है, और इसके अतिरिक्त , A'B' और B'C' एक ही या दूसरी रेखा a' के दो खंड हैं। इसी तरह, B 'के अतिरिक्त कोई बिंदु सामान्य नहीं है। तब, यदि AB ≅ A'B' और BC ≅ B'C', तो हमें AC ≅ A'C' प्राप्त होता है।
  4. समतल α में कोण ∠ (h,k) दिया जाए और समतल α में एक रेखा a′ दी जाए। यह भी मान लीजिए कि समतल α' में सीधी रेखा a' की एक निश्चित भुजा नियत की गई है। निरूपित इस रेखा के एक बिंदु O' से निकलने वाली सीधी रेखा a' की एक किरण h' द्वारा। तब समतल α' में एक और केवल एक किरण k' होती है, जिससे कोण ∠ (h, k), या ∠ (k, h), कोण ∠ (h′, k′) के सर्वांगसम होता है और उसी समय कोण के सभी आंतरिक बिंदु ∠ (h′, k′) a′ के दिए गए पक्ष पर स्थित होते हैं। हम इस संबंध को ∠ (h, k) ≅ ∠ (h′, k′) चिह्न के माध्यम से व्यक्त करते हैं।
  5. यदि कोण ∠ (h, k) कोण ∠ (h′, k′) और कोण ∠ (h″, k″) के अनुरूप है, तो कोण ∠ (h′, k′) सर्वांगसम है कोण ∠ (h″, k″); यानी, यदि ∠ (h, k) ≅ ∠ (h′, k′) और ∠ (h, k) ≅ ∠ (h″, k″), तो ∠ (h′, k′) ≅ ∠ ( H", K")।
'चतुर्थ। समानताएं'
  1. (यूक्लिड का अभिगृहीत):[34] मान लीजिए a कोई भी रेखा है और A उस पर कोई बिंदु नहीं है। तब विमान में अधिक से अधिक एक रेखा होती है, जो A और A द्वारा निर्धारित होती है, जो A से होकर निकलती है और A को नहीं काटती है।
'पंचम. निरंतरता'
  1. आर्किमिडीज़ का स्वयंसिद्ध। यदि AB और CD कोई खंड हैं, तो एक संख्या n उपस्थित है, जैसे कि A से B के माध्यम से किरण के साथ A से निर्मित n खंड CD, बिंदु B से आगे निकल जाएगा।
  2. रेखा पूर्णता का स्वयंसिद्ध। अपने क्रम और सर्वांगसमता संबंधों के साथ एक रेखा पर बिंदुओं के एक सेट का विस्तार जो मूल तत्वों के साथ-साथ रेखा क्रम और सर्वांगसमता के मौलिक गुणों के बीच उपस्थित संबंधों को संरक्षित करेगा जो एक्सिओम्स प्रथम-तृतीय और पंचम-प्रथम से अनुसरण करता है। असंभव।

हिल्बर्ट के स्वयंसिद्धों में परिवर्तन

जब 1899 के मोनोग्राफ का फ्रेंच में अनुवाद किया गया, तो हिल्बर्ट ने कहा:

वी2 पूर्णता का स्वयंसिद् बिंदुओं, सीधी रेखाओं और समतलों की प्रणाली में, अन्य तत्वों को इस तरह से जोड़ना असंभव है कि इस प्रकार सामान्यीकृत प्रणाली नई ज्यामिति का निर्माण करेगी जो स्वयंसिद्धों के सभी पाँच समूहों का पालन करती है। दूसरे शब्दों में, ज्यामिति के तत्व एक ऐसी प्रणाली बनाते हैं जो विस्तार के लिए अतिसंवेदनशील नहीं है, यदि हम स्वयंसिद्धों के पांच समूहों को मान्य मानते हैं।

यूक्लिडियन ज्यामिति के विकास के लिए इस स्वयंसिद्ध की आवश्यकता नहीं है, लेकिन वास्तविक संख्याओं और एक रेखा पर बिंदुओं के बीच आक्षेप स्थापित करने के लिए आवश्यक है।[35] हिल्बर्ट के स्वयंसिद्ध प्रणाली की निरंतरता के प्रमाण में यह आवश्यक घटक था।

ग्रंडलागेन के 7वें संस्करण तक, इस अभिगृहीत को ऊपर दी गई रेखा पूर्णता की अभिगृहीत से बदल दिया गया था और पुरानी अभिगृहीत वी.2 प्रमेय 32 बन गई।

इसके अतिरिक्त 1899 मोनोग्राफ (और टाउनसेंड अनुवाद में दिखाई देने वाला) में पाया जाता है:

द्वितीय रेखा के किन्हीं भी चार बिंदुओं A, B, C, D को हमेशा लेबल किया जा सकता है जिससे B, A और C के बीच और A और D के बीच भी स्थित हो, और इसके अतिरिक्त , C, A और D के बीच और B और के बीच भी स्थित हो।

चुकीं, ई.एच. मूर और आरएल मूर ने स्वतंत्र रूप से सिद्ध किया कि यह स्वयंसिद्ध निरर्थक है, और पूर्व ने इस परिणाम को 1902 में अमेरिकन मैथमैटिकल सोसाइटी के लेन-देन में प्रदर्शित होने वाले एक लेख में प्रकाशित किया।[36] हिल्बर्ट ने अभिगृहीत को प्रमेय 5 में स्थानांतरित किया और उसी के अनुसार अभिगृहीतों को फिर से क्रमांकित किया (पुराना अभिगृहीत द्वितीय-5 (पास्च का अभिगृहीत) अब द्वितीय-4 बन गया)।

जबकि ये परिवर्तन उतने नाटकीय नहीं थे, शेष अधिकांश सूक्तियों को भी पहले सात संस्करणों के समय रूप और या कार्य में संशोधित किया गया था।

संगति और स्वतंत्रता

स्वयंसिद्धों के एक संतोषजनक सेट की स्थापना से परे जाकर, हिल्बर्ट ने वास्तविक संख्याओं से अपने स्वयंसिद्ध प्रणाली के उदाहरण का निर्माण करके वास्तविक संख्या के सिद्धांत के सापेक्ष अपनी प्रणाली की निरंतरता को भी सिद्ध किया। उन्होंने अपने कुछ स्वयंसिद्धों की स्वतंत्रता को ज्यामिति के उदाहरण का निर्माण करके सिद्ध किया जो विचाराधीन स्वयंसिद्ध को छोड़कर सभी को संतुष्ट करते हैं। इस प्रकार, ऐसे ज्यामिति के उदाहरण हैं जो आर्किमिडीयन स्वयंसिद्ध पंचम.प्रथम (दूसरा-आर्किमिडीयन ज्यामिति) को छोड़कर सभी को संतुष्ट करते हैं, समानांतर स्वयंसिद्ध चतुर्थ.प्रथम (दूसरा-यूक्लिडियन ज्यामिति) को छोड़कर सभी और इसी तरह। उसी तकनीक का उपयोग करते हुए उन्होंने यह भी दिखाया कि कैसे कुछ महत्वपूर्ण प्रमेय कुछ स्वयंसिद्धों पर निर्भर थे और दूसरों से स्वतंत्र थे। उनके कुछ उदाहरण बहुत ही जटिल थे और अन्य गणितज्ञों ने उन्हें सरल बनाने का प्रयास किया। उदाहरण के लिए, हिल्बर्ट के उदाहरण ने कुछ स्वयंसिद्धों से डेसार्गेस प्रमेय की स्वतंत्रता दिखाने के लिए अंततः रे मौलटन को दूसरा-डेसार्गेसियन मौलटन विमान की खोज करने के लिए प्रेरित किया। हिल्बर्ट द्वारा की गई इन जांचों ने वस्तुतः विशवी शताब्दी में अमूर्त ज्यामिति के आधुनिक अध्ययन का उद्घाटन किया।[37]


बिरखॉफ के स्वयंसिद्ध

जॉर्ज डेविड बिरखॉफ

1932 में, जॉर्ज डेविड बिरखॉफजी. डी. बिर्खॉफ ने यूक्लिडियन ज्यामिति के चार सिद्धांतों का एक सेट बनाया जिसे कभी-कभी बिरखॉफ के स्वयंसिद्धों के रूप में संदर्भित किया जाता है।[38] ये अभिगृहीत सभी बुनियादी ज्यामिति पर आधारित हैं जिन्हें वर्नियर स्केल और चांदा के साथ प्रयोगात्मक रूप से सत्यापित किया जा सकता है। हिल्बर्ट के सजातीय दृष्टिकोण से एक कट्टरपंथी प्रस्थान में, बिरखॉफ वास्तविक संख्या प्रणाली पर ज्यामिति की आधारशिला बनाने वाले पहले व्यक्ति थे।[39] यह शक्तिशाली धारणा है जो इस प्रणाली में कम संख्या में स्वयंसिद्धों की अनुमति देती है।

