टर्बोपंप: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Pump driven by a gas turbine}} | {{Short description|Pump driven by a gas turbine}} | ||
{{about|ईंधन पंप|उच्च निर्वात उत्पन्न करने के लिए टर्बाइन उपकरण|टर्बोमोलेक्युलर पंप|वाहन वायु पंप|टर्बोचार्जर|और|सुपरचार्जर}} | {{about|ईंधन पंप|उच्च निर्वात उत्पन्न करने के लिए टर्बाइन उपकरण|टर्बोमोलेक्युलर पंप|वाहन वायु पंप|टर्बोचार्जर|और|सुपरचार्जर}} | ||
[[File:M-1 rocket turbopump.JPG|thumb|right|M-1 (रॉकेट इंजन)|M-1 रॉकेट इंजन के लिए डिजाइन और निर्मित एक अक्षीय टर्बोपंप]] | [[File:M-1 rocket turbopump.JPG|thumb|right|M-1 (रॉकेट इंजन)|M-1 रॉकेट इंजन के लिए डिजाइन और निर्मित एक अक्षीय टर्बोपंप]]टर्बोपंप दो मुख्य घटकों वाला प्रणोदक पंप है: [[ रोटोडायनामिक पंप |रोटोडायनामिक पंप]] और ड्राइविंग [[ गैस टर्बाइन |गैस टर्बाइन]] , सामान्यतः दोनों एक ही शाफ्ट पर लगे होते हैं, या कभी-कभी एक साथ गियर होते हैं। वे प्रारंभ में 1940 के दशक के प्रारंभ में जर्मनी में विकसित हुए थे। टर्बोपंप का उद्देश्य [[ दहन कक्ष |दहन कक्ष]] या अन्य उपयोग को प्रभरण के लिए उच्च दबाव वाले द्रव का उत्पादन करना है। | ||
टर्बोपंप दो प्रकार के होते हैं: एक केन्द्रापसारक पंप, जहां उच्च गति पर द्रव को बाहर की ओर फेंक कर पंप किया जाता है, या एक अक्षीय-प्रवाह पंप, जहां बारी-बारी से घूमते हुए और स्थिर ब्लेड तरल पदार्थ के दबाव को उत्तरोत्तर बढ़ाते हैं। | टर्बोपंप दो प्रकार के होते हैं: एक केन्द्रापसारक पंप, जहां उच्च गति पर द्रव को बाहर की ओर फेंक कर पंप किया जाता है, या एक अक्षीय-प्रवाह पंप, जहां बारी-बारी से घूमते हुए और स्थिर ब्लेड तरल पदार्थ के दबाव को उत्तरोत्तर बढ़ाते हैं। | ||
अक्षीय-प्रवाह पंपों के व्यास छोटे होते हैं लेकिन अपेक्षाकृत साधारण दबाव बढ़ते हैं। चूंकि इसमें कई संपीड़न चरणों की आवश्यकता होती है, [[ अक्षीय प्रवाह पंप |अक्षीय प्रवाह पंप]] कम घनत्व वाले तरल पदार्थों के साथ | अक्षीय-प्रवाह पंपों के व्यास छोटे होते हैं लेकिन अपेक्षाकृत साधारण दबाव बढ़ते हैं। चूंकि इसमें कई संपीड़न चरणों की आवश्यकता होती है, [[ अक्षीय प्रवाह पंप |अक्षीय प्रवाह पंप]] कम घनत्व वाले तरल पदार्थों के साथ सही प्रकार से काम करते हैं। केन्द्रापसारक पंप उच्च घनत्व वाले तरल पदार्थों के लिए कहीं अधिक शक्तिशाली होते हैं लेकिन कम घनत्व वाले तरल पदार्थों के लिए बड़े व्यास की आवश्यकता होती है। | ||
== इतिहास == | == इतिहास == | ||
| Line 37: | Line 37: | ||
== केन्द्रापसारक टर्बोपंप की जटिलताएं == | == केन्द्रापसारक टर्बोपंप की जटिलताएं == | ||
