फ्रैक्चर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Split of materials or structures under stress}}
{{Short description|Split of materials or structures under stress}}
{{About|the science of fractures|predicting fractures|Fracture mechanics|bone fractures|Bone fracture|other uses|Fracture (disambiguation)}}
{{About|फ्रैक्चर का विज्ञान|फ्रैक्चर की भविष्यवाणी|फ्रैक्चर यांत्रिकी|हड्डी टूटना|हड्डी फ्रैक्चर|v|फ्रैक्चर (बहुविकल्पी)}}[[File:DuctileFailure.jpg|thumb|एक धातु के मानके की तन्य विफलता अक्षीय रूप से तनी हुई है]]
{{Use dmy dates|date=August 2019}}
{{More citations needed|date=September 2010}}
[[File:DuctileFailure.jpg|thumb|एक धातु के मानके की तन्य विफलता अक्षीय रूप से तनी हुई है]]
{{Mechanical failure modes}}
{{Mechanical failure modes}}
फ्रैक्चर [[तनाव (भौतिकी)]] की  क्रिया के अनुसार किसी वस्तु या पदार्थ को दो या दो से अधिक टुकड़ों में अलग करना है। एक ठोस का फ्रैक्चर अधिकांश ठोस के अन्दर कुछ विस्थापन विच्छिन्न सतहों के विकास के कारण होता है। यदि कोई विस्थापन सतह के लंबवत विकसित होता है, तो इसे सामान्य तन्यता दरार या केवल दरार कहा जाता है; यदि कोई विस्थापन स्पर्शरेखीय रूप से विकसित होता है, तो इसे कतरनी दरार, सर्पण बैंड या [[अव्यवस्था|जोड़ का हट जाना]] कहा जाता है।<ref name= "Cherepanov">{{Citation |last= Cherepanov |first= G.P.  |title= Mechanics of Brittle Fracture}}</ref>
फ्रैक्चर [[तनाव (भौतिकी)]] की  क्रिया के अनुसार किसी वस्तु या पदार्थ को दो या दो से अधिक टुकड़ों में अलग करना है। एक ठोस का फ्रैक्चर अधिकांश ठोस के अन्दर कुछ विस्थापन विच्छिन्न सतहों के विकास के कारण होता है। यदि कोई विस्थापन सतह के लंबवत विकसित होता है, तो इसे सामान्य तन्यता दरार या केवल दरार कहा जाता है; यदि कोई विस्थापन स्पर्शरेखीय रूप से विकसित होता है, तो इसे कतरनी दरार, सर्पण बैंड या [[अव्यवस्था|जोड़ का हट जाना]] कहा जाता है।<ref name= "Cherepanov">{{Citation |last= Cherepanov |first= G.P.  |title= Mechanics of Brittle Fracture}}</ref>


फ्रैक्चर से पहले भंगुर फ्रैक्चर बिना किसी स्पष्ट विकृति के होते हैं। दृश्य विकृति के बाद नमनीय फ्रैक्चर होते हैं। फ्रैक्चर सामर्थ्य, या  विभंजन सामर्थ्य, तनाव है जब एक मानक विफल या फ्रैक्चर होता है। फ्रैक्चर कैसे होता है और पदार्थ में कैसे विकसित होता है, इसकी विस्तृत समझ [[फ्रैक्चर यांत्रिकी]] का उद्देश्य है।
फ्रैक्चर से पहले भंगुर फ्रैक्चर बिना किसी स्पष्ट विकृति के होते हैं। दृश्य विकृति के बाद तन्य फ्रैक्चर होते हैं। फ्रैक्चर सामर्थ्य, या  विभंजन सामर्थ्य, तनाव है जब एक मानक विफल या फ्रैक्चर होता है। फ्रैक्चर कैसे होता है और पदार्थ में कैसे विकसित होता है, इसकी विस्तृत समझ [[फ्रैक्चर यांत्रिकी]] का उद्देश्य है।


== शक्ति ==
== शक्ति ==
Line 18: Line 15:
     |Fracture
     |Fracture
     |Offset strain (typically 0.2%)
     |Offset strain (typically 0.2%)
}}]]फ्रैक्चर तनाव, जिसे टूटता हुआ तनाव के रूप में भी जाना जाता है, वह तनाव है जिस पर एक मानक संरचनात्मक अखंडता और फ्रैक्चर के माध्यम से विफलता होती है।<ref name="degarmo">{{Citation |last1= Degarmo |first1= E. Paul |last2= Black |first2= J T. |last3= Kohser |first3= Ronald A. |title= Materials and Processes in Manufacturing |publisher= Wiley |page= 32 |year= 2003 |edition= 9th |isbn= 0-471-65653-4 |postscript =.}}</ref> यह सामायतः एक तन्य परीक्षण द्वारा दिए गए मानक के लिए निर्धारित किया जाता है, जो तनाव-तनाव वक्र (चित्र देखें) को चार्ट करता है। अंतिम दर्ज बिंदु फ्रैक्चर ताकत है।
}}]]फ्रैक्चर तनाव, जिसे टूटता हुआ तनाव के रूप में भी जाना जाता है, वह तनाव है जिस पर कोई मानक संरचनात्मक अखंडता और फ्रैक्चर के माध्यम से विफलता होती है।<ref name="degarmo">{{Citation |last1= Degarmo |first1= E. Paul |last2= Black |first2= J T. |last3= Kohser |first3= Ronald A. |title= Materials and Processes in Manufacturing |publisher= Wiley |page= 32 |year= 2003 |edition= 9th |isbn= 0-471-65653-4 |postscript =.}}</ref> यह सामायतः एक तन्य परीक्षण द्वारा दिए गए मानक के लिए निर्धारित किया जाता है, जो तनाव-तनाव वक्र (चित्र देखें) को चार्ट करता है। अंतिम अंकित बिंदु फ्रैक्चर शक्ति है।


तन्य सामग्रियों में अंतिम तन्यता ताकत (यूटीएस) की तुलना में फ्रैक्चर ताकत कम होती है, जबकि भंगुर सामग्रियों में फ्रैक्चर ताकत यूटीएस के बराबर होती है।<ref name="degarmo"/> यदि एक तन्य पदार्थ भार-नियंत्रित स्थिति में अपनी परम तन्य शक्ति तक पहुँच जाती है,{{#tag:ref|A simple load-controlled tensile situation would be to support a specimen from above, and hang a weight from the bottom end.  The load on the specimen is then independent of its deformation.|group="Note"}} जब तक यह फट नहीं जाता, तब तक यह बिना किसी अतिरिक्त भार के विकृत होता रहेगा। चूँकि, यदि लोडिंग विस्थापन-नियंत्रित है,{{#tag:ref|A simple displacement-controlled tensile situation would be to attach a very stiff [[Jack (device)|jack]] to the ends of a specimen.  As the jack extends, it controls the displacement of the specimen; the load on the specimen is dependent on the deformation.|group="Note"}} पदार्थ का विरूपण भार को दूर कर सकता है, टूटना को रोक सकता है।
तन्य पदार्थों में अंतिम तन्यता शक्ति (यूटीएस) की तुलना में फ्रैक्चर शक्ति कम होती है, जबकि भंगुर पदार्थों में फ्रैक्चर शक्ति यूटीएस के बराबर होती है।<ref name="degarmo"/> यदि कोई तन्य पदार्थ भार-नियंत्रित स्थिति में अपनी परम तन्य शक्ति तक पहुँच जाती है,{{#tag:ref|A simple load-controlled tensile situation would be to support a specimen from above, and hang a weight from the bottom end.  The load on the specimen is then independent of its deformation.|group="Note"}} जब तक यह फट नहीं जाता, तब तक यह बिना किसी अतिरिक्त भार के विकृत होता रहेगा। चूँकि, यदि लोडिंग विस्थापन-नियंत्रित है,{{#tag:ref|A simple displacement-controlled tensile situation would be to attach a very stiff [[Jack (device)|jack]] to the ends of a specimen.  As the jack extends, it controls the displacement of the specimen; the load on the specimen is dependent on the deformation.|group="Note"}} पदार्थ का विरूपण भार को दूर कर सकता है, टूटना को रोक सकता है।


