This is a good article. Click here for more information.

समूह 12 तत्व: Difference between revisions

From Vigyanwiki
(Text)
(Text)
Line 46: Line 46:
| 135 pm || 155 pm || 150 pm ||  ? 147 pm
| 135 pm || 155 pm || 150 pm ||  ? 147 pm
|}
|}
जस्ता लोहे की तुलना में कुछ कम घना होता है और इसमें षट्कोणीय स्फटिक संरचना होती है।{{sfn|Lehto|1968|p=826}} धातु अधिकांश तापमानों पर कठोर और भंगुर होती है लेकिन बीच में निंदनीय हो जाती है {{convert|100 and 150|C|F}}.<ref name="CRCp4-41" /><ref name="Heiserman1992p123" />के ऊपर {{convert|210|C|F}}, धातु फिर से भंगुर हो जाती है और पीट कर चूर्णित किया जा सकता है।<ref>{{Cite book|title=उपयोगी धातुएँ और उनकी मिश्रधातुएँ|url=https://archive.org/details/usefulmetalsand00scofgoog|first=John|last=Scoffern|author-link=John Scoffern|pages=[https://archive.org/details/usefulmetalsand00scofgoog/page/n613 591]–603|publisher=Houlston and Wright|year=1861 |access-date=2009-04-06}}</ref> जस्ता एक उचित विद्युत चालक है।<ref name="CRCp4-41" />एक धातु के लिए, जस्ता में अपेक्षाकृत कम गलनांक ({{convert|419.5|C|F|disp=comma}}) और क्वथनांक ({{convert|907|C|F|disp=comma}}) होते है।<ref name="ZincMetalProps">{{cite web |title=जिंक धातु गुण|url=http://www.galvanizeit.org/aga/designing-fabricating/design-considerations/zinc-metal-properties |publisher=American Galvanizers Association |year=2008 |access-date=2009-02-15 |url-status=dead |archive-url=https://web.archive.org/web/20090221111748/http://galvanizeit.org/aga/designing-fabricating/design-considerations/zinc-metal-properties |archive-date=February 21, 2009 }}</ref> कैडमियम कई संदर्भ में जस्ता के समान है लेकिन [[जटिल (रसायन विज्ञान)|जटिल]] यौगिक बनाता है।<ref>{{cite book |publisher=Walter de Gruyter|year=1985|edition=91–100|pages=1056–1057|isbn=978-3-11-007511-3 |title=अकार्बनिक रसायन विज्ञान की पाठ्यपुस्तक|first1=Arnold F.|last1=Holleman|last2=Wiberg|first2=Egon |last3=Wiberg|first3=Nils|language=de|chapter=Cadmium}}</ref> अन्य धातुओं के विपरीत, कैडमियम संक्षारण प्रतिरोधी है और परिणामस्वरूप इसे अन्य धातुओं पर जमा होने पर सुरक्षात्मक परत के रूप में उपयोग किया जाता है। थोक धातु के रूप में, कैडमियम पानी में अघुलनशील है और [[ज्वलनशीलता|ज्वलनशील]] नहीं है; हालाँकि, इसके चूर्ण के रूप में यह जल सकता है और जहरीले धुएं को छोड़ सकता है।<ref name="ATSDR">{{cite web |title=पर्यावरण चिकित्सा में केस स्टडीज (CSEM) कैडमियम|url=http://www.atsdr.cdc.gov/csem/cadmium/cdcontents.html |publisher=Agency for Toxic Substances and Disease Registry |access-date=May 30, 2011 |url-status=dead |archive-url=https://web.archive.org/web/20110203222234/http://www.atsdr.cdc.gov/csem/cadmium/cdcontents.html |archive-date=February 3, 2011 }}</ref> डी-ब्लॉक धातु के लिए पारा असाधारण रूप से कम पिघलने वाला तापमान है। इस तथ्य की पूरी व्याख्या के लिए [[क्वांटम भौतिकी]] में गहन अध्ययन की आवश्यकता है, लेकिन इसे संक्षेप में निम्नानुसार किया जा सकता है: पारा का एक अद्वितीय इलेक्ट्रॉनिक विन्यास है जहां इलेक्ट्रॉन सभी उपलब्ध 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p , 4d, 4f, 5s, 5p, 5d और 6s उपकोश को भरते हैं। इस तरह के विन्यास के रूप में एक इलेक्ट्रॉन को हटाने का दृढ़ता से विरोध करता है, पारा उत्कृष्ट गैस तत्वों के समान व्यवहार करता है, जो कमजोर बंधन बनाते हैं और इस प्रकार ठोस पदार्थों को आसानी से पिघलाते हैं। 6s कोश की स्थिरता भरे हुए 4f '''कोश की उपस्थिति के कारण है। एक f शेल परमाणु आवेश को खराब तरीके से स्क्रीन करता है''' जो 6s शेल और नाभिक के आकर्षक कूलम्ब के नियम को बढ़ाता है ([[लैंथेनाइड संकुचन]] देखें)। भरे हुए आंतरिक एफ खोल की अनुपस्थिति कैडमियम और जस्ता के कुछ हद तक उच्च पिघलने के तापमान का कारण है, हालांकि ये दोनों धातुएं अभी भी आसानी से पिघलती हैं और इसके अलावा असामान्य रूप से कम क्वथनांक होते हैं। सोने में पारे की तुलना में एक कम 6s इलेक्ट्रॉन वाले परमाणु होते हैं। उन इलेक्ट्रॉनों को अधिक आसानी से हटा दिया जाता है और अपेक्षाकृत मजबूत धातु बंधन बनाने वाले सोने के परमाणुओं के बीच साझा किया जाता है।<ref name="Norrby">{{cite journal |author=Norrby, L.J.|title=पारा तरल क्यों होता है? या, सापेक्षतावादी प्रभाव रसायन विज्ञान की पाठ्यपुस्तकों में क्यों नहीं आते?| journal= Journal of Chemical Education|volume=68|issue=2|page=110 |year=1991 |doi=10.1021/ed068p110 |bibcode=1991JChEd..68..110N}}</ref><ref>{{cite web|title=एसटीपी में पारा तरल क्यों होता है?|url=http://antoine.frostburg.edu/chem/senese/101/periodic/faq/why-is-mercury-liquid.shtml|access-date=2009-07-07}}</ref>
जस्ता लोहे की तुलना में कुछ कम घना होता है और इसमें षट्कोणीय स्फटिक संरचना होती है।{{sfn|Lehto|1968|p=826}} धातु अधिकांश तापमानों पर कठोर और भंगुर होती है लेकिन बीच में निंदनीय हो जाती है {{convert|100 and 150|C|F}}.<ref name="CRCp4-41" /><ref name="Heiserman1992p123" />के ऊपर {{convert|210|C|F}}, धातु फिर से भंगुर हो जाती है और पीट कर चूर्णित किया जा सकता है।<ref>{{Cite book|title=उपयोगी धातुएँ और उनकी मिश्रधातुएँ|url=https://archive.org/details/usefulmetalsand00scofgoog|first=John|last=Scoffern|author-link=John Scoffern|pages=[https://archive.org/details/usefulmetalsand00scofgoog/page/n613 591]–603|publisher=Houlston and Wright|year=1861 |access-date=2009-04-06}}</ref> जस्ता एक उचित विद्युत चालक है।<ref name="CRCp4-41" />एक धातु के लिए, जस्ता में अपेक्षाकृत कम गलनांक ({{convert|419.5|C|F|disp=comma}}) और क्वथनांक ({{convert|907|C|F|disp=comma}}) होते है।<ref name="ZincMetalProps">{{cite web |title=जिंक धातु गुण|url=http://www.galvanizeit.org/aga/designing-fabricating/design-considerations/zinc-metal-properties |publisher=American Galvanizers Association |year=2008 |access-date=2009-02-15 |url-status=dead |archive-url=https://web.archive.org/web/20090221111748/http://galvanizeit.org/aga/designing-fabricating/design-considerations/zinc-metal-properties |archive-date=February 21, 2009 }}</ref> कैडमियम कई संदर्भ में जस्ता के समान है लेकिन [[जटिल (रसायन विज्ञान)|जटिल]] यौगिक बनाता है।<ref>{{cite book |publisher=Walter de Gruyter|year=1985|edition=91–100|pages=1056–1057|isbn=978-3-11-007511-3 |title=अकार्बनिक रसायन विज्ञान की पाठ्यपुस्तक|first1=Arnold F.|last1=Holleman|last2=Wiberg|first2=Egon |last3=Wiberg|first3=Nils|language=de|chapter=Cadmium}}</ref> अन्य धातुओं के विपरीत, कैडमियम संक्षारण प्रतिरोधी है और परिणामस्वरूप इसे अन्य धातुओं पर जमा होने पर सुरक्षात्मक परत के रूप में उपयोग किया जाता है। थोक धातु के रूप में, कैडमियम पानी में अघुलनशील है और [[ज्वलनशीलता|ज्वलनशील]] नहीं है; हालाँकि, इसके चूर्ण के रूप में यह जल सकता है और जहरीले धुएं को छोड़ सकता है।<ref name="ATSDR">{{cite web |title=पर्यावरण चिकित्सा में केस स्टडीज (CSEM) कैडमियम|url=http://www.atsdr.cdc.gov/csem/cadmium/cdcontents.html |publisher=Agency for Toxic Substances and Disease Registry |access-date=May 30, 2011 |url-status=dead |archive-url=https://web.archive.org/web/20110203222234/http://www.atsdr.cdc.gov/csem/cadmium/cdcontents.html |archive-date=February 3, 2011 }}</ref> डी-ब्लॉक धातु के लिए पारा असाधारण रूप से कम पिघलने वाला तापमान है। इस तथ्य की पूरी व्याख्या के लिए [[क्वांटम भौतिकी]] में गहन अध्ययन की आवश्यकता है, लेकिन इसे संक्षेप में निम्नानुसार किया जा सकता है: पारा का एक अद्वितीय इलेक्ट्रॉनिक विन्यास है जहां इलेक्ट्रॉन सभी उपलब्ध 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p , 4d, 4f, 5s, 5p, 5d और 6s उपकोश को भरते हैं। '''इस तरह के विन्यास के रूप में एक इलेक्ट्रॉन को हटाने का दृढ़ता से विरोध करता है, पारा''' उत्कृष्ट गैस तत्वों के समान व्यवहार करता है, जो कमजोर बंधन बनाते हैं और इस प्रकार ठोस पदार्थों को आसानी से पिघलाते हैं। 6s कोश की स्थिरता भरे हुए 4f कोश की उपस्थिति के कारण है। एक f शेल परमाणु आवेश को खराब तरीके से प्रदर्शित करता है जो 6s शेल और नाभिक के आकर्षक कूलम्ब के नियम को बढ़ाता है ([[लैंथेनाइड संकुचन]] देखें)। भरे हुए आंतरिक एफ खोल की अनुपस्थिति कैडमियम और जस्ता के कुछ हद तक उच्च पिघलने के तापमान का कारण है, हालांकि ये दोनों धातुएं अभी भी आसानी से पिघलती हैं और इसके अलावा असामान्य रूप से कम क्वथनांक होते हैं। सोने में पारे की तुलना में एक कम 6s इलेक्ट्रॉन वाले परमाणु होते हैं। उन इलेक्ट्रॉनों को अधिक आसानी से हटा दिया जाता है और अपेक्षाकृत मजबूत धातु बंधन बनाने वाले सोने के परमाणुओं के बीच साझा किया जाता है।<ref name="Norrby">{{cite journal |author=Norrby, L.J.|title=पारा तरल क्यों होता है? या, सापेक्षतावादी प्रभाव रसायन विज्ञान की पाठ्यपुस्तकों में क्यों नहीं आते?| journal= Journal of Chemical Education|volume=68|issue=2|page=110 |year=1991 |doi=10.1021/ed068p110 |bibcode=1991JChEd..68..110N}}</ref><ref>{{cite web|title=एसटीपी में पारा तरल क्यों होता है?|url=http://antoine.frostburg.edu/chem/senese/101/periodic/faq/why-is-mercury-liquid.shtml|access-date=2009-07-07}}</ref>