अभिधारणाएँ

बिरखॉफ चार अपरिभाषित शब्दों का उपयोग करता है: बिंदु, रेखा, दूरी और कोण। उनकी अभिधारणाएं हैं:[40]

अभिधारणा रेखा माप की अभिधारणा।

किसी भी रेखा के बिंदु A, B, को वास्तविक संख्या x के साथ 1:1 की संगति में रखा जा सकता है जिससे |xB-x A| = d(A, B) सभी बिंदु A और B के लिए।

'पोस्टुल दूसरा: पॉइंट-लाइन पोस्टुलेट'।

और केवल सीधी रेखा है, ℓ, जिसमें दो अलग-अलग बिंदु P और Q सम्मिलित हैं।

'अभिधारणा तृतीय कोण माप की अभिधारणा'।

किरणें {ℓ, m, n,} किसी भी बिंदु O से होकर वास्तविक संख्या a (एमओडी 2π) के साथ 1:1 संगति में रखी जा सकती हैं जिससे यदि A और B ℓ के बिंदु (O के बराबर नहीं) हों और मी, क्रमशः, अंतर एकm− a(mod 2π) रेखाओं से जुड़ी संख्याओं का ℓ और m है AOB। इसके अतिरिक्त , यदि m पर बिंदु B एक पंक्ति R में निरंतर बदलता रहता है जिसमें शीर्ष O नहीं है, तो संख्या am भी निरंतर बदलता रहता है।

अभिधारणा छठवी: समानता की अभिधारणा।

यदि दो त्रिकोणों में ABC और A'B'C' और कुछ स्थिरांक k > 0, d(A', B' ) = ' 'KD(A, B), D(A', C' ) = KD(A, C) और BAC' = ±BAC, पुनः D(B', C' ) = KDB, C), CBA' = ±CBA, और A'C'B' = ±ACB।

स्कूल ज्यामिति

जॉर्ज ब्रूस हैल्स्टेड

हाई स्कूल स्तर पर स्वयंसिद्ध दृष्टिकोण से यूक्लिडियन ज्यामिति पढ़ाना बुद्धिमानी है या नहीं, यह बहस का विषय रहा है। ऐसा करने के कई प्रयास किए गए हैं और उनमें से सभी सफल नहीं हुए हैं। 1904 में, जॉर्ज ब्रूस हैल्स्टेड ने हिल्बर्ट के स्वयंसिद्ध सेट पर आधारित एक हाई स्कूल ज्यामिति पाठ प्रकाशित किया।[41] इस पाठ की तार्किक आलोचनाओं ने अत्यधिक संशोधित दूसरे संस्करण का नेतृत्व किया।[42] रूसी उपग्रह स्पुतनिक संकट के प्रक्षेपण की प्रतिक्रिया में स्कूल गणित पाठ्यक्रम को संशोधित करने के लिए संयुक्त राज्य अमेरिका में एक आह्वान किया गया था। इस प्रयास से 1960 के नया गणित प्रोग्राम का उदय हुआ। इसे पृष्ठभूमि के रूप में, कई व्यक्तियों और समूहों ने स्वयंसिद्ध दृष्टिकोण के आधार पर ज्यामिति कक्षाओं के लिए पाठ्य सामग्री प्रदान करना प्रारंभ किया।

मैक लेन के स्वयंसिद्ध

सॉन्डर्स मैक लेन

सॉन्डर्स मैक लेन (1909-2005), एक गणितज्ञ,[43] 1959 में पेपर लिखा जिसमें उन्होंने बिरखॉफ के उपचार की भावना में यूक्लिडियन ज्यामिति के लिए स्वयंसिद्धों का सेट प्रस्तावित किया, जिसमें रेखा खंडों के साथ वास्तविक संख्याओं को जोड़ने के लिए दूरी समारोह का उपयोग किया गया था।[44] बिरखॉफ की प्रणाली पर स्कूल स्तर के उपचार को आधार बनाने का यह पहला प्रयास नहीं था, वास्तव में, बिरखॉफ और राल्फ बीटली ने 1940 में हाई स्कूल टेक्स्ट लिखा था।[45] जिसने यूक्लिडियन ज्यामिति को पांच स्वयंसिद्धों और रेखा खंडों और कोणों को मापने की क्षमता से विकसित किया। चूंकि, हाई स्कूल के दर्शकों के लिए उपचार को गियर करने के लिए, कुछ गणितीय और तार्किक तर्कों को या तो अनदेखा कर दिया गया या उन्हें समाप्त कर दिया गया।[42]

मैक लेन की प्रणाली में चार पुरातन धारणाएँ (अपरिभाषित शब्द) हैं: बिंदु, दूरी, रेखा और कोण माप। 14 अभिगृहीत भी हैं, चार दूरी फलन के गुण देते हैं, चार रेखाओं के गुणों का वर्णन करते हैं, चार चर्चा कोण (जो इस उपचार में निर्देशित कोण हैं), एक समानता अभिगृहीत (अनिवार्य रूप से बिरखॉफ के समान) और एक निरंतरता अभिगृहीत जो कर सकते हैं क्रॉसबार प्रमेय और इसके विलोम को प्राप्त करने के लिए उपयोग किया जाता है।[46] स्वयंसिद्धों की बढ़ी हुई संख्या के विकास में प्रारंभिक प्रमाणों का पालन करना आसान बनाने का शैक्षणिक लाभ है और परिचित मीट्रिक (गणित) का उपयोग बुनियादी सामग्री के माध्यम से तेजी से उन्नति की अनुमति देता है जिससे विषय के अधिक दिलचस्प पहलुओं को जल्द से जल्द प्राप्त किया जा सके। .

एसएमएसजी (स्कूल गणित अध्ययन समूह) स्वयंसिद्ध

1960 के दशक में यूक्लिडियन ज्यामिति के लिए सिद्धांतों का एक नया सेट, अमेरिकी हाई स्कूल ज्यामिति पाठ्यक्रमों के लिए उपयुक्त, स्कूल गणित अध्ययन समूह (एसएमएसजी) द्वारा नए गणित पाठ्यक्रम के एक भाग के रूप में प्रस्तुत किया गया था। स्वयंसिद्धों का यह सेट ज्यामितीय मूल सिद्धांतों में त्वरित प्रवेश प्राप्त करने के लिए वास्तविक संख्याओं का उपयोग करने के बिरखॉफ उदाहरण का अनुसरण करता है। चुकीं, बिरखॉफ़ ने उपयोग किए गए स्वयंसिद्धों की संख्या को कम करने की प्रयास की, और अधिकांश लेखक अपने उपचारों में स्वयंसिद्धों की स्वतंत्रता से चिंतित थे, एसएमएसजी स्वयंसिद्ध सूची को शैक्षणिक कारणों से जानबूझकर बड़ा और निरर्थक बना दिया गया था।[47] एसएमएसजी ने इन स्वयंसिद्धों का उपयोग करते हुए केवल माइमोग्राफ किया हुआ पाठ तैयार किया,[48] लेकिन एडविन ई. मोइज़, एसएमएसजी के सदस्य, ने इस प्रणाली पर आधारित हाई स्कूल टेक्स्ट लिखा,[49] और कॉलेज स्तर का पाठ, मोइज़ (1974), कुछ अतिरेक को बदलकर और अधिक परिष्कृत दर्शकों के लिए स्वयंसिद्धों में किए गए संशोधनों के साथ थे।[50]

आठ अपरिभाषित शब्द हैं: बिंदु, रेखा, समतल, झूठ, कोण माप, दूरी, क्षेत्रफल और आयतन। इस प्रणाली के 22 स्वयंसिद्धों को संदर्भ में सरलता के लिए अलग-अलग नाम दिए गए हैं। इनमें पाया जाना है: रूलर पोस्टुलेट, रूलर प्लेसमेंट पोस्टुलेट, प्लेन सेपरेशन पोस्टुलेट, एंगल एडिशन पोस्टुलेट, साइड एंगल साइड (एसएएस) पोस्टुलेट, पैरेलल पोस्टुलेट (प्लेफेयर के स्वयंसिद्ध | प्लेफेयर के रूप में), और कैवलियरी का सिद्धांत है.[51]