यादृच्छिक सामग्रियों में फ्रैक्चर के आंकड़े बहुत ही जटिल व्यवहार करते हैं, और वास्तुकारों और इंजीनियरों द्वारा काफी पहले ही नोट कर लिया गया था। वास्तविक में, फ्रैक्चर या ब्रेकडाउन अध्ययन सबसे पुराना भौतिक विज्ञान अध्ययन हो सकता है, जो अभी भी पेचीदा और बहुत अधिक जीवित है। लियोनार्डो दा विंची ने 500 से अधिक साल पहले देखा कि लोहे के तार के समान रूप से समान मानकों की तन्यता ताकत तारों की बढ़ती लंबाई के साथ घट जाती है (उदाहरण के लिए देखें,<ref name="Lund">{{Citation |last1= Lund |first1= J. R. |last2= Bryne |first2= J. P.  |title= Civil. Eng. and Env. Syst. 18 (2000) 243}}</ref> हाल की चर्चा के लिए)। इसी तरह के अवलोकन [[गैलिलियो गैलिली]] ने 400 साल पहले किए थे। यह विफलता के अत्यधिक आँकड़ों की अभिव्यक्ति है (बड़े मानके की मात्रा में संचयी उतार-चढ़ाव के कारण बड़े दोष हो सकते हैं जहाँ विफलताएँ मानक की कम शक्ति को प्रेरित करती हैं)।<ref name="Chakrabarti 2017">{{cite journal |last1=Chakrabarti |first1=Bikas K. |title=फ्रैक्चर, ब्रेकडाउन और भूकंप के सांख्यिकीय भौतिकी में विकास की कहानी: एक व्यक्तिगत खाता|journal=Reports in Advances of Physical Sciences |date=December 2017 |volume=01 |issue=4 |pages=1750013 |doi=10.1142/S242494241750013X |language=en |issn=2424-9424|doi-access=free }} [[File:CC-BY icon.svg|50px]]  Text was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/  Creative Commons Attribution 4.0 International License].</ref>
यादृच्छिक पदार्थों में फ्रैक्चर के आंकड़े बहुत ही जटिल व्यवहार करते हैं, और वास्तुकारों और इंजीनियरों द्वारा काफी पहले ही नोट कर लिया गया था। वास्तविक में, फ्रैक्चर या ब्रेकडाउन अध्ययन सबसे पुराना भौतिक विज्ञान अध्ययन हो सकता है, जो अभी भी पेचीदा और बहुत अधिक जीवित है। लियोनार्डो दा विंची ने 500 से अधिक साल पहले देखा कि लोहे के तार के समान रूप से समान मानकों की तन्यता शक्ति तारों की बढ़ती लंबाई के साथ घट जाती है (उदाहरण के लिए देखें,<ref name="Lund">{{Citation |last1= Lund |first1= J. R. |last2= Bryne |first2= J. P.  |title= Civil. Eng. and Env. Syst. 18 (2000) 243}}</ref> हाल की चर्चा के लिए)। इसी तरह के अवलोकन [[गैलिलियो गैलिली]] ने 400 साल पहले किए थे। यह विफलता के अत्यधिक आँकड़ों की अभिव्यक्ति है (बड़े मानके की मात्रा में संचयी उतार-चढ़ाव के कारण बड़े दोष हो सकते हैं जहाँ विफलताएँ मानक की कम शक्ति को प्रेरित करती हैं)।<ref name="Chakrabarti 2017">{{cite journal |last1=Chakrabarti |first1=Bikas K. |title=फ्रैक्चर, ब्रेकडाउन और भूकंप के सांख्यिकीय भौतिकी में विकास की कहानी: एक व्यक्तिगत खाता|journal=Reports in Advances of Physical Sciences |date=December 2017 |volume=01 |issue=4 |pages=1750013 |doi=10.1142/S242494241750013X |language=en |issn=2424-9424|doi-access=free }} [[File:CC-BY icon.svg|50px]]  Text was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/  Creative Commons Attribution 4.0 International License].</ref>




== प्रकार ==
== प्रकार ==
फ्रैक्चर दो प्रकार के होते हैं: भंगुर फ्रैक्चर और नमनीय फ्रैक्चर और  [[प्लास्टिसिटी (भौतिकी)]] के बिना या विफलता से पहले क्रमशः तन्य भंग।
फ्रैक्चर दो प्रकार के होते हैं: भंगुर फ्रैक्चर और तन्य फ्रैक्चर और  [[प्लास्टिसिटी (भौतिकी)]] के बिना या विफलता से पहले क्रमशः तन्य भंग।


=== भंगुर ===
=== भंगुर ===
Line 32: Line 29:
[[File:Pedalarm Bruch.jpg|thumb|right|alt=A roughly ovoid metal cylinder, viewed end-पर। धातु की अंतिम सतह का निचला दाहिना भाग गहरा और थोड़ा विकृत है, जबकि बाकी का रंग बहुत हल्का है और विकृत नहीं है। एक साइकिल का, जहां उज्ज्वल क्षेत्र भंगुर फ्रैक्चर दिखाते हैं, और अंधेरे क्षेत्र थकान फ्रैक्चर दिखाते हैं।]][[भंगुरता|भंगुर]] फ्रैक्चर में, फ्रैक्चर से पहले कोई स्पष्ट प्लास्टिक विरूपण (भौतिकी) नहीं होती है। भंगुर फ्रैक्चर में सामान्यतः कम ऊर्जा अवशोषण सम्मिलित होता है, और स्टील में 2,133.6 m/s (7,000 ft/s) तक उच्च गति पर होता है।<ref name="Rolfe" /> अधिकत्तर स्थितियों में लोडिंग बंद होने पर भी भंगुर फ्रैक्चर जारी रहेगा।<ref name="Campbell" />
[[File:Pedalarm Bruch.jpg|thumb|right|alt=A roughly ovoid metal cylinder, viewed end-पर। धातु की अंतिम सतह का निचला दाहिना भाग गहरा और थोड़ा विकृत है, जबकि बाकी का रंग बहुत हल्का है और विकृत नहीं है। एक साइकिल का, जहां उज्ज्वल क्षेत्र भंगुर फ्रैक्चर दिखाते हैं, और अंधेरे क्षेत्र थकान फ्रैक्चर दिखाते हैं।]][[भंगुरता|भंगुर]] फ्रैक्चर में, फ्रैक्चर से पहले कोई स्पष्ट प्लास्टिक विरूपण (भौतिकी) नहीं होती है। भंगुर फ्रैक्चर में सामान्यतः कम ऊर्जा अवशोषण सम्मिलित होता है, और स्टील में 2,133.6 m/s (7,000 ft/s) तक उच्च गति पर होता है।<ref name="Rolfe" /> अधिकत्तर स्थितियों में लोडिंग बंद होने पर भी भंगुर फ्रैक्चर जारी रहेगा।<ref name="Campbell" />


भंगुर क्रिस्टलीय सामग्रियों में, [[दरार (क्रिस्टल)]] के कारण फ्रैक्चर हो सकता है क्योंकि तन्य तनाव के परिणामस्वरूप कम बंधन (दरार वाले समतलों) के साथ क्रिस्टलोग्राफिक समतलों के लिए सामान्य कार्य होता है। [[अनाकार ठोस|अव्यवस्थित ठोस]] पदार्थों में, इसके विपरीत, एक क्रिस्टलीय संरचना की कमी के परिणामस्वरूप शंक्वाकार फ्रैक्चर होता है, जिसमें दरारें लागू तनाव के लिए सामान्य होती हैं।
भंगुर क्रिस्टलीय पदार्थों में, [[दरार (क्रिस्टल)]] के कारण फ्रैक्चर हो सकता है क्योंकि तन्य तनाव के परिणामस्वरूप कम बंधन (दरार वाले समतलों) के साथ क्रिस्टलोग्राफिक समतलों के लिए सामान्य कार्य होता है। [[अनाकार ठोस|अव्यवस्थित ठोस]] पदार्थों में, इसके विपरीत, एक क्रिस्टलीय संरचना की कमी के परिणामस्वरूप शंक्वाकार फ्रैक्चर होता है, जिसमें दरारें लागू तनाव के लिए सामान्य होती हैं।


किसी पदार्थ की फ्रैक्चर शक्ति (या माइक्रो-क्रैक न्यूक्लिएशन स्ट्रेस) का पहली बार 1921 में [[एलन अर्नोल्ड ग्रिफ़िथ]] द्वारा सैद्धांतिक रूप से अनुमान लगाया गया था:
किसी पदार्थ की फ्रैक्चर शक्ति (या माइक्रो-क्रैक न्यूक्लिएशन स्ट्रेस) का पहली बार 1921 में [[एलन अर्नोल्ड ग्रिफ़िथ]] द्वारा सैद्धांतिक रूप से अनुमान लगाया गया था:
Line 50: Line 47:
इन दोनों समीकरणों को एक साथ रखने पर प्राप्त होता है
इन दोनों समीकरणों को एक साथ रखने पर प्राप्त होता है
:<math>\sigma_\mathrm{fracture}= \sqrt{ \frac{E \gamma \rho}{4 a r_o}}.</math>
:<math>\sigma_\mathrm{fracture}= \sqrt{ \frac{E \gamma \rho}{4 a r_o}}.</math>
तीव्र दरारें (छोटा <math>\rho</math>) और बड़े दोष (बड़े <math>a</math>) दोनों पदार्थ की फ्रैक्चर ताकत को कम करते हैं।
तीव्र दरारें (छोटा <math>\rho</math>) और बड़े दोष (बड़े <math>a</math>) दोनों पदार्थ की फ्रैक्चर शक्ति को कम करते हैं।


हाल ही में, वैज्ञानिकों ने [[सुपरसोनिक फ्रैक्चर]] की खोज की है, एक पदार्थ में ध्वनि की गति की तुलना में दरार प्रसार की घटना सुपरसोनिक फ्रैक्चर कहलाता है ।<ref>{{cite journal |author1=C. H. Chen |author2=H. P. Zhang |author3=J. Niemczura |author4=K. Ravi-Chandar |author5=M. Marder |title=रबड़ की चादरों में दरार प्रसार की स्केलिंग|journal=Europhysics Letters |volume=96 |issue=3|pages=36009 |date=November 2011 |doi=10.1209/0295-5075/96/36009 |bibcode= 2011EL.....9636009C |s2cid=5975098 }}</ref> इस घटना को हाल ही में रबर जैसी पदार्थ में फ्रैक्चर के प्रयोग से भी सत्यापित किया गया था।
हाल ही में, वैज्ञानिकों ने [[सुपरसोनिक फ्रैक्चर]] की खोज की है, एक पदार्थ में ध्वनि की गति की तुलना में दरार प्रसार की घटना सुपरसोनिक फ्रैक्चर कहलाता है ।<ref>{{cite journal |author1=C. H. Chen |author2=H. P. Zhang |author3=J. Niemczura |author4=K. Ravi-Chandar |author5=M. Marder |title=रबड़ की चादरों में दरार प्रसार की स्केलिंग|journal=Europhysics Letters |volume=96 |issue=3|pages=36009 |date=November 2011 |doi=10.1209/0295-5075/96/36009 |bibcode= 2011EL.....9636009C |s2cid=5975098 }}</ref> इस घटना को हाल ही में रबर जैसी पदार्थ में फ्रैक्चर के प्रयोग से भी सत्यापित किया गया था।