जस्ता, कैडमियम और पारा [[मिश्र धातु]]ओं की एक बड़ी श्रृंखला बनाते हैं। जस्ता युक्त लोगों में, [[पीतल]] जस्ता और तांबे का मिश्र धातु है। लंबे समय से जस्ता के साथ बाइनरी मिश्र धातु बनाने के लिए जाने वाली अन्य धातुएं [[अल्युमीनियम]], [[सुरमा]], [[विस्मुट]], सोना, लोहा, सीसा, पारा, [[चांदी]], [[मानना]], [[मैग्नीशियम]], [[कोबाल्ट]], [[निकल]], [[टेल्यूरियम]] और [[सोडियम]] हैं।<ref name="Ingalls">{{Cite book|title=जिंक का उत्पादन और गुण: जिंक अयस्क की घटना और वितरण पर एक ग्रंथ, स्पेल्टर के उत्पादन को प्रभावित करने वाली वाणिज्यिक और तकनीकी स्थितियां, इसके रासायनिक और भौतिक गुण और कला में उपयोग, उद्योग की एक ऐतिहासिक और सांख्यिकीय समीक्षा के साथ|last=Ingalls|first=Walter Renton |publisher=The Engineering and Mining Journal|year=1902|pages=[https://archive.org/details/productionandpr01ingagoog/page/n332 142]–6 |url=https://archive.org/details/productionandpr01ingagoog}}</ref> जबकि न तो जस्ता और न ही [[zirconium]] [[फेरोमैग्नेटिज्म]], उनके मिश्र धातु हैं {{chem|ZrZn|2}} 35 [[केल्विन]] से नीचे फेरोमैग्नेटिज़्म प्रदर्शित करता है।<ref name="CRCp4-41" />घर्षण और थकान प्रतिरोध के कम गुणांक के कारण कैडमियम का उपयोग कई प्रकार के [[मिलाप]] और बियरिंग मिश्र धातुओं में किया जाता है।<ref name="HgCdPb" />यह कुछ सबसे कम पिघलने वाली मिश्र धातुओं में भी पाया जाता है, जैसे लकड़ी की धातु।<ref>{{cite book|first1= George Stuart|last1= Brady|first2= George S.|last2= Brady|first3= Henry R.|last3= Clauser|first4 = John A.|last4 = Vaccari|isbn = 978-0-07-136076-0|url = https://books.google.com/books?id=vIhvSQLhhMEC&pg=PA425|title = सामग्री पुस्तिका: प्रबंधकों, तकनीकी पेशेवरों, क्रय और उत्पादन प्रबंधकों, तकनीशियनों और पर्यवेक्षकों के लिए एक विश्वकोश|publisher = McGraw-Hill Professional|year = 2002| page = 425}}</ref> क्योंकि यह एक तरल है, पारा अन्य धातुओं को घोलता है और जो मिश्र धातु बनती है उसे [[अमलगम (रसायन विज्ञान)]] कहा जाता है। उदाहरण के लिए, ऐसे अमलगम को सोना, जस्ता, सोडियम और कई अन्य धातुओं के साथ जाना जाता है। क्योंकि लोहा एक अपवाद है, पारे का व्यापार करने के लिए लोहे के फ्लास्क का पारंपरिक रूप से उपयोग किया जाता रहा है। अन्य धातुएँ जो पारा के साथ अमलगम नहीं बनाती हैं उनमें टैंटलम, टंगस्टन और प्लैटिनम निहीत हैं। [[सोडियम अमलगम]] [[कार्बनिक संश्लेषण]] में एक सामान्य कम करने वाला एजेंट है, और इसका उपयोग उच्च दबाव वाले सोडियम लैंप में भी किया जाता है। दो शुद्ध धातुओं के संपर्क में आने पर पारा आसानी से एल्युमिनियम के साथ जुड़कर [[एल्यूमीनियम अमलगम]] बनाता है। चूंकि अमलगम हवा के साथ अभिक्रिया कर एल्युमीनियम ऑक्साइड देता है, पारा की थोड़ी मात्रा एल्युमिनियम को संक्षारित करती है। इस कारण से, अधिकांश परिस्थितियों में एक विमान में पारे की अनुमति नहीं है क्योंकि इसके जोखिम के कारण विमान में खुले एल्यूमीनियम भागों के साथ एक अमलगम बन जाता है।<ref name="CorrAl">{{cite book |author1=Vargel, C. |author2=Jacques, M. |author3=Schmidt, M. P. | title = एल्युमीनियम का क्षरण|year =2004| isbn = 978-0-08-044495-6|publisher = Elsevier |url=https://books.google.com/books?id=NAABS5KrVDYC&pg=PA158|page=158}}</ref>
जस्ता, कैडमियम और पारा [[मिश्र धातु]]ओं की एक बड़ी श्रृंखला बनाते हैं। जस्ता युक्त लोगों में, [[पीतल]] जस्ता और तांबे का मिश्र धातु है। लंबे समय से जस्ता के साथ बाइनरी मिश्र धातु बनाने के लिए जाने वाली अन्य धातुएं [[अल्युमीनियम]], [[सुरमा]], [[विस्मुट]], सोना, लोहा, सीसा, पारा, [[चांदी]], [[मानना]], [[मैग्नीशियम]], [[कोबाल्ट]], [[निकल]], [[टेल्यूरियम]] और [[सोडियम]] हैं।<ref name="Ingalls">{{Cite book|title=जिंक का उत्पादन और गुण: जिंक अयस्क की घटना और वितरण पर एक ग्रंथ, स्पेल्टर के उत्पादन को प्रभावित करने वाली वाणिज्यिक और तकनीकी स्थितियां, इसके रासायनिक और भौतिक गुण और कला में उपयोग, उद्योग की एक ऐतिहासिक और सांख्यिकीय समीक्षा के साथ|last=Ingalls|first=Walter Renton |publisher=The Engineering and Mining Journal|year=1902|pages=[https://archive.org/details/productionandpr01ingagoog/page/n332 142]–6 |url=https://archive.org/details/productionandpr01ingagoog}}</ref> जबकि न तो जस्ता और न ही [[zirconium]] [[फेरोमैग्नेटिज्म]], उनके मिश्र धातु हैं {{chem|ZrZn|2}} 35 [[केल्विन]] से नीचे फेरोमैग्नेटिज़्म प्रदर्शित करता है।<ref name="CRCp4-41" />घर्षण और थकान प्रतिरोध के कम गुणांक के कारण कैडमियम का उपयोग कई प्रकार के [[मिलाप]] और बियरिंग मिश्र धातुओं में किया जाता है।<ref name="HgCdPb" />यह कुछ सबसे कम पिघलने वाली मिश्र धातुओं में भी पाया जाता है, जैसे लकड़ी की धातु।<ref>{{cite book|first1= George Stuart|last1= Brady|first2= George S.|last2= Brady|first3= Henry R.|last3= Clauser|first4 = John A.|last4 = Vaccari|isbn = 978-0-07-136076-0|url = https://books.google.com/books?id=vIhvSQLhhMEC&pg=PA425|title = सामग्री पुस्तिका: प्रबंधकों, तकनीकी पेशेवरों, क्रय और उत्पादन प्रबंधकों, तकनीशियनों और पर्यवेक्षकों के लिए एक विश्वकोश|publisher = McGraw-Hill Professional|year = 2002| page = 425}}</ref> क्योंकि यह एक तरल है, पारा अन्य धातुओं को घोलता है और जो मिश्र धातु बनती है उसे [[अमलगम (रसायन विज्ञान)]] कहा जाता है। उदाहरण के लिए, ऐसे अमलगम को सोना, जस्ता, सोडियम और कई अन्य धातुओं के साथ जाना जाता है। क्योंकि लोहा एक अपवाद है, पारे का व्यापार करने के लिए लोहे के फ्लास्क का पारंपरिक रूप से उपयोग किया जाता रहा है। अन्य धातुएँ जो पारा के साथ अमलगम नहीं बनाती हैं उनमें टैंटलम, टंगस्टन और प्लैटिनम निहीत हैं। [[सोडियम अमलगम]] [[कार्बनिक संश्लेषण]] में एक सामान्य कम करने वाला एजेंट है, और इसका उपयोग उच्च दबाव वाले सोडियम लैंप में भी किया जाता है। दो शुद्ध धातुओं के संपर्क में आने पर पारा आसानी से एल्युमिनियम के साथ जुड़कर [[एल्यूमीनियम अमलगम]] बनाता है। चूंकि अमलगम हवा के साथ अभिक्रिया कर एल्युमीनियम ऑक्साइड देता है, पारा की थोड़ी मात्रा एल्युमिनियम को संक्षारित करती है। इस कारण से, अधिकांश परिस्थितियों में एक विमान में पारे की अनुमति नहीं है क्योंकि इसके जोखिम के कारण विमान में खुले एल्यूमीनियम भागों के साथ एक अमलगम बन जाता है।<ref name="CorrAl">{{cite book |author1=Vargel, C. |author2=Jacques, M. |author3=Schmidt, M. P. | title = एल्युमीनियम का क्षरण|year =2004| isbn = 978-0-08-044495-6|publisher = Elsevier |url=https://books.google.com/books?id=NAABS5KrVDYC&pg=PA158|page=158}}</ref>

Revision as of 09:06, 29 December 2022

Group 12 in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
group 11  boron group
IUPAC group number 12
Name by element zinc group
CAS group number
(US, pattern A-B-A)
IIB
old IUPAC number
(Europe, pattern A-B)
IIB

↓ Period
4
Image: Zinc, fragment and sublimed 99.995%
Zinc (Zn)
30 Transition metal
5
Image: Cadmium, crystal bar 99.99%
Cadmium (Cd)
48 Transition metal
6
Image: Mercury, liquid
Mercury (Hg)
80 Transition metal
7 Copernicium (Cn)
112 transition metal

Legend

primordial element
synthetic element
Atomic number color:
green=liquidblack=solid

समूह 12, आधुनिक आई यू पी ए सी प्रणाली द्वारा,[1] आवर्त सारणी में रासायनिक तत्वों का एक समूह है। इसमें जस्ता (Zn), कैडमियम (Cd), पारा(Hg),[2][3][4] निहीत हैं। और कोपरनिसियम(Cn)।[5] पूर्व में इस समूह का नाम सी ए एस और पुराने आई यू पी ए सी प्रणाली द्वारा आई आई बी नाम दिया गया था ("समूह दो बी" के रूप में स्पष्ट किया गया है, क्योंकि "II" एक रोमन अंक है)।[note 1]

