अल्ट्रासोनिक मोटर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 17: Line 17:
कैनन इंक. ने द्वि-दिशात्मक गति प्राप्त करने के लिए यात्रा-तरंग कंपन का उपयोग किया, और पाया कि इस व्यवस्था ने बेहतर दक्षता और कम संपर्क अंतरापृष्ठ घिसाव की पेशकश की। एक असाधारण उच्च-घूर्णन बल शंकर विद्युत यंत्र पराश्रव्य मोटर संपर्क अंतरापृष्ठ के साथ अक्षीय और मरोड़ वाले कंपन को संयोजित करने के लिए परिधि-ध्रुवीय और अक्षीय-ध्रुवीय पीजोइलेक्ट्रिक तत्वों का एक साथ उपयोग करता है, जो एक चालन तकनीक का प्रतिनिधित्व करता है जो स्थायी और यात्रा-तरंग चालन विधियों के बीच कहीं स्थित है।
कैनन इंक. ने द्वि-दिशात्मक गति प्राप्त करने के लिए यात्रा-तरंग कंपन का उपयोग किया, और पाया कि इस व्यवस्था ने बेहतर दक्षता और कम संपर्क अंतरापृष्ठ घिसाव की पेशकश की। एक असाधारण उच्च-घूर्णन बल शंकर विद्युत यंत्र पराश्रव्य मोटर संपर्क अंतरापृष्ठ के साथ अक्षीय और मरोड़ वाले कंपन को संयोजित करने के लिए परिधि-ध्रुवीय और अक्षीय-ध्रुवीय पीजोइलेक्ट्रिक तत्वों का एक साथ उपयोग करता है, जो एक चालन तकनीक का प्रतिनिधित्व करता है जो स्थायी और यात्रा-तरंग चालन विधियों के बीच कहीं स्थित है।


अल्ट्रासोनिक मोटर्स के अध्ययन में एक महत्वपूर्ण अवलोकन यह है कि संरचनाओं में प्रेरित होने वाला शिखर कंपन आवृत्ति की परवाह किए बिना अपेक्षाकृत स्थिर कंपन वेग पर होता है। कंपन वेग केवल संरचना में कंपन विस्थापन का [[ समय व्युत्पन्न ]] है, और संरचना के भीतर तरंग प्रसार की गति से संबंधित (सीधे) नहीं है। कंपन के लिए उपयुक्त कई इंजीनियरिंग सामग्री लगभग 1मी/सेकेंड के चरम कंपन वेग की अनुमति देती हैं। कम आवृत्तियों पर — 50 हर्ट्ज, मान लें — एक [[ वूफर ]] में 1मी/सेकेंड का कंपन वेग लगभग 10 मिमी का विस्थापन देगा, जो दृश्यमान है। जैसे-जैसे आवृत्ति बढ़ती है, विस्थापन घटता है और त्वरण बढ़ता है। चूंकि कंपन 20 kHz पर अश्राव्य हो जाता है, इसलिए कंपन विस्थापन माइक्रोमीटर के दसियों में होता है, और मोटरों का निर्माण किया गया है<ref>{{Citation
पराश्रव्य मोटर्स के अध्ययन में एक महत्वपूर्ण अवलोकन यह है कि संरचनाओं में प्रेरित होने वाला शिखर कंपन आवृत्ति की परवाह किए बिना अपेक्षाकृत स्थिर कंपन वेग पर होता है। कंपन वेग केवल संरचना में कंपन विस्थापन का [[ समय व्युत्पन्न ]] है, और संरचना के भीतर तरंग प्रसार की गति से संबंधित (सीधे) नहीं है। कंपन के लिए उपयुक्त कई अभियंत्रण सामग्री लगभग 1मी/सेकेंड के उच्चतम कंपन वेग की अनुमति देती हैं। कम आवृत्तियों पर — 50 हर्ट्ज, मान लें — एक [[ वूफर ]] में 1मी/सेकेंड का कंपन वेग लगभग 10 मिमी का विस्थापन देगा, जो दृश्यमान है। जैसे-जैसे आवृत्ति बढ़ती है, विस्थापन घटता है और त्वरण बढ़ता है। चूंकि कंपन 20 kHz पर अश्राव्य हो जाता है, इसलिए कंपन विस्थापन माइक्रोमीटर के दसियों में होता है, और मोटरों का निर्माण किया गया है<ref>{{Citation
   | last1 = Shigematsu | first1 = T.
   | last1 = Shigematsu | first1 = T.
   | last2 = Kurosawa | first2 = M.K.
   | last2 = Kurosawa | first2 = M.K.
Line 30: Line 30:
(SAW) जिसमें परिमाण में केवल कुछ नैनोमीटर का कंपन होता है। स्टेटर के भीतर इन गतियों का उपयोग करने के लिए आवश्यक परिशुद्धता को पूरा करने के लिए ऐसे उपकरणों को निर्माण में देखभाल की आवश्यकता होती है।
(SAW) जिसमें परिमाण में केवल कुछ नैनोमीटर का कंपन होता है। स्टेटर के भीतर इन गतियों का उपयोग करने के लिए आवश्यक परिशुद्धता को पूरा करने के लिए ऐसे उपकरणों को निर्माण में देखभाल की आवश्यकता होती है।