इष्टतम प्रदर्शन प्राप्त करने के लिए डिजाइन करने के लिए टर्बोपंप की प्रतिष्ठा बेहद कठिन है। जबकि | इष्टतम प्रदर्शन प्राप्त करने के लिए डिजाइन करने के लिए टर्बोपंप की प्रतिष्ठा बेहद कठिन है। जबकि सही प्रकार से इंजीनियर और डिबग पंप 70-90% दक्षता का प्रबंधन कर सकता है, आधे से भी कम आंकड़े असामान्य नहीं हैं। कुछ अनुप्रयोगों में कम दक्षता स्वीकार्य हो सकती है, लेकिन [[ राकेट |रॉकेटरी]] में यह गंभीर समस्या है। रॉकेट में टर्बोपंप महत्वपूर्ण और अधिक समस्याग्रस्त हैं कि एक का उपयोग करने वाले लॉन्च वाहनों को सावधानी से रॉकेट के साथ टर्बोपंप के रूप में वर्णित किया गया है - कुल लागत का 55% तक इस क्षेत्र को दिया गया है।<ref>Wu, Yulin, et al. Vibration of hydraulic machinery. Berlin: Springer, 2013.</ref> | ||
सामान्य समस्याओं में | सामान्य समस्याओं में सम्मिलित हैं: | ||
# पंप और रोटर के आवरण के बीच की खाई के साथ उच्च दबाव रिम से वापस कम दबाव इनलेट तक अत्यधिक प्रवाह, | # पंप और रोटर के आवरण के बीच की खाई के साथ उच्च दबाव रिम से वापस कम दबाव इनलेट तक अत्यधिक प्रवाह, | ||
#इनलेट पर तरल पदार्थ का अत्यधिक पुनर्संचार, | #इनलेट पर तरल पदार्थ का अत्यधिक पुनर्संचार, | ||
Revision as of 06:01, 27 January 2023
टर्बोपंप दो मुख्य घटकों वाला प्रणोदक पंप है: रोटोडायनामिक पंप और ड्राइविंग गैस टर्बाइन , सामान्यतः दोनों एक ही शाफ्ट पर लगे होते हैं, या कभी-कभी एक साथ गियर होते हैं। वे प्रारंभ में 1940 के दशक के प्रारंभ में जर्मनी में विकसित हुए थे। टर्बोपंप का उद्देश्य दहन कक्ष या अन्य उपयोग को प्रभरण के लिए उच्च दबाव वाले द्रव का उत्पादन करना है।
टर्बोपंप दो प्रकार के होते हैं: एक केन्द्रापसारक पंप, जहां उच्च गति पर द्रव को बाहर की ओर फेंक कर पंप किया जाता है, या एक अक्षीय-प्रवाह पंप, जहां बारी-बारी से घूमते हुए और स्थिर ब्लेड तरल पदार्थ के दबाव को उत्तरोत्तर बढ़ाते हैं।
अक्षीय-प्रवाह पंपों के व्यास छोटे होते हैं लेकिन अपेक्षाकृत साधारण दबाव बढ़ते हैं। चूंकि इसमें कई संपीड़न चरणों की आवश्यकता होती है, अक्षीय प्रवाह पंप कम घनत्व वाले तरल पदार्थों के साथ सही प्रकार से काम करते हैं। केन्द्रापसारक पंप उच्च घनत्व वाले तरल पदार्थों के लिए कहीं अधिक शक्तिशाली होते हैं लेकिन कम घनत्व वाले तरल पदार्थों के लिए बड़े व्यास की आवश्यकता होती है।
इतिहास
प्रारंभिक विकास
हरमन ओबेरथ जैसे रॉकेट अग्रदूतों द्वारा बड़ी मिसाइलों के लिए उच्च दबाव पंपों पर चर्चा की गई थी।[specify] 1935 के मध्य में वर्नर वॉन ब्रॉन ने दक्षिण-पश्चिम जर्मन फर्म क्लेन, शैंजलिन एंड बेकर में ईंधन पंप परियोजना प्रारंभ की, जिसे बड़े अग्निशमन पंपों के निर्माण का अनुभव था।[1]: 80 V-2 रॉकेट डिज़ाइन में वाल्टर स्टीम जनरेटर के माध्यम से विघटित हाइड्रोजन पेरोक्साइड का उपयोग किया गया था[1]: 81 जिससे जेनबैक में हेंकेल संयंत्र में उत्पादित, अनियंत्रित टर्बोपंप को शक्ति प्रदान की जा सके[2] इसलिए वी-2 टर्बोपंप और दहन कक्ष का परीक्षण किया गया और पंप को कक्ष को अत्यधिक दबाव से रोकने के लिए चैम्बर का मिलान किया गया।[1]: 172 पहला इंजन सितंबर में सफलतापूर्वक चला, और 16 अगस्त, 1942 को परीक्षण स्टैंड VII रॉकेट मध्य हवा में रुक गया और टर्बोपंप में खराबी के कारण दुर्घटनाग्रस्त हो गया।[1][verification needed] पहला सफल वी-2 प्रक्षेपण 3 अक्टूबर, 1942 को हुआ था।[3]