प्राकृतिक रूप से पाए जाने वाले तीन समूह 12 तत्व जस्ता, कैडमियम और पारा हैं। वे सभी बिजली और इलेक्ट्रॉनिक अनुप्रयोगों के साथ-साथ विभिन्न मिश्र धातुओं में व्यापक रूप से उपयोग किए जाते हैं। समूह के पहले दो सदस्य समान गुणों को साझा करते हैं क्योंकि वे मानक परिस्थितियों में ठोस धातु होते हैं। पारा एकमात्र ऐसी धातु है जो कमरे के तापमान पर द्रव अवस्था में होती है। जबकि जीवित जीवों के जैव रसायन में जस्ता बहुत महत्वपूर्ण है, कैडमियम और पारा दोनों ही अत्यधिक विषैले होते हैं। कॉपरनिकियम प्रकृति में नहीं होता है, इसे प्रयोगशाला में संश्लेषित किया जाना है।

भौतिक और परमाणु गुण

आवर्त सारणी के अन्य समूह की तरह, समूह 12 के सदस्य इसके इलेक्ट्रॉन विन्यास में अभिरचना दिखाते हैं, विशेष रूप से सबसे बाहरी गोले, जिसके परिणामस्वरूप उनके रासायनिक व्यवहार में रुझान होता है:

Z तत्व एलेक्ट्रॉनों की संख्या/आवरण
30 जस्ता 2, 8, 18, 2
48 कैडमियम 2, 8, 18, 18, 2
80 पारा 2, 8, 18, 32, 18, 2
112 कोपरनिसियम 2, 8, 18, 32, 32, 18, 2 (पूर्वानुमानित)

समूह 12 के तत्व सभी नरम, प्रतिचुंबकीय, द्विसंयोजक धातु हैं। सभी संक्रमण धातुओं में इनका गलनांक सबसे कम होता है।[7]जस्ता नीला-सफेद और चमकदार होता है,[8] हालांकि धातु के अधिकांश सामान्य व्यावसायिक ग्रेड की परिसज्जा फीकी होती है।[9] जस्ता को अवैज्ञानिक संदर्भों में वर्तनी के रूप में भी जाना जाता है।[10]कैडमियम नरम, आघात वर्धनीय, तन्य और नीले-सफेद रंग का होता है। पारा एक तरल, भारी, स्र्पहला-सफेद धातु है। यह साधारण तापमान पर एकमात्र सामान्य तरल धातु है, और अन्य धातुओं की तुलना में, यह ऊष्मा का खराब संवाहक है, लेकिन बिजली का अच्छा संवाहक है।[11]

नीचे दी गई तालिका समूह 12 तत्वों के प्रमुख भौतिक गुणों का सारांश है। कोपर्निकियम के लिए डेटा सापेक्षतावादी घनत्व-कार्यात्मक सिद्धांत अनुकरण पर आधारित है।[12]

समूह 12 के तत्वों के गुण
नाम जस्ता कैडमियम पारा कोपरनिसियम
गलनांक 693 K (420 °C) 594 K (321 °C) 234 K (−39 °C) 283±11 K[12] (10 °C)
क्वथनांक 1180 K (907 °C) 1040 K (767 °C) 630 K (357 °C) 340±10 K[12] (60 °C)
सघनता 7.14 g·cm−3 8.65 g·cm−3 13.534 g·cm−3 14.0 g·cm−3 [12]
बाह्याकृति स्र्पहला नीला-स्लेटी स्र्पहला -स्लेटी रुपहला ?
परमाणु त्रिज्या 135 pm 155 pm 150 pm ? 147 pm

जस्ता लोहे की तुलना में कुछ कम घना होता है और इसमें षट्कोणीय स्फटिक संरचना होती है।[13] धातु अधिकांश तापमानों पर कठोर और भंगुर होती है लेकिन बीच में निंदनीय हो जाती है 100 and 150 °C (212 and 302 °F).[8][9]के ऊपर 210 °C (410 °F), धातु फिर से भंगुर हो जाती है और पीट कर चूर्णित किया जा सकता है।[14] जस्ता एक उचित विद्युत चालक है।[8]एक धातु के लिए, जस्ता में अपेक्षाकृत कम गलनांक (419.5 °C, 787.1 °F) और क्वथनांक (907 °C, 1,665 °F) होते है।[7] कैडमियम कई संदर्भ में जस्ता के समान है लेकिन जटिल यौगिक बनाता है।[15] अन्य धातुओं के विपरीत, कैडमियम संक्षारण प्रतिरोधी है और परिणामस्वरूप इसे अन्य धातुओं पर जमा होने पर सुरक्षात्मक परत के रूप में उपयोग किया जाता है। थोक धातु के रूप में, कैडमियम पानी में अघुलनशील है और ज्वलनशील नहीं है; हालाँकि, इसके चूर्ण के रूप में यह जल सकता है और जहरीले धुएं को छोड़ सकता है।[16] डी-ब्लॉक धातु के लिए पारा असाधारण रूप से कम पिघलने वाला तापमान है। इस तथ्य की पूरी व्याख्या के लिए क्वांटम भौतिकी में गहन अध्ययन की आवश्यकता है, लेकिन इसे संक्षेप में निम्नानुसार किया जा सकता है: पारा का एक अद्वितीय इलेक्ट्रॉनिक विन्यास है जहां इलेक्ट्रॉन सभी उपलब्ध 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p , 4d, 4f, 5s, 5p, 5d और 6s उपकोश को भरते हैं। इस तरह के विन्यास के रूप में एक इलेक्ट्रॉन को हटाने का दृढ़ता से विरोध करता है, पारा उत्कृष्ट गैस तत्वों के समान व्यवहार करता है, जो कमजोर बंधन बनाते हैं और इस प्रकार ठोस पदार्थों को आसानी से पिघलाते हैं। 6s कोश की स्थिरता भरे हुए 4f कोश की उपस्थिति के कारण है। एक f शेल परमाणु आवेश को खराब तरीके से प्रदर्शित करता है जो 6s शेल और नाभिक के आकर्षक कूलम्ब के नियम को बढ़ाता है (लैंथेनाइड संकुचन देखें)। भरे हुए आंतरिक एफ खोल की अनुपस्थिति कैडमियम और जस्ता के कुछ हद तक उच्च पिघलने के तापमान का कारण है, हालांकि ये दोनों धातुएं अभी भी आसानी से पिघलती हैं और इसके अलावा असामान्य रूप से कम क्वथनांक होते हैं। सोने में पारे की तुलना में एक कम 6s इलेक्ट्रॉन वाले परमाणु होते हैं। उन इलेक्ट्रॉनों को अधिक आसानी से हटा दिया जाता है और अपेक्षाकृत मजबूत धातु बंधन बनाने वाले सोने के परमाणुओं के बीच साझा किया जाता है।[17][18]

जस्ता, कैडमियम और पारा मिश्र धातुओं की एक बड़ी श्रृंखला बनाते हैं। जस्ता युक्त लोगों में, पीतल जस्ता और तांबे का मिश्र धातु है। लंबे समय से जस्ता के साथ बाइनरी मिश्र धातु बनाने के लिए जाने वाली अन्य धातुएं अल्युमीनियम, सुरमा, विस्मुट, सोना, लोहा, सीसा, पारा, चांदी, मानना, मैग्नीशियम, कोबाल्ट, निकल, टेल्यूरियम और सोडियम हैं।[10] जबकि न तो जस्ता और न ही zirconium फेरोमैग्नेटिज्म, उनके मिश्र धातु हैं ZrZn
2
35 केल्विन से नीचे फेरोमैग्नेटिज़्म प्रदर्शित करता है।[8]घर्षण और थकान प्रतिरोध के कम गुणांक के कारण कैडमियम का उपयोग कई प्रकार के मिलाप और बियरिंग मिश्र धातुओं में किया जाता है।[19]यह कुछ सबसे कम पिघलने वाली मिश्र धातुओं में भी पाया जाता है, जैसे लकड़ी की धातु।[20] क्योंकि यह एक तरल है, पारा अन्य धातुओं को घोलता है और जो मिश्र धातु बनती है उसे अमलगम (रसायन विज्ञान) कहा जाता है। उदाहरण के लिए, ऐसे अमलगम को सोना, जस्ता, सोडियम और कई अन्य धातुओं के साथ जाना जाता है। क्योंकि लोहा एक अपवाद है, पारे का व्यापार करने के लिए लोहे के फ्लास्क का पारंपरिक रूप से उपयोग किया जाता रहा है। अन्य धातुएँ जो पारा के साथ अमलगम नहीं बनाती हैं उनमें टैंटलम, टंगस्टन और प्लैटिनम निहीत हैं। सोडियम अमलगम कार्बनिक संश्लेषण में एक सामान्य कम करने वाला एजेंट है, और इसका उपयोग उच्च दबाव वाले सोडियम लैंप में भी किया जाता है। दो शुद्ध धातुओं के संपर्क में आने पर पारा आसानी से एल्युमिनियम के साथ जुड़कर एल्यूमीनियम अमलगम बनाता है। चूंकि अमलगम हवा के साथ अभिक्रिया कर एल्युमीनियम ऑक्साइड देता है, पारा की थोड़ी मात्रा एल्युमिनियम को संक्षारित करती है। इस कारण से, अधिकांश परिस्थितियों में एक विमान में पारे की अनुमति नहीं है क्योंकि इसके जोखिम के कारण विमान में खुले एल्यूमीनियम भागों के साथ एक अमलगम बन जाता है।[21]


रसायन विज्ञान

अधिकांश रसायन विज्ञान केवल समूह 12 के पहले तीन सदस्यों के लिए देखे गए हैं। कॉपरनिकियम का रसायन अच्छी तरह से स्थापित नहीं है और इसलिए शेष खंड केवल जस्ता, कैडमियम और पारा से संबंधित है।

आवधिक रुझान

इस समूह के सभी तत्व धातु हैं। कैडमियम और पारा की धात्विक त्रिज्या की समानता लैंथेनाइड संकुचन का एक प्रभाव है। इसलिए, इस समूह की प्रवृत्ति समूह 2, क्षारीय पृथ्वी की प्रवृत्ति के विपरीत है, जहां धातु की त्रिज्या समूह के ऊपर से नीचे की ओर सुचारू रूप से बढ़ती है। सभी तीन धातुओं में अपेक्षाकृत कम गलनांक और क्वथनांक होते हैं, जो दर्शाता है कि धातु बंधन अपेक्षाकृत कमजोर है, जिसमें संयोजी बंध और चालन बैंड के बीच अपेक्षाकृत कम ओवरलैप होता है।[22] इस प्रकार, जस्ता धातु और उपधातु तत्वों के बीच की सीमा के करीब है, जिसे आमतौर पर गैलियम और जर्मेनियम के बीच रखा जाता है, हालांकि गैलियम अर्धचालक जैसे गैलियम आर्सेनाइड में भाग लेता है।