अधिक आम तौर पर, दो प्रकार के मोटर होते हैं, संपर्क और गैर-संपर्क, जिनमें से बाद वाला दुर्लभ होता है और रोटर की ओर स्टेटर के अल्ट्रासोनिक कंपन को प्रसारित करने के लिए एक कार्यशील तरल पदार्थ की आवश्यकता होती है। अधिकांश संस्करण हवा का उपयोग करते हैं, जैसे कि हू जुन्हुई के शुरुआती संस्करणों में से कुछ।<ref>{{Citation
सामान्यतः दो प्रकार के मोटर होते हैं, संपर्क और गैर-संपर्क, जिनमें से बाद वाला दुर्लभ होता है और रोटर की ओर स्टेटर पराश्रव्यनिक कंपन को प्रसारित करने के लिए एक कार्यशील तरल पदार्थ की आवश्यकता होती है। अधिकांश संस्करण हवा का उपयोग करते हैं, जैसे कि हू जुन्हुई के शुरुआती संस्करणों में से कुछ।<ref>{{Citation
   | last1 = Hu | first1 = Junhui
   | last1 = Hu | first1 = Junhui
   | last2 = Li | first2 = Guorong
   | last2 = Li | first2 = Guorong
Line 69: Line 69:


=={{anchor|USM|SSM|DDSSM|SWM|SWD|XSM|SDM|HSM|USD|PZD|}}अनुप्रयोग ==
=={{anchor|USM|SSM|DDSSM|SWM|SWD|XSM|SDM|HSM|USD|PZD|}}अनुप्रयोग ==
[[ कैनन (कंपनी) ]] अल्ट्रासोनिक मोटर के अग्रदूतों में से एक था, और 1980 के दशक के अंत में [[ कैनन ईएफ लेंस माउंट ]] के लिए अपने [[ ऑटोफोकस ]] लेंस में शामिल करके यूएसएम को प्रसिद्ध बना दिया। अल्ट्रासोनिक मोटर्स पर कई पेटेंट 1980 के दशक की शुरुआत से कैनन, इसके मुख्य लेंस बनाने वाले प्रतिद्वंद्वी [[ निकॉन ]] और अन्य औद्योगिक चिंताओं द्वारा दायर किए गए हैं। कैनन ने न केवल अपने डीएसएलआर लेंस में एक अल्ट्रासोनिक मोटर (यूएसएम) शामिल किया है, बल्कि [[ कैनन पॉवरशॉट ]] एसएक्स 1 आईएस [[ पुल कैमरा ]] में भी शामिल किया है।<ref>{{cite web|url=http://www.cameralabs.com/reviews/Canon_PowerShot_SX1_IS/|title=Canon PowerShot SX1 IS - Cameralabs|date=2 December 2009|website=cameralabs.com}}</ref> अल्ट्रासोनिक मोटर का उपयोग अब कई उपभोक्ता और कार्यालय इलेक्ट्रॉनिक्स में किया जाता है, जिन्हें लंबे समय तक सटीक घुमाव की आवश्यकता होती है।