यूसीएसएमपी (शिकागो स्कूल गणित परियोजना विश्वविद्यालय) स्वयंसिद्ध

चूंकि गणित के नए पाठ्यक्रम में भारी परिवर्तन किया गया है या छोड़ दिया गया है, संयुक्त राज्य अमेरिका में ज्यामिति का भाग अपेक्षाकृत स्थिर बना हुआ है। आधुनिक अमेरिकी हाई स्कूल की पाठ्यपुस्तकें स्वयंसिद्ध प्रणालियों का उपयोग करती हैं जो कि बहुत अधिक तक एसएमएसजी के समान हैं। उदाहरण के लिए, यूनिवर्सिटी ऑफ शिकागो स्कूल मैथेमेटिक्स प्रोजेक्ट (यूसीएसएमपी) द्वारा तैयार किए गए पाठ ऐसी प्रणाली का उपयोग करते हैं, जो भाषा के कुछ अद्यतनीकरण के अतिरिक्त , मुख्य रूप से एसएमएसजी प्रणाली से भिन्न होती है, जिसमें इसके प्रतिबिंब पोस्टुलेट के जिससे कुछ परिवर्तन (फ़ंक्शन) अवधारणाएँ सम्मिलित होती हैं।[47]

केवल तीन अपरिभाषित शब्द हैं: बिंदु, रेखा और तल। आठ अवधारणाएं हैं, लेकिन इनमें से अधिकांश के कई भाग हैं (जिन्हें इस प्रणाली में सामान्यतः पर धारणा कहा जाता है)। इन भागों को गिनने पर इस तंत्र में 32 अभिगृहीत हैं। अभिधारणाओं में बिन्दु-रेखा-तल अभिधारणा, त्रिभुज असमानता अभिधारणा, दूरी के अभिधारणाएं, कोण मापन, संगत कोण, क्षेत्रफल और आयतन, और परावर्तन अभिधारणा पाई जा सकती है। एसएमएसजी प्रणाली के एसएएस अभिधारणा के प्रतिस्थापन के रूप में प्रतिबिम्ब अभिधारणा का उपयोग किया जाता है।[52]


अन्य प्रणालियाँ

ओसवाल्ड वेब्लेन (1880 - 1960) ने 1904 में नई स्वयंसिद्ध प्रणाली प्रदान की, जब उन्होंने बीच की अवधारणा को बदल दिया, जैसा कि हिल्बर्ट और पास के नए पुरातन , आदेश के साथ प्रयोग किया था। इसने हिल्बर्ट द्वारा उपयोग किए जाने वाले कई पुरातन शब्दों को परिभाषित इकाई बनने की अनुमति दी, पुरातन धारणाओं की संख्या को दो, बिंदु और क्रम तक कम कर दिया।[37]

यूक्लिडियन ज्यामिति के लिए कई अन्य स्वयंसिद्ध प्रणालियाँ पिछले कुछ वर्षों में प्रस्तावित की गई हैं। इनमें से कई की तुलना हेनरी जॉर्ज फोर्डर द्वारा 1927 के मोनोग्राफ में पाई जा सकती है।[53] फोर्डर भी अलग-अलग प्रणालियों से सिद्धांतों को जोड़कर, बिंदु और व्यवस्था के दो पुरातन विचारों के आधार पर अपना स्वयं का उपचार देता है। वह पुरातन बिंदु और सर्वांगसमता के आधार पर पियरी की प्रणालियों में से एक (1909 से) का अधिक सारगर्भित उपचार भी प्रदान करता है।[42]

पीआनो से प्रारंभ होकर, यूक्लिडियन ज्यामिति की स्वयंसिद्ध आधारशिला के विषय में तर्कशास्त्रियों के बीच रुचि का समानांतर धागा रहा है। यह आंशिक रूप से स्वयंसिद्धों का वर्णन करने के लिए प्रयुक्त अंकन में देखा जा सकता है। पिएरी ने दावा किया कि तथापि उन्होंने ज्यामिति की पारंपरिक भाषा में लिखा हो, वे हमेशा पीआनो द्वारा प्रस्तुत किए गए तार्किक संकेतन के संदर्भ में सोचते थे, और उस औपचारिकता का उपयोग यह देखने के लिए करते थे कि वस्तुये को कैसे सिद्ध किया जाए। इस प्रकार के अंकन का विशिष्ट उदाहरण एडवर्ड वर्मिली हंटिंगटनई. के काम में पाया जा सकता है। वी. हंटिंगटन (1874 - 1952) जिन्होंने 1913 में,[54] क्षेत्र और समावेशन (एक क्षेत्र दूसरे के अन्दर स्थित) की पुरातन धारणाओं के आधार पर त्रि-आयामी यूक्लिडियन ज्यामिति का एक स्वयंसिद्ध उपचार प्रस्तुत किया।[42]अंकन से परे ज्यामिति के सिद्धांत की तार्किक संरचना में भी रुचि है। अल्फ्रेड टार्स्की ने सिद्ध किया कि ज्यामिति का एक भाग है, जिसे उन्होंने प्राथमिक ज्यामिति कहा था, प्रथम क्रम तार्किक सिद्धांत है।(तर्स्की के स्वयंसिद्धों को देखें)।

यूक्लिडियन ज्यामिति की स्वयंसिद्ध आधारशिला के आधुनिक पाठ उपचार एच.जी. फोर्डर और गिल्बर्ट डी ब्योरेगार्ड रॉबिन्सन गिल्बर्ट डी बी रॉबिन्सन के पैटर्न का पालन करते हैं[55] जो अलग-अलग प्रणालियों के स्वयंसिद्धों को मिलते और मिलाते हैं जिससे अलग-अलग प्रभाव पैदा किए जा सकें। वेनेमा (2006) इस दृष्टिकोण का आधुनिक उदाहरण है।

दूसरा-यूक्लिडियन ज्यामिति


विज्ञान में गणित की भूमिका और हमारे सभी विश्वासों के लिए वैज्ञानिक ज्ञान के निहितार्थ को ध्यान में रखते हुए, गणित की प्रकृति के बारे में मनुष्य की समझ में क्रांतिकारी परिवर्तन का अर्थ विज्ञान, दर्शन के सिद्धांतों, धार्मिक और नैतिक सिद्धांतों की उनकी समझ में क्रांतिकारी परिवर्तन हो सकता है। विश्वास, और, वास्तव में, सभी बौद्धिक अनुशासन है।[56]


उन्नीसवी शताब्दी के पूर्वार्द्ध में ज्यामिति के क्षेत्र में क्रांति हुई जो खगोल विज्ञान में कोपर्निकन क्रांति के रूप में वैज्ञानिक रूप से महत्वपूर्ण थी और हमारे विचार के विधि पर इसके प्रभाव के रूप में विकास के डार्विनियन सिद्धांत के रूप में दार्शनिक रूप से गहन थी। यह दूसरा-यूक्लिडियन ज्यामिति की खोज का परिणाम था।[57] यूक्लिड के समय से प्रारंभ होकर, दो हज़ार से अधिक वर्षों के लिए, भौतिक अंतरिक्ष के बारे में स्व-स्पष्ट सत्य माने जाने वाले सिद्धांतों को ज्यामिति पर आधारित माना जाता था। जियोमीटरों ने सोचा कि वे त्रुटि की संभावना के बिना उनसे अन्य, अधिक अस्पष्ट सत्यों को निकाल रहे हैं। अतिशयोक्तिपूर्ण ज्यामिति के विकास के साथ यह दृष्टिकोण अस्थिर हो गया। अब ज्यामिति की दो असंगत प्रणालियाँ थीं (और अधिक बाद में आईं) जो स्व-संगत थीं और अवलोकन योग्य भौतिक दुनिया के अनुकूल थीं। इस बिंदु से, ज्यामिति और भौतिक स्थान के बीच संबंध की पूरी चर्चा बहुत अधिक भिन्न अर्थों में की जाने लगी।(मोइज़ 1974, p. 388)