एक विशिष्ट भंगुर फ्रैक्चर में मूल अनुक्रम है: पदार्थ को सेवा में डालने से पहले या बाद में एक दोष का परिचय, आवर्ती लोडिंग के तहत धीमी और स्थिर दरार प्रसार, और अचानक तेजी से विफलता जब फ्रैक्चर यांत्रिकी द्वारा परिभाषित स्थितियों के आधार पर दरार महत्वपूर्ण दरार लंबाई तक पहुंच जाती है।<ref name="Campbell">{{cite book|editor-last1=Campbell|editor-first1=F.C.|title=थकान और फ्रैक्चर: मूल बातें समझना|date=2012|publisher=ASM International|location=Materials Park, Ohio|isbn=978-1615039760}}</ref> तीन प्राथमिक कारकों को नियंत्रित करके भंगुर फ्रैक्चर से बचा जा सकता है: पदार्थ फ्रैक्चर की कठोरता (K{{sub|c}}), नाममात्र तनाव स्तर (σ), और दोष का आकार (a) पेश किया।<ref name="Rolfe">{{cite book|last1=Rolfe|first1=John M. Barsom, Stanley T.|title=संरचनाओं में फ्रैक्चर और थकान नियंत्रण: फ्रैक्चर यांत्रिकी के अनुप्रयोग|date=1999|publisher=ASTM|location=West Conshohocken, Pa.|isbn=0803120826|edition=3.}}</ref> अवशिष्ट तनाव, तापमान, लोडिंग दर और तनाव सांद्रता भी तीन प्राथमिक कारकों को प्रभावित करके भंगुर फ्रैक्चर में योगदान करते हैं।<ref name="Rolfe" />
एक विशिष्ट भंगुर फ्रैक्चर में मूल अनुक्रम है: पदार्थ को सेवा में डालने से पहले या बाद में एक दोष का परिचय, आवर्ती लोडिंग के अनुसार धीमी और स्थिर दरार प्रसार, और अचानक तेजी से विफलता जब फ्रैक्चर यांत्रिकी द्वारा परिभाषित स्थितियों के आधार पर दरार महत्वपूर्ण दरार लंबाई तक पहुंच जाती है।<ref name="Campbell">{{cite book|editor-last1=Campbell|editor-first1=F.C.|title=थकान और फ्रैक्चर: मूल बातें समझना|date=2012|publisher=ASM International|location=Materials Park, Ohio|isbn=978-1615039760}}</ref> तीन प्राथमिक कारकों को नियंत्रित करके भंगुर फ्रैक्चर से बचा जा सकता है: पदार्थ फ्रैक्चर की कठोरता (K{{sub|c}}), नाममात्र तनाव स्तर (σ), और दोष का आकार (a) प्रस्तुत किया।<ref name="Rolfe">{{cite book|last1=Rolfe|first1=John M. Barsom, Stanley T.|title=संरचनाओं में फ्रैक्चर और थकान नियंत्रण: फ्रैक्चर यांत्रिकी के अनुप्रयोग|date=1999|publisher=ASTM|location=West Conshohocken, Pa.|isbn=0803120826|edition=3.}}</ref> अवशिष्ट तनाव, तापमान, लोडिंग दर और तनाव सांद्रता भी तीन प्राथमिक कारकों को प्रभावित करके भंगुर फ्रैक्चर में योगदान करते हैं।<ref name="Rolfe" />


कुछ शर्तों के तहत, नमनीय पदार्थ भंगुर व्यवहार प्रदर्शित कर सकती है। तेजी से लोड हो रहा है, कम तापमान, और त्रिअक्षीय तनाव की स्थिति के कारण तन्य पदार्थ पूर्व विरूपण के बिना विफल हो सकती है।<ref name="Rolfe" />
कुछ शर्तों के अनुसार, तन्य पदार्थ भंगुर व्यवहार प्रदर्शित कर सकती है। तेजी से लोड हो रहा है, कम तापमान, और त्रिअक्षीय तनाव की स्थिति के कारण तन्य पदार्थ पूर्व विरूपण के बिना विफल हो सकती है।<ref name="Rolfe" />




=== नमनीय ===
=== तन्य ===
[[File:ductile fracture upd.png|thumb|नमनीय फ्रैक्चर (शुद्ध तनाव में) में चरणों का योजनाबद्ध प्रतिनिधित्व]][[लचीलापन]] फ्रैक्चर में फ्रैक्चर से पहले व्यापक प्लास्टिक विरूपण ([[नेकिंग (इंजीनियरिंग)]]) होता है। टूटना और नमनीय टूटना शब्द तन्य सामग्रियों की अंतिम विफलता का वर्णन करते हैं जो तनाव में भरी हुई हैं। फ्रैक्चर से पहले बड़ी मात्रा में ऊर्जा के अवशोषण के कारण व्यापक प्लास्टिसिटी दरार को धीरे-धीरे फैलाने का कारण बनती है।<ref>{{cite book|last1=Perez|first1=Nestor|title=फ्रैक्चर यांत्रिकी|date=2016|publisher=Springer|isbn=978-3319249971|edition=2nd}}</ref><ref>{{Cite book|title=सामग्री विज्ञान और इंजीनियरिंग: एक परिचय|last=Callister|first=William D. Jr. |year=2018|isbn=978-1-119-40539-9|edition=8th|pages=236–237|oclc=992798630}}</ref>  
[[File:ductile fracture upd.png|thumb|तन्य फ्रैक्चर (शुद्ध तनाव में) में चरणों का योजनाबद्ध प्रतिनिधित्व]][[लचीलापन]] फ्रैक्चर में फ्रैक्चर से पहले व्यापक प्लास्टिक विरूपण ([[नेकिंग (इंजीनियरिंग)]]) होता है। शब्द "टूटना" और "तन्य टूटना" तनाव में भरी हुई तन्य सामग्री की अंतिम विफलता का वर्णन करता है। फ्रैक्चर से पहले बड़ी मात्रा में ऊर्जा के अवशोषण के कारण व्यापक तन्यता दरार को धीरे-धीरे फैलाने का कारण बनती है।<ref>{{cite book|last1=Perez|first1=Nestor|title=फ्रैक्चर यांत्रिकी|date=2016|publisher=Springer|isbn=978-3319249971|edition=2nd}}</ref><ref>{{Cite book|title=सामग्री विज्ञान और इंजीनियरिंग: एक परिचय|last=Callister|first=William D. Jr. |year=2018|isbn=978-1-119-40539-9|edition=8th|pages=236–237|oclc=992798630}}</ref>  
[[File:Ductile Fracture Surface 6061-T6 Al SEM.png|left|thumb|6061-T6 एल्यूमीनियम की नमनीय फ्रैक्चर सतह]]क्योंकि नमनीय टूटना में उच्च स्तर की प्लास्टिक विकृति शामिल होती है, एक फैलने वाली दरार का फ्रैक्चर व्यवहार जैसा कि ऊपर के मॉडल में मौलिक रूप से परिवर्तन होता है। दरार के सुझावों पर तनाव की सांद्रता से कुछ ऊर्जा दरार के आगे प्लास्टिक विरूपण द्वारा फैल जाती है क्योंकि यह फैलती है।
[[File:Ductile Fracture Surface 6061-T6 Al SEM.png|left|thumb|6061-T6 एल्यूमीनियम की तन्य फ्रैक्चर सतह]]क्योंकि तन्य टूटना में उच्च स्तर की प्लास्टिक विकृति सम्मिलित होती है, एक फैलने वाली दरार का फ्रैक्चर व्यवहार जैसा कि ऊपर के मॉडल में मौलिक रूप से परिवर्तन होता है। दरार के सुझावों पर तनाव की सांद्रता से कुछ ऊर्जा दरार के आगे प्लास्टिक विरूपण द्वारा फैल जाती है क्योंकि यह फैलती है।


नमनीय फ्रैक्चर में बुनियादी कदम शून्य गठन, [[माइक्रोवॉइड सहसंयोजन]] (दरार गठन के रूप में भी जाना जाता है), दरार प्रसार और विफलता है, जिसके परिणामस्वरूप अक्सर एक कप-और-शंकु के आकार की विफलता सतह होती है। रिक्तियाँ आमतौर पर पदार्थ में अवक्षेपों, द्वितीयक चरणों, समावेशन और अनाज की सीमाओं के आसपास जम जाती हैं। डक्टाइल फ्रैक्चर आमतौर पर [[ट्रांसग्रेनुलर फ्रैक्चर]] होता है और डिस्लोकेशन स्लिप के कारण विरूपण कप और कोन फ्रैक्चर की कतरनी होंठ विशेषता का कारण बन सकता है।<ref>{{Cite book|title=सामग्री का विज्ञान और इंजीनियरिंग|last=Askeland, Donald R.|others=Wright, Wendelin J.|isbn=978-1-305-07676-1|edition=Seventh|location=Boston, MA|pages=236–237|oclc=903959750|date = January 2015}}</ref>
तन्य फ्रैक्चर में मूलभूत चरण शून्य गठन, [[माइक्रोवॉइड सहसंयोजन]] (दरार गठन के रूप में भी जाना जाता है), दरार प्रसार और विफलता है, जिसके परिणामस्वरूप अधिकांश एक कप-और-शंकु के आकार की विफलता सतह होती है। रिक्तियाँ सामान्यतः पदार्थ में अवक्षेपों, द्वितीयक चरणों, समावेशन और कण की सीमाओं के आसपास जम जाती हैं। डक्टाइल फ्रैक्चर सामान्यतः  [[ट्रांसग्रेनुलर फ्रैक्चर|पाररेणुक विभंग]] होता है और अव्यवस्था स्लिप के कारण विरूपण कप और कोन फ्रैक्चर की कतरनी होंठ विशेषता का कारण बन सकता है।<ref>{{Cite book|title=सामग्री का विज्ञान और इंजीनियरिंग|last=Askeland, Donald R.|others=Wright, Wendelin J.|isbn=978-1-305-07676-1|edition=Seventh|location=Boston, MA|pages=236–237|oclc=903959750|date = January 2015}}</ref>