जस्ता और कैडमियम इलेक्ट्रोपोसिटिविटी हैं जबकि पारा नहीं है।[22]नतीजतन, जस्ता और कैडमियम धातु अच्छे कम करने वाले एजेंट हैं। समूह 12 के तत्वों की ऑक्सीकरण अवस्था +2 होती है जिसमें आयन अपेक्षाकृत स्थिर d होते हैं10 इलेक्ट्रॉनिक कॉन्फ़िगरेशन, एक पूर्ण इलेक्ट्रॉन कवच|उप-शेल के साथ। हालांकि, पारा आसानी से +1 ऑक्सीकरण अवस्था में कम किया जा सकता है; आमतौर पर, जैसा कि आयन में होता है Hg2+
2
, दो पारा (I) आयन धातु-धातु बंधन और एक प्रतिचुंबकीय प्रजाति बनाने के लिए एक साथ आते हैं।[23] कैडमियम [Cd.] जैसी प्रजातियाँ भी बना सकता है2क्लोरीन6]4− जिसमें धातु की ऑक्सीकरण अवस्था +1 है। पारे की तरह ही, धातु-धातु बंधन के बनने से एक प्रतिचुम्बकीय यौगिक बनता है जिसमें कोई अयुगलित इलेक्ट्रॉन नहीं होता है; इस प्रकार, प्रजातियों को बहुत प्रतिक्रियाशील बनाते हैं। जस्ता (I) ज्यादातर गैस चरण में जाना जाता है, ऐसे यौगिकों में रैखिक Zn के रूप में2क्लोरीन2, कैलौमेल के समान। ठोस चरण में, बल्कि विदेशी यौगिक decamethyldizincocene (Cp*Zn-ZnCp*) जाना जाता है।

वर्गीकरण

समूह 12 के तत्वों को आमतौर पर डी-ब्लॉक तत्व माना जाता है, लेकिन संक्रमण तत्व नहीं क्योंकि डी-शेल भरा हुआ है। कुछ लेखक इन तत्वों को मुख्य-समूह तत्वों के रूप में वर्गीकृत करते हैं क्योंकि रासायनिक संयोजन इलेक्ट्रॉन एनएस में होते हैं2 ऑर्बिटल्स। फिर भी, वे आवर्त सारणी पर पड़ोसी समूह 11 तत्वों के साथ कई विशेषताओं को साझा करते हैं, जिन्हें लगभग सार्वभौमिक रूप से संक्रमण तत्व माना जाता है। उदाहरण के लिए, जस्ता पड़ोसी संक्रमण धातु, तांबे के साथ कई विशेषताओं को साझा करता है। जस्ता कॉम्प्लेक्स इरविंग-विलियम्स श्रृंखला में निहीत किए जाने के योग्य हैं क्योंकि जस्ता कॉपर (II) के कॉम्प्लेक्स के समान स्तुईचिओमेटरी के साथ कई कॉम्प्लेक्स बनाता है, यद्यपि कॉम्प्लेक्स के छोटे स्थिरता स्थिरांक के साथ।[24] कैडमियम और चांदी के बीच थोड़ी समानता है क्योंकि चांदी (II) के यौगिक दुर्लभ हैं और जो मौजूद हैं वे बहुत मजबूत ऑक्सीकरण एजेंट हैं। इसी तरह सोने के लिए सामान्य ऑक्सीकरण स्थिति +3 है, जो पारा और सोने के बीच बहुत आम रसायन शास्त्र होने से रोकता है, हालांकि पारा (आई) और सोना (आई) के बीच समानताएं हैं जैसे कि रैखिक डाइसानो कॉम्प्लेक्स का गठन, [एम (सीएन) )2]-</सुप>. आई यू पी ए सी की संक्रमण धातु की परिभाषा के अनुसार एक ऐसे तत्व के रूप में जिसके परमाणु में एक अधूरा d उप-कोश है, या जो एक अपूर्ण d उप-कोश के साथ धनायनों को जन्म दे सकता है,[25] जस्ता और कैडमियम संक्रमण धातु नहीं हैं, जबकि पारा है। ऐसा इसलिए है क्योंकि पारा (चतुर्थ) फ्लोराइड में केवल पारा को एक यौगिक के रूप में जाना जाता है जहां इसकी ऑक्सीकरण स्थिति +2 से अधिक है (हालांकि इसका अस्तित्व विवादित है, क्योंकि बाद के प्रयोग इसके संश्लेषण की पुष्टि करने की कोशिश कर रहे हैं, एचजीएफ का सबूत नहीं मिला4).[26][27] हालांकि, यह वर्गीकरण गैर-संतुलन स्थितियों में देखे जाने वाले एक अत्यधिक एटिपिकल यौगिक पर आधारित है और पारा के अधिक विशिष्ट रसायन विज्ञान के लिए मुश्किल है, और जेन्सेन ने सुझाव दिया है कि पारा को संक्रमण धातु नहीं माना जाना बेहतर होगा।[28]


क्षारीय पृथ्वी धातुओं के साथ संबंध

हालांकि समूह 12 आधुनिक 18-स्तंभ आवर्त सारणी के डी-ब्लॉक में स्थित है, जस्ता, कैडमियम और (लगभग हमेशा) पारा के डी इलेक्ट्रॉन कोर इलेक्ट्रॉनों के रूप में व्यवहार करते हैं और बंधन में भाग नहीं लेते हैं। यह व्यवहार मुख्य-समूह तत्वों के समान है, लेकिन पड़ोसी समूह 11 तत्वों (तांबा, चांदी और सोना) के विपरीत है, जिनके पास उनके जमीन-राज्य इलेक्ट्रॉन विन्यास में डी-सबहेल भी भरे हुए हैं लेकिन रासायनिक रूप से संक्रमण धातुओं के रूप में व्यवहार करें। उदाहरण के लिए, क्रोमियम (II) सल्फाइड (CrS) में बंधन में मुख्य रूप से 3डी इलेक्ट्रॉन निहीत होते हैं; आयरन (II) सल्फाइड (FeS) में 3d और 4s दोनों इलेक्ट्रॉन निहीत होते हैं; लेकिन जस्ता सल्फाइड (ZnS) में केवल 4s इलेक्ट्रॉन निहीत होते हैं और 3d इलेक्ट्रॉन कोर ऋणावेशित सूक्ष्म अणु का विन्यास रूप में व्यवहार करते हैं। वास्तव में, उनके गुणों और क्षारीय पृथ्वी धातु, फीरोज़ा और मैग्नीशियम के पहले दो सदस्यों के बीच उपयोगी तुलना की जा सकती है, और पहले के संक्षिप्त रूप आवर्त सारणी लेआउट में, इस संबंध को और अधिक स्पष्ट रूप से चित्रित किया गया है। उदाहरण के लिए, जस्ता और कैडमियम अपने परमाणु त्रिज्या, आयनिक त्रिज्या, वैद्युतीयऋणात्मकता में बेरिलियम और मैग्नीशियम के समान हैं, और उनके द्विआधारी यौगिकों की संरचना में भी और कई नाइट्रोजन और ऑक्सीजन लिगेंड के साथ जटिल आयन बनाने की उनकी क्षमता, जैसे कि जटिल हाइड्राइड और अमीन। हालांकि, बेरिलियम और मैग्नीशियम छोटे परमाणु हैं, भारी क्षारीय पृथ्वी धातुओं के विपरीत और समूह 12 तत्वों की तरह (जिनमें अधिक परमाणु आवेश होता है, लेकिन वैलेंस इलेक्ट्रॉनों की समान संख्या होती है), और बेरिलियम से रेडियम (समान) के समूह 2 के आवधिक रुझान क्षार धातुओं की तुलना में) डी-ब्लॉक संकुचन|डी-ब्लॉक और लैंथेनाइड संकुचन के कारण बेरिलियम से पारा (जो कि पी-ब्लॉक मुख्य समूहों के समान है) से नीचे जाने पर उतना चिकना नहीं होता है। यह डी-ब्लॉक और लैंथेनाइड संकुचन भी है जो पारा को इसके कई विशिष्ट गुण प्रदान करते हैं।[28]

Comparison of the properties of the alkaline earth metals and the group 12 elements (predictions for copernicium)[28]
Name Beryllium Magnesium Calcium Strontium Barium Radium
Valence electron configuration 2s2 3s2 4s2 5s2 6s2 7s2
Core electron configuration [He] [Ne] [Ar] [Kr] [Xe] [Rn]
Oxidation states[note 2] +2, +1 +2, +1 +2, +1 +2, +1 +2 +2
Melting point 1560 K (1287 °C) 923 K (650 °C) 1115 K (842 °C) 1050 K (777 °C) 1000 K (727 °C) 973 K (700 °C)
Boiling point 2742 K (2469 °C) 1363 K (1090 °C) 1757 K (1484 °C) 1655 K (1382 °C) 2170 K (1897 °C) 2010 K (1737 °C)
Appearance white-gray metallic shiny gray metallic dull silver-gray silvery white metallic silvery gray silvery white metallic
Density 1.85 g·cm−3 1.738 g·cm−3 1.55 g·cm−3 2.64 g·cm−3 3.51 g·cm−3 5.5 g·cm−3
Pauling electronegativity 1.57 1.31 1.00 0.95 0.89 0.9
Atomic radius 105 pm 150 pm 180 pm 200 pm 215 pm 215 pm
Crystal ionic radius 59 pm 86 pm 114 pm 132 pm 149 pm 162 pm
Flame test color white[28] brilliant white[29] brick-red[29] crimson[29] apple green[29] crimson red[note 3]
Organometallic chemistry good good poor very poor very poor extremely poor
Hydroxide amphoteric basic basic strongly basic strongly basic strongly basic
Oxide amphoteric strongly basic strongly basic strongly basic strongly basic strongly basic
Name Beryllium Magnesium Zinc Cadmium Mercury Copernicium
Valence electron configuration 2s2 3s2 4s2 5s2 6s2 ? 7s2
Core electron configuration [He] [Ne] [Ar]3d10 [Kr]4d10 [Xe]4f145d10 ? [Rn]5f146d10
Oxidation states[note 2] +2, +1 +2, +1 +2, +1 +2, +1 +2, +1 ? +4, +2, +1, 0[31][32][33]
Melting point 1560 K (1287 °C) 923 K (650 °C) 693 K (420 °C) 594 K (321 °C) 234 K (−39 °C) 283±11 K (10 °C)
Boiling point 2742 K (2469 °C) 1363 K (1090 °C) 1180 K (907 °C) 1040 K (767 °C) 630 K (357 °C) 340±10 K (60 °C)
Appearance white-gray metallic shiny gray metallic silvery bluish-gray metallic silver-gray silvery ?
Density 1.85 g·cm−3 1.738 g·cm−3 7.14 g·cm−3 8.65 g·cm−3 13.534 g·cm−3 14.0 g·cm−3
Pauling electronegativity 1.57 1.31 1.65 1.69 2.00 ?
Atomic radius 105 pm 150 pm 135 pm 155 pm 150 pm ? 147 pm[32]
Crystal ionic radius 59 pm 86 pm 88 pm 109 pm 116 pm ? 75 pm[32]
Flame test color white brilliant white bluish-green[note 4] ? ? ?
Organometallic chemistry good good good good good ?
Hydroxide amphoteric basic amphoteric weakly basic ? ?
Oxide amphoteric strongly basic amphoteric mildly basic mildly basic ?


