प्रसामान्य विधा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Pattern of oscillating motion in a system}}
{{Short description|Pattern of oscillating motion in a system}}
सम्मलितएक गतिशील प्रणाली का एक सामान्य मोड गति का एक पैटर्न है जिसमें सिस्टम के सभी भाग एक ही आवृत्ति के साथ और एक निश्चित चरण संबंध के साथ [[Index.php?title=ज्यावक्रीय|ज्यावक्रीय]] को स्थानांतरित करते हैं। सामान्य प्रणाली द्वारा वर्णित मुक्त गति निश्चित आवृत्तियों पर होती है। किसी प्रणाली के सामान्य तरीकों की इन निश्चित आवृत्तियों को इसकी [[प्राकृतिक आवृत्ति]] या प्रतिध्वनि के रूप में जाना जाता है। एक भौतिक वस्तु, जैसे कि एक इमारत, पुल, या अणु, में सामान्य प्रणाली और उनकी प्राकृतिक आवृत्तियों का एक प्रकार होता है जो इसकी संरचना, सामग्री और सीमा स्थितियों पर निर्भर करता है।
गतिशील प्रणाली का एक '''प्रसामान्य विधा''' गति का एक पैटर्न है जिसमें सिस्टम के सभी भाग एक ही आवृत्ति के साथ और एक निश्चित चरण संबंध के साथ [[Index.php?title=ज्यावक्रीय|ज्यावक्रीय]] को स्थानांतरित करते हैं। सामान्य प्रणाली द्वारा वर्णित मुक्त गति निश्चित आवृत्तियों पर होती है। किसी प्रणाली के सामान्य तरीकों की इन निश्चित आवृत्तियों को इसकी [[प्राकृतिक आवृत्ति]] या प्रतिध्वनि के रूप में जाना जाता है। एक भौतिक वस्तु, जैसे कि एक इमारत, पुल, या अणु, में सामान्य प्रणाली और उनकी प्राकृतिक आवृत्तियों का एक प्रकार होता है जो इसकी संरचना, सामग्री और सीमा स्थितियों पर निर्भर करता है।


एक प्रणाली की सबसे सामान्य गति इसके सामान्य प्रणाली का एक अध्यारोपण सिद्धांत है। प्रणाली इस अर्थ में सामान्य हैं कि वे स्वतंत्र रूप से आगे बढ़ सकते हैं, यह कहना है कि एक प्रणाली की उत्तेजना कभी भी एक अलग  की गति का कारण नहीं होगा। गणितीय शब्दों में, सामान्य प्रणाली एक दूसरे के लिए रूढ़िवादी हैं।
एक प्रणाली की सबसे सामान्य गति इसके सामान्य प्रणाली का एक अध्यारोपण सिद्धांत है। प्रणाली इस अर्थ में सामान्य हैं कि वे स्वतंत्र रूप से आगे बढ़ सकते हैं, यह कहना है कि एक प्रणाली की उत्तेजना कभी भी एक अलग  की गति का कारण नहीं होगा। गणितीय शब्दों में, सामान्य प्रणाली एक दूसरे के लिए रूढ़िवादी हैं।


[[File:Drum vibration mode12.gif|right|thumb|248px|पूरे बाहरी किनारे के साथ एक पिन की गई सीमा स्थिति के साथ एक गोलाकार चकती के एकल सामान्य प्रणाली कंपन।: कॉमन्स: श्रेणी: ड्रम कंपन एनिमेशन।]]
[[File:Drum vibration mode12.gif|right|thumb|248px|पूरे बाहरी किनारे के साथ एक पिन की गई सीमा स्थिति के साथ एक गोलाकार चकती के एकल सामान्य प्रणाली कंपन।: कॉमन्स: श्रेणी: ड्रम कंपन एनिमेशन।]]
[[File:A cup of black coffee vibrating in normal modes.jpeg|right|thumb| सामान्य मोड में एक कप काली कॉफी की एक फ्लैश फोटो]]
[[File:A cup of black coffee vibrating in normal modes.jpeg|right|thumb| प्रसामान्य विधा में एक कप काली कॉफी की एक फ्लैश फोटो]]
[[File:Spherical harmonic in water drop.ogv|thumb|लेडेनफ्रॉस्ट प्रभाव के दौरान पानी की एक बूंद में सामान्य प्रणाली की उत्तेजना]]
[[File:Spherical harmonic in water drop.ogv|thumb|लेडेनफ्रॉस्ट प्रभाव के दौरान पानी की एक बूंद में सामान्य प्रणाली की उत्तेजना]]


Line 24: Line 24:
सामान्य प्रणाली की अवधारणा अन्य गतिशील प्रणालियों में भी आवेदन करती है, जैसे कि [[प्रकाशिकी]], [[क्वांटम यांत्रिकी]], [[वायुमंडलीय गतिशीलता]] और [[आणविक गतिशीलता]]।
सामान्य प्रणाली की अवधारणा अन्य गतिशील प्रणालियों में भी आवेदन करती है, जैसे कि [[प्रकाशिकी]], [[क्वांटम यांत्रिकी]], [[वायुमंडलीय गतिशीलता]] और [[आणविक गतिशीलता]]।