== विशेषताएं ==
== विशेषताएं ==
जिस तरह से एक पदार्थ के माध्यम से एक दरार का प्रसार होता है, वह फ्रैक्चर के तरीके के बारे में जानकारी देता है। तन्य फ्रैक्चर के साथ एक दरार धीरे-धीरे चलती है और दरार की नोक के चारों ओर बड़ी मात्रा में प्लास्टिक विरूपण होता है। एक नमनीय दरार आमतौर पर तब तक फैलती नहीं है जब तक कि बढ़ा हुआ तनाव लागू नहीं किया जाता है और आम तौर पर लोडिंग हटा दिए जाने पर प्रसार बंद हो जाता है।<ref name="Campbell" />एक नमनीय पदार्थ में, एक दरार पदार्थ के एक हिस्से में प्रगति कर सकती है जहां तनाव थोड़ा कम होता है और दरार की नोक पर प्लास्टिक की विकृति के कुंद प्रभाव के कारण रुक जाता है। दूसरी ओर, भंगुर फ्रैक्चर के साथ, दरारें बहुत तेजी से फैलती हैं या बहुत कम या कोई प्लास्टिक विरूपण नहीं होता है। भंगुर पदार्थ में फैलने वाली दरारें एक बार शुरू होने के बाद बढ़ती रहेंगी।


दरार प्रसार को सूक्ष्म स्तर पर दरार विशेषताओं द्वारा भी वर्गीकृत किया जाता है। एक दरार जो पदार्थ के भीतर अनाज के माध्यम से गुजरती है, ट्रांसग्रेनुलर फ्रैक्चर से गुजर रही है। एक दरार जो अनाज की सीमाओं के साथ फैलती है उसे एक अंतरग्रहीय फ्रैक्चर कहा जाता है। आमतौर पर, भौतिक अनाज के बीच के बंधन पदार्थ की तुलना में कमरे के तापमान पर अधिक मजबूत होते हैं, इसलिए ट्रांसग्रेनुलर फ्रैक्चर होने की संभावना अधिक होती है। जब तापमान अनाज के बंधन को कमजोर करने के लिए पर्याप्त रूप से बढ़ता है, तो इंटरग्रेनुलर फ्रैक्चर अधिक सामान्य फ्रैक्चर मोड होता है।<ref name="Campbell" />
 
 
जिस तरह से एक पदार्थ के माध्यम से एक दरार का प्रसार होता है, वह फ्रैक्चर के विधियों के बारे में जानकारी देता है। तन्य फ्रैक्चर के साथ एक दरार धीरे-धीरे चलती है और दरार की नोक के चारों ओर बड़ी मात्रा में प्लास्टिक विरूपण होता है। एक तन्य दरार सामान्यतः तब तक फैलती नहीं है जब तक कि बढ़ा हुआ तनाव लागू नहीं किया जाता है और सामान्यतः लोडिंग हटा दिए जाने पर प्रसार बंद हो जाता है।<ref name="Campbell" /> एक तन्य पदार्थ में, एक दरार पदार्थ के एक हिस्से में प्रगति कर सकती है जहां तनाव थोड़ा कम होता है और दरार की नोक पर प्लास्टिक की विकृति के कुंद प्रभाव के कारण रुक जाता है। दूसरी ओर, भंगुर फ्रैक्चर के साथ, दरारें बहुत तेजी से फैलती हैं या बहुत कम या कोई प्लास्टिक विरूपण नहीं होता है। भंगुर पदार्थ में फैलने वाली दरारें एक बार प्रारंभ होने के बाद बढ़ती रहेंगी।
 
दरार प्रसार को सूक्ष्म स्तर पर दरार विशेषताओं द्वारा भी वर्गीकृत किया जाता है। एक दरार जो पदार्थ के अन्दर कण के माध्यम से निकलती है, ट्रांसग्रेनुलर फ्रैक्चर से निकल रही है। एक दरार जो कण की सीमाओं के साथ फैलती है उसे एक अंतरग्रहीय फ्रैक्चर कहा जाता है। सामान्यतः, भौतिक कण के बीच के बंधन पदार्थ की तुलना में कमरे के तापमान पर अधिक मजबूत होते हैं, इसलिए ट्रांसग्रेनुलर फ्रैक्चर होने की संभावना अधिक होती है। जब तापमान कण के बंधन को कमजोर करने के लिए पर्याप्त रूप से बढ़ता है, तो अंतराकणिक फ्रैक्चर अधिक सामान्य फ्रैक्चर प्रकार होता है।<ref name="Campbell" />
 




== परीक्षण ==
== परीक्षण ==
पदार्थ में फ्रैक्चर का अध्ययन किया जाता है और कई तरीकों से इसकी मात्रा निर्धारित की जाती है। फ्रैक्चर काफी हद तक फ्रैक्चर बेरहमी से निर्धारित होता है (<math display="inline">\mathrm{K}_\mathrm{c}</math>), इसलिए इसे निर्धारित करने के लिए अक्सर फ्रैक्चर परीक्षण किया जाता है। फ्रैक्चर की कठोरता को निर्धारित करने के लिए दो सबसे व्यापक रूप से इस्तेमाल की जाने वाली तकनीकें [[तीन सूत्री वंक परीक्षण]] और कॉम्पैक्ट टेंशन मानक परीक्षण हैं।
पदार्थ में फ्रैक्चर का अध्ययन किया जाता है और कई विधियों से इसकी मात्रा निर्धारित की जाती है। फ्रैक्चर अधिक सीमा तक फ्रैक्चर मजबूती (<math display="inline">\mathrm{K}_\mathrm{c}</math>) से निर्धारित होता है, इसलिए इसे निर्धारित करने के लिए अधिकांश फ्रैक्चर परीक्षण किया जाता है। फ्रैक्चर की कठोरता को निर्धारित करने के लिए दो सबसे व्यापक रूप से उपयोग की जाने वाली तकनीकें [[तीन सूत्री वंक परीक्षण]] और सघन तनाव मानक परीक्षण हैं।


कॉम्पैक्ट तनाव और तीन-बिंदु फ्लेक्सुरल परीक्षण करके, निम्नलिखित समीकरण के माध्यम से फ्रैक्चर की कठोरता को निर्धारित करने में सक्षम होता है:
सघन तनाव और तीन-बिंदु आनमनी परीक्षण करके, निम्नलिखित समीकरण के माध्यम से फ्रैक्चर की कठोरता को निर्धारित करने में सक्षम होता है:


:<math>\mathrm{K_{c}} = \sigma_\mathrm{F}\sqrt{\pi \mathrm{c}}\mathrm{f \ (c/a)}</math>
:<math>\mathrm{K_{c}} = \sigma_\mathrm{F}\sqrt{\pi \mathrm{c}}\mathrm{f \ (c/a)}</math>
कहाँ पे:-
जहाँ:-
:<math>\mathrm{f \ (c/a)}</math> परीक्षण मानक ज्यामिति पर कब्जा करने के लिए एक अनुभवजन्य-व्युत्पन्न समीकरण है
:<math>\mathrm{f \ (c/a)}</math>= परीक्षण मानक ज्यामिति पर कब्जा करने के लिए एक अनुभवजन्य-व्युत्पन्न समीकरण है
:<math>\sigma_\mathrm{F}</math> फ्रैक्चर तनाव है, और
:<math>\sigma_\mathrm{F}</math> = फ्रैक्चर तनाव है, और
:<math>\mathrm{c}</math> दरार की लंबाई है।
:<math>\mathrm{c}</math> = दरार की लंबाई है।