यौगिक

सभी तीन धातु आयन कई टेट्राहेड्रल आणविक ज्यामिति प्रजातियाँ बनाते हैं, जैसे MCl2−
4
. जस्ता और कैडमियम दोनों भी ऑक्टाहेड्रल कॉम्प्लेक्स बना सकते हैं जैसे जलीय घोल में धातु आयन [एम (एच)2ओ)6]2+ जो इन धातुओं के लवणों के जलीय विलयनों में मौजूद होते हैं।[34] एस और पी ऑर्बिटल्स का उपयोग करके सहसंयोजक चरित्र प्राप्त किया जाता है। पारा, हालांकि, शायद ही कभी चार की समन्वय संख्या से अधिक हो। 2, 3, 5, 7 और 8 की समन्वय संख्याएँ भी ज्ञात हैं।

इतिहास

समूह 12 के तत्व पूरे इतिहास में पाए गए हैं, जिनका उपयोग प्राचीन काल से प्रयोगशालाओं में खोजे जाने के लिए किया जा रहा है। समूह ने स्वयं एक तुच्छ नाम हासिल नहीं किया है, लेकिन इसे अतीत में समूह IIB कहा जाता है।

जस्ता

जस्ता का उपयोग प्राचीन काल में अशुद्ध रूपों में और साथ ही पीतल जैसी मिश्र धातुओं में पाया गया है जो 2000 वर्ष से अधिक पुरानी पाई गई हैं।[35][36] जस्ता को हिंदू राजा मदनपाल (ताका वंश के) के रूप में वर्णित मेडिकल लेक्सिकन में फसादा के पदनाम के तहत धातु के रूप में स्पष्ट रूप से पहचाना गया था और वर्ष 1374 के बारे में लिखा गया था।[37] धातु भी कीमिया के काम की थी।[38] धातु का नाम पहली बार 16वीं शताब्दी में प्रलेखित किया गया था,[39][40] और शायद जर्मन से लिया गया है zinke धात्विक क्रिस्टल की सुई जैसी दिखने के लिए।[41]

जस्ता तत्व के लिए विभिन्न अलकेमिकल प्रतीकों का श्रेय दिया जाता है

पश्चिम में धात्विक जस्ता का अलगाव 17वीं शताब्दी में कई लोगों द्वारा स्वतंत्र रूप से प्राप्त किया गया हो सकता है।[42] जर्मन रसायनज्ञ एंड्रियास सिगिस्मंड मार्गग्राफ को आमतौर पर 1746 के प्रयोग में धातु प्राप्त करने के लिए तांबे के बिना एक बंद बर्तन में पैमाना और चारकोल के मिश्रण को गर्म करके शुद्ध धात्विक जस्ता की खोज करने का श्रेय दिया जाता है।[43] 1780 में इटली के डॉक्टर लुइगी गलवानी द्वारा पीतल के साथ मेंढकों पर किए गए प्रयोगों ने बैटरी (बिजली), गैल्वेनाइजेशन और कैथोडिक सुरक्षा की खोज का मार्ग प्रशस्त किया।[44][45] 1799 में, गलवानी के मित्र अलेक्जेंडर वोल्टा ने वोल्टाइक पाइल का आविष्कार किया।[44]1940 तक जस्ता के जैविक महत्व की खोज नहीं की गई थी, जब कार्बोनिक एनहाइड्रेज़, एक एंजाइम जो रक्त से कार्बन डाइऑक्साइड को साफ़ करता है, को इसकी सक्रिय साइट में जस्ता दिखाया गया था।[46]


कैडमियम

1817 में, जर्मनी में कैडमियम की खोज फ्रेडरिक स्ट्रोमेयर और कार्ल सैमुअल लेबेरेचट हरमन द्वारा जस्ता कार्बोनेट खनिजों (कैलामाइन) में अशुद्धता के रूप में की गई थी।[47] इसका नाम कैलामाइन के लिए लैटिन कैडमिया के नाम पर रखा गया था, जो खनिजों का एक कैडमियम युक्त मिश्रण था, जिसे ग्रीक पौराणिक चरित्र, Κάδμος कैडमस, प्राचीन थेब्स (बोओतिया) के संस्थापक के नाम पर रखा गया था।[48] स्ट्रोमेयर ने अंततः रोस्टिंग (धातु विज्ञान) और कैडमियम सल्फाइड की कमी से कैडमियम धातु को अलग कर दिया।[49][50][51] 1927 में, वजन और माप के अंतर्राष्ट्रीय ब्यूरो ने लाल कैडमियम स्पेक्ट्रल लाइन (1 मीटर = 1,553,164.13 तरंग दैर्ध्य) के संदर्भ में मीटर को फिर से परिभाषित किया।[52] तब से यह परिभाषा बदल दी गई है (क्रीप्टोण देखें)। उसी समय, 1960 तक मीटर की लंबाई के लिए मानक के रूप में अंतर्राष्ट्रीय प्रोटोटाइप मीटर का उपयोग किया गया था,[53] जब वजन और माप पर सामान्य सम्मेलन में मीटर को खालीपन में क्रिप्टन -86 परमाणु के विद्युत चुम्बकीय स्पेक्ट्रम में नारंगी-लाल उत्सर्जन रेखा के रूप में परिभाषित किया गया था।[54]


बुध

तत्व का प्रतिनिधित्व करने के लिए बुध (ग्रह) (☿) के प्रतीक का उपयोग प्राचीन काल से किया जाता रहा है।

मिस्र के मकबरों में पारा पाया गया है जो 1500 ईसा पूर्व के हैं,[55] जहां सौंदर्य प्रसाधनों में पारे का उपयोग किया जाता था। इसका उपयोग प्राचीन चीनी द्वारा भी किया जाता था, जो मानते थे कि यह स्वास्थ्य में सुधार और लम्बा करेगा।[56] 500 ईसा पूर्व तक अन्य धातुओं के साथ अमलगम (रसायन विज्ञान) (मध्यकालीन लैटिन अमलगामा, पारे की मिश्र धातु) बनाने के लिए पारे का उपयोग किया जाता था।[57] कीमिया ने पारे को पहली बात माना जिससे सभी धातुओं का निर्माण हुआ। उनका मानना ​​था कि पारे में निहित गंधक की गुणवत्ता और मात्रा में परिवर्तन करके विभिन्न धातुओं का उत्पादन किया जा सकता है। इनमें से सबसे शुद्ध सोना था, और विक्षनरी के प्रयासों में पारे की मांग की गई थी: आधार (या अशुद्ध) धातुओं का सोने में रूपांतरण, जो कई कीमियागरों का लक्ष्य था।[58]

एचजी पारा के लिए आधुनिक [[रासायनिक प्रतीक]] है। यह ग्रीक भाषा के शब्द Ύδραργυρος (हाइड्रार्जाइरोस) का लैटिन रूप है, जो हाइड्रार्जाइरम से आता है, जो एक यौगिक शब्द है जिसका अर्थ है पानी-चांदी (हाइड्र- = पानी, आर्गीरोस = चांदी) - क्योंकि यह पानी की तरह तरल और चांदी की तरह चमकदार है। तत्व का नाम रोमन देवता पारा (पौराणिक कथाओं) के नाम पर रखा गया था, जो गति और गतिशीलता के लिए जाने जाते थे। यह बुध ग्रह (ग्रह) से जुड़ा है; ग्रह के लिए ज्योतिषीय प्रतीक भी धातु के लिए अलकेमिकल प्रतीकों में से एक है।[59] पारा एकमात्र ऐसी धातु है जिसके लिए रासायनिक ग्रहों का नाम सामान्य नाम बन गया।[58]


कॉपरनिकियम

सबसे भारी ज्ञात समूह 12 तत्व, कोपर्निकियम, रासायनिक तत्वों की खोज 9 फरवरी, 1996 को सिगर्ड हॉफमैन, दूसरा नीनवे एट अल द्वारा डार्मस्टाट, जर्मनी में गेसेलशाफ्ट फर श्वेरियनेनफोर्सचुंग (जीएसआई) में की गई थी।[60] इसके बाद 19 फरवरी, 2010 को निकोलस कोपरनिकस के नाम पर शुद्ध और व्यावहारिक रसायन के अंतर्राष्ट्रीय संघ (आई यू पी ए सी) द्वारा आधिकारिक तौर पर इसका नामकरण किया गया, जो कोपर्निकस के जन्म की 537वीं वर्षगांठ थी।[61]


घटना

अधिकांश अन्य डी-ब्लॉक समूहों की तरह, पृथ्वी की परत में तत्वों की प्रचुरता | समूह 12 तत्वों की पृथ्वी की परत में बहुतायत उच्च परमाणु संख्या के साथ घट जाती है। जस्ता 65 भागों प्रति मिलियन (पीपीएम) के साथ समूह में सबसे प्रचुर मात्रा में है जबकि 0.1 पीपीएम के साथ कैडमियम और 0.08 पीपीएम के साथ पारा कम प्रचुरता के आदेश हैं।[62] कॉपरनिकियम, कुछ मिनटों के आधे जीवन के साथ एक सिंथेटिक तत्व के रूप में, केवल उन प्रयोगशालाओं में मौजूद हो सकता है जहां इसका उत्पादन किया गया था।

असमान सतह के साथ ठोस का एक काला चमकदार गांठ।
स्पैलेराइट (ZnS), एक महत्वपूर्ण जस्ता अयस्क

समूह 12 धातुएँ गोल्डश्मिड्ट वर्गीकरण#चैलकोफाइल तत्व हैं, जिसका अर्थ है कि तत्वों में ऑक्साइड के लिए कम समानता होती है और सल्फाइड के साथ बंधना पसंद करते हैं। पृथ्वी के प्रारंभिक वातावरण की रेडोक्स स्थितियों के तहत पपड़ी के जमने के रूप में गठित चालकोफिल्स।[63] समूह 12 तत्वों के व्यावसायिक रूप से सबसे महत्वपूर्ण खनिज सल्फाइड खनिज हैं।[22]स्पैलेराइट, जो जस्ता सल्फाइड का एक रूप है, सबसे अधिक खनन किया गया जस्ता युक्त अयस्क है क्योंकि इसके सांद्रण में 60-62% जस्ता होता है।[13] कैडमियम युक्त अयस्कों का कोई महत्वपूर्ण भंडार ज्ञात नहीं है। Greenockite (CdS), महत्व का एकमात्र कैडमियम खनिज, लगभग हमेशा स्फेलेराइट (ZnS) से जुड़ा होता है। यह संघ जस्ता और कैडमियम के बीच भू-रासायनिक समानता के कारण होता है जो भूगर्भीय पृथक्करण की संभावना को कम करता है। नतीजतन, कैडमियम मुख्य रूप से जस्ता के खनन, प्रगलन और शोधन सल्फिडिक अयस्कों के उपोत्पाद के रूप में और कुछ हद तक सीसा और तांबे के रूप में उत्पादित होता है।[64][65] एक जगह जहां धात्विक कैडमियम पाया जा सकता है, वह साइबेरिया में विलीयू नदी का बेसिन है।[66] हालांकि पारा पृथ्वी की पपड़ी (भूविज्ञान) में एक अत्यंत दुर्लभ तत्व है,[67] क्योंकि यह भू-रसायन को उन तत्वों के साथ मिश्रित नहीं करता है जो क्रस्टल द्रव्यमान के बहुमत का गठन करते हैं, साधारण चट्टान में तत्व की प्रचुरता को देखते हुए पारा अयस्कों को अत्यधिक केंद्रित किया जा सकता है। सबसे अमीर पारा अयस्कों में द्रव्यमान से 2.5% तक पारा होता है, और यहां तक ​​​​कि सबसे कम केंद्रित जमा कम से कम 0.1% पारा (12,000 गुना औसत क्रस्टल बहुतायत) होते हैं। यह या तो एक देशी धातु (दुर्लभ) या सिंगरिफ (HgS), कॉरडेराइट, livestonet और अन्य खनिजों में पाया जाता है, जिसमें सिनाबार सबसे आम अयस्क है।[68]