[[ कैनन (कंपनी) ]] पराश्रव्य मोटर के अग्रदूतों में से एक था, और 1980 के दशक के अंत में [[ कैनन ईएफ लेंस माउंट ]] के लिए अपने [[ ऑटोफोकस | स्वकेंद्रित]] लेंस में शामिल करके पराश्रव्य मोटर को प्रसिद्ध बना दिया। पराश्रव्य मोटर्स पर कई एकस्व 1980 के दशक की शुरुआत से कैनन, इसके मुख्य लेंस बनाने वाले प्रतिद्वंद्वी [[ निकॉन ]] और अन्य औद्योगिक चिंताओं द्वारा दायर किए गए हैं। कैनन ने न केवल अपने डीएसएलआर लेंस में एक पराश्रव्य मोटर शामिल किया है, बल्कि [[ कैनन पॉवरशॉट ]] एसएक्स 1 आईएस [[ पुल कैमरा ]] में भी शामिल किया है।<ref>{{cite web|url=http://www.cameralabs.com/reviews/Canon_PowerShot_SX1_IS/|title=Canon PowerShot SX1 IS - Cameralabs|date=2 December 2009|website=cameralabs.com}}</ref> पराश्रव्य मोटर का उपयोग अब कई उपभोक्ता और कार्यालय वैद्युतकीय में किया जाता है, जिन्हें लंबे समय तक सटीक घुमाव की आवश्यकता होती है।


तकनीक को विभिन्न कंपनियों द्वारा विभिन्न नामों के तहत फोटोग्राफिक लेंस पर लागू किया गया है:
तकनीक को विभिन्न कंपनियों द्वारा विभिन्न नामों के तहत फोटोग्राफिक लेंस पर लागू किया गया है:


* कैनन (कंपनी) - यूएसएम, अल्ट्रासोनिक मोटर
* कैनन (कंपनी) - पराश्रव्य मोटर
* [[ मिनोल्टा एएफ ]], [[ कोनिका मिनोल्टा ]], [[ सोनी ]] अल्फा - एसएसएम, सुपर सोनिक वेव मोटर (रिंग मोटर)
* [[ मिनोल्टा एएफ ]], [[ कोनिका मिनोल्टा ]], [[ सोनी ]] अल्फा - पराश्रव्य मोटर पराध्वनिक तरंग मोटर (रिंग मोटर)
* निकॉन - एसडब्ल्यूएम, साइलेंट वेव मोटर
* निकॉन - मूक तरंग मोटर  
* [[ ओलिंप निगम ]] - SWD, सुपरसोनिक वेव ड्राइव
* [[ ओलिंप निगम ]] -पराध्वनिक तरंग आंदोलन
* [[ पैनासोनिक ]] - एक्सएसएम, एक्स्ट्रा साइलेंट मोटर
* [[ पैनासोनिक ]] - अतिरिक्त मूक मोटर
* [[ Pentax ]] - एसडीएम, सुपरसोनिक डायनेमिक मोटर
* [[ Pentax | पेंटएक्स]] - पराध्वनिक गतिशील मोटर
* [[ समयांग प्रकाशिकी ]] - DLSM, डुअल लीनियर सोनिक मोटर
* [[ समयांग प्रकाशिकी ]] - दोहरी रैखिक ध्वनि मोटर
* [[ सिग्मा निगम ]] - एचएसएम, हाइपर सोनिक मोटर
* [[ सिग्मा निगम ]] - अति ध्वनिक मोटर
* सोनी - डीडीएसएसएम, डायरेक्ट ड्राइव सुपर सोनिक वेव मोटर (रैखिक मोटर)
* सोनी - प्रत्यक्ष आंदोलन पराध्वनिक तरंग मोटर (रैखिक मोटर)
* टैम्रॉन - यूएसडी, अल्ट्रासोनिक साइलेंट ड्राइव; PZD, पीजो ड्राइव
* टैम्रॉन - पराध्वनिक  मूक आंदोलन PZD, पीजो ड्राइव
* सक्रिय चिकित्सा, इंक। - डायरेक्ट ड्राइव, एमआरआई संगत अल्ट्रासोनिक मोटर
* सक्रिय चिकित्सा, इंक। - डायरेक्ट ड्राइव, एमआरआई संगत पराश्रव्य मोटर