अधिकांश गतिशील प्रणाली कई प्रणाली में उत्साहित हो सकते हैं, संभवतः एक साथ। प्रत्येक प्रणाली में एक या कई आवृत्तियों की विशेषता है,{{dubious|reason=wouldn't that be a superposition of two modes?|date=April 2020}} क्रियाभाव चर क्षेत्र के अनुसार। उदाहरण के लिए, 2 आयामी स्थान में एक कंपायमान रस्सी को एकल-आवृत्ति (1 आयामी अक्षीय विस्थापन) द्वारा परिभाषित किया गया है, लेकिन 3 आयामी स्थान में एक कंपायमान रस्सी को दो आवृत्तियों (2 आयामी अक्षीय विस्थापन) द्वारा परिभाषित किया गया है।
अधिकांश गतिशील प्रणाली कई प्रणाली में उत्साहित हो सकते हैं, संभवतः एक साथ। प्रत्येक प्रणाली में एक या कई आवृत्तियों की विशेषता है,  क्रियाभाव चर क्षेत्र के अनुसार। उदाहरण के लिए, 2 आयामी स्थान में एक कंपायमान रस्सी को एकल-आवृत्ति (1 आयामी अक्षीय विस्थापन) द्वारा परिभाषित किया गया है, लेकिन 3 आयामी स्थान में एक कंपायमान रस्सी को दो आवृत्तियों (2 आयामी अक्षीय विस्थापन) द्वारा परिभाषित किया गया है।


क्रियाभाव चर पर दिए गए आयाम के लिए, प्रत्येक प्रणाली ज्यावक्रीय उत्तेजना के कारण ऊर्जा की एक विशिष्ट मात्रा को संग्रहीत करेगा।
क्रियाभाव चर पर दिए गए आयाम के लिए, प्रत्येक प्रणाली ज्यावक्रीय उत्तेजना के कारण ऊर्जा की एक विशिष्ट मात्रा को संग्रहीत करेगा।
Line 38: Line 38:


=== नोड्स ===
=== नोड्स ===
[[File:Mode Shape of a Round Plate with Node Lines.jpg|right|thumb|220px|ड्रम झिल्ली का एक मोड आकार, जिसमें नोडल लाइनें पेल हरे रंग में दिखाए गए हैं]]किसी दिए गए प्रणाली में एक आयामी प्रणाली में कंपन में नोड्स होंगे, या वे स्थान जहां विस्थापन हमेशा शून्य होता है। ये नोड्स प्रणाली आकार में बिंदुओं के अनुरूप हैं जहां प्रणाली आकार शून्य है। चूंकि एक सिस्टम की कंपन प्रणाली रूप द्वारा एक समय क्रिया से गुणा किया जाता है, इसलिए नोड बिंदुओं का विस्थापन हर समय शून्य रहता है।
[[File:Mode Shape of a Round Plate with Node Lines.jpg|right|thumb|220px|ड्रम झिल्ली का एक विधा आकार, जिसमें नोडल लाइनें पेल हरे रंग में दिखाए गए हैं]]किसी दिए गए प्रणाली में एक आयामी प्रणाली में कंपन में नोड्स होंगे, या वे स्थान जहां विस्थापन हमेशा शून्य होता है। ये नोड्स प्रणाली आकार में बिंदुओं के अनुरूप हैं जहां प्रणाली आकार शून्य है। चूंकि एक सिस्टम की कंपन प्रणाली रूप द्वारा एक समय क्रिया से गुणा किया जाता है, इसलिए नोड बिंदुओं का विस्थापन हर समय शून्य रहता है।


जब एक दो आयामी प्रणाली में विस्तारित किया जाता है, तो ये नोड्स ऐसी रेखाएं बन जाती हैं जहां विस्थापन हमेशा शून्य होता है। यदि आप ऊपर दिए गए  जीवंतता को देखते हैं, तो आप दो सर्कल (किनारे और केंद्र के बीच लगभग आधा, और दूसरा किनारे पर) और चकती को काटने वाली एक सीधी रेखा देखेंगे, जहां विस्थापन शून्य के करीब है। एक आदर्श प्रणाली में ये पंक्तियाँ बिल्कुल शून्य के बराबर हैं, जैसा कि दाईं ओर दिखाया गया है।
जब दो आयामी प्रणाली में विस्तारित किया जाता है, तो ये नोड्स ऐसी रेखाएं बन जाती हैं जहां विस्थापन हमेशा शून्य होता है। यदि आप ऊपर दिए गए  जीवंतता को देखते हैं, तो आप दो सर्कल (किनारे और केंद्र के बीच लगभग आधा, और दूसरा किनारे पर) और चकती को काटने वाली एक सीधी रेखा देखेंगे, जहां विस्थापन शून्य के करीब है। एक आदर्श प्रणाली में ये पंक्तियाँ बिल्कुल शून्य के बराबर हैं, जैसा कि दाईं ओर दिखाया गया है।


== यांत्रिक व्यवस्था में ==
== यांत्रिक व्यवस्था में ==
Line 55: Line 55:
   m \ddot x_2 &= - k x_2 + k (x_1 - x_2) = - 2 k x_2 + k x_1
   m \ddot x_2 &= - k x_2 + k (x_1 - x_2) = - 2 k x_2 + k x_1
\end{align}</math>
\end{align}</math>
चूंकि हम एक सामान्य मोड के दोलन गति की उम्मीद करते हैं (जहां ω दोनों द्रव्यमानों के लिए समान है), हम कोशिश करते हैं:
चूंकि हम एक प्रसामान्य विधा के दोलन गति की उम्मीद करते हैं (जहां ω दोनों द्रव्यमानों के लिए समान है), हम कोशिश करते हैं:


:<math>\begin{align}
:<math>\begin{align}
Line 191: Line 191:


== भूकंपविज्ञान  में ==
== भूकंपविज्ञान  में ==
सामान्य मोड पृथ्वी में लंबे तरंग दैर्ध्य भूकंपीय तरंगों से उत्पन्न होते हैं जो बड़े भूकंपों से हस्तक्षेप करते हैं जो खड़ी तरंगों का निर्माण करते हैं।
प्रसामान्य विधा पृथ्वी में लंबे तरंग दैर्ध्य भूकंपीय तरंगों से उत्पन्न होते हैं जो बड़े भूकंपों से हस्तक्षेप करते हैं जो खड़ी तरंगों का निर्माण करते हैं।


एक लोचदार,  समदैशिक, सजातीय क्षेत्र, गोलाकार, टोरोइडल और त्रिज्यीय (या श्वास) मोड उत्पन्न होते हैं। गोलाकार प्रणाली में केवल Pऔर SV तरंगें ([[रेलेह वेव्स]] की तरह) सम्मलित होती हैं और अधिस्वर नंबर n और कोणीय क्रम ''l'' पर निर्भर करती हैं, लेकिन दिगंशीय व्यवस्था मीटर की विकृति होती है। बढ़ती ''l'' सतह के करीब मौलिक शाखा को केंद्रित करती है और बड़े ''l'' पर यह रेले लहरों की ओर जाता है। टॉरॉइडल प्रणाली में केवल [[प्यार लहरें]] (जैसे प्रेम तरंगें) सम्मलित होती हैं और द्रव बाहरी अंतर्भाग में सम्मलित नहीं होते हैं। त्रिज्यीय मोड ''l'' = 0 के साथ गोलाकार प्रणाली का एक उपवर्ग है। पृथ्वी पर पतन का अस्तित्व नहीं है क्योंकि यह  क्रमावर्तन,अण्डाकारता और 3 अयाम विषम वेग और घनत्व संरचना से टूट जाता है।
एक लोचदार,  समदैशिक, सजातीय क्षेत्र, गोलाकार, टोरोइडल और त्रिज्यीय (या श्वास) विधा उत्पन्न होते हैं। गोलाकार प्रणाली में केवल Pऔर SV तरंगें ([[रेलेह वेव्स]] की तरह) सम्मलित होती हैं और अधिस्वर नंबर n और कोणीय क्रम ''l'' पर निर्भर करती हैं, लेकिन दिगंशीय व्यवस्था मीटर की विकृति होती है। बढ़ती ''l'' सतह के करीब मौलिक शाखा को केंद्रित करती है और बड़े ''l'' पर यह रेले लहरों की ओर जाता है। टॉरॉइडल प्रणाली में केवल [[प्यार लहरें]] (जैसे प्रेम तरंगें) सम्मलित होती हैं और द्रव बाहरी अंतर्भाग में सम्मलित नहीं होते हैं। त्रिज्यीय विधा ''l'' = 0 के साथ गोलाकार प्रणाली का एक उपवर्ग है। पृथ्वी पर पतन का अस्तित्व नहीं है क्योंकि यह  क्रमावर्तन,अण्डाकारता और 3 अयाम विषम वेग और घनत्व संरचना से टूट जाता है।


यह माना जा सकता है कि प्रत्येक प्रणाली को अलग किया जा सकता है, स्व-युग्मन सन्निकटन, या कि कई प्रणाली आवृत्ति में बंद हो जाते हैं,  तिर्यक युग्मन सन्निकटन। स्व युग्मन केवल चरण के वेग को बदल देगा न कि एक महान सर्कल के आसपास तरंगों की संख्या, जिसके परिणामस्वरूप खड़ी तरंग आकार का खिंचना या सिकुड़ना होगा।  क्रियाभाव तिर्यक युग्मन पृथ्वी के  घूर्णन के कारण होता है, गोलाकार लोचदार संरचना से, या पृथ्वी की अण्डाकारता के कारण और मौलिक गोलाकार और टॉरॉइडल प्रणाली के मिश्रण की ओर जाता है।  
यह माना जा सकता है कि प्रत्येक प्रणाली को अलग किया जा सकता है, स्व-युग्मन सन्निकटन, या कि कई प्रणाली आवृत्ति में बंद हो जाते हैं,  तिर्यक युग्मन सन्निकटन। स्व युग्मन केवल चरण के वेग को बदल देगा न कि एक महान सर्कल के आसपास तरंगों की संख्या, जिसके परिणामस्वरूप खड़ी तरंग आकार का खिंचना या सिकुड़ना होगा।  क्रियाभाव तिर्यक युग्मन पृथ्वी के  घूर्णन के कारण होता है, गोलाकार लोचदार संरचना से, या पृथ्वी की अण्डाकारता के कारण और मौलिक गोलाकार और टॉरॉइडल प्रणाली के मिश्रण की ओर जाता है।  
Line 203: Line 203:
* [[हार्मोनिक श्रृंखला (संगीत)]]
* [[हार्मोनिक श्रृंखला (संगीत)]]
* [[अवरक्त स्पेक्ट्रोस्कोपी]]
* [[अवरक्त स्पेक्ट्रोस्कोपी]]
* टपका हुआ मोड
* टपका हुआ विधा
* यांत्रिक अनुनाद
* यांत्रिक अनुनाद
* [[मोडल विश्लेषण]]
* [[मोडल विश्लेषण|विधाल विश्लेषण]]
* मोड (इलेक्ट्रोमैग्नेटिज्म)
* विधा (इलेक्ट्रोमैग्नेटिज्म)
* [[Index.php?title=सामान्यवत प्रणाली|सामान्यवत प्रणाली]]
* [[Index.php?title=सामान्यवत प्रणाली|सामान्यवत प्रणाली]]
* स्टर्म-लिउविल सिद्धांत
* स्टर्म-लिउविल सिद्धांत