जबकि पारा और जस्ता खनिज बड़ी मात्रा में खनन के लिए पाए जाते हैं, कैडमियम भी जस्ता के समान है और इसलिए जस्ता अयस्कों में हमेशा कम मात्रा में मौजूद होता है जहां से इसे पुनर्प्राप्त किया जाता है। विश्व में लगभग 1.9 बिलियन टन जस्ता संसाधनों की पहचान की गई है।[69] बड़े जमा ऑस्ट्रेलिया, कनाडा और संयुक्त राज्य अमेरिका में ईरान में सबसे बड़े भंडार के साथ हैं।[63][70][71] खपत की वर्तमान दर पर, इन भंडारों के 2027 और 2055 के बीच कभी-कभी समाप्त होने का अनुमान है।[72][73] 2002 तक के पूरे इतिहास में लगभग 346 मिलियन टन निकाला गया है, और एक अनुमान के अनुसार लगभग 109 मिलियन टन उपयोग में रहता है।[74] 2005 में, चीन लगभग दो-तिहाई वैश्विक हिस्सेदारी के साथ किर्गिज़स्तान के बाद पारा का शीर्ष उत्पादक था।[75] ऐसा माना जाता है कि कई अन्य देशों में तांबे की इलेक्ट्रोविनिंग प्रक्रियाओं से और अपशिष्टों से रिकवरी द्वारा पारे का अलिखित उत्पादन होता है। पारा की उच्च विषाक्तता के कारण, सिनेबार का खनन और पारा के लिए शोधन दोनों ही पारा विषाक्तता के खतरनाक और ऐतिहासिक कारण हैं।[76]


उत्पादन

लगभग 10 मिलियन टन के वार्षिक उत्पादन के साथ केवल लोहे, एल्यूमीनियम और तांबे को पीछे छोड़ते हुए जस्ता चौथी सबसे आम धातु है।[77] दुनिया भर में, जस्ता का 95% सल्फाइड अयस्क जमा से खनन किया जाता है, जिसमें स्पैलेराइट (ZnS) लगभग हमेशा कॉपर, लेड और आयरन के सल्फाइड के साथ मिलाया जाता है। जस्ता धातु का उत्पादन निष्कर्षण धातु विज्ञान का उपयोग करके किया जाता है।[78] रोस्टिंग (धातु विज्ञान) जस्ता ऑक्साइड के प्रसंस्करण के दौरान उत्पादित जस्ता सल्फाइड सांद्रता को परिवर्तित करता है:[79] आगे की प्रक्रिया के लिए दो बुनियादी विधियों का उपयोग किया जाता है: पाइरोमेटलर्जी या इलेक्ट्रोविनिंग। पाइरोमेटैलर्जी प्रसंस्करण कार्बन या कार्बन मोनोआक्साइड के साथ जस्ता ऑक्साइड को कम करता है 950 °C (1,740 °F) धातु में, जो जस्ता वाष्प के रूप में आसुत है।[80] जस्ता वाष्प एक संघनित्र में एकत्र किया जाता है।[79]सल्फ्यूरिक एसिड द्वारा केंद्रित अयस्क से इलेक्ट्रोविनिंग प्रोसेसिंग लीच जस्ता:[81] इस चरण के बाद जस्ता धातु का उत्पादन करने के लिए इलेक्ट्रोलीज़ का उपयोग किया जाता है।[79]

कैडमियम जस्ता अयस्कों में एक सामान्य अशुद्धता है, और यह जस्ता के उत्पादन के दौरान सबसे अलग है। कुछ जस्ता अयस्क सल्फिडिक जस्ता अयस्कों से केंद्रित होते हैं जिनमें कैडमियम का 1.4% तक होता है।[82] कैडमियम को निर्वात आसवन द्वारा ग्रिप धूल से उत्पादित जस्ता से अलग किया जाता है यदि जस्ता गलाया जाता है, या कैडमियम सल्फेट इलेक्ट्रोलिसिस समाधान से निकलता है।[83] सबसे अमीर पारा अयस्कों में द्रव्यमान से 2.5% पारा होता है, और यहां तक ​​​​कि कम से कम केंद्रित जमा कम से कम 0.1% पारा होता है, जिसमें सिनाबार (एचजीएस) जमा में सबसे आम अयस्क होता है।[84] हवा की धारा में सिनाबार को गर्म करके और वाष्प को संघनित करके पारा निकाला जाता है।[85] अतिभारी तत्व जैसे कोपर्निकियम कण त्वरक में हल्के तत्वों पर बमबारी करके उत्पन्न होते हैं जो संलयन प्रतिक्रियाओं को प्रेरित करते हैं। जबकि कॉपरनिकियम के अधिकांश समस्थानिकों को सीधे इस तरह से संश्लेषित किया जा सकता है, कुछ भारी समस्थानिकों को केवल उच्च परमाणु संख्या वाले तत्वों के क्षय उत्पादों के रूप में देखा गया है।[86] कोपर्निकियम का उत्पादन करने के लिए पहली संलयन प्रतिक्रिया 1996 में GSI द्वारा की गई थी, जिसने कॉपरनिकियम-277 की दो क्षय श्रृंखलाओं का पता लगाने की सूचना दी थी (हालांकि एक को बाद में वापस ले लिया गया था, क्योंकि यह विक्टर निनोव द्वारा गढ़े गए डेटा पर आधारित थी):[60]

208
82
Pb
+ 70
30
Zn
277
112
Cn
+
n


अनुप्रयोग

उन भौतिक समानताओं के कारण जो वे साझा करते हैं, समूह 12 के तत्व कई सामान्य स्थितियों में पाए जा सकते हैं। जस्ता और कैडमियम आमतौर पर एंटी-जंग (गैल्वेनाइजेशन) एजेंट के रूप में उपयोग किए जाते हैं[2] क्योंकि वे पूरी तरह से जंग लगने तक सभी स्थानीय ऑक्सीकरण को आकर्षित करेंगे।[87] किसी पदार्थ को धातु के पिघले हुए रूप में गर्म-डुबकी गैल्वनाइजिंग के माध्यम से इन सुरक्षात्मक कोटिंग्स को अन्य धातुओं पर लागू किया जा सकता है,[88] या ELECTROPLATING की प्रक्रिया के माध्यम से जो एकवर्णी लवण के उपयोग से निष्क्रियता (रसायन विज्ञान) हो सकती है।[89]इलेक्ट्रोकैमिस्ट्री में समूह 12 तत्वों का भी उपयोग किया जाता है क्योंकि वे द्वितीयक संदर्भ इलेक्ट्रोड होने के अलावा मानक हाइड्रोजन इलेक्ट्रोड के विकल्प के रूप में कार्य कर सकते हैं।[90] अमेरिका में, जस्ता मुख्य रूप से बिजली से धातु चढ़ाने की क्रिया (55%) और पीतल, कांस्य और अन्य मिश्र धातुओं (37%) के लिए उपयोग किया जाता है।[91] जस्ता की सापेक्ष प्रतिक्रियाशीलता और इसकी ऑक्सीकरण को आकर्षित करने की क्षमता इसे कैथोडिक संरक्षण (सीपी) में एक कुशल बलिदान एनोड बनाती है। उदाहरण के लिए, जस्ता से बने एनोड्स को पाइप से जोड़कर एक दफन पाइपलाइन की कैथोडिक सुरक्षा प्राप्त की जा सकती है।[92] जस्ता एनोड (नकारात्मक टर्मिनस) के रूप में कार्य करता है और धीरे-धीरे दूर हो जाता है क्योंकि यह स्टील पाइपलाइन में विद्युत प्रवाह को पास करता है।[92][note 5] जस्ता का उपयोग उन धातुओं की कैथोडिक रूप से रक्षा करने के लिए भी किया जाता है जो समुद्र के पानी के संपर्क में आने से जंग से बच जाती हैं।[93][94] जस्ता का उपयोग बैटरी के लिए एनोड सामग्री के रूप में भी किया जाता है जैसे कि जस्ता-कार्बन बैटरी | जस्ता-कार्बन बैटरी[95][96] या जस्ता-एयर बैटरी/ईंधन सेल।[97][98][99] एक व्यापक रूप से इस्तेमाल किया जाने वाला मिश्र धातु जिसमें जस्ता होता है, पीतल होता है, जिसमें पीतल के प्रकार के आधार पर तांबे को 3% से 45% जस्ता के साथ मिश्रित किया जाता है।[92] पीतल आमतौर पर तांबे की तुलना में अधिक नमनीय और मजबूत होता है और इसमें बेहतर संक्षारण प्रतिरोध होता है।[92] ये गुण इसे संचार उपकरण, हार्डवेयर, संगीत वाद्ययंत्र और जल वाल्वों में उपयोगी बनाते हैं।[92] अन्य व्यापक रूप से उपयोग किए जाने वाले मिश्र धातुओं में जस्ता होता है जिसमें निकेल चांदी, टाइपराइटर मेटल, सॉफ्ट और एल्यूमीनियम सोल्डर और वाणिज्यिक कांस्य निहीत हैं।[8]तांबे, एल्यूमीनियम और मैग्नीशियम की थोड़ी मात्रा के साथ मुख्य रूप से जस्ता की मिश्र धातु मेटल सांचों में ढालना के साथ-साथ स्पिन कास्टिंग में उपयोगी होती है, विशेष रूप से ऑटोमोटिव, इलेक्ट्रिकल और हार्डवेयर उद्योगों में।[8]इन मिश्र धातुओं का विपणन बोझ नाम से किया जाता है।[100] संयुक्त राज्य अमेरिका (2009) में सभी जस्ता उत्पादन का लगभग एक चौथाई जस्ता यौगिकों के रूप में उपभोग किया जाता है, जिनमें से कई प्रकार का औद्योगिक रूप से उपयोग किया जाता है।[91]

कैडमियम के कई सामान्य औद्योगिक उपयोग हैं क्योंकि यह बैटरी उत्पादन में एक प्रमुख घटक है, कैडमियम रंजक में मौजूद है,[101] कोटिंग्स,[89] और आमतौर पर इलेक्ट्रोप्लेटिंग में उपयोग किया जाता है।[19]2009 में, बैटरी (बिजली) में 86% कैडमियम का उपयोग मुख्य रूप से रिचार्जेबल बैटरी निकल-कैडमियम बैटरी में किया गया था। यूरोपीय संघ ने 2004 में कई अपवादों के साथ इलेक्ट्रॉनिक्स में कैडमियम के उपयोग पर प्रतिबंध लगा दिया, लेकिन इलेक्ट्रॉनिक्स में कैडमियम की अनुमत सामग्री को 0.002% तक कम कर दिया।[102] कैडमियम इलेक्ट्रोप्लेटिंग, वैश्विक उत्पादन का 6% खपत करता है, स्टील घटकों पर लागू होने पर संक्षारण प्रतिरोध करने की क्षमता के कारण विमान उद्योग में पाया जा सकता है।[19] पारा मुख्य रूप से औद्योगिक रसायनों के निर्माण या विद्युत और इलेक्ट्रॉनिक अनुप्रयोगों के लिए उपयोग किया जाता है। इसका उपयोग कुछ थर्मामीटरों में किया जाता है, विशेष रूप से जिनका उपयोग उच्च तापमान को मापने के लिए किया जाता है। अभी भी बढ़ती हुई मात्रा का उपयोग फ्लोरोसेंट लैंप में गैसीय पारे के रूप में किया जाता है,[103] जबकि अधिकांश अन्य अनुप्रयोग धीरे-धीरे स्वास्थ्य और सुरक्षा नियमों के कारण समाप्त हो गए हैं,[104] और कुछ अनुप्रयोगों में इसे कम विषैले लेकिन काफी अधिक महंगे यह प्रविष्टि मिश्र धातु से बदल दिया गया है।[105] पारा और इसके यौगिकों का उपयोग चिकित्सा में किया गया है, हालांकि आज वे पहले की तुलना में बहुत कम आम हैं, अब जबकि पारा और इसके यौगिकों के विषाक्त प्रभाव अधिक व्यापक रूप से समझ में आ गए हैं।[106] यह अभी भी अमलगम (दंत चिकित्सा) में एक घटक के रूप में प्रयोग किया जाता है। 20वीं सदी के अंत में पारे का सबसे बड़ा उपयोग[107][108] क्लोरीन और कास्टिक सोडा के उत्पादन में पारा सेल प्रक्रिया (जिसे कास्टनर-केलनर प्रक्रिया भी कहा जाता है) में था।[109] अत्यधिक उच्च रेडियोधर्मिता के कारण कॉपरनिकियम का अनुसंधान के अलावा कोई उपयोग नहीं है।