सटीक रूप से प्राप्त करने के लिए <math display="inline">\mathrm{K}_\mathrm{c}</math>, का मान है <math display="inline">\mathrm{c}</math> ठीक से मापा जाना चाहिए। यह टेस्ट पीस को लंबाई के फैब्रिकेटेड नॉच (इंजीनियरिंग) के साथ लेकर किया जाता है <math display="inline">\mathrm{c\prime}</math> और इस नॉच (इंजीनियरिंग) को तेज करना वास्तविक दुनिया की सामग्रियों में पाए जाने वाले क्रैक टिप का बेहतर अनुकरण करने के लिए।<ref name=efm>[https://hal.archives-ouvertes.fr/hal-02310717 EFM - Stress concentration at notches] a closer look</ref> चक्रीय प्रीस्ट्रेसिंग मानक तब एक [[थकान (सामग्री)|थकान (पदार्थ)]] को प्रेरित कर सकता है जो गढ़े हुए पायदान की लंबाई से दरार को बढ़ाता है <math display="inline">\mathrm{c\prime}</math> प्रति <math display="inline">\mathrm{c}</math>. यह मान <math display="inline">\mathrm{c}</math> निर्धारण के लिए उपरोक्त समीकरणों में प्रयोग किया जाता है <math display="inline">\mathrm{K}_\mathrm{c}</math>.<ref name="Courtney">{{Citation |last= Courtney |first= Thomas H.|title= Mechanical behavior of materials |publisher= McGraw Hill |year= 2000 |edition= 3nd |isbn= 1-57766-425-6 |postscript =.}}</ref>
<math display="inline">\mathrm{K}_\mathrm{c}</math> यथार्थ रूप से प्राप्त करने के लिए, <math display="inline">\mathrm{c}</math> का मान ठीक से मापा जाना चाहिए। यह टेस्ट पीस को लंबाई के फैब्रिकेटेड नॉच (इंजीनियरिंग) <math display="inline">\mathrm{c\prime}</math> के साथ लेकर किया जाता है और वास्तविक दुनिया की पदार्थों में पाए जाने वाले क्रैक टिप का बेहतर अनुकरण करने के लिए इस पायदान को तेज करना चाहिए।<ref name=efm>[https://hal.archives-ouvertes.fr/hal-02310717 EFM - Stress concentration at notches] a closer look</ref> चक्रीय प्रीस्ट्रेसिंग मानक तब एक [[थकान (सामग्री)|थकान (पदार्थ)]] को प्रेरित कर सकता है जो दरार को <math display="inline">\mathrm{c\prime}</math> से <math display="inline">\mathrm{c}</math> की निर्मित पायदान लंबाई तक बढ़ाता है। यह मान <math display="inline">\mathrm{c}</math> का उपयोग उपरोक्त समीकरणों <math display="inline">\mathrm{K}_\mathrm{c}</math> में प्रयोग किया जाता है।<ref name="Courtney">{{Citation |last= Courtney |first= Thomas H.|title= Mechanical behavior of materials |publisher= McGraw Hill |year= 2000 |edition= 3nd |isbn= 1-57766-425-6 |postscript =.}}</ref>
इस परीक्षण के बाद, मानके को फिर से इस तरह से पुन: उन्मुख किया जा सकता है कि लोड (एफ) के आगे लोड होने से यह दरार बढ़ जाएगी और इस प्रकार एक लोड बनाम मानक विक्षेपण वक्र प्राप्त किया जा सकता है। इस वक्र के साथ, रैखिक भाग का ढलान, जो पदार्थ के अनुपालन का व्युत्क्रम है, प्राप्त किया जा सकता है। इसके बाद समीकरण में ऊपर परिभाषित f(c/a) को प्राप्त करने के लिए इसका उपयोग किया जाता है। इन सभी चरों के ज्ञान के साथ, <math display="inline">\mathrm{K}_\mathrm{c}</math> तब गणना की जा सकती है।


== सिरेमिक और अकार्बनिक चश्मा ==
इस परीक्षण के बाद, मानक को फिर से इस तरह से पुन: उन्मुख किया जा सकता है कि लोड (f) के आगे लोड होने से यह दरार बढ़ जाएगी और इस प्रकार एक लोड बनाम मानक विक्षेपण वक्र प्राप्त किया जा सकता है। इस वक्र के साथ, रैखिक भाग का ढलान, जो पदार्थ के अनुपालन का व्युत्क्रम है, प्राप्त किया जा सकता है। इसके बाद समीकरण में ऊपर परिभाषित f(c/a) को प्राप्त करने के लिए इसका उपयोग किया जाता है। इन सभी चरों के ज्ञान के साथ, <math display="inline">\mathrm{K}_\mathrm{c}</math> तब गणना की जा सकती है।
सिरेमिक और अकार्बनिक ग्लास में फ्रैक्चरिंग व्यवहार होता है जो धातु पदार्थ से भिन्न होता है। पदार्थ की ताकत तापमान से स्वतंत्र होने के कारण सिरेमिक में उच्च शक्ति होती है और उच्च तापमान में अच्छा प्रदर्शन करती है। तन्यता भार के तहत परीक्षण द्वारा निर्धारित सिरेमिक में कम क्रूरता होती है; अक्सर, मिट्टी के पात्र होते हैं <math display="inline">\mathrm{K}_\mathrm{c}</math> मान जो धातुओं में पाए जाने वाले ~5% हैं।<ref name="Courtney" />हालांकि, चीनी मिट्टी की चीज़ें आमतौर पर रोजमर्रा के उपयोग में संपीड़न में लोड होती हैं, इसलिए संपीड़न शक्ति को अक्सर ताकत के रूप में संदर्भित किया जाता है; यह ताकत अक्सर अधिकांश धातुओं से अधिक हो सकती है। हालांकि, मिट्टी के पात्र भंगुर होते हैं और इस प्रकार किए गए अधिकांश कार्य भंगुर फ्रैक्चर को रोकने के लिए घूमते हैं। सिरेमिक कैसे निर्मित और संसाधित किए जाते हैं, इसके कारण अक्सर पदार्थ में पहले से मौजूद दोष होते हैं जो मोड I भंगुर फ्रैक्चर में उच्च स्तर की परिवर्तनशीलता का परिचय देते हैं।<ref name="Courtney" />इस प्रकार, मिट्टी के पात्र के डिजाइन में एक संभावित प्रकृति का हिसाब लगाया जाना है। वेइबुल वितरण एक निश्चित मात्रा के साथ मानकों के एक अंश की जीवित रहने की संभावना की भविष्यवाणी करता है जो एक तन्य तनाव सिग्मा से बचे रहते हैं, और अक्सर फ्रैक्चर से बचने में सिरेमिक की सफलता का बेहतर आकलन करने के लिए उपयोग किया जाता है।
 
== सिरेमिक और अकार्बनिक ग्लास ==
सिरेमिक और अकार्बनिक ग्लास में फ्रैक्चरिंग व्यवहार होता है जो धातु पदार्थ से भिन्न होता है। पदार्थ की शक्ति तापमान से स्वतंत्र होने के कारण सिरेमिक में उच्च शक्ति होती है और उच्च तापमान में अच्छा प्रदर्शन करती है। तन्यता भार के अनुसार परीक्षण द्वारा निर्धारित सिरेमिक में कम क्रूरता होती है; अधिकांश, सिरेमिक में <math display="inline">\mathrm{K}_\mathrm{c}</math> मान होते हैं जो धातुओं में पाए जाने वाले ~5% होते हैं।<ref name="Courtney" /> चूंकि, चीनी मिट्टी की चीज़ें सामान्यतः रोजमर्रा के उपयोग में संपीड़न में लोड होती हैं, इसलिए संपीड़न शक्ति को अधिकांश शक्ति के रूप में संदर्भित किया जाता है; यह शक्ति अधिकांश धातुओं से अधिक हो सकती है। चूंकि, मिट्टी के पात्र भंगुर होते हैं और इस प्रकार किए गए अधिकांश कार्य भंगुर फ्रैक्चर को रोकने के लिए घूमते हैं। सिरेमिक कैसे निर्मित और संसाधित किए जाते हैं, इसके कारण अधिकांश पदार्थ में पहले से उपस्थित दोष होते हैं जो मोड भंगुर फ्रैक्चर में उच्च स्तर की परिवर्तनशीलता का परिचय देते हैं।<ref name="Courtney" /> इस प्रकार, मिट्टी के पात्र के डिजाइन में एक संभावित प्रकृति का अनुमान लगाया जाना है। वेइबुल वितरण एक निश्चित मात्रा के साथ मानकों के एक अंश की जीवित रहने की संभावना की भविष्यवाणी करता है जो एक तन्य तनाव सिग्मा से बचे रहते हैं, और अधिकांश फ्रैक्चर से बचने में सिरेमिक की सफलता का बेहतर आकलन करने के लिए उपयोग किया जाता है।


== फाइबर बंडल ==
== फाइबर बंडल ==
तंतुओं के एक बंडल के फ्रैक्चर को मॉडल करने के लिए, फाइबर बंडल मॉडल को थॉमस पियर्स द्वारा 1926 में मिश्रित पदार्थ की ताकत को समझने के लिए एक मॉडल के रूप में पेश किया गया था।<ref name="Pierce">{{Citation |last= Pierce |first= F. T. |title= J. Textile Indust. 17 (1926) 355}}</ref> बंडल में समान लंबाई के समानांतर हुकियन स्प्रिंग्स की एक बड़ी संख्या होती है और प्रत्येक में समान वसंत स्थिरांक होते हैं। हालांकि उनके पास अलग-अलग ब्रेकिंग स्ट्रेस हैं। इन सभी स्प्रिंग्स को एक कठोर क्षैतिज मंच से निलंबित कर दिया गया है। भार एक क्षैतिज मंच से जुड़ा होता है, जो स्प्रिंग्स के निचले सिरों से जुड़ा होता है। जब यह निचला प्लेटफॉर्म बिल्कुल कठोर होता है, तो किसी भी समय भार को सभी जीवित तंतुओं द्वारा समान रूप से (भले ही कितने फाइबर या स्प्रिंग्स टूट गए हों और कहां से) साझा किया जाता है। लोड-शेयरिंग के इस मोड को इक्वल-लोड-शेयरिंग मोड कहा जाता है। निचले प्लेटफॉर्म को परिमित कठोरता के रूप में भी माना जा सकता है, ताकि प्लेटफॉर्म का स्थानीय विरूपण जहां भी स्प्रिंग्स विफल हो जाए और जीवित पड़ोसी फाइबर को विफल फाइबर से स्थानांतरित किए गए बड़े हिस्से को साझा करना पड़े। चरम मामला स्थानीय लोड-शेयरिंग मॉडल का है, जहां असफल वसंत या फाइबर का भार जीवित निकटतम पड़ोसी फाइबर द्वारा साझा किया जाता है (आमतौर पर समान रूप से)।<ref name="Chakrabarti 2017"/>
तंतुओं के एक बंडल के फ्रैक्चर को मॉडल करने के लिए, फाइबर बंडल मॉडल को थॉमस पियर्स द्वारा 1926 में मिश्रित पदार्थ की शक्ति को समझने के लिए एक मॉडल के रूप में प्रस्तुत किया गया था।<ref name="Pierce">{{Citation |last= Pierce |first= F. T. |title= J. Textile Indust. 17 (1926) 355}}</ref> बंडल में समान लंबाई के समानांतर हुकियन स्प्रिंग्स की एक बड़ी संख्या होती है और प्रत्येक में समान वसंत स्थिरांक होते हैं। चूंकि उनके पास अलग-अलग ब्रेकिंग स्ट्रेस हैं। इन सभी स्प्रिंग्स को एक कठोर क्षैतिज मंच से निलंबित कर दिया गया है। भार एक क्षैतिज मंच से जुड़ा होता है, जो स्प्रिंग्स के निचले सिरों से जुड़ा होता है। जब यह निचला प्लेटफॉर्म बिल्कुल कठोर होता है, तो किसी भी समय भार को सभी जीवित तंतुओं द्वारा समान रूप से (इससे कोई फर्क नहीं पड़ता कि कैसे और कहां कितने रेशे या झरने टूट गए हैं) साझा किया जाता है। लोड-शेयरिंग के इस मोड को समान-लोड-शेयरिंग मोड कहा जाता है। निचले प्लेटफॉर्म को परिमित कठोरता के रूप में भी माना जा सकता है, जिससे प्लेटफॉर्म का स्थानीय विरूपण जहां भी स्प्रिंग्स विफल हो जाए और जीवित निकटतम फाइबर को विफल फाइबर से स्थानांतरित किए गए बड़े हिस्से को साझा करना पड़े। अत्यधिक स्थिति स्थानीय लोड-शेयरिंग मॉडल का है, जहां असफल वसंत या फाइबर का भार जीवित निकटतम फाइबर द्वारा साझा किया जाता है (सामान्यतः समान रूप से)।<ref name="Chakrabarti 2017"/>