दूसरी-यूक्लिडियन ज्यामिति प्राप्त करने के लिए, समानांतर अवधारणा (या इसके समतुल्य) को इसके निषेध द्वारा प्रतिस्थापित किया जाना चाहिए। निष्पक्षता से खेलो के स्वयंसिद्ध रूप को नकारना, क्योंकि यह मिश्रित कथन है (और केवल उपस्थित है ), दो विधियों से किया जा सकता है। या तो दी गई रेखा के समानांतर बिंदु से जाने वाली एक से अधिक रेखा उपस्थित होगी या दी गई रेखा के समानांतर बिंदु से कोई रेखा उपस्थित नहीं होगी। पहले स्थितियों में, समानांतर अभिधारणा (या इसके समतुल्य) को कथन के साथ प्रतिस्थापित करना एक विमान में, बिंदु P और एक रेखा ℓ दी गई है जो P से नहीं निकलती है, P के माध्यम से दो रेखाएँ उपस्थित हैं जो ℓ से नहीं मिलती हैं और अन्य सभी को रखती हैं स्वयंसिद्ध, अतिशयोक्तिपूर्ण ज्यामिति उत्पन्न करता है।[58] दूसरी स्थिति इतनी सरलता से नहीं हल नहीं होती। केवल समानांतर अभिधारणा को कथन से प्रतिस्थापित करने पर, एक समतल में, बिंदु P और एक रेखा ℓ दिए जाने पर, जो P से होकर नहीं निकलती है, P से होकर जाने वाली सभी रेखाएँ ℓ से मिलती हैं, अभिगृहीतों का सुसंगत समुच्चय नहीं देता है। यह इस प्रकार है क्योंकि पूर्ण ज्यामिति में समांतर रेखाएं उपस्थित हैं,[59] लेकिन यह कथन कहेगा कि कोई समानांतर रेखाएँ नहीं हैं। खय्याम, सैचेरी और लैम्बर्ट इस समस्या के बारे में जानते थे (अलग रूप में) और उनके द्वारा इसे अस्वीकार करने का आधार था, जिसे ओट्यूस एंगल केस के रूप में जाना जाता था। सिद्धांतों का सुसंगत सेट प्राप्त करने के लिए जिसमें कोई समानांतर रेखा न होने के बारे में यह स्वयंसिद्ध सम्मिलित है, कुछ अन्य स्वयंसिद्धों को ठीक किया जाना चाहिए। किए जाने वाले समायोजन उपयोग की जा रही स्वयंसिद्ध प्रणाली पर निर्भर करते हैं। दूसरों के बीच इन परिवर्तनों का यूक्लिड के दूसरे अभिधारणा को इस कथन से संशोधित करने का प्रभाव होगा कि रेखा खंडों को अनिश्चित काल तक इस कथन तक बढ़ाया जा सकता है कि रेखाएँ अबाधित हैं। रीमैन की अण्डाकार ज्यामिति इस स्वयंसिद्ध को संतुष्ट करने वाली सबसे प्राकृतिक ज्यामिति के रूप में उभरती है।

यह कार्ल फ्रेडरिक गॉस थे जिन्होंने दूसरा-यूक्लिडियन ज्यामिति शब्द गढ़ा था।[60] वह अपने स्वयं के अप्रकाशित कार्य का उल्लेख कर रहे थे, जिसे आज हम अतिशयोक्तिपूर्ण ज्यामिति कहते हैं। कई लेखक अभी भी दूसरा-यूक्लिडियन ज्यामिति और अतिशयोक्तिपूर्ण ज्यामिति को पर्यायवाची मानते हैं। 1871 में, फेलिक्स क्लेन, 1852 में आर्थर केली द्वारा चर्चा की गई मीट्रिक को अनुकूलित करके, मीट्रिक गुणों को एक प्रक्षेपीय सेटिंग में लाने में सक्षम था और इस प्रकार प्रक्षेपीय ज्यामिति की छतरी के नीचे हाइपरबॉलिक, यूक्लिडियन और अंडाकार ज्यामिति के उपचार को एकीकृत करने में सक्षम था।[61] क्लेन अतिशयोक्तिपूर्ण और अण्डाकार शब्दों के लिए जिम्मेदार है (अपनी प्रणाली में उन्होंने यूक्लिडियन ज्यामिति परवलयिक कहा, एक शब्द जो समय की विश्वास पर पूर्ण नहीं उतरा है और आज केवल कुछ विषयों में उपयोग किया जाता है।) उनके प्रभाव के कारण सामान्य उपयोग हुआ है। शब्द दूसरा-यूक्लिडियन ज्यामिति का अर्थ अतिपरवलयिक या अण्डाकार ज्यामिति है।

कुछ गणितज्ञ ऐसे हैं जो ज्यामिति की सूची का विस्तार करेंगे जिन्हें विभिन्न विधियों से दूसरा-यूक्लिडियन कहा जाना चाहिए। अन्य विषयों में, विशेष रूप से गणितीय भौतिकी, जहां क्लेन का प्रभाव उतना मजबूत नहीं था, दूसरा-यूक्लिडियन शब्द का अर्थ प्रायः यूक्लिडियन नहीं होता है।

यूक्लिड की समानांतर अभिधारणा

दो हज़ार वर्षों तक, यूक्लिड की पहली चार अभिधारणाओं का उपयोग करते हुए समानांतर अभिधारणा को सिद्ध करने के लिए कई प्रयास किए गए। संभावित कारण है कि इस तरह के प्रमाण की अत्यधिक मांग की गई थी, पहले चार अभिधारणाओं के विपरीत, समानांतर अभिधारणा स्वतः स्पष्ट नहीं है। यदि तत्वों में अभिधारणाओं को सूचीबद्ध करने का क्रम महत्वपूर्ण है, तो यह इंगित करता है कि यूक्लिड ने इस अभिधारणा को केवल तभी सम्मिलित किया जब उसे अनुभूति हुआ कि वह इसे सिद्ध नहीं कर सकता या इसके बिना आगे नहीं बढ़ सकता।[62] अन्य चार अभिधारणाओं में से पाँचवी अभिधारणा को सिद्ध करने के लिए कई प्रयास किए गए, उनमें से कई को प्रमाण के रूप में लंबे समय तक स्वीकार किया गया जब तक कि गलती का पता नहीं चला। निरपवाद रूप से गलती कुछ 'स्पष्ट' संपत्ति मान रही थी जो पाँचवी अभिधारणा के समतुल्य निकली। अंततः यह अनुभूति किया गया कि यह अभिधारणा अन्य चार से सिद्ध नहीं हो सकती है। के अनुसार ट्रुडो (1987, p. 154) समानांतर अवधारणा (पोस्टुलेट 5) के बारे में यह राय प्रिंट में दिखाई देती है ।

सामान्यतः ऐसा करने वाले पहले व्यक्ति जी.एस. क्लुगेल (1739-1812) थे, जो गौटिंगेन विश्वविद्यालय में डॉक्टरेट के छात्र थे, उन्होंने अपने शिक्षक ए.जी. कस्टनर के सहयोग से, पूर्व के 1763 के शोध प्रबंध कोनाटुम प्रेसीपुरम प्रमेयियम पैरेलारम डिमोनस्ट्रांडी रिकेंसियो (सबसे प्रसिद्ध की समीक्षा) में समानता के सिद्धांत को प्रदर्शित करने का प्रयास इस कार्य में क्लुगेल ने अभिधारणा 5 (सैकेरी सहित) को सिद्ध करने के लिए 28 प्रयासों की जांच की, उन सभी को त्रुटिपूर्ण पाया, और यह राय प्रस्तुत की कि अभिधारणा 5 अप्राप्य है और केवल हमारी इंद्रियों के निर्णय द्वारा समर्थित है।


19वी शताब्दी की प्रारंभिक अंतत: दूसरा-यूक्लिडियन ज्यामिति के निर्माण में निर्णायक कदमों की साक्षी बनेगी। लगभग 1813, कार्ल फ्रेडरिक गॉस और स्वतंत्र रूप से 1818 के आसपास, नियम के जर्मन प्रोफेसर फर्डिनेंड कार्ल श्वेकार्ट[63] दूसरा-यूक्लिडियन ज्यामिति के मूल विचारों पर काम किया था, लेकिन न तो कोई परिणाम प्रकाशित किया। फिर, 1830 के आसपास, हंगरी के गणितज्ञ जानोस बोल्याई और रुसी गणितज्ञ निकोलाई इवानोविच लोबाचेव्स्की ने अलग-अलग ग्रंथों को प्रकाशित किया, जिसे आज हम अतिशयोक्तिपूर्ण ज्यामिति कहते हैं। परिणाम स्वरुप ,अतिशयोक्तिपूर्ण ज्यामिति को बोल्यई-लोबाचेवस्कियन ज्यामिति कहा जाता है, क्योंकि दोनों गणितज्ञ, एक दूसरे से स्वतंत्र, दूसरा-यूक्लिडियन ज्यामिति के मूल लेखक हैं। कार्ल फ्रेडरिक गॉस ने बोल्याई के पिता का उल्लेख किया, जब छोटे बोल्याई के काम को दिखाया गया, कि उन्होंने कई साल पहले ऐसी ज्यामिति विकसित की थी,[64] चूंकि उन्होंने प्रकाशित नहीं किया। जबकि लोबाचेवस्की ने समानांतर अभिधारणा को नकारते हुए एक दूसरा-यूक्लिडियन ज्यामिति का निर्माण किया, बोल्याई ने ज्यामिति का काम किया जहां पैरामीटर k के आधार पर यूक्लिडियन और हाइपरबोलिक ज्यामिति दोनों संभव हैं। बोल्याई अपने काम का अंत यह कहते हुए करते हैं कि केवल गणितीय तर्क के माध्यम से यह ख़त्म करना करना संभव नहीं है कि भौतिक ब्रह्मांड की ज्यामिति यूक्लिडियन है या दूसरा-यूक्लिडियन; यह भौतिक विज्ञान के लिए कार्य है।