जैविक भूमिका और विषाक्तता

समूह 12 तत्वों का जैविक जीवों पर कई प्रभाव पड़ता है क्योंकि कैडमियम और पारा विषाक्त होते हैं जबकि अधिकांश पौधों और जानवरों को ट्रेस मात्रा में जस्ता की आवश्यकता होती है।

जस्ता एक आवश्यक ट्रेस तत्व है, जो पौधों के लिए आवश्यक है,[110] जानवरों,[111] और सूक्ष्मजीव[112] यह आम तौर पर लोहे के बाद जीवों में दूसरी सबसे प्रचुर मात्रा में संक्रमण धातु है और यह एकमात्र धातु है जो सभी एंजाइम # नामकरण सम्मेलनों में दिखाई देती है।[110]इसमें 2–4 ग्राम ज़िंक होता है[113] पूरे मानव शरीर में वितरित,[114] और यह सर्वव्यापी जैविक भूमिका निभाता है।[115] 2006 के एक अध्ययन में अनुमान लगाया गया है कि लगभग 10% मानव प्रोटीन (2800) संभावित रूप से जस्ता को बांधता है, सैकड़ों के अलावा जो जस्ता का परिवहन और यातायात करता है।[110]यू.एस. में, अनुशंसित आहार भत्ता (आरडीए) महिलाओं के लिए 8 मिलीग्राम/दिन और पुरुषों के लिए 11 मिलीग्राम/दिन है।[116] हानिकारक अत्यधिक अनुपूरण एक समस्या हो सकती है और स्वस्थ लोगों में संभवतः 20 मिलीग्राम/दिन से अधिक नहीं होनी चाहिए,[117] हालांकि यू.एस. नेशनल रिसर्च काउंसिल ने 40 मिलीग्राम/दिन की संतोषजनक ऊपरी मात्रा निर्धारित की है।[118] पारा और कैडमियम जहरीले होते हैं और अगर वे नदियों या बारिश के पानी में प्रवेश करते हैं तो पर्यावरण को नुकसान पहुंचा सकते हैं। इससे फसलें दूषित हो सकती हैं[119] साथ ही एक खाद्य श्रृंखला में पारे का जैव संचयन जिसके कारण पारा विषाक्तता और कैडमियम विषाक्तता के कारण होने वाली बीमारियों में वृद्धि होती है। <रेफरी नाम = मोज़ाफ़रियन डी, रिम ईबी 2006 1885-99Mozaffarian D, Rimm EB (2006). "मछली का सेवन, संदूषक और मानव स्वास्थ्य: जोखिमों और लाभों का मूल्यांकन". JAMA. 296 (15): 1885–99. doi:10.1001/jama.296.15.1885. PMID 17047219.</रेफरी>

टिप्पणियाँ

  1. The name volatile metals for group 12 has occasionally been used,[6] although this much more commonly refers to any metal having a high volatility.
  2. 2.0 2.1 See list of oxidation states of the elements. Oxidation states in bold are common.
  3. The color of the flame test of pure radium has never been observed; the crimson red color is an extrapolation from the flame test color of its compounds.[30]
  4. Sometimes reported as white.[28]
  5. Electric current will naturally flow between zinc and steel but in some circumstances inert anodes are used with an external DC source.