Revision as of 12:17, 6 February 2023

गतिशील प्रणाली का एक प्रसामान्य विधा गति का एक पैटर्न है जिसमें सिस्टम के सभी भाग एक ही आवृत्ति के साथ और एक निश्चित चरण संबंध के साथ ज्यावक्रीय को स्थानांतरित करते हैं। सामान्य प्रणाली द्वारा वर्णित मुक्त गति निश्चित आवृत्तियों पर होती है। किसी प्रणाली के सामान्य तरीकों की इन निश्चित आवृत्तियों को इसकी प्राकृतिक आवृत्ति या प्रतिध्वनि के रूप में जाना जाता है। एक भौतिक वस्तु, जैसे कि एक इमारत, पुल, या अणु, में सामान्य प्रणाली और उनकी प्राकृतिक आवृत्तियों का एक प्रकार होता है जो इसकी संरचना, सामग्री और सीमा स्थितियों पर निर्भर करता है।

एक प्रणाली की सबसे सामान्य गति इसके सामान्य प्रणाली का एक अध्यारोपण सिद्धांत है। प्रणाली इस अर्थ में सामान्य हैं कि वे स्वतंत्र रूप से आगे बढ़ सकते हैं, यह कहना है कि एक प्रणाली की उत्तेजना कभी भी एक अलग की गति का कारण नहीं होगा। गणितीय शब्दों में, सामान्य प्रणाली एक दूसरे के लिए रूढ़िवादी हैं।

पूरे बाहरी किनारे के साथ एक पिन की गई सीमा स्थिति के साथ एक गोलाकार चकती के एकल सामान्य प्रणाली कंपन।: कॉमन्स: श्रेणी: ड्रम कंपन एनिमेशन।
प्रसामान्य विधा में एक कप काली कॉफी की एक फ्लैश फोटो
लेडेनफ्रॉस्ट प्रभाव के दौरान पानी की एक बूंद में सामान्य प्रणाली की उत्तेजना

सामान्य परिभाषाएँ

प्रणाली

भौतिकी और अभियान्त्रिकी की लहर में, एक गतिशील प्रणाली में एक प्रणाली उत्तेजना की एक स्थायी तरंग स्थिति है, जिसमें प्रणाली के सभी घटक उस प्रणाली से जुड़े एक निश्चित आवृत्ति पर ज्यावक्रीय प्रभावित होंगे।

क्योंकि कोई भी वास्तविक प्रणाली पूरी तरह से स्थायी तरंग ढांचे के अनुसार अनुरूप नहीं हो सकती है, प्रणाली अवधारणा को दोलन के विशिष्ट राज्यों के सामान्य लक्षण वर्णन के रूप में लिया जाता है, इस प्रकार एक रैखिक आचरण में गतिशील प्रणाली का इलाज किया जाता है, जिसमें रैखिक अध्यारोपण राज्यों के सिद्धांत का प्रदर्शन किया जा सकता है।

शास्त्रीय उदाहरणों में सम्मलित हैं

  • एक यांत्रिक गतिशील प्रणाली में, एक कंपायमान रस्सी एक प्रणाली का सबसे स्पष्ट उदाहरण है, जिसमें रस्सी माध्यम है, रस्सी पर तनाव उत्तेजना है, और इसकी स्थिर स्थिति के संबंध में रस्सी का विस्थापन औसत चर है।
  • एक ध्वनिक गतिशील प्रणाली में, एक एकल ध्वनि तारत्व एक प्रणाली है, जिसमें हवा माध्यम है, हवा में ध्वनि दबाव उत्तेजना है, और हवा के अणुओं का विस्थापन औसत चर है।
  • एक संरचनात्मक गतिशील प्रणाली में, अपने सबसे आनमनी अक्ष के अनुसार दोलन एक उच्च लम्बी इमारत एक प्रणाली है, जिसमें भवन की सभी सामग्री -उचित संख्यात्मक सरलीकरण- माध्यम है, भूकंपीय/पवन/पर्यावरणीय अनुरोध उत्तेजनाएं हैं। और विस्थापन क्रियाभाव चर हैं।
  • एक विद्युत गतिशील प्रणाली में, पतली धातु की दीवारों से बना एक गुंजयमान गुहा, एक कण त्वरक के लिए एक खोखले स्थान को घेरना एक शुद्ध स्थायी तरंग प्रणाली है, और इस प्रकार एक प्रणाली का एक उदाहरण है, जिसमें गुहा का खोखला स्थान हैमध्यम, RF स्रोत (एक क्लाइस्ट्रॉन या एक अन्य RF स्रोत) उत्तेजना है और विद्युत चुम्बकीय क्षेत्र क्रियाभाव चर है।
  • जब संगीत से संबंधित होता है, तो कंपायमान यंत्र (तार, वायु पाइप, ड्रम, आदि) के सामान्य प्रणाली को मकसद कहा जाता है।