यूक्लिड के अन्य अभिगृहीतों से समानांतर अवधारणा की स्वतंत्रता (गणितीय तर्क) को अंततः 1868 में यूजेनियो बेल्ट्रामी द्वारा प्रदर्शित किया गया था।[65]

समानांतर अभिधारणा के विभिन्न प्रयास किए गए प्रमाणों ने प्रमेयों की एक लंबी सूची तैयार की जो समानांतर अभिधारणा के समतुल्य हैं। यहाँ तुल्यता का अर्थ है कि ज्यामिति के अन्य अभिगृहीतों की उपस्थिति में इनमें से प्रत्येक प्रमेय को सत्य माना जा सकता है और अभिगृहीतों के इस परिवर्तित समुच्चय से समानांतर अभिधारणा को सिद्ध किया जा सकता है। यह तार्किक तुल्यता के समान नहीं है।[66] यूक्लिडियन ज्यामिति के लिए स्वयंसिद्धों के विभिन्न सेटों में, इनमें से कोई भी यूक्लिडियन समानांतर अभिधारणा को प्रतिस्थापित कर सकता है।[67] निम्नलिखित आंशिक सूची इनमें से कुछ प्रमेयों को इंगित करती है जो ऐतिहासिक रुचि के हैं।[68]

  1. समानांतर सीधी रेखाएँ समान दूरी पर होती हैं। (पोसिडोनियोस, पहली शताब्दी ई.पू.)
  2. किसी दी गई सीधी रेखा से समदूरस्थ सभी बिंदु, उसके एक तरफ,सीधी रेखा बनाते हैं। (क्रिस्टोफ क्लेवियस, 1574)
  3. प्लेफेयर का स्वयंसिद्ध एक तल में, अधिकतम एक रेखा होती है जिसे किसी दिए गए रेखा के समांतर एक बाहरी बिंदु से होकर खींचा जा सकता है। (बंद किया हुआ, पाचवीं शताब्दी, लेकिन जॉन प्लेफेयर द्वारा लोकप्रिय, 18वी शताब्दी के अंत में)
  4. प्रत्येक त्रिभुज में कोण का योग 180° होता है (गेरोलामो सचेरी, 1733; एड्रियन-मैरी लिजेंड्रे, 19वी सदी की प्रारंभिक में)
  5. त्रिभुज का अस्तित्व है जिसके कोणों का योग 180° होता है। (जेरोलामो सैचेरी, 1733; एड्रियन-मैरी लिजेंड्रे, 19वी शताब्दी के प्रारंभ में)
  6. समानता (ज्यामिति) की एक जोड़ी उपस्थित है, लेकिन सर्वांगसमता (ज्यामिति), त्रिकोण नहीं है। (जेरोलामो सचेरी, 1733)
  7. हर त्रिकोण को परिचालित किया जा सकता है। (एड्रियन-मैरी लीजेंड्रे, फार्कस बोल्याई, 19वी सदी की प्रारंभिक में)
  8. यदि किसी चतुर्भुज के तीन कोण समकोण हों, तो चौथा कोण भी समकोण होता है। (एलेक्सिस-क्लाउड क्लेराट, 1741; जोहान हेनरिक लैम्बर्ट, 1766)
  9. एक चतुर्भुज का अस्तित्व है जिसके सभी कोण समकोण हैं। (गेरालामो सचेरी, 1733)
  10. जॉन वालिस#ज्यामिति|वालिस अभिधारणा। किसी दी गई परिमित सरल रेखा पर दिए गए त्रिभुज के समान त्रिभुज का निर्माण करना हमेशा संभव होता है। (जॉन वालिस, 1663; लाज़ारे-निकोलस-मार्गुएराइट कार्नोट, 1803; एड्रियन-मैरी लीजेंड्रे, 1824)
  11. त्रिभुज के क्षेत्रफल (ज्यामिति) की कोई ऊपरी सीमा नहीं है। (कार्ल फ्रेडरिक गॉस, 1799)
  12. सचेरी चतुर्भुज के शिखर कोण 90° हैं। (गेरालामो सचेरी, 1733)
  13. प्रोक्लस 'स्वयंसिद्ध। यदि एक रेखा दो समानांतर रेखाओं में से एक को काटती है, जो दोनों मूल रेखा के समतलीय हैं, तो यह दूसरे को भी काटती है। (प्रोक्लस, 5वी शताब्दी)

तटस्थ (या निरपेक्ष) ज्यामिति

निरपेक्ष ज्यामिति एक स्वयंसिद्ध प्रणाली पर आधारित एक ज्यामिति है जिसमें यूक्लिडियन ज्यामिति देने वाले सभी स्वयंसिद्धों को सम्मिलित किया जाता है, इसके अतिरिक्त इसके कि समांतर अभिधारणा या इसके किसी भी विकल्प को छोड़कर।[69] यह शब्द 1832 में जानोस बोल्याई द्वारा प्रस्तुत किया गया था।[70] इसे कभी-कभी तटस्थ ज्यामिति कहा जाता है,[71] क्योंकि यह समानांतर अभिधारणा के संबंध में तटस्थ है।

अन्य ज्यामिति से संबंध

यूक्लिड के तत्वों यूक्लिड के तत्वों में, पहले 28 तर्कवाक्य और प्रस्ताव प्रथम समानांतर अवधारणा का उपयोग करने से बचते हैं, और इसलिए निरपेक्ष ज्यामिति में मान्य प्रमेय हैं।[72] प्रस्ताव प्रथम समानांतर रेखाओं (निर्माण द्वारा) के अस्तित्व को सिद्ध करता है। साथ ही, सैचेरी-लीजेंड्रे प्रमेय, जिसमें कहा गया है कि एक त्रिभुज में कोणों का योग अधिकतम 180° होता है, को सिद्ध किया जा सकता है।

निरपेक्ष ज्यामिति के प्रमेय अतिशयोक्तिपूर्ण ज्यामिति के साथ-साथ यूक्लिडियन ज्यामिति में भी प्रयुक्त होते हैं।[73]

निरपेक्ष ज्यामिति अण्डाकार ज्यामिति के साथ असंगत है: अण्डाकार ज्यामिति में कोई समानांतर रेखाएँ नहीं होती हैं, लेकिन निरपेक्ष ज्यामिति में समानांतर रेखाएँ उपस्थित होती हैं। साथ ही, अण्डाकार ज्यामिति में, किसी त्रिभुज में कोणों का योग 180° से अधिक होता है।

अधूरापन

तार्किक रूप से, अभिगृहीत एक पूर्ण सिद्धांत नहीं बनाते हैं क्योंकि अभिगृहीत प्रणाली को असंगत बनाए बिना कोई अतिरिक्त स्वतंत्र अभिगृहीत जोड़ सकता है। समांतरता के बारे में अलग-अलग स्वयंसिद्धों को जोड़कर पूर्ण ज्यामिति का विस्तार किया जा सकता है और यूक्लिडियन और अतिशयोक्तिपूर्ण ज्यामिति को जन्म देते हुए असंगत लेकिन सुसंगत स्वयंसिद्ध प्रणालियों को प्राप्त किया जा सकता है। इस प्रकार निरपेक्ष ज्यामिति का प्रत्येक प्रमेय अतिशयोक्तिपूर्ण ज्यामिति और यूक्लिडियन ज्यामिति का एक प्रमेय है। चुकीं इसका विलोम सत्य नहीं है। इसके अतिरिक्त , पूर्ण ज्यामिति एक श्रेणीबद्ध सिद्धांत नहीं है, क्योंकि इसमें ऐसे उदाहरण हैं जो आइसोमोर्फिक नहीं हैं।[citation needed]


अतिशयोक्तिपूर्ण ज्यामिति

अतिशयोक्तिपूर्ण ज्यामिति के स्वयंसिद्ध दृष्टिकोण में (जिसे लोबाचेवस्कियन ज्यामिति या बोल्याई-लोबाचेवस्कियन ज्यामिति भी कहा जाता है), पूर्ण ज्यामिति देने वाले स्वयंसिद्धों में एक अतिरिक्त स्वयंसिद्ध जोड़ा जाता है। नया अभिगृहीत लोबचेवस्की का समानांतर अभिधारणा है (जिसे अतिपरवलयिक ज्यामिति की विशेषता अभिधारणा के रूप में भी जाना जाता है):[74]