== आपदा ==
== आपदा ==
भंगुर फ्रैक्चर के कारण होने वाली विफलताएं इंजीनियर संरचना की किसी विशेष श्रेणी तक सीमित नहीं हैं।<ref name="Rolfe"/>हालांकि अन्य प्रकार की विफलताओं की तुलना में भंगुर फ्रैक्चर कम आम है, जीवन और संपत्ति पर प्रभाव अधिक गंभीर हो सकते हैं।<ref name="Rolfe" />निम्नलिखित उल्लेखनीय ऐतिहासिक विफलताओं को भंगुर फ्रैक्चर के लिए जिम्मेदार ठहराया गया था:
भंगुर फ्रैक्चर के कारण होने वाली विफलताएं इंजीनियर संरचना की किसी विशेष श्रेणी तक सीमित नहीं हैं।<ref name="Rolfe"/> चूंकि भंगुर अस्थिभंग अन्य प्रकार की विफलताओं की तुलना में कम सामान्य है, जीवन और संपत्ति पर प्रभाव अधिक गंभीर हो सकते हैं।<ref name="Rolfe" /> निम्नलिखित उल्लेखनीय ऐतिहासिक विफलताओं को भंगुर फ्रैक्चर के लिए जिम्मेदार ठहराया गया था:
*दबाव वाहिकाएँ: महान गुड़ बाढ़#1919 में कारण बनता है,<ref name="Rolfe" />1973 में न्यू जर्सी शीरा टैंक की विफलता<ref name="Campbell"/>  
*दबाव वाहिकाएँ: 1919 में महान गुड़ बाढ़,<ref name="Rolfe" />1973 में न्यू जर्सी शीरा टैंक की विफलता<ref name="Campbell"/> का कारण बनता है
*पुल: 1962 में [[किंग स्ट्रीट ब्रिज (मेलबोर्न)]] स्पैन पतन, सिल्वर ब्रिज#1967 में मलबा विश्लेषण पतन,<ref name="Rolfe" />2000 में [https://www.fhwa.dot.gov/bridge/steel/010710.cfm Hoan Bridge] की आंशिक विफलता
*पुल: 1962 में [[किंग स्ट्रीट ब्रिज (मेलबोर्न)]] स्पैन पतन, 1967 सिल्वर ब्रिज पतन,<ref name="Rolfe" /> 2000 में [https://www.fhwa.dot.gov/bridge/steel/010710.cfm होन ब्रिज] की आंशिक विफलता में मलबा विश्लेषण
*जहाज: आरएमएस टाइटैनिक#1912 में जहाज का निर्माण और तैयारी,<ref name="Campbell" />स्वतंत्रता जहाज#द्वितीय विश्व युद्ध के दौरान समस्याएं,<ref name="Rolfe" />1943 में [[एसएस शेनेक्टैडी]]<ref name="Campbell" />
*जहाज: 1912 में आरएमएस टाइटैनिक,<ref name="Campbell" /> द्वितीय विश्व युद्ध के समय लिबर्टी जहाज,<ref name="Rolfe" /> 1943 में [[एसएस शेनेक्टैडी]]<ref name="Campbell" />  




Line 139: Line 141:
{{Weathering}}
{{Weathering}}
{{Patterns in nature}}
{{Patterns in nature}}
{{Authority control}}
 
[[Category: सामग्री विज्ञान]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1 English-language sources (en)]]
[[Category:Collapse templates]]
[[Category:Created On 11/12/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Missing redirects]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:अस्थिभंग यांत्रिकी]]
[[Category:कांच भौतिकी]]
[[Category:ठोस यांत्रिकी]]
[[Category:नम्यता (भौतिकी)]]
[[Category:भवन दोष]]
[[Category:भवन दोष]]
[[Category: लोच (भौतिकी)]]
[[Category: नम्यता (भौतिकी)]]
[[Category:ठोस यांत्रिकी]]
[[Category: अस्थिभंग यांत्रिकी]]
[[Category:यांत्रिकी]]
[[Category:यांत्रिकी]]
[[Category: कांच भौतिकी]]
[[Category:लोच (भौतिकी)]]
 
[[Category:सामग्री विज्ञान]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 11/12/2022]]

Latest revision as of 20:58, 31 January 2023

एक धातु के मानके की तन्य विफलता अक्षीय रूप से तनी हुई है

फ्रैक्चर तनाव (भौतिकी) की क्रिया के अनुसार किसी वस्तु या पदार्थ को दो या दो से अधिक टुकड़ों में अलग करना है। एक ठोस का फ्रैक्चर अधिकांश ठोस के अन्दर कुछ विस्थापन विच्छिन्न सतहों के विकास के कारण होता है। यदि कोई विस्थापन सतह के लंबवत विकसित होता है, तो इसे सामान्य तन्यता दरार या केवल दरार कहा जाता है; यदि कोई विस्थापन स्पर्शरेखीय रूप से विकसित होता है, तो इसे कतरनी दरार, सर्पण बैंड या जोड़ का हट जाना कहा जाता है।[1]

फ्रैक्चर से पहले भंगुर फ्रैक्चर बिना किसी स्पष्ट विकृति के होते हैं। दृश्य विकृति के बाद तन्य फ्रैक्चर होते हैं। फ्रैक्चर सामर्थ्य, या विभंजन सामर्थ्य, तनाव है जब एक मानक विफल या फ्रैक्चर होता है। फ्रैक्चर कैसे होता है और पदार्थ में कैसे विकसित होता है, इसकी विस्तृत समझ फ्रैक्चर यांत्रिकी का उद्देश्य है।

शक्ति

एल्युमिनियम का विशिष्ट प्रतिबल बनाम विकृति वक्र
  1. Ultimate tensile strength
  2. Yield strength
  3. Proportional limit stress
  4. Fracture
  5. Offset strain (typically 0.2%)

फ्रैक्चर तनाव, जिसे टूटता हुआ तनाव के रूप में भी जाना जाता है, वह तनाव है जिस पर कोई मानक संरचनात्मक अखंडता और फ्रैक्चर के माध्यम से विफलता होती है।[2] यह सामायतः एक तन्य परीक्षण द्वारा दिए गए मानक के लिए निर्धारित किया जाता है, जो तनाव-तनाव वक्र (चित्र देखें) को चार्ट करता है। अंतिम अंकित बिंदु फ्रैक्चर शक्ति है।

तन्य पदार्थों में अंतिम तन्यता शक्ति (यूटीएस) की तुलना में फ्रैक्चर शक्ति कम होती है, जबकि भंगुर पदार्थों में फ्रैक्चर शक्ति यूटीएस के बराबर होती है।[2] यदि कोई तन्य पदार्थ भार-नियंत्रित स्थिति में अपनी परम तन्य शक्ति तक पहुँच जाती है,[Note 1] जब तक यह फट नहीं जाता, तब तक यह बिना किसी अतिरिक्त भार के विकृत होता रहेगा। चूँकि, यदि लोडिंग विस्थापन-नियंत्रित है,[Note 2] पदार्थ का विरूपण भार को दूर कर सकता है, टूटना को रोक सकता है।

यादृच्छिक पदार्थों में फ्रैक्चर के आंकड़े बहुत ही जटिल व्यवहार करते हैं, और वास्तुकारों और इंजीनियरों द्वारा काफी पहले ही नोट कर लिया गया था। वास्तविक में, फ्रैक्चर या ब्रेकडाउन अध्ययन सबसे पुराना भौतिक विज्ञान अध्ययन हो सकता है, जो अभी भी पेचीदा और बहुत अधिक जीवित है। लियोनार्डो दा विंची ने 500 से अधिक साल पहले देखा कि लोहे के तार के समान रूप से समान मानकों की तन्यता शक्ति तारों की बढ़ती लंबाई के साथ घट जाती है (उदाहरण के लिए देखें,[3] हाल की चर्चा के लिए)। इसी तरह के अवलोकन गैलिलियो गैलिली ने 400 साल पहले किए थे। यह विफलता के अत्यधिक आँकड़ों की अभिव्यक्ति है (बड़े मानके की मात्रा में संचयी उतार-चढ़ाव के कारण बड़े दोष हो सकते हैं जहाँ विफलताएँ मानक की कम शक्ति को प्रेरित करती हैं)।[4]


प्रकार

फ्रैक्चर दो प्रकार के होते हैं: भंगुर फ्रैक्चर और तन्य फ्रैक्चर और प्लास्टिसिटी (भौतिकी) के बिना या विफलता से पहले क्रमशः तन्य भंग।