सामान्य प्रणाली की अवधारणा अन्य गतिशील प्रणालियों में भी आवेदन करती है, जैसे कि प्रकाशिकी, क्वांटम यांत्रिकी, वायुमंडलीय गतिशीलता और आणविक गतिशीलता

अधिकांश गतिशील प्रणाली कई प्रणाली में उत्साहित हो सकते हैं, संभवतः एक साथ। प्रत्येक प्रणाली में एक या कई आवृत्तियों की विशेषता है, क्रियाभाव चर क्षेत्र के अनुसार। उदाहरण के लिए, 2 आयामी स्थान में एक कंपायमान रस्सी को एकल-आवृत्ति (1 आयामी अक्षीय विस्थापन) द्वारा परिभाषित किया गया है, लेकिन 3 आयामी स्थान में एक कंपायमान रस्सी को दो आवृत्तियों (2 आयामी अक्षीय विस्थापन) द्वारा परिभाषित किया गया है।

क्रियाभाव चर पर दिए गए आयाम के लिए, प्रत्येक प्रणाली ज्यावक्रीय उत्तेजना के कारण ऊर्जा की एक विशिष्ट मात्रा को संग्रहीत करेगा।

कई प्रणाली के साथ एक सिस्टम का सामान्य या प्रमुख प्रणाली क्रियाभाव चर के दिए गए आयाम के लिए ऊर्जा की न्यूनतम मात्रा को संग्रहीत करने वाला प्रणाली होगा, या, समान रूप से, किसी दिए गए संग्रहीत मात्रा के लिए, प्रमुख प्रणाली, प्रणाली थोपने वाला प्रणाली होगा क्रियाभाव चर का अधिकतम आयाम।

प्रणाली संख्या

कंपन का एक प्रणाली एक क्रियाभाव आवृत्ति और एक प्रणाली आकार की विशेषता है। यह कंपन में आधी तरंगों की संख्या के अनुसार गिना जाता है।उदाहरण के लिए, यदि दोनों छोरों के साथ एक कंपायमान किरण पिन किया गया तो ज्यातरंग के आधे हिस्से का एक प्रणाली आकार प्रदर्शित करता है (कंपायमान किरण पर एक शिखर) यह प्रणाली 1 में कंपायमान होगा) यह प्रणाली 2 में कंपन होगा।

दो या अधिक आयामों के साथ एक प्रणाली में, जैसे कि चित्रित चकती, प्रत्येक आयाम को एक प्रणाली संख्या दी जाती है। ध्रुवीय समन्वय प्रणाली का उपयोग करते हुए, हमारे पास एक त्रिज्यीय समन्वय और एक कोणीय समन्वय है। यदि त्रिज्यीय समन्वय के साथ केंद्र से बाहर की ओर मापा जाता है, तो एक पूर्ण लहर का सामना करेगा, इसलिए त्रिज्यीय दिशा में प्रणाली संख्या 2 है। दूसरी दिशा मुश्किल है, क्योंकि चकती का केवल आधा हिस्सा प्रतिसममित के कारण माना जाता है जिसे गणित में समरूपता भी कहा जाता है # तिरछा-समरूपता | तिरछी-समरूपता कोणीय दिशा में एक चकती के कंपन की प्रकृति। इस प्रकार, कोणीय दिशा के साथ 180° को मापने से आप एक आधा लहर का सामना करेंगे, इसलिए कोणीय दिशा में प्रणाली संख्या 1 है। इसलिए व्यवस्था प्रणाली संख्या 2-1 या 1-2 है, जिसके आधार पर समन्वय माना जाता है पहला और जिसे दूसरा समन्वय माना जाता है (इसलिए यह हमेशा यह इंगित करना महत्वपूर्ण है कि प्रत्येक समन्वय दिशा के साथ कौन सा प्रणाली नंबर मेल खाता है)।

रैखिक प्रणालियों में प्रत्येक प्रणाली अन्य सभी प्रणाली से पूरी तरह से स्वतंत्र है। सामान्य तौर पर सभी प्रणाली में अलग -अलग आवृत्तियां होती हैं (कम प्रणाली वाले कम आवृत्तियों वाले) और अलग -अलग प्रणाली आकार।

नोड्स

ड्रम झिल्ली का एक विधा आकार, जिसमें नोडल लाइनें पेल हरे रंग में दिखाए गए हैं

किसी दिए गए प्रणाली में एक आयामी प्रणाली में कंपन में नोड्स होंगे, या वे स्थान जहां विस्थापन हमेशा शून्य होता है। ये नोड्स प्रणाली आकार में बिंदुओं के अनुरूप हैं जहां प्रणाली आकार शून्य है। चूंकि एक सिस्टम की कंपन प्रणाली रूप द्वारा एक समय क्रिया से गुणा किया जाता है, इसलिए नोड बिंदुओं का विस्थापन हर समय शून्य रहता है।