किसी दिए गए रेखा पर नहीं एक बिंदु के माध्यम से उपस्थित है (इस बिंदु और रेखा द्वारा निर्धारित विमान में) कम से कम दो रेखाएं जो दी गई रेखा से नहीं मिलती हैं।

इस जोड़ के साथ, स्वयंसिद्ध प्रणाली अब पूरी हो गई है।

यद्यपि नया स्वयंसिद्ध केवल दो रेखाओं के अस्तित्व पर जोर देता है, यह सरलता से स्थापित हो जाता है कि दिए गए बिंदु के माध्यम से अनंत संख्या में रेखाएँ हैं जो दी गई रेखा से नहीं मिलती हैं। इस प्रचुरता को देखते हुए, इस सेटिंग में शब्दावली से सावधान रहना चाहिए, क्योंकि समानांतर रेखा शब्द का अब यूक्लिडियन ज्यामिति में अद्वितीय अर्थ नहीं है। विशेष रूप से, पी को किसी दिए गए रेखा पर नहीं होने दें . मान लीजिए PA, P से खींचा गया लंब है (बिंदु ए पर बैठक)। P से होकर जाने वाली रेखाएँ दो वर्गों में आती हैं, वे जो मिलती हैं और जो नहीं करते हैं। हाइपरबोलिक ज्योमेट्री की विशेषता का कहना है कि बाद के प्रकार की कम से कम दो पंक्तियाँ हैं। उन पंक्तियों का जो नहीं मिलतीं , PA के साथ सबसे छोटा कोण बनाने वाली एक रेखा (PA के प्रत्येक तरफ) होगी। कभी-कभी इन पंक्तियों को P से होकर जाने वाली पहली पंक्तियाँ कहा जाता है जो नहीं मिलतीं और विभिन्न प्रकार से सीमित, असिम्प्टोटिक या समानांतर रेखाएँ कहलाती हैं (जब इस अंतिम शब्द का उपयोग किया जाता है, तो ये केवल समानांतर रेखाएँ होती हैं)। P से होकर जाने वाली अन्य सभी रेखाएँ जो नहीं मिलतीं अप्रतिच्छेदी या अतिसमांतर रेखाएँ कहलाती हैं।

चूँकि अतिशयोक्तिपूर्ण ज्यामिति और यूक्लिडियन ज्यामिति दोनों पूर्ण ज्यामिति के स्वयंसिद्धों पर निर्मित हैं, वे कई गुणों और प्रस्तावों को बाटा करते हैं। चूंकि , यूक्लिडियन ज्यामिति के समानांतर अभिधारणा को अतिपरवलयिक ज्यामिति के विशिष्ट अभिधारणा के साथ बदलने के परिणाम नाटकीय हो सकते हैं। इनमें से कुछ का उल्लेख करने के लिए:

अतिशयोक्तिपूर्ण ज्यामिति में लैम्बर्ट चतुर्भुज

* लैम्बर्ट चतुर्भुज एक ऐसा चतुर्भुज है जिसमें तीन समकोण होते हैं। लैम्बर्ट चतुर्भुज का चौथा कोण तीव्र कोण है यदि ज्यामिति अतिशयोक्तिपूर्ण है, और एक समकोण है यदि ज्यामिति यूक्लिडियन है। इसके अतिरिक्त , केवल यूक्लिडियन ज्यामिति में ही आयतें उपस्थित हो सकती हैं (समानांतर अभिधारणा के समतुल्य कथन)।

  • सैचेरी चतुर्भुज एक ऐसा चतुर्भुज होता है जिसकी दो भुजाएँ समान लंबाई की होती हैं, दोनों एक भुजा के लम्बवत् होती हैं जिसे आधार कहा जाता है। सैचेरी चतुर्भुज के अन्य दो कोण शिखर कोण कहलाते हैं और उनका माप समान होता है। यदि ज्यामिति अतिशयोक्तिपूर्ण है, तो सैचेरी चतुर्भुज के शिखर कोण तीव्र होते हैं, और यदि ज्यामिति यूक्लिडियन है तो समकोण होते हैं।
  • यदि ज्यामिति अतिशयोक्तिपूर्ण है तो किसी भी त्रिभुज के कोणों के मापों का योग 180° से कम होता है और यदि ज्यामिति यूक्लिडियन है तो 180° के बराबर होता है। त्रिभुज का दोष (ज्यामिति) संख्यात्मक मान (180° - त्रिभुज के कोणों के माप का योग) है। इस परिणाम को इस प्रकार भी कहा जा सकता है: अतिशयोक्तिपूर्ण ज्यामिति में त्रिभुजों का दोष धनात्मक होता है, और यूक्लिडियन ज्यामिति में त्रिभुजों का दोष शून्य होता है।
  • अतिशयोक्तिपूर्ण ज्यामिति में एक त्रिभुज का क्षेत्र परिबद्ध होता है जबकि यूक्लिडियन ज्यामिति में मनमाने ढंग से बड़े क्षेत्रों के साथ त्रिभुज उपस्थित होते हैं।
  • एक ही तरफ बिंदुओं का सेट और दी गई सीधी रेखा से समान रूप से दूर यूक्लिडियन ज्यामिति में एक रेखा बनाते हैं, लेकिन हाइपरबोलिक ज्यामिति में नहीं (वे एक हाइपरसाइकल (ज्यामिति) बनाते हैं।)

इस स्थिति के पैरोकार कि यूक्लिडियन ज्यामिति एकमात्र और एकमात्र सच्ची ज्यामिति है, जब 1868 में प्रकाशित एक संस्मरण में, निरंतर वक्रता के रिक्त स्थान का मौलिक सिद्धांत, एक झटका लगा।[75] यूजेनियो बेल्ट्रामी ने किसी भी आयाम के लिए अतिशयोक्तिपूर्ण और यूक्लिडियन ज्यामिति की समानता का एक सार प्रमाण दिया। उन्होंने इसे दूसरा-यूक्लिडियन ज्यामिति के कई उदाहरण को प्रस्तुत करके पूरा किया, जिन्हें अब बेल्ट्रामी-क्लेन उदाहरण , पॉइंकेयर डिस्क उदाहरण और पॉइंकेयर हाफ-प्लेन उदाहरण के रूप में जाना जाता है, साथ ही उनसे संबंधित परिवर्तनों के साथ। हाफ-प्लेन उदाहरण के लिए, बेल्ट्रामी ने अंतर ज्यामिति पर गैसपार्ड मोंगे के ग्रंथ में लिओविले द्वारा एक नोट का हवाला दिया। बेल्ट्रामी ने यह भी दिखाया कि एन-डायमेंशनल यूक्लिडियन ज्यामिति को (n + 1)-डायमेंशनल अतिशयोक्तिपूर्ण स्थान के राशिफल पर महसूस किया जाता है, इसलिए यूक्लिडियन और दूसरा-यूक्लिडियन ज्यामिति की संगति के बीच तार्किक संबंध सममित है।

अण्डाकार ज्यामिति

समानांतर अभिधारणा को संशोधित करने का दूसरा विधि यह मान लेना है कि समतल में कोई समानांतर रेखाएँ नहीं हैं। अतिशयोक्तिपूर्ण ज्यामिति के साथ स्थिति के विपरीत, जहां हम केवल एक नया स्वयंसिद्ध जोड़ते हैं, हम इस कथन को निरपेक्ष ज्यामिति के स्वयंसिद्धों के लिए एक नए स्वयंसिद्ध के रूप में जोड़कर एक सुसंगत प्रणाली प्राप्त नहीं कर सकते। यह इस प्रकार है क्योंकि समानांतर रेखाएँ निरपेक्ष ज्यामिति में सिद्ध रूप से उपस्थित हैं। अन्य स्वयंसिद्धों को बदलना होगा।

हिल्बर्ट के स्वयंसिद्धों के साथ प्रारंभ करने के लिए आवश्यक परिवर्तनों में हिल्बर्ट के क्रम के चार सिद्धांतों को हटाना और उन्हें एक नए अपरिभाषित संबंध से संबंधित अलगाव के इन सात सिद्धांतों के साथ बदलना सम्मिलित है।[76]

चार बिंदुओं, A, B, C और D के बीच एक अपरिभाषित (पुरातन धारणा) संबंध है, जिसे (A,C ,B,D) द्वारा निरूपित किया जाता है और इसे A और C अलग B और D के रूप में पढ़ा जाता है,[77] इन स्वयंसिद्धों को संतुष्ट करना:

  1. यदि (A,B,C,D), तो बिंदु A, B, C और D संरेखी और भिन्न हैं।
  2. यदि ABCD तो (CDAB) और (BADC)
  3. यदि ABCD, तो नहीं ACBD
  4. यदि बिंदु ABC और D समरेख और अलग हैं तो ABCD या ACBD या (ADBC)
  5. यदि बिंदु A, B, और C समरेख और अलग हैं, तो एक बिंदु D उपस्थित है जैसे कि (A,BC,D)
  6. किन्हीं पांच अलग-अलग समरेख बिंदुओं A, B, C, D और E के लिए, यदि (A,B,D,E), तो या तो (A,B,C,D) या (A,B,C,E).
  7. परिप्रेक्ष्य अलगाव को बनाए रखता है।

चूंकि हिल्बर्ट की बीच की धारणा को हटा दिया गया है, जो शब्द उस अवधारणा का उपयोग करके परिभाषित किए गए थे उन्हें फिर से परिभाषित करने की आवश्यकता है।[78] इस प्रकार, रेखाखंड AB को बिंदु A और B के रूप में परिभाषित किया गया है और पूर्ण ज्यामिति में A और B के बीच के सभी बिंदुओं को फिर से बनाने की आवश्यकता है। इस नई ज्यामिति में एक रेखा खंड तीन संरेख बिंदुओं A, B और C द्वारा निर्धारित किया जाता है और इसमें वे तीन बिंदु होते हैं और सभी बिंदु A और C द्वारा B से अलग नहीं होते हैं। आगे के परिणाम हैं। चूंकि दो बिंदु विशिष्ट रूप से एक रेखा खंड का निर्धारण नहीं करते हैं, तीन असंरेख बिंदु एक अद्वितीय त्रिकोण का निर्धारण नहीं करते हैं, और त्रिकोण की परिभाषा को सुधारना होगा।

एक बार जब इन धारणाओं को फिर से परिभाषित कर लिया जाता है, तो निरपेक्ष ज्यामिति (घटना, सर्वांगसमता और निरंतरता) के अन्य स्वयंसिद्ध सभी समझ में आते हैं और अकेले रह जाते हैं। समांतर रेखाओं के दूसरा-अस्तित्व पर नए सिद्धांत के साथ-साथ हमारे पास एक नई ज्यामिति देने वाले सिद्धांतों की एक सतत प्रणाली है। परिणामी ज्यामिति को (विमान) अण्डाकार ज्यामिति कहा जाता है।

यूक्लिडियन, एलिप्टिक और हाइपरबोलिक ज्योमेट्री में सैचेरी चतुर्भुज

तथापि अण्डाकार ज्यामिति निरपेक्ष ज्यामिति का विस्तार नहीं है (जैसा कि यूक्लिडियन और हाइपरबोलिक ज्यामिति हैं), तीन ज्यामिति के प्रस्तावों में एक निश्चित समरूपता है जो गहरे संबंध को दर्शाता है जो फेलिक्स क्लेन द्वारा देखा गया था। इस संपत्ति को प्रदर्शित करने वाले कुछ प्रस्ताव हैं:

  • लैम्बर्ट चतुर्भुज का चौथा कोण अण्डाकार ज्यामिति में एक अधिक कोण है।
  • सैचेरी चतुर्भुज के शिखर कोण अण्डाकार ज्यामिति में अधिक कोण वाले होते हैं।
  • किसी त्रिभुज के कोणों की मापों का योग 180° से अधिक होता है यदि ज्यामिति दीर्घवृत्ताकार हो। अर्थात त्रिभुज का दोष (ज्यामिति) ऋणात्मक होता है।[79]
  • दी गई रेखा के लम्बवत् सभी रेखाएँ अण्डाकार ज्यामिति में एक सामान्य बिंदु पर मिलती हैं, जिसे रेखा का ध्रुव और ध्रुव कहा जाता है। अतिशयोक्तिपूर्ण ज्यामिति में ये रेखाएँ परस्पर अप्रतिच्छेदी होती हैं, जबकि यूक्लिडियन ज्यामिति में ये परस्पर समानांतर होती हैं।

अन्य परिणाम, जैसे बाहरी कोण प्रमेय, स्पष्ट रूप से अण्डाकार और ज्यामिति के बीच के अंतर पर जोर देते हैं जो पूर्ण ज्यामिति के विस्तार हैं।

गोलाकार ज्यामिति


अन्य ज्यामिति

प्रक्षेपी ज्यामिति


अफिन ज्यामिति


आदेशित ज्यामिति

निरपेक्ष ज्यामिति क्रमबद्ध ज्यामिति का एक विस्तार है, और इस प्रकार, क्रमबद्ध ज्यामिति में सभी प्रमेय निरपेक्ष ज्यामिति में हैं। इसका उलट सत्य नहीं है। निरपेक्ष ज्यामिति यूक्लिड के अभिगृहीत (या उनके समतुल्य) के पहले चार को ग्रहण करती है, जो कि एफाइन ज्यामिति के विपरीत है, जो यूक्लिड के तीसरे और चौथे अभिगृहीत को नहीं मानता है। आदेशित ज्यामिति निरपेक्ष और सजातीय ज्यामिति दोनों का सामान्य आधार है।[80]


परिमित ज्यामिति


यह भी देखें

टिप्पणियाँ

  1. Venema 2006, p. 17
  2. Wylie 1964, p. 8
  3. Greenberg 1974, p. 59
  4. In this context no distinction is made between different categories of theorems. Propositions, lemmas, corollaries, etc. are all treated the same.
  5. Venema 2006, p. 19
  6. Faber 1983, pp. 105 – 8
  7. 7.0 7.1 Eves 1963, p. 19
  8. Eves 1963, p. 10
  9. Boyer (1991). "Euclid of Alexandria". p. 101. ऑटोलाइकस के स्फीयर के अपवाद के साथ, यूक्लिड द्वारा जीवित कार्य सबसे पुराने ग्रीक गणितीय ग्रंथ हैं जो आज भी मौजूद हैं; फिर भी यूक्लिड ने जो लिखा उसका आधा से अधिक खो गया है, {{cite book}}: Missing or empty |title= (help)
  10. Encyclopedia of Ancient Greece (2006) by Nigel Guy Wilson, page 278. Published by Routledge Taylor and Francis Group. Quote:"Euclid's Elements subsequently became the basis of all mathematical education, not only in the Romand and Byzantine periods, but right down to the mid-20th century, and it could be argued that it is the most successful textbook ever written."
  11. Boyer (1991). "Euclid of Alexandria". p. 100. स्कूल में शिक्षकों के रूप में उन्होंने प्रमुख विद्वानों के एक बैंड को बुलाया, जिनमें से यूक्लिड के एलिमेंट्स ( स्टोइचिया ) - अब तक लिखी गई सबसे शानदार ढंग से सफल गणित की पाठ्यपुस्तक के लेखक थे। {{cite book}}: Missing or empty |title= (help)
  12. 12.0 12.1 Boyer (1991). "Euclid of Alexandria". p. 119. यूक्लिड का 'तत्व' न केवल हमारे पास आने वाला सबसे पहला प्रमुख यूनानी गणितीय कार्य था, बल्कि अब तक की सबसे प्रभावशाली पाठ्यपुस्तक भी था। [...] एलिमेंट्स का पहला मुद्रित संस्करण 1482 में वेनिस में दिखाई दिया, जो गणितीय पुस्तकों के सबसे शुरुआती प्रकारों में से एक है; यह अनुमान लगाया गया है कि तब से अब तक कम से कम एक हजार संस्करण प्रकाशित हो चुके हैं। शायद बाइबल के अलावा कोई भी पुस्तक इतने सारे संस्करणों का दावा नहीं कर सकती है, और निश्चित रूप से किसी भी गणितीय कार्य का प्रभाव यूक्लिड के 'एलिमेंट्स के प्रभाव के बराबर नहीं रहा है। {{cite book}}: Missing or empty |title= (help)
  13. The Historical Roots of Elementary Mathematics by Lucas Nicolaas Hendrik Bunt, Phillip S. Jones, Jack D. Bedient (1988), page 142. Dover publications. Quote:"the Elements became known to Western Europe via the Arabs and the Moors. There the Elements became the foundation of mathematical education. More than 1000 editions of the Elements are known. In all probability it is, next to the Bible, the most widely spread book in the civilization of the Western world."
  14. From the introduction by Amit Hagar to Euclid and His Modern Rivals by Lewis Carroll (2009, Barnes & Noble) pg. xxviii:

    Geometry emerged as an indispensable part of the standard education of the English gentleman in the eighteenth century; by the Victorian period it was also becoming an important part of the education of artisans, children at Board Schools, colonial subjects and, to a rather lesser degree, women. ... The standard textbook for this purpose was none other than Euclid's The Elements.