== यह भी देखें ==
== यह भी देखें ==


* पीजोइलेक्ट्रिक मोटर
* पीजोइलेक्ट्रिक मोटर
* [[ र्रैखिक गति देने वाला ]]
* [[ र्रैखिक गति देने वाला | र्रैखिक प्रवर्तक]]
* [[ स्टेपर मोटर ]]
* [[ स्टेपर मोटर ]]
* [[ अल्ट्रासोनिक होमोजेनाइज़र ]]
* [[ अल्ट्रासोनिक होमोजेनाइज़र | पराश्रव्य समांगक]]


==संदर्भ==
==संदर्भ==

Revision as of 01:40, 25 January 2023

पराश्रव्य मोटर एक प्रकार का [[ पीजोइलेक्ट्रिक मोटर ]] है जो एक घटक के पराश्रव्य कंपन द्वारा संचालित होता है, स्टेटर , परिचालन की योजना ( घूर्णन या रैखिक अनुवाद) के आधार पर दूसरे घटक, रोटर विद्युत या सर्पक के साथ रखा जाता है। पराश्रव्य मोटर्स अन्य पीजोइलेक्ट्रिक उत्प्रेरक से कई मायनों में भिन्न हैं, हालांकि दोनों सामान्यतः पीजोइलेक्ट्रिक सामग्री के कुछ रूप का उपयोग करते हैं, ज्यादातर प्राय: लीड जिरकोनेट टाइटेनेट कभी-कभी लिथियम निओबेट या अन्य एकल स्फटिक सामग्री का नेतृत्व करते हैं। पराश्रव्य मोटर्स में रोटर के संपर्क में स्टेटर के कंपन को बढ़ाने के लिए सबसे स्पष्ट अंतर अनुनाद का उपयोग है। पराश्रव्य मोटर्स भी मनमाने ढंग से बड़े घूर्णन या सर्पण दूरी की पेशकश करते हैं, जबकि पीजोइलेक्ट्रिक उत्प्रेरक स्थिर तनाव (सामग्री विज्ञान) द्वारा सीमित होते हैं जो पीजोइलेक्ट्रिक तत्व में प्रेरित हो सकते हैं।

पराश्रव्य मोटर्स का एक सामान्य अनुप्रयोग कैमरा लेंस में होता है जहां उनका उपयोग स्वत: केंद्रित के हिस्से के रूप में लेंस तत्वों को स्थानांतरित करने के लिए किया जाता है। पराश्रव्य मोटर्स इस अनुप्रयोग में कोलाहल और प्रायः धीमी सूक्ष्म मोटर की जगह लेती हैं।

तंत्र

शुष्क घर्षण का उपयोग प्रायः संपर्क में किया जाता है, और स्टेटर में प्रेरित पराश्रव्य कंपन का उपयोग रोटर को गति प्रदान करने और अंतरापृष्ठ पर मौजूद घर्षण बलों को संशोधित करने के लिए किया जाता है। घर्षण सामंजस्य रोटर की थोक गति की अनुमति देता है (यानी, एक से अधिक कंपन चक्र के लिए); इस सामंजस्य के बिना, पराश्रव्य मोटर्स संचालित करने में विफल रहेंगी।