भंगुर

कांच में भंगुर फ्रैक्चर
A roughly ovoid metal cylinder, viewed end-पर। धातु की अंतिम सतह का निचला दाहिना भाग गहरा और थोड़ा विकृत है, जबकि बाकी का रंग बहुत हल्का है और विकृत नहीं है। एक साइकिल का, जहां उज्ज्वल क्षेत्र भंगुर फ्रैक्चर दिखाते हैं, और अंधेरे क्षेत्र थकान फ्रैक्चर दिखाते हैं।

भंगुर फ्रैक्चर में, फ्रैक्चर से पहले कोई स्पष्ट प्लास्टिक विरूपण (भौतिकी) नहीं होती है। भंगुर फ्रैक्चर में सामान्यतः कम ऊर्जा अवशोषण सम्मिलित होता है, और स्टील में 2,133.6 m/s (7,000 ft/s) तक उच्च गति पर होता है।[5] अधिकत्तर स्थितियों में लोडिंग बंद होने पर भी भंगुर फ्रैक्चर जारी रहेगा।[6]

भंगुर क्रिस्टलीय पदार्थों में, दरार (क्रिस्टल) के कारण फ्रैक्चर हो सकता है क्योंकि तन्य तनाव के परिणामस्वरूप कम बंधन (दरार वाले समतलों) के साथ क्रिस्टलोग्राफिक समतलों के लिए सामान्य कार्य होता है। अव्यवस्थित ठोस पदार्थों में, इसके विपरीत, एक क्रिस्टलीय संरचना की कमी के परिणामस्वरूप शंक्वाकार फ्रैक्चर होता है, जिसमें दरारें लागू तनाव के लिए सामान्य होती हैं।

किसी पदार्थ की फ्रैक्चर शक्ति (या माइक्रो-क्रैक न्यूक्लिएशन स्ट्रेस) का पहली बार 1921 में एलन अर्नोल्ड ग्रिफ़िथ द्वारा सैद्धांतिक रूप से अनुमान लगाया गया था:

जहाँ: -

एक स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप से भंगुर दरार फ्रैक्चर सतह
= पदार्थ का यंग गुणांक है,
= सतही ऊर्जा है, और
= सूक्ष्म दरार लंबाई (या एक क्रिस्टलीय ठोस में परमाणु केंद्रों के बीच संतुलन दूरी) है।

दूसरी ओर, एक दरार द्वारा प्रतिरूपित एक तनाव एकाग्रता का परिचय देता है

(तेज दरारों के लिए)

जहाँ: -

= लोडिंग तनाव है,
= दरार की आधी लंबाई है, और
= दरार की नोक पर वक्रता की त्रिज्या है।

इन दोनों समीकरणों को एक साथ रखने पर प्राप्त होता है

तीव्र दरारें (छोटा ) और बड़े दोष (बड़े ) दोनों पदार्थ की फ्रैक्चर शक्ति को कम करते हैं।

हाल ही में, वैज्ञानिकों ने सुपरसोनिक फ्रैक्चर की खोज की है, एक पदार्थ में ध्वनि की गति की तुलना में दरार प्रसार की घटना सुपरसोनिक फ्रैक्चर कहलाता है ।[7] इस घटना को हाल ही में रबर जैसी पदार्थ में फ्रैक्चर के प्रयोग से भी सत्यापित किया गया था।

एक विशिष्ट भंगुर फ्रैक्चर में मूल अनुक्रम है: पदार्थ को सेवा में डालने से पहले या बाद में एक दोष का परिचय, आवर्ती लोडिंग के अनुसार धीमी और स्थिर दरार प्रसार, और अचानक तेजी से विफलता जब फ्रैक्चर यांत्रिकी द्वारा परिभाषित स्थितियों के आधार पर दरार महत्वपूर्ण दरार लंबाई तक पहुंच जाती है।[6] तीन प्राथमिक कारकों को नियंत्रित करके भंगुर फ्रैक्चर से बचा जा सकता है: पदार्थ फ्रैक्चर की कठोरता (Kc), नाममात्र तनाव स्तर (σ), और दोष का आकार (a) प्रस्तुत किया।[5] अवशिष्ट तनाव, तापमान, लोडिंग दर और तनाव सांद्रता भी तीन प्राथमिक कारकों को प्रभावित करके भंगुर फ्रैक्चर में योगदान करते हैं।[5]

कुछ शर्तों के अनुसार, तन्य पदार्थ भंगुर व्यवहार प्रदर्शित कर सकती है। तेजी से लोड हो रहा है, कम तापमान, और त्रिअक्षीय तनाव की स्थिति के कारण तन्य पदार्थ पूर्व विरूपण के बिना विफल हो सकती है।[5]


तन्य

तन्य फ्रैक्चर (शुद्ध तनाव में) में चरणों का योजनाबद्ध प्रतिनिधित्व

लचीलापन फ्रैक्चर में फ्रैक्चर से पहले व्यापक प्लास्टिक विरूपण (नेकिंग (इंजीनियरिंग)) होता है। शब्द "टूटना" और "तन्य टूटना" तनाव में भरी हुई तन्य सामग्री की अंतिम विफलता का वर्णन करता है। फ्रैक्चर से पहले बड़ी मात्रा में ऊर्जा के अवशोषण के कारण व्यापक तन्यता दरार को धीरे-धीरे फैलाने का कारण बनती है।[8][9]

6061-T6 एल्यूमीनियम की तन्य फ्रैक्चर सतह

क्योंकि तन्य टूटना में उच्च स्तर की प्लास्टिक विकृति सम्मिलित होती है, एक फैलने वाली दरार का फ्रैक्चर व्यवहार जैसा कि ऊपर के मॉडल में मौलिक रूप से परिवर्तन होता है। दरार के सुझावों पर तनाव की सांद्रता से कुछ ऊर्जा दरार के आगे प्लास्टिक विरूपण द्वारा फैल जाती है क्योंकि यह फैलती है।

तन्य फ्रैक्चर में मूलभूत चरण शून्य गठन, माइक्रोवॉइड सहसंयोजन (दरार गठन के रूप में भी जाना जाता है), दरार प्रसार और विफलता है, जिसके परिणामस्वरूप अधिकांश एक कप-और-शंकु के आकार की विफलता सतह होती है। रिक्तियाँ सामान्यतः पदार्थ में अवक्षेपों, द्वितीयक चरणों, समावेशन और कण की सीमाओं के आसपास जम जाती हैं। डक्टाइल फ्रैक्चर सामान्यतः पाररेणुक विभंग होता है और अव्यवस्था स्लिप के कारण विरूपण कप और कोन फ्रैक्चर की कतरनी होंठ विशेषता का कारण बन सकता है।[10]


विशेषताएं

जिस तरह से एक पदार्थ के माध्यम से एक दरार का प्रसार होता है, वह फ्रैक्चर के विधियों के बारे में जानकारी देता है। तन्य फ्रैक्चर के साथ एक दरार धीरे-धीरे चलती है और दरार की नोक के चारों ओर बड़ी मात्रा में प्लास्टिक विरूपण होता है। एक तन्य दरार सामान्यतः तब तक फैलती नहीं है जब तक कि बढ़ा हुआ तनाव लागू नहीं किया जाता है और सामान्यतः लोडिंग हटा दिए जाने पर प्रसार बंद हो जाता है।[6] एक तन्य पदार्थ में, एक दरार पदार्थ के एक हिस्से में प्रगति कर सकती है जहां तनाव थोड़ा कम होता है और दरार की नोक पर प्लास्टिक की विकृति के कुंद प्रभाव के कारण रुक जाता है। दूसरी ओर, भंगुर फ्रैक्चर के साथ, दरारें बहुत तेजी से फैलती हैं या बहुत कम या कोई प्लास्टिक विरूपण नहीं होता है। भंगुर पदार्थ में फैलने वाली दरारें एक बार प्रारंभ होने के बाद बढ़ती रहेंगी।

दरार प्रसार को सूक्ष्म स्तर पर दरार विशेषताओं द्वारा भी वर्गीकृत किया जाता है। एक दरार जो पदार्थ के अन्दर कण के माध्यम से निकलती है, ट्रांसग्रेनुलर फ्रैक्चर से निकल रही है। एक दरार जो कण की सीमाओं के साथ फैलती है उसे एक अंतरग्रहीय फ्रैक्चर कहा जाता है। सामान्यतः, भौतिक कण के बीच के बंधन पदार्थ की तुलना में कमरे के तापमान पर अधिक मजबूत होते हैं, इसलिए ट्रांसग्रेनुलर फ्रैक्चर होने की संभावना अधिक होती है। जब तापमान कण के बंधन को कमजोर करने के लिए पर्याप्त रूप से बढ़ता है, तो अंतराकणिक फ्रैक्चर अधिक सामान्य फ्रैक्चर प्रकार होता है।[6]


परीक्षण

पदार्थ में फ्रैक्चर का अध्ययन किया जाता है और कई विधियों से इसकी मात्रा निर्धारित की जाती है। फ्रैक्चर अधिक सीमा तक फ्रैक्चर मजबूती () से निर्धारित होता है, इसलिए इसे निर्धारित करने के लिए अधिकांश फ्रैक्चर परीक्षण किया जाता है। फ्रैक्चर की कठोरता को निर्धारित करने के लिए दो सबसे व्यापक रूप से उपयोग की जाने वाली तकनीकें तीन सूत्री वंक परीक्षण और सघन तनाव मानक परीक्षण हैं।

सघन तनाव और तीन-बिंदु आनमनी परीक्षण करके, निम्नलिखित समीकरण के माध्यम से फ्रैक्चर की कठोरता को निर्धारित करने में सक्षम होता है:

जहाँ:-

= परीक्षण मानक ज्यामिति पर कब्जा करने के लिए एक अनुभवजन्य-व्युत्पन्न समीकरण है
= फ्रैक्चर तनाव है, और
= दरार की लंबाई है।

यथार्थ रूप से प्राप्त करने के लिए, का मान ठीक से मापा जाना चाहिए। यह टेस्ट पीस को लंबाई के फैब्रिकेटेड नॉच (इंजीनियरिंग) के साथ लेकर किया जाता है और वास्तविक दुनिया की पदार्थों में पाए जाने वाले क्रैक टिप का बेहतर अनुकरण करने के लिए इस पायदान को तेज करना चाहिए।[11] चक्रीय प्रीस्ट्रेसिंग मानक तब एक थकान (पदार्थ) को प्रेरित कर सकता है जो दरार को से की निर्मित पायदान लंबाई तक बढ़ाता है। यह मान का उपयोग उपरोक्त समीकरणों में प्रयोग किया जाता है।[12]

इस परीक्षण के बाद, मानक को फिर से इस तरह से पुन: उन्मुख किया जा सकता है कि लोड (f) के आगे लोड होने से यह दरार बढ़ जाएगी और इस प्रकार एक लोड बनाम मानक विक्षेपण वक्र प्राप्त किया जा सकता है। इस वक्र के साथ, रैखिक भाग का ढलान, जो पदार्थ के अनुपालन का व्युत्क्रम है, प्राप्त किया जा सकता है। इसके बाद समीकरण में ऊपर परिभाषित f(c/a) को प्राप्त करने के लिए इसका उपयोग किया जाता है। इन सभी चरों के ज्ञान के साथ, तब गणना की जा सकती है।

सिरेमिक और अकार्बनिक ग्लास

सिरेमिक और अकार्बनिक ग्लास में फ्रैक्चरिंग व्यवहार होता है जो धातु पदार्थ से भिन्न होता है। पदार्थ की शक्ति तापमान से स्वतंत्र होने के कारण सिरेमिक में उच्च शक्ति होती है और उच्च तापमान में अच्छा प्रदर्शन करती है। तन्यता भार के अनुसार परीक्षण द्वारा निर्धारित सिरेमिक में कम क्रूरता होती है; अधिकांश, सिरेमिक में मान होते हैं जो धातुओं में पाए जाने वाले ~5% होते हैं।[12] चूंकि, चीनी मिट्टी की चीज़ें सामान्यतः रोजमर्रा के उपयोग में संपीड़न में लोड होती हैं, इसलिए संपीड़न शक्ति को अधिकांश शक्ति के रूप में संदर्भित किया जाता है; यह शक्ति अधिकांश धातुओं से अधिक हो सकती है। चूंकि, मिट्टी के पात्र भंगुर होते हैं और इस प्रकार किए गए अधिकांश कार्य भंगुर फ्रैक्चर को रोकने के लिए घूमते हैं। सिरेमिक कैसे निर्मित और संसाधित किए जाते हैं, इसके कारण अधिकांश पदार्थ में पहले से उपस्थित दोष होते हैं जो मोड भंगुर फ्रैक्चर में उच्च स्तर की परिवर्तनशीलता का परिचय देते हैं।[12] इस प्रकार, मिट्टी के पात्र के डिजाइन में एक संभावित प्रकृति का अनुमान लगाया जाना है। वेइबुल वितरण एक निश्चित मात्रा के साथ मानकों के एक अंश की जीवित रहने की संभावना की भविष्यवाणी करता है जो एक तन्य तनाव सिग्मा से बचे रहते हैं, और अधिकांश फ्रैक्चर से बचने में सिरेमिक की सफलता का बेहतर आकलन करने के लिए उपयोग किया जाता है।

फाइबर बंडल

तंतुओं के एक बंडल के फ्रैक्चर को मॉडल करने के लिए, फाइबर बंडल मॉडल को थॉमस पियर्स द्वारा 1926 में मिश्रित पदार्थ की शक्ति को समझने के लिए एक मॉडल के रूप में प्रस्तुत किया गया था।[13] बंडल में समान लंबाई के समानांतर हुकियन स्प्रिंग्स की एक बड़ी संख्या होती है और प्रत्येक में समान वसंत स्थिरांक होते हैं। चूंकि उनके पास अलग-अलग ब्रेकिंग स्ट्रेस हैं। इन सभी स्प्रिंग्स को एक कठोर क्षैतिज मंच से निलंबित कर दिया गया है। भार एक क्षैतिज मंच से जुड़ा होता है, जो स्प्रिंग्स के निचले सिरों से जुड़ा होता है। जब यह निचला प्लेटफॉर्म बिल्कुल कठोर होता है, तो किसी भी समय भार को सभी जीवित तंतुओं द्वारा समान रूप से (इससे कोई फर्क नहीं पड़ता कि कैसे और कहां कितने रेशे या झरने टूट गए हैं) साझा किया जाता है। लोड-शेयरिंग के इस मोड को समान-लोड-शेयरिंग मोड कहा जाता है। निचले प्लेटफॉर्म को परिमित कठोरता के रूप में भी माना जा सकता है, जिससे प्लेटफॉर्म का स्थानीय विरूपण जहां भी स्प्रिंग्स विफल हो जाए और जीवित निकटतम फाइबर को विफल फाइबर से स्थानांतरित किए गए बड़े हिस्से को साझा करना पड़े। अत्यधिक स्थिति स्थानीय लोड-शेयरिंग मॉडल का है, जहां असफल वसंत या फाइबर का भार जीवित निकटतम फाइबर द्वारा साझा किया जाता है (सामान्यतः समान रूप से)।[4]


आपदा

भंगुर फ्रैक्चर के कारण होने वाली विफलताएं इंजीनियर संरचना की किसी विशेष श्रेणी तक सीमित नहीं हैं।[5] चूंकि भंगुर अस्थिभंग अन्य प्रकार की विफलताओं की तुलना में कम सामान्य है, जीवन और संपत्ति पर प्रभाव अधिक गंभीर हो सकते हैं।[5] निम्नलिखित उल्लेखनीय ऐतिहासिक विफलताओं को भंगुर फ्रैक्चर के लिए जिम्मेदार ठहराया गया था:


यह भी देखें


टिप्पणियाँ

  1. A simple load-controlled tensile situation would be to support a specimen from above, and hang a weight from the bottom end. The load on the specimen is then independent of its deformation.
  2. A simple displacement-controlled tensile situation would be to attach a very stiff jack to the ends of a specimen. As the jack extends, it controls the displacement of the specimen; the load on the specimen is dependent on the deformation.


संदर्भ

  1. Cherepanov, G.P., Mechanics of Brittle Fracture
  2. 2.0 2.1 Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, p. 32, ISBN 0-471-65653-4.
  3. Lund, J. R.; Bryne, J. P., Civil. Eng. and Env. Syst. 18 (2000) 243
  4. 4.0 4.1 Chakrabarti, Bikas K. (December 2017). "फ्रैक्चर, ब्रेकडाउन और भूकंप के सांख्यिकीय भौतिकी में विकास की कहानी: एक व्यक्तिगत खाता". Reports in Advances of Physical Sciences (in English). 01 (4): 1750013. doi:10.1142/S242494241750013X. ISSN 2424-9424. CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Rolfe, John M. Barsom, Stanley T. (1999). संरचनाओं में फ्रैक्चर और थकान नियंत्रण: फ्रैक्चर यांत्रिकी के अनुप्रयोग (3. ed.). West Conshohocken, Pa.: ASTM. ISBN 0803120826.{{cite book}}: CS1 maint: multiple names: authors list (link)
  6. 6.0 6.1 6.2 6.3 6.4 6.5 6.6 Campbell, F.C., ed. (2012). थकान और फ्रैक्चर: मूल बातें समझना. Materials Park, Ohio: ASM International. ISBN 978-1615039760.
  7. C. H. Chen; H. P. Zhang; J. Niemczura; K. Ravi-Chandar; M. Marder (November 2011). "रबड़ की चादरों में दरार प्रसार की स्केलिंग". Europhysics Letters. 96 (3): 36009. Bibcode:2011EL.....9636009C. doi:10.1209/0295-5075/96/36009. S2CID 5975098.
  8. Perez, Nestor (2016). फ्रैक्चर यांत्रिकी (2nd ed.). Springer. ISBN 978-3319249971.
  9. Callister, William D. Jr. (2018). सामग्री विज्ञान और इंजीनियरिंग: एक परिचय (8th ed.). pp. 236–237. ISBN 978-1-119-40539-9. OCLC 992798630.
  10. Askeland, Donald R. (January 2015). सामग्री का विज्ञान और इंजीनियरिंग. Wright, Wendelin J. (Seventh ed.). Boston, MA. pp. 236–237. ISBN 978-1-305-07676-1. OCLC 903959750.{{cite book}}: CS1 maint: location missing publisher (link)
  11. EFM - Stress concentration at notches a closer look
  12. 12.0 12.1 12.2 Courtney, Thomas H. (2000), Mechanical behavior of materials (3nd ed.), McGraw Hill, ISBN 1-57766-425-6.
  13. Pierce, F. T., J. Textile Indust. 17 (1926) 355


अग्रिम पठन

  • Dieter, G. E. (1988) Mechanical Metallurgy ISBN 0-07-100406-8
  • A. Garcimartin, A. Guarino, L. Bellon and S. Cilberto (1997) " Statistical Properties of Fracture Precursors ". Physical Review Letters, 79, 3202 (1997)
  • Callister, Jr., William D. (2002) Materials Science and Engineering: An Introduction. ISBN 0-471-13576-3
  • Peter Rhys Lewis, Colin Gagg, Ken Reynolds, CRC Press (2004), Forensic Materials Engineering: Case Studies.


बाहरी संबंध