1947 से 1949 तक का विकास
हवाई-जेट से चलनेवाला में टर्बोपंप विकास के लिए मुख्य अभियंता जॉर्ज बोस्को थे। 1947 की दूसरी छमाही के समय, बोस्को और उनके समूह ने दूसरों के पंप के काम के बारे में सीखा और प्रारंभिक डिजाइन का अध्ययन किया। एरोजेट के प्रतिनिधियों ने ओहियो स्टेट यूनिवर्सिटी का निरीक्षण किया जहां फ्लोरेंट हाइड्रोजन पंपों पर काम कर रहा था, और राइट फील्ड के जर्मन पंप विशेषज्ञ डायट्रिच सिंगलमैन से परामर्श किया। बोस्को ने बाद में एयरोजेट के पहले हाइड्रोजन पंप को डिजाइन करने में सिंगलमैन के डेटा का उपयोग किया।[4]
1948 के मध्य तक, एयरोजेट ने तरल हाइड्रोजन और तरल ऑक्सीजन दोनों के लिए केन्द्रापसारक पंपों का चयन किया था। उन्होंने नौसेना से कुछ जर्मन रेडियल-वेन पंप प्राप्त किए और वर्ष की दूसरी छमाही के समय उनका परीक्षण किया।[4]
1948 के अंत तक, एयरोजेट ने तरल हाइड्रोजन पंप (15 सेमी व्यास) का डिजाइन, निर्माण और परीक्षण किया था। प्रारंभ में, यह बॉल बियरिंग का उपयोग करता था जो साफ और सूखे होते थे, क्योंकि कम तापमान ने पारंपरिक स्नेहन को अव्यावहारिक बना दिया था। पंप को पहले कम गति पर संचालित किया गया था जिससे उसके पुर्जे ऑपरेटिंग तापमान को ठंडा कर सकें। जब तापमान गेज ने दिखाया कि तरल हाइड्रोजन पंप तक पहुंच गया था, तो प्रति मिनट 5000 से 35 000 क्रांतियों में तेजी लाने का प्रयास किया गया था। जिससे पंप विफल हो गया और फिर टुकड़ों की जांच ने बेयरिंग की विफलता के साथ-साथ प्ररित करनेवाला की ओर संकेत किया। कुछ परीक्षण के बाद, सुपर-त्रुटिहीन बीयरिंग, तेल द्वारा चिकनाई जो कि गैसीय नाइट्रोजन की धारा द्वारा परमाणुकृत और निर्देशित थी, का उपयोग किया गया था। अगले रन पर, बीयरिंगों ने संतोषजनक रूप से काम किया लेकिन टांकने वाले प्ररित करनेवाला के लिए तनाव बहुत अधिक था और यह अलग हो गया। अल्युमीनियम के ठोस ब्लॉक से मिलिंग करके नया बनाया गया था। नए पंप के साथ अगले दो रन एक बड़ी निराशा थे; उपकरणों ने कोई महत्वपूर्ण प्रवाह या दबाव वृद्धि नहीं दिखाई। फिर पंप के निकास विसारक (थर्मोडायनामिक्स) में समस्या का पता लगाया गया था, जो ठंडा-डाउन चक्र के समय बहुत छोटा और अपर्याप्त रूप से ठंडा था जिससे यह प्रवाह को सीमित कर सके। पंप हाउसिंग में वेंट होल जोड़कर इसे ठीक किया गया था; वेंट्स को ठंडा होने के समय खोला गया और पंप के ठंडा होने पर बंद कर दिया गया। इस फिक्स के साथ, मार्च 1949 में दो अतिरिक्त रन बनाए गए और दोनों ही सफल रहे। सैद्धांतिक भविष्यवाणियों के साथ प्रवाह दर और दबाव अनुमानित समझौते में पाए गए। अधिकतम दबाव 26 वायुमंडल था (26 atm (2.6 MPa; 380 psi)) और प्रवाह दर 0.25 किलोग्राम प्रति सेकंड था।[4]