स्टेटर-रोटर संपर्क अंतरापृष्ठ यात्रा की लहर | यात्रा किरण कंपन और खड़ी तरंग | यात्रा किरण कंपन के साथ घर्षण को नियंत्रित करने के लिए सामान्यतः दो अलग-अलग तरीके उपलब्ध हैं। साशिदा द्वारा 1970 के दशक में व्यावहारिक मोटर्स के कुछ शुरुआती संस्करण,[1] उदाहरण के लिए, एक मोटर बनाने के लिए संपर्क सतह पर एक कोण पर रखे पंखों के संयोजन में खड़ी- तरंग कंपन का उपयोग किया जाता है, भले ही वह एक ही दिशा में घूमता हो। बाद में सशिदा और पैनासोनिक कॉर्पोरेशन , और एएलपीएस के शोधकर्ताओं द्वारा डिजाइन किया गया कैनन इंक. ने द्वि-दिशात्मक गति प्राप्त करने के लिए यात्रा-तरंग कंपन का उपयोग किया, और पाया कि इस व्यवस्था ने बेहतर दक्षता और कम संपर्क अंतरापृष्ठ घिसाव की पेशकश की। एक असाधारण उच्च-घूर्णन बल शंकर विद्युत यंत्र पराश्रव्य मोटर संपर्क अंतरापृष्ठ के साथ अक्षीय और मरोड़ वाले कंपन को संयोजित करने के लिए परिधि-ध्रुवीय और अक्षीय-ध्रुवीय पीजोइलेक्ट्रिक तत्वों का एक साथ उपयोग करता है, जो एक चालन तकनीक का प्रतिनिधित्व करता है जो स्थायी और यात्रा-तरंग चालन विधियों के बीच कहीं स्थित है।

पराश्रव्य मोटर्स के अध्ययन में एक महत्वपूर्ण अवलोकन यह है कि संरचनाओं में प्रेरित होने वाला शिखर कंपन आवृत्ति की परवाह किए बिना अपेक्षाकृत स्थिर कंपन वेग पर होता है। कंपन वेग केवल संरचना में कंपन विस्थापन का समय व्युत्पन्न है, और संरचना के भीतर तरंग प्रसार की गति से संबंधित (सीधे) नहीं है। कंपन के लिए उपयुक्त कई अभियंत्रण सामग्री लगभग 1मी/सेकेंड के उच्चतम कंपन वेग की अनुमति देती हैं। कम आवृत्तियों पर — 50 हर्ट्ज, मान लें — एक वूफर में 1मी/सेकेंड का कंपन वेग लगभग 10 मिमी का विस्थापन देगा, जो दृश्यमान है। जैसे-जैसे आवृत्ति बढ़ती है, विस्थापन घटता है और त्वरण बढ़ता है। चूंकि कंपन 20 kHz पर अश्राव्य हो जाता है, इसलिए कंपन विस्थापन माइक्रोमीटर के दसियों में होता है, और मोटरों का निर्माण किया गया है[2] जो 50 मेगाहर्ट्ज सतह ध्वनिक तरंग का उपयोग करके संचालित होता है (SAW) जिसमें परिमाण में केवल कुछ नैनोमीटर का कंपन होता है। स्टेटर के भीतर इन गतियों का उपयोग करने के लिए आवश्यक परिशुद्धता को पूरा करने के लिए ऐसे उपकरणों को निर्माण में देखभाल की आवश्यकता होती है।