जब दो आयामी प्रणाली में विस्तारित किया जाता है, तो ये नोड्स ऐसी रेखाएं बन जाती हैं जहां विस्थापन हमेशा शून्य होता है। यदि आप ऊपर दिए गए जीवंतता को देखते हैं, तो आप दो सर्कल (किनारे और केंद्र के बीच लगभग आधा, और दूसरा किनारे पर) और चकती को काटने वाली एक सीधी रेखा देखेंगे, जहां विस्थापन शून्य के करीब है। एक आदर्श प्रणाली में ये पंक्तियाँ बिल्कुल शून्य के बराबर हैं, जैसा कि दाईं ओर दिखाया गया है।

यांत्रिक व्यवस्था में

युग्मित दोलक

दो समान निकायों (गुरुत्वाकर्षण से प्रभावित नहीं) पर विचार करें, प्रत्येक द्रव्यमान एम, तीन स्प्रिंग्स से जुड़ा हुआ है, प्रत्येक वसंत स्थिरांक के साथ। वे निम्नलिखित तरीके से जुड़े हुए हैं, एक ऐसी प्रणाली बनाते हैं जो शारीरिक रूप से सममित है:

Coupled Harmonic Oscillator.svgजहां किनारे अंक तय किए गए हैं और स्थानांतरित नहीं हो सकते। हम x1(टी) का उपयोग करेंगे, बाएं द्रव्यमान के क्षैतिज विस्थापन (दूरी) को निरूपित करने के लिए, और x2(टी) सही द्रव्यमान के विस्थापन को निरूपित करने के लिए।

यदि कोई त्वरण को दर्शाता है (समय के संबंध में x (t) का दूसरा व्युत्पन्न) , गति के समीकरण हैं:

चूंकि हम एक प्रसामान्य विधा के दोलन गति की उम्मीद करते हैं (जहां ω दोनों द्रव्यमानों के लिए समान है), हम कोशिश करते हैं:

गति के समीकरणों में इन्हें प्रतिस्थापित करना हमें देता है:

चूंकि घातीय कारक सभी शर्तों के लिए सामान्य: है, हम इसे छोड़ देते हैं और सरल करते हैं:

और मैट्रिक्स (गणित) में प्रतिनिधित्व:

यदि बाईं ओर मैट्रिक्स उल्टा है, तो अद्वितीय समाधान तुच्छ समाधान है (A1, A2) = (x1, x2) = (0,0)। गैर तुच्छ समाधानों को उन मूल्यों के लिए पाया जाना है, जिससे बाईं ओर मैट्रिक्स एकवचन मैट्रिक्स है अर्थात उल्टा नहीं है। यह निम्नानुसार है कि मैट्रिक्स का निर्धारक 0 के बराबर होना चाहिए, इसलिए:

के लिए हल करना , हमारे पास दो सकारात्मक समाधान हैं:

यदि हम विकल्प ω1 मैट्रिक्स में और के लिए हल करें (A1, A2), हम (1, 1) प्राप्त करते हैं।यदि हम विकल्प ω2, हम (1, −1) प्राप्त करते हैं।(ये वैक्टर ईजेनवेक्टर हैं, और आवृत्तियों इगनवेल्यूज़ हैं।)

पहला सामान्य प्रणाली है:

जो एक ही समय में एक ही दिशा में घूमने वाले दोनों द्रव्यमानों से मेल खाती है। इस प्रणाली को प्रतिसममित कहा जाता है।

दूसरा सामान्य प्रणाली है:

यह विपरीत दिशाओं में जाने वाले जनता से मेल खाता है, जबकि द्रव्यमान का केंद्र स्थिर रहता है। इस प्रणाली को सममित कहा जाता है।

सामान्य समाधान सामान्य प्रणाली का एक अधिस्थापन सिद्धांत है जहां c1, c2, φ1, और φ2, समस्या की प्रारंभिक स्थितियों से निर्धारित होते हैं।

यहां प्रदर्शित प्रक्रिया को सामान्यीकृत किया जा सकता है और लार्जानियन(लग्रांजी) यांत्रिकी या हैमिल्टनियन यांत्रिकी की औपचारिकता का उपयोग करके तैयार किया जा सकता है।

खड़ी लहरें

एक स्थायी लहर सामान्य प्रणाली का एक निरंतर रूप है। एक स्थायी लहर में, सभी अंतरिक्ष तत्व (अर्थात (x, y, z) निर्देशांक) एक ही आवृत्ति और चरण (तरंगों) में दोलन कर रहे हैं (तरंगों) (एक साथ यांत्रिक संतुलन बिंदु तक पहुंचने), लेकिन प्रत्येक में एक अलग आयाम है।

Standing-wave05.pngएक स्थायी लहर का सामान्य रूप है:

जहां ƒ(x, y, z) स्थान पर आयाम की निर्भरता का प्रतिनिधित्व करता है और समय में कोसाइन \ साइन दोलन हैं।

शारीरिक रूप से, खड़ी तरंगों का गठन तरंगों और उनके प्रतिबिंबों के हस्तक्षेप (तरंग प्रसार) ( अधिस्थापन) द्वारा किया जाता है (चूंकि कोई भी विपरीत कह सकता है; कि एक चलती लहर खड़ी तरंगों का एक अधिस्थापन सिद्धांत है)। माध्यम का ज्यामितीय आकार यह निर्धारित करता है कि हस्तक्षेप पैटर्न क्या होगा, इस प्रकार खड़ी तरंग के ƒ(x, y, z) रूप को निर्धारित करता है। इस अंतरिक्ष-निर्भरता को 'सामान्य प्रणाली' कहा जाता है।