  15. Euclid, book I, proposition 47
  16. Heath 1956, pp. 195 – 202 (vol 1)
  17. Venema 2006, p. 11
  18. Ball 1960, p. 55
  19. Wylie 1964, p. 39
  20. 20.0 20.1 Faber 1983, p. 109
  21. Faber 1983, p. 113
  22. Faber 1983, p. 115
  23. Heath 1956, p. 62 (vol. I)
  24. Greenberg 1974, p. 57
  25. Heath 1956, p. 242 (vol. I)
  26. Heath 1956, p. 249 (vol. I)
  27. Eves 1963, p. 380
  28. Peano 1889
  29. Eves 1963, p. 382
  30. Eves 1963, p. 383
  31. Pieri did not attend since he had recently moved to Sicily, but he did have a paper of his read at the Congress of Philosophy.
  32. Hilbert 1950
  33. Hilbert 1990
  34. This is Hilbert's terminology. This statement is more familiarly known as Playfair's axiom.
  35. Eves 1963, p. 386
  36. Moore, E.H. (1902), "On the projective axioms of geometry", Transactions of the American Mathematical Society, 3 (1): 142–158, doi:10.2307/1986321, JSTOR 1986321
  37. 37.0 37.1 Eves 1963, p. 387
  38. Birkhoff, George David (1932), "A set of postulates for plane geometry", Annals of Mathematics, 33 (2): 329–345, doi:10.2307/1968336, hdl:10338.dmlcz/147209, JSTOR 1968336
  39. Venema 2006, p. 400
  40. Venema 2006, pp. 400–1
  41. Halsted, G. B. (1904), Rational Geometry, New York: John Wiley and Sons, Inc.
  42. 42.0 42.1 42.2 42.3 Eves 1963, p. 388
  43. among his several achievements, he is the cofounder (with Samuel Eilenberg) of Category theory.
  44. Mac Lane, Saunders (1959), "Metric postulates for plane geometry", American Mathematical Monthly, 66 (7): 543–555, doi:10.2307/2309851, JSTOR 2309851
  45. Birkhoff, G.D.; Beatley, R. (1940), Basic Geometry, Chicago: Scott, Foresman and Company [Reprint of 3rd edition: American Mathematical Society, 2000. ISBN 978-0-8218-2101-5]
  46. Venema 2006, pp. 401–2
  47. 47.0 47.1 Venema 2006, p. 55
  48. School Mathematics Study Group (SMSG) (1961), Geometry, Parts 1 and 2 (Student Text), New Haven and London: Yale University Press
  49. Moise, Edwin E.; Downs, Floyd L. (1991), Geometry, Reading, MA: Addison–Wesley
  50. Venema 2006, p. 403
  51. Venema 2006, pp. 403–4
  52. Venema 2006, pp. 405 – 7
  53. Forder, H.G. (1927), "The Foundations of Euclidean Geometry", Nature, New York: Cambridge University Press, 123 (3089): 44, Bibcode:1928Natur.123...44., doi:10.1038/123044a0, S2CID 4093478 (reprinted by Dover, 1958)
  54. Huntington, E.V. (1913), "A set of postulates for abstract geometry, expressed in terms of the simple relation of inclusion", Mathematische Annalen, 73 (4): 522–559, doi:10.1007/bf01455955, S2CID 119440414
  55. Robinson, G. de B. (1946), The Foundations of Geometry, Mathematical Expositions No. 1 (2nd ed.), Toronto: University of Toronto Press
  56. Kline, Morris (1967), Mathematics for the Nonmathematician, New York: Dover, p. 474, ISBN 0-486-24823-2
  57. Greenberg 1974, p. 1
  58. while only two lines are postulated, it is easily shown that there must be an infinite number of such lines.
  59. Book I Proposition 27 of Euclid's Elements
  60. Felix Klein, Elementary Mathematics from an Advanced Standpoint: Geometry, Dover, 1948 (reprint of English translation of 3rd Edition, 1940. First edition in German, 1908) pg. 176
  61. F. Klein, Über die sogenannte nichteuklidische Geometrie, Mathematische Annalen, 4(1871).
  62. Florence P. Lewis (Jan 1920), "History of the Parallel Postulate", The American Mathematical Monthly, The American Mathematical Monthly, Vol. 27, No. 1, 27 (1): 16–23, doi:10.2307/2973238, JSTOR 2973238.
  63. In a letter of December 1818, Ferdinand Karl Schweikart (1780–1859) sketched a few insights into non-Euclidean geometry. The letter was forwarded to Gauss in 1819 by Gauss's former student Gerling. In his reply to Gerling, Gauss praised Schweikart and mentioned his own, earlier research into non-Euclidean geometry.
  64. In the letter to Wolfgang (Farkas) Bolyai of March 6, 1832 Gauss claims to have worked on the problem for thirty or thirty-five years (Faber 1983, p. 162). In his 1824 letter to Taurinus (Faber 1983, p. 158) he claimed that he had been working on the problem for over 30 years and provided enough detail to show that he actually had worked out the details. According to Faber (1983, p. 156) it wasn't until around 1813 that Gauss had come to accept the existence of a new geometry.
  65. Beltrami, Eugenio (1868) "Teoria fondamentale degli spazî di curvatura costante", Annali di Matematica Pura et Applicata, Series II 2:232–255.
  66. An appropriate example of logical equivalence is given by Playfair's axiom and Euclid I.30 (see Playfair's axiom#Transitivity of parallelism).
  67. For instance, Hilbert uses Playfair's axiom while Birkhoff uses the theorem about similar but not congruent triangles.
  68. attributions are due to Trudeau 1987, pp. 128–9
  69. Use a complete set of axioms for Euclidean geometry such as Hilbert's axioms or another modern equivalent (Faber 1983, p. 131). Euclid's original set of axioms is ambiguous and not complete, it does not form a basis for Euclidean geometry.
  70. In "Appendix exhibiting the absolute science of space: independent of the truth or falsity of Euclid's Axiom XI (by no means previously decided)" (Faber 1983, p. 161)
  71. Greenberg cites W. Prenowitz and M. Jordan (Greenberg, p. xvi) for having used the term neutral geometry to refer to that part of Euclidean geometry that does not depend on Euclid's parallel postulate. He says that the word absolute in absolute geometry misleadingly implies that all other geometries depend on it.
  72. Trudeau 1987, p. 44
  73. Absolute geometry is, in fact, the intersection of hyperbolic geometry and Euclidean geometry when these are regarded as sets of propositions.
  74. Faber 1983, p. 167
  75. Beltrami, Eugenio (1868), "Teoria fondamentale degli spazii di curvatura costante", Annali di Matematica Pura ed Applicata, Series II, 2: 232–255, doi:10.1007/BF02419615, S2CID 120773141
  76. Greenberg 2007, pp. 541–4
  77. Visualize four points on a circle which in counter-clockwise order are A, B, C and D.
  78. This reenforces the futility of attempting to "fix" Euclid's axioms to obtain this geometry. Changes need to be made in the unstated assumptions of Euclid.
  79. Negative defect is called the excess, so this may also be phrased as– triangles have a positive excess in elliptic geometry.
  80. Coxeter, pgs. 175–176


संदर्भ

(3 vols.): ISBN 0-486-60088-2 (vol. 1), ISBN 0-486-60089-0 (vol. 2), ISBN 0-486-60090-4 (vol. 3).


इस पेज में लापता आंतरिक लिंक की सूची

  • संगतता
  • समाकृतिकता
  • घन ज्यामिति
  • माध्यमिक स्कूल
  • निबंध
  • अंक शास्त्र
  • अभाज्य सँख्या
  • मांगना
  • घेरा
  • गणितज्ञों की अंतर्राष्ट्रीय कांग्रेस
  • गति (ज्यामिति)
  • द्विभाजन
  • Desargues प्रमेय
  • नया गणित
  • असमानित त्रिकोण
  • बिंदु-रेखा-तल अभिधारणा
  • तार्किक समानता
  • प्रतिबंध लगाना
  • सैचेरी चतुर्भुज
  • चतुष्कोष
  • क्षेत्र (ज्यामिति)
  • पूरा सिद्धांत
  • एक त्रिभुज का क्षेत्रफल
  • हाइपर साइकिल (ज्यामिति)
  • न्यून कोण
  • affine ज्यामिति
  • ज्यामिति का आदेश दिया

बाहरी संबंध