1949 के बाद
स्पेस शटल के मुख्य इंजन का टर्बोपंप 30,000 आरपीएम से अधिक गति से घूमता है, जिससे इंजन को प्रति सेकंड 150 पौंड (68 किग्रा) तरल हाइड्रोजन और 896 पौंड (406 किग्रा) तरल ऑक्सीजन मिलती है।[5] इलेक्ट्रॉन (रॉकेट) का रदरफोर्ड (रॉकेट इंजन) 2018 में उड़ान में इलेक्ट्रिक-पंप-फेड इंजन विद्युत-चालित टर्बोपंप का उपयोग करने वाला पहला इंजन बन गया। [6]
केन्द्रापसारक टर्बोपंप
अधिकांश टर्बोपंप केन्द्रापसारक होते हैं - द्रव धुरी के पास पंप में प्रवेश करता है और रोटर तरल पदार्थ को उच्च गति तक बढ़ाता है। द्रव तब विसारक से निकलता है जो उत्तरोत्तर बढ़ता हुआ पाइप है, जो गतिशील दबाव की प्राप्ति की अनुमति देता है। विसारक उच्च गतिज ऊर्जा को उच्च दबावों में बदल देता है (सैकड़ों बार (इकाई) असामान्य नहीं है), और यदि आउटलेट वापस दबाव बहुत अधिक नहीं है, तो उच्च प्रवाह दर प्राप्त की जा सकती है।
अक्षीय टर्बोपंप
अक्षीय टर्बोपंप भी उपस्थित हैं। इस स्थिति में एक्सल में अनिवार्य रूप से शाफ्ट से जुड़े प्रोपेलर होते हैं, और पंप के मुख्य अक्ष के साथ इन समानांतर द्वारा द्रव को विवश किया जाता है। सामान्यतः, अक्षीय पंप केन्द्रापसारक पंपों की तुलना में बहुत कम दबाव देते हैं, और कुछ बार असामान्य नहीं होते हैं। चूंकि, वे अभी भी उपयोगी हैं - अक्षीय पंपों को सामान्यतः केन्द्रापसारक पंपों के लिए प्रेरक के रूप में उपयोग किया जाता है, जो केन्द्रापसारक पंप के इनलेट दबाव को अत्यधिक गुहिकायन को होने से रोकने के लिए पर्याप्त रूप से बढ़ाते हैं।
केन्द्रापसारक टर्बोपंप की जटिलताएं
इष्टतम प्रदर्शन प्राप्त करने के लिए डिजाइन करने के लिए टर्बोपंप की प्रतिष्ठा बेहद कठिन है। जबकि सही प्रकार से इंजीनियर और डिबग पंप 70-90% दक्षता का प्रबंधन कर सकता है, आधे से भी कम आंकड़े असामान्य नहीं हैं। कुछ अनुप्रयोगों में कम दक्षता स्वीकार्य हो सकती है, लेकिन रॉकेटरी में यह गंभीर समस्या है। रॉकेट में टर्बोपंप महत्वपूर्ण और अधिक समस्याग्रस्त हैं कि एक का उपयोग करने वाले लॉन्च वाहनों को सावधानी से रॉकेट के साथ टर्बोपंप के रूप में वर्णित किया गया है - कुल लागत का 55% तक इस क्षेत्र को दिया गया है।[7]
सामान्य समस्याओं में सम्मिलित हैं:
- पंप और रोटर के आवरण के बीच की खाई के साथ उच्च दबाव रिम से वापस कम दबाव इनलेट तक अत्यधिक प्रवाह,
- इनलेट पर तरल पदार्थ का अत्यधिक पुनर्संचार,
- तरल पदार्थ का अत्यधिक भंवर क्योंकि यह पंप के आवरण को छोड़ देता है,
- कम दबाव वाले क्षेत्रों में प्ररित करनेवाला ब्लेड सतहों के लिए हानिकारक गुहिकायन।