सामान्यत: पर, (x, y, z) पर निरंतर निर्भरता के साथ समस्याओं के लिए सामान्य प्रणाली की एक एकल या परिमित संख्या नहीं है, लेकिन असीम रूप से कई सामान्य प्रणाली हैं। यदि समस्या बंधी हुई है (अर्थात इसे अंतरिक्ष के एक परिमित खंड पर परिभाषित किया गया है) तो कई सामान्य प्रणाली हैं (सामान्यत: पर n = 1, 2, 3, ...)। यदि समस्या बंधी नहीं है, तो सामान्य प्रणाली की एक निरंतर तरंग है।

लोचदार ठोस

किसी भी तापमान पर किसी भी ठोस में, प्राथमिक कण (जैसे परमाणु या अणु) स्थिर नहीं होते हैं, बल्कि माध्य पदों के बारे में कंपन करते हैं। अवरोधक में ऊष्मीय ऊर्जा को एकत्रित करने के लिए ठोस की क्षमता लगभग पूरी तरह से इन कंपन के कारण होती है। ठोस (जैसे लोच के मापांक) के कई भौतिक गुणों को उन आवृत्तियों के ज्ञान की भविष्यवाणी की जा सकती है जिनके साथ कण कंपन करते हैं। सबसे सरल धारणा (आइंस्टीन द्वारा) यह है कि सभी कण एक ही प्राकृतिक आवृत्ति ν के साथ अपने औसत पदों के बारे में दोलन करते हैं। यह इस धारणा के बराबर है कि सभी परमाणु स्वतंत्र रूप से एक आवृत्ति ν के साथ कंपन करते हैं।आइंस्टीन ने यह भी मान लिया कि इन दोलनों की अनुमत ऊर्जा राज्य सन्नाद हैं, या Hν के अभिन्न गुणक हैं। तरंगों के तरंग को ज्यावक्रीय घनत्व में उतार -चढ़ाव (या ऊष्मीय फोनन) की एक फूरियर श्रृंखला का उपयोग करके गणितीय रूप से वर्णित किया जा सकता है।

मौलिक आवृत्ति और एक कंपन स्ट्रिंग के पहले छह आगे बढ़ना। मणिभ ठोस पदार्थों में तरंग प्रसार के गणित में सन्नाद को साइन तरंग( ज्या तरंग) घनत्व में उतार -चढ़ाव (या परमाणु विस्थापन तरंगों) की एक आदर्श फूरियर श्रृंखला के रूप में माना जाता है।

डेबी ने बाद में माना कि प्रत्येक थरथरानवाला हर समय अपने पड़ोसी थरथरानवाला के लिए युग्मित है। इस प्रकार, आइंस्टीन के समान अनचाहे दोलक को समान संख्या में युग्मित दोलक के साथ बदलकर, डेबी ने एक तनित रस्सी (चित्र देखें) के कंपन के विशेष प्रणाली की संख्या के साथ एक आयामी ठोस के लोचदार कंपन को सहसंबद्ध किया। सबसे कम पिच या आवृत्ति के शुद्ध स्वर को मौलिक के रूप में संदर्भित किया जाता है और उस आवृत्ति के गुणकों को इसके अनुकंपी स्वयंभू स्वर कहा जाता है। उन्होंने दोलकों में से एक को ठोस के पूरे सांचा के मौलिक कंपन की आवृत्ति को सौंपा। उन्होंने शेष दोलक को उस मौलिक के अनुकंपी की आवृत्तियों को सौंपा, इन सभी आवृत्तियों के उच्चतम सबसे छोटे प्राथमिक इकाई की गति द्वारा सीमित किया गया।

एक मणिभ के कंपन के सामान्य तरीके कई स्वयंभू स्वर के सामान्य अधिस्थापन में होते हैं, जिनमें से प्रत्येक एक उपयुक्त आयाम और चरण के साथ होता है। लंबी तरंग दैर्ध्य (कम आवृत्ति) फोनन वास्तव में उन ध्वनिक कंपन हैं जिन्हें ध्वनि के सिद्धांत में माना जाता है। अनुदैर्ध्य और अनुप्रस्थ तरंगों दोनों को एक ठोस के माध्यम से प्रचारित किया जा सकता है, जबकि, सामान्य रूप से, केवल अनुदैर्ध्य तरंगों को तरल पदार्थों द्वारा समर्थित किया जाता है।

अनुदैर्ध्य प्रणाली में, संतुलन की उनकी स्थिति से कणों का विस्थापन तरंग के प्रसार दिशा के साथ मेल खाता है। यांत्रिक अनुदैर्ध्य तरंगों को संपीड़न तरंगों के रूप में भी संदर्भित किया गया है। अनुप्रस्थ प्रणाली के लिए, व्यक्तिगत कण तरंग के प्रसार के लिए लंबवत चलते हैं।

क्वांटम थ्योरी के अनुसार, विशेषता आवृत्ति ν के साथ एक मणिभ ठोस के एक सामान्य कंपन प्रणाली की औसत ऊर्जा है:

शब्द (1/2) Hν शून्य-बिंदु ऊर्जा, या ऊर्जा का प्रतिनिधित्व करता है, जो एक थरथरानवाला में निरपेक्ष शून्य पर होगा।ई (ν) उच्च तापमान पर उत्कृष्ट मूल्य kT तक जाता है

ऊष्मागतिक सूत्र को जानने से,

सामान्य प्रणाली प्रति एन्ट्रापी(उत्क्रम-माप) है:

मुक्त ऊर्जा है:

जो, kT >> , के लिए जाता है:

आंतरिक ऊर्जा और विशिष्ट गर्मी की गणना करने के लिए, हमें सामान्य कंपन प्रणाली की संख्या का पता होना चाहिए जो मान ν और ν + dν के बीच एक आवृत्ति है।इस संख्या को f (ν) dν होने दें। चूंकि सामान्य प्रणाली की कुल संख्या 3N है, इसलिए क्रिया F (ν) द्वारा दिया गया है:

एकीकरण मणिभ की सभी आवृत्तियों पर किया जाता है। तब आंतरिक ऊर्जा U द्वारा दी जाएगी:


क्वांटम यांत्रिकी में

क्वांटम यांत्रिकी में, एक राज्य एक प्रणाली का वर्णन एक तरंग द्वारा किया जाता है जो श्रोडिंगर समीकरण को हल करता है। कि निरपेक्ष मूल्य का वर्ग , अर्थात।

समय t में दूरी X में कण को मापने के लिए संभावना घनत्व क्रिया है।

सामान्यत: पर, जब किसी प्रकार की क्षमता को सम्मलित किया जाता है, तो तरंग को ऊर्जा के एक परिमाणित अधिशृच्छिक में विघटित किया जाता है, प्रत्येक आवृत्ति के साथ दोलन करता है । इस प्रकार, कोई लिख सकता है

इगनस्टेट्स का एक भौतिक अर्थ एक ऑर्थोनॉर्मल( प्रसामान्य लांबिक विश्लेषण) आधार से आगे है। जब तंत्र की ऊर्जा क्वांटम यांत्रिकी में माप होती है, तो तरंग क्रिया उसके एक इगनस्टेट्स में से एक में ढह जाता है और इसलिए कण तरंग को मापा ऊर्जा के अनुरूप शुद्ध इगनस्टेट्स द्वारा वर्णित किया जाता है।

भूकंपविज्ञान में

प्रसामान्य विधा पृथ्वी में लंबे तरंग दैर्ध्य भूकंपीय तरंगों से उत्पन्न होते हैं जो बड़े भूकंपों से हस्तक्षेप करते हैं जो खड़ी तरंगों का निर्माण करते हैं।

एक लोचदार, समदैशिक, सजातीय क्षेत्र, गोलाकार, टोरोइडल और त्रिज्यीय (या श्वास) विधा उत्पन्न होते हैं। गोलाकार प्रणाली में केवल Pऔर SV तरंगें (रेलेह वेव्स की तरह) सम्मलित होती हैं और अधिस्वर नंबर n और कोणीय क्रम l पर निर्भर करती हैं, लेकिन दिगंशीय व्यवस्था मीटर की विकृति होती है। बढ़ती l सतह के करीब मौलिक शाखा को केंद्रित करती है और बड़े l पर यह रेले लहरों की ओर जाता है। टॉरॉइडल प्रणाली में केवल प्यार लहरें (जैसे प्रेम तरंगें) सम्मलित होती हैं और द्रव बाहरी अंतर्भाग में सम्मलित नहीं होते हैं। त्रिज्यीय विधा l = 0 के साथ गोलाकार प्रणाली का एक उपवर्ग है। पृथ्वी पर पतन का अस्तित्व नहीं है क्योंकि यह क्रमावर्तन,अण्डाकारता और 3 अयाम विषम वेग और घनत्व संरचना से टूट जाता है।

यह माना जा सकता है कि प्रत्येक प्रणाली को अलग किया जा सकता है, स्व-युग्मन सन्निकटन, या कि कई प्रणाली आवृत्ति में बंद हो जाते हैं, तिर्यक युग्मन सन्निकटन। स्व युग्मन केवल चरण के वेग को बदल देगा न कि एक महान सर्कल के आसपास तरंगों की संख्या, जिसके परिणामस्वरूप खड़ी तरंग आकार का खिंचना या सिकुड़ना होगा। क्रियाभाव तिर्यक युग्मन पृथ्वी के घूर्णन के कारण होता है, गोलाकार लोचदार संरचना से, या पृथ्वी की अण्डाकारता के कारण और मौलिक गोलाकार और टॉरॉइडल प्रणाली के मिश्रण की ओर जाता है।

यह भी देखें

स्रोत

  • Blevins, Robert D. (2001). प्राकृतिक आवृत्ति और मोड आकार के लिए सूत्र (Reprint ed.). Malabar, Florida: Krieger Pub. ISBN 978-1575241845.
  • Tzou, H.S.; Bergman, L.A., eds. (2008). वितरित प्रणालियों की गतिशीलता और नियंत्रण।. Cambridge [England]: Cambridge University Press. ISBN 978-0521033749.
  • Shearer, Peter M. (2009). भूकंप विज्ञान का परिचय (2nd ed.). Cambridge: Cambridge University Press. pp. 231–237. ISBN 9780521882101.


बाहरी कड़ियाँ