सामान्यतः दो प्रकार के मोटर होते हैं, संपर्क और गैर-संपर्क, जिनमें से बाद वाला दुर्लभ होता है और रोटर की ओर स्टेटर पराश्रव्यनिक कंपन को प्रसारित करने के लिए एक कार्यशील तरल पदार्थ की आवश्यकता होती है। अधिकांश संस्करण हवा का उपयोग करते हैं, जैसे कि हू जुन्हुई के शुरुआती संस्करणों में से कुछ।[3][4] इस क्षेत्र में अनुसंधान जारी है, विशेष रूप से निकट-क्षेत्र ध्वनिक उत्तोलन के लिए इस प्रकार का आवेदन।[5] (यह दूर-क्षेत्र ध्वनिक उत्तोलन से भिन्न है, जो वस्तु को आधे से कई तरंग दैर्ध्य से दूर निलंबित करता है हिलती हुई वस्तु।)

अनुप्रयोग

कैनन (कंपनी) पराश्रव्य मोटर के अग्रदूतों में से एक था, और 1980 के दशक के अंत में कैनन ईएफ लेंस माउंट के लिए अपने स्वकेंद्रित लेंस में शामिल करके पराश्रव्य मोटर को प्रसिद्ध बना दिया। पराश्रव्य मोटर्स पर कई एकस्व 1980 के दशक की शुरुआत से कैनन, इसके मुख्य लेंस बनाने वाले प्रतिद्वंद्वी निकॉन और अन्य औद्योगिक चिंताओं द्वारा दायर किए गए हैं। कैनन ने न केवल अपने डीएसएलआर लेंस में एक पराश्रव्य मोटर शामिल किया है, बल्कि कैनन पॉवरशॉट एसएक्स 1 आईएस पुल कैमरा में भी शामिल किया है।[6] पराश्रव्य मोटर का उपयोग अब कई उपभोक्ता और कार्यालय वैद्युतकीय में किया जाता है, जिन्हें लंबे समय तक सटीक घुमाव की आवश्यकता होती है।

तकनीक को विभिन्न कंपनियों द्वारा विभिन्न नामों के तहत फोटोग्राफिक लेंस पर लागू किया गया है:

यह भी देखें

संदर्भ

  1. Ueha, S.; Tomikawa, Y.; Kurosawa, M.; Nakamura, N. (December 1993), Ultrasonic Motors: Theory and Applications, Clarendon Press, ISBN 0-19-859376-7
  2. Shigematsu, T.; Kurosawa, M.K.; Asai, K. (April 2003), "Nanometer stepping drives of surface acoustic wave motor", IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 50, IEEE, pp. 376–385
  3. Hu, Junhui; Li, Guorong; Lai Wah Chan, Helen; Loong Choy, Chung (May 2001), "A standing wave-type noncontact linear ultrasonic motor", IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 48, IEEE, pp. 699–708
  4. Hu, Junhui; Nakamura, Kentaro; Ueha, Sadauki (May 1997), "An analysis of a noncontact ultrasonic motor with an ultrasonically levitated rotor", Ultrasonics, vol. 35, Elsevier, pp. 459–467
  5. Koyama, D.; Takeshi, Ide; Friend, J.R.; Nakamura, K.; Ueha, S. (September 2005), "An ultrasonically levitated non-contact sliding table with the traveling vibrations on fine-ceramic beams", 2005 IEEE Ultrasonics Symposium, vol. 3, IEEE, pp. 1538–1541
  6. "Canon PowerShot SX1 IS - Cameralabs". cameralabs.com. 2 December 2009.
General
  • Certificate of authorship #217509 "Electric Engine", Lavrinenko V., Necrasov M., application #1006424 from 10 May 1965.
  • US Patent #4.019.073, 1975.
  • US Patent #4.453.103, 1982.
  • US Patent #4.400.641, 1982.
  • Piezoelectric motors. Lavrinenko V., Kartashev I., Vishnevskyi V., "Energiya" 1980.
  • V. Snitka, V. Mizariene and D. Zukauskas The status of ultrasonic motors in the former Soviet Union, Ultrasonics, Volume 34, Issues 2–5, June 1996, Pages 247-250
  • Principles of construction of piezoelectric motors. V. Lavrinenko, ISBN 978-3-659-51406-7, "Lambert", 2015, 236p.


बाहरी कड़ियाँ