इसके अतिरिक्त, रोटर का त्रुटिहीन आकार ही महत्वपूर्ण है।
ड्राइविंग टर्बोपंप
भाप का स्रोत होने पर भाप टर्बाइन संचालित टर्बोपंप कार्यरत होते हैं, उदा। भाप जहाजों के बायलर , गैस टरबाइन सामान्यतः तब उपयोग किए जाते हैं जब बिजली या भाप उपलब्ध नहीं होती है और स्थान या वजन प्रतिबंध यांत्रिक ऊर्जा के अधिक कुशल स्रोतों के उपयोग की अनुमति देते हैं।
ऐसी स्थितियों में से एक रॉकेट इंजन हैं, जिन्हें ईंधन और आक्सीकारक को उनके दहन कक्ष में पंप करने की आवश्यकता होती है। बड़े तरल रॉकेटो के लिए यह आवश्यक है, क्योंकि टैंकों के साधारण दबाव द्वारा तरल पदार्थ या गैसों को प्रवाहित करने के लिए विवश करना अधिकांश संभव नहीं होता है; आवश्यक प्रवाह दर के लिए आवश्यक उच्च दबाव के लिए शक्तिशाली और भारी टैंकों की आवश्यकता होगी।
रामजेट मोटर्स को सामान्यतः टर्बोपंप के साथ लगाया जाता है, टर्बाइन को या तो सीधे बाहरी फ्रीस्ट्रीम रैम वायु द्वारा संचालित किया जाता है या आंतरिक रूप से दहनशील प्रविष्टि से वायु प्रवाह द्वारा संचालित किया जाता है। दोनों ही स्थितियों में टर्बाइन एग्जॉस्ट स्ट्रीम को पानी में फेंक दिया जाता है।
यह भी देखें
- Turboexpander
- गैस-जनरेटर चक्र (रॉकेट)|गैस-जनरेटर चक्र
- चरणबद्ध दहन चक्र (रॉकेट)
- विस्तारक चक्र (रॉकेट)
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Neufeld, Michael J. (1995). The Rocket and the Reich. The Smithsonian Institution. pp. 80–1, 156, 172. ISBN 0-674-77650-X.
- ↑ Ordway, Frederick I, III; Sharpe, Mitchell R (1979). The Rocket Team. Apogee Books Space Series 36. New York: Thomas Y. Crowell. p. 140. ISBN 1-894959-00-0. Archived from the original on 2012-03-04.
{{cite book}}: CS1 maint: multiple names: authors list (link) - ↑ Dornberger, Walter (1954) [1952]. Der Schuss ins Weltall / V-2. US translation from German. Esslingan; New York: Bechtle Verlag (German); Viking Press (English). p. 17.
- ↑ 4.0 4.1 4.2 "Liquid Hydrogen as a Propulsion Fuel, 1945-1959". NASA. Archived from the original on 2017-12-25. Retrieved 2017-07-12.
- ↑ Hill, P & Peterson, C.(1992) Mechanics and Thermodynamics of Propulsion. New York: Addison-Wesley ISBN 0-201-14659-2
- ↑ Brügge, Norbert. "Electron Propulsion". B14643.de. Archived from the original on 26 January 2018. Retrieved 20 September 2016.
- ↑ Wu, Yulin, et al. Vibration of hydraulic machinery. Berlin: Springer, 2013.
बाहरी कड़ियाँ
- Book of Rocket Propulsion
- M. L. "Joe" Stangeland (Summer 1988). "Turbopumps for Liquid Rocket Engines". Threshold – Engineering Journal of Power Technology. Rocketdyne. Archived from the original on 2009-09-24.