संदर्भ

  1. Fluck, E. (1988). "आवर्त सारणी में नए अंकन" (PDF). Pure Appl. Chem. 60 (3): 431–436. doi:10.1351/pac198860030431. S2CID 96704008. Retrieved 24 March 2012.
  2. 2.0 2.1 Greenwood & Earnshaw 1997.
  3. Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (3rd ed.). Prentice Hall. ISBN 978-0-13-175553-6.
  4. Cotton et al. 1999.
  5. Eichler, R.; Aksenov, N. V.; Belozerov, A. V.; Bozhikov, G. A.; Chepigin, V. I.; Dmitriev, S. N.; Dressler, R.; Gäggeler, H. W.; Gorshkov, V. A.; Haenssler, F.; et al. (2007). "तत्व 112 की रासायनिक विशेषता". Nature. 447 (7140): 72–75. Bibcode:2007Natur.447...72E. doi:10.1038/nature05761. PMID 17476264. S2CID 4347419.
  6. Simmons, L. M. (December 1947). "A modification of the periodic table". Journal of Chemical Education. 24 (12): 588. Bibcode:1947JChEd..24..588S. doi:10.1021/ed024p588.
  7. 7.0 7.1 "जिंक धातु गुण". American Galvanizers Association. 2008. Archived from the original on February 21, 2009. Retrieved 2009-02-15.
  8. 8.0 8.1 8.2 8.3 8.4 8.5 David R. Lide, ed. (2006). रसायन और भौतिकी पुस्तिका (87th ed.). Boca Raton, Florida: CRC Press, Taylor & Francis Group. p. 4-41. ISBN 978-0-8493-0487-3.
  9. 9.0 9.1 Heiserman, David L. (1992). "Element 30: Zinc". रासायनिक तत्वों और उनके यौगिकों की खोज. New York: TAB Books. p. 123. ISBN 978-0-8306-3018-9.
  10. 10.0 10.1 Ingalls, Walter Renton (1902). जिंक का उत्पादन और गुण: जिंक अयस्क की घटना और वितरण पर एक ग्रंथ, स्पेल्टर के उत्पादन को प्रभावित करने वाली वाणिज्यिक और तकनीकी स्थितियां, इसके रासायनिक और भौतिक गुण और कला में उपयोग, उद्योग की एक ऐतिहासिक और सांख्यिकीय समीक्षा के साथ. The Engineering and Mining Journal. pp. 142–6.
  11. Hammond, C. R The Elements in Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  12. 12.0 12.1 12.2 12.3 Mewes, Jan-Michael; Smits, Odile R.; Kresse, Georg; Schwerdtfeger, Peter (2019). "कोपर्निकियम: एक सापेक्षवादी नोबल तरल". Angewandte Chemie. 131 (50): 18132–18136. doi:10.1002/ange.201906966. ISSN 1521-3757.
  13. 13.0 13.1 Lehto 1968, p. 826.
  14. Scoffern, John (1861). उपयोगी धातुएँ और उनकी मिश्रधातुएँ. Houlston and Wright. pp. 591–603. Retrieved 2009-04-06.
  15. Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Cadmium". अकार्बनिक रसायन विज्ञान की पाठ्यपुस्तक (in Deutsch) (91–100 ed.). Walter de Gruyter. pp. 1056–1057. ISBN 978-3-11-007511-3.
  16. "पर्यावरण चिकित्सा में केस स्टडीज (CSEM) कैडमियम". Agency for Toxic Substances and Disease Registry. Archived from the original on February 3, 2011. Retrieved May 30, 2011.
  17. Norrby, L.J. (1991). "पारा तरल क्यों होता है? या, सापेक्षतावादी प्रभाव रसायन विज्ञान की पाठ्यपुस्तकों में क्यों नहीं आते?". Journal of Chemical Education. 68 (2): 110. Bibcode:1991JChEd..68..110N. doi:10.1021/ed068p110.
  18. "एसटीपी में पारा तरल क्यों होता है?". Retrieved 2009-07-07.
  19. 19.0 19.1 19.2 Scoullos, Michael J.; Vonkeman, Gerrit H.; Thornton, Iain; Makuch, Zen (2001). मरकरी, कैडमियम, लेड: टिकाऊ भारी धातुओं की नीति और नियमन के लिए हैंडबुक. Springer. ISBN 978-1-4020-0224-3.
  20. Brady, George Stuart; Brady, George S.; Clauser, Henry R.; Vaccari, John A. (2002). सामग्री पुस्तिका: प्रबंधकों, तकनीकी पेशेवरों, क्रय और उत्पादन प्रबंधकों, तकनीशियनों और पर्यवेक्षकों के लिए एक विश्वकोश. McGraw-Hill Professional. p. 425. ISBN 978-0-07-136076-0.
  21. Vargel, C.; Jacques, M.; Schmidt, M. P. (2004). एल्युमीनियम का क्षरण. Elsevier. p. 158. ISBN 978-0-08-044495-6.
  22. 22.0 22.1 22.2 Moss, Alex (2003). "वर्णनात्मक पी-ब्लॉक नोट्स" (PDF). Alchemyst Online. Retrieved June 2, 2011.
  23. Lindberg, S. E.; Stratton, W. J. (1998). "वायुमंडलीय पारा प्रजाति: परिवेशी वायु में प्रतिक्रियाशील गैसीय पारा की सांद्रता और व्यवहार". Environmental Science and Technology. 32 (1): 49–57. Bibcode:1998EnST...32...49L. doi:10.1021/es970546u.
  24. Al-Niaimi, N. S.; Hamid, H. A. (1976). "निकल (II), तांबा (II), जस्ता (II) और डाइऑक्सोरेनियम (II) कुछ β-डाइकेटोन के परिसरों की स्थिरता". Journal of Inorganic and Nuclear Chemistry. 3 (5): 849–852. doi:10.1016/0022-1902(77)80167-X.
  25. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "transition element". doi:10.1351/goldbook.T06456
  26. Elusive Hg(IV) species has been synthesized under cryogenic conditions
  27. Wang, Xuefang; Andrews, Lester; Riedel, Sebastian; Kaupp, Martin (2007). "पारा एक संक्रमण धातु है: HgF4 के लिए पहला प्रायोगिक साक्ष्य". Angewandte Chemie. 119 (44): 8523–8527. doi:10.1002/ange.200703710.
  28. 28.0 28.1 28.2 28.3 28.4 Jensen, William B. (2003). "आवर्त सारणी में जिंक, कैडमियम और मरकरी का स्थान" (PDF). Journal of Chemical Education. 80 (8): 952–961. Bibcode:2003JChEd..80..952J. doi:10.1021/ed080p952. Archived from the original (PDF) on 2010-06-11. Retrieved 2012-05-06.
  29. 29.0 29.1 29.2 29.3 Royal Society of Chemistry. "Visual Elements: Group 2–The Alkaline Earth Metals". Visual Elements. Royal Society of Chemistry. Retrieved 13 January 2012.
  30. Kirby, H. W.; Salutsky, Murrell L. (1964). The Radiochemistry of Radium. National Academies Press.
  31. H. W. Gäggeler (2007). "Gas Phase Chemistry of Superheavy Elements" (PDF). Paul Scherrer Institute. pp. 26–28. Archived from the original (PDF) on 2012-02-20.
  32. 32.0 32.1 32.2 Haire, Richard G. (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1675. ISBN 978-1-4020-3555-5.
  33. Fricke, Burkhard (1975). Superheavy elements: a prediction of their chemical and physical properties. pp. 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013. {{cite book}}: |journal= ignored (help)
  34. Richens, David T. (September 1997). एक्वा आयनों की रसायन. J. Wiley. ISBN 978-0-471-97058-3.
  35. Weeks 1933, p. 20.
  36. Greenwood & Earnshaw 1997, p. 1201.
  37. Ray, Prafulla Chandra (1903). प्रारंभिक काल से सोलहवीं शताब्दी के मध्य तक हिंदू रसायन विज्ञान का इतिहास, एडी: संस्कृत ग्रंथों, रूपों, अनुवाद और चित्रों के साथ. Vol. 1 (2nd ed.). The Bengal Chemical & Pharmaceutical Works. pp. 157–158. (public domain text)
  38. Arny, Henry Vinecome (1917). फार्मेसी के सिद्धांत (2nd ed.). W. B. Saunders company. p. 483.
  39. Habashi, Fathi. "आठवीं धातु की खोज" (PDF). International Zinc Association (IZA). Archived from the original (PDF) on 2009-03-04. Retrieved 2008-12-13.
  40. Hoover, Herbert Clark (2003). धातु के मामले पर जॉर्ज एग्रीकोला. Kessinger Publishing. p. 409. ISBN 978-0-7661-3197-2.
  41. Gerhartz, Wolfgang (1996). उलमन्स एनसाइक्लोपीडिया ऑफ इंडस्ट्रियल केमिस्ट्री (5th ed.). VHC. p. 509. ISBN 978-3-527-20100-6.
  42. Emsley 2001, p. 502.
  43. Weeks 1933, p. 21.
  44. 44.0 44.1 Warren, Neville G. (2000). एक्सेल प्रारंभिक भौतिकी. Pascal Press. p. 47. ISBN 978-1-74020-085-1.
  45. "Galvanic Cell". द न्यू इंटरनेशनल एनसाइक्लोपीडिया. Dodd, Mead and Company. 1903. p. 80.
  46. Cotton et al. 1999, p. 626.
  47. "Cadmium". किर्क-ओथमर एनसाइक्लोपीडिया ऑफ केमिकल टेक्नोलॉजी. Vol. 5 (4th ed.). New York: John Wiley & Sons. 1994.
  48. Hermann (1818). "नई धातु के बारे में एक और पत्र". Annalen der Physik. 59 (5): 113–116. Bibcode:1818AnP....59..113H. doi:10.1002/andp.18180590511.
  49. Waterston, William; Burton, J. H (1844). साइक्लोपीडिया ऑफ कॉमर्स, मर्केंटाइल लॉ, फाइनेंस, कमर्शियल जियोग्राफी एंड नेविगेशन. p. 122.
  50. Rowbotham, Thomas Leeson (1850). द आर्ट ऑफ़ लैंडस्केप पेंटिंग इन वॉटर कलर्स, टी. एंड टी. एल. रौबोथम द्वारा. p. 10.
  51. Ayres, Robert U.; Ayres, Leslie; Råde, Ingrid (2003). तांबे का जीवन चक्र, इसके सह-उत्पाद और उप-उत्पाद. pp. 135–141. ISBN 978-1-4020-1552-6.
  52. Burdun, G. D. (1958). "मीटर के नए निर्धारण पर". Measurement Techniques. 1 (3): 259–264. doi:10.1007/BF00974680. S2CID 121450003.
  53. Beers, John S.; Penzes, William B. (May–June 1999). "एनआईएसटी लंबाई स्केल इंटरफेरोमीटर" (PDF). Journal of Research of the National Institute of Standards and Technology. 104 (3): 226. doi:10.6028/jres.104.017. S2CID 2981956.
  54. Marion, Jerry B. (1982). विज्ञान और इंजीनियरिंग के लिए भौतिकी. CBS College Publishing. p. 3. ISBN 978-4-8337-0098-6.
  55. "पारा और पर्यावरण — बुनियादी तथ्य". Environment Canada, Federal Government of Canada. 2004. Archived from the original on 2007-01-15. Retrieved 2008-03-27. {{cite web}}: no-break space character in |title= at position 17 (help)
  56. Wright, David Curtis (2001). चीन का इतिहास. Greenwood Publishing Group. p. 49. ISBN 978-0-313-30940-3.
  57. Hesse, R. W. (2007). इतिहास के माध्यम से आभूषण बनाना. Greenwood Publishing Group. p. 120. ISBN 978-0-313-33507-5.
  58. 58.0 58.1 Stillman, J. M. (2003). कीमिया और प्रारंभिक रसायन शास्त्र की कहानी. Kessinger Publishing. pp. 7–9. ISBN 978-0-7661-3230-6.
  59. Cox, R. (1997). आकाशीय अग्नि का स्तंभ. 1st World Publishing. p. 260. ISBN 978-1-887472-30-2.
  60. 60.0 60.1 Hofmann, S.; et al. (1996). "नया तत्व 112". Zeitschrift für Physik A. 354 (1): 229–230. Bibcode:1996ZPhyA.354..229H. doi:10.1007/BF02769517. S2CID 119975957.
  61. Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "तत्व 112 का नाम कॉपरनिकियम है". Pure and Applied Chemistry. 81 (7): 1331–1343. doi:10.1351/PAC-REP-08-03-05.
  62. Wedepohl, K. Hans (1995). "महाद्वीपीय क्रस्ट की संरचना". Geochimica et Cosmochimica Acta. 59 (7): 1217–1232. Bibcode:1995GeCoA..59.1217W. doi:10.1016/0016-7037(95)00038-2.
  63. 63.0 63.1 Greenwood & Earnshaw 1997, p. 1202.
  64. Plachy, Jozef. "वार्षिक औसत कैडमियम मूल्य" (PDF). USGS. Retrieved June 16, 2010.
  65. Fthenakis, V. (2004). "सीडीटीई पीवी उत्पादन में कैडमियम का जीवन चक्र प्रभाव विश्लेषण". Renewable and Sustainable Energy Reviews. 8 (4): 303–334. doi:10.1016/j.rser.2003.12.001.
  66. Fleischer, Michael (1980). "नए खनिज नाम" (PDF). American Mineralogist. 65: 1065–1070.
  67. Ehrlich, H. L.; Newman D. K. (2008). भूसूक्ष्मजैविकी. CRC Press. p. 265. ISBN 978-0-8493-7906-2.
  68. Rytuba, James J (2003). "खनिज जमा और संभावित पर्यावरणीय प्रभाव से पारा". Environmental Geology. 43 (3): 326–338. doi:10.1007/s00254-002-0629-5. S2CID 127179672.
  69. Tolcin, A. C. (2011). "खनिज वस्तु सारांश 2009: जिंक" (PDF). United States Geological Survey. Retrieved 2011-06-06.
  70. "कंट्री पार्टनरशिप स्ट्रैटेजी-ईरान: 2011-12". ECO Trade and development bank. Archived from the original on 2011-10-26. Retrieved 2011-06-06.
  71. "ईरान - विशाल क्षमता वाला एक बढ़ता हुआ बाजार". IMRG. July 5, 2010. Archived from the original on 2013-02-17. Retrieved 2010-03-03.
  72. Cohen, David (2007). "पृथ्वी लेखा परीक्षा". New Scientist. 194 (2605): 8. doi:10.1016/S0262-4079(07)61315-3.
  73. "ऑग्सबर्ग यूनिवर्सिटी गणना करें कि आपकी सामग्री कब समाप्त हो जाती है". IDTechEx. 2007-06-04. Retrieved 2008-12-09.
  74. Gordon, R. B.; Bertram, M.; Graedel, T. E. (2006). "धातु स्टॉक और स्थिरता". Proceedings of the National Academy of Sciences. 103 (5): 1209–14. Bibcode:2006PNAS..103.1209G. doi:10.1073/pnas.0509498103. PMC 1360560. PMID 16432205.
  75. विश्व खनिज उत्पादन (Report). London: British Geological Survey, NERC. 2007.
  76. About the Mercury Rule Archived 2012-05-01 at the Wayback Machine
  77. "जिंक: देश द्वारा विश्व खान उत्पादन (जिंक सामग्री ध्यान केंद्रित)।" (PDF). 2006 Minerals Yearbook: Zinc: Table 15. February 2008. Retrieved 2009-01-19.
  78. Rosenqvist, Terkel (1922). निष्कर्षण धातुकर्म के सिद्धांत (2 ed.). Tapir Academic Press. pp. 7, 16, 186. ISBN 978-82-519-1922-7.
  79. 79.0 79.1 79.2 Porter, Frank C. (1991). जिंक हैंडबुक. CRC Press. ISBN 978-0-8247-8340-2.
  80. Bodsworth, Colin (1994). धातुओं का निष्कर्षण और शोधन. CRC Press. p. 148. ISBN 978-0-8493-4433-6.
  81. Gupta, C. K.; Mukherjee, T. K. (1990). निष्कर्षण प्रक्रियाओं में हाइड्रोमेटालर्जी. CRC Press. p. 62. ISBN 978-0-8493-6804-2.
  82. National Research Council, Panel on Cadmium, Committee on Technical Aspects of Critical and Strategic Material (1969). कैडमियम के उपयोग के रुझान: रिपोर्ट. National Research Council, National Academy of Sciences-National Academy of Engineering. pp. 1–3.
  83. Scoullos, Michael J (2001-12-31). पारा, कैडमियम, सीसा: स्थायी भारी धातुओं की नीति और विनियमन के लिए पुस्तिका. pp. 104–116. ISBN 978-1-4020-0224-3.
  84. Rytuba, James J. (2003). "खनिज जमा और संभावित पर्यावरणीय प्रभाव से पारा". Environmental Geology. 43 (3): 326–338. doi:10.1007/s00254-002-0629-5. S2CID 127179672.
  85. Vallero, Daniel A. (2008). वायु प्रदूषण की मूल बातें. pp. 865–866. ISBN 978-0-12-373615-4.
  86. Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "परमाणु क्रमांक 112 वाले तत्व की खोज (IUPAC तकनीकी रिपोर्ट)" (PDF). Pure and Applied Chemistry. 81 (7): 1331. doi:10.1351/PAC-REP-08-03-05. S2CID 95703833.
  87. Stwertka 1998, p. [page needed].
  88. Emsley 2001, pp. 499–505.
  89. 89.0 89.1 Smith, C.J.E.; Higgs, M.S.; Baldwin, K.R. (April 20, 1999). "सुरक्षात्मक कोटिंग्स के लिए अग्रिम और उम्र बढ़ने वाले विमानों के लिए उनका आवेदन" (PDF). RTO MP-25. Archived from the original (PDF) on March 4, 2016. Retrieved May 29, 2011.
  90. Newman, John (2004). इलेक्ट्रोकेमिकल सिस्टम. New Jersey: John Wiley & Sons. ISBN 978-0-471-47756-3.
  91. 91.0 91.1 "जिंक: देश द्वारा विश्व खान उत्पादन (जिंक सामग्री ध्यान केंद्रित)।" (PDF). 2009 Minerals Yearbook: Zinc. Washington, D.C.: United States Geological Survey. February 2010. Retrieved 2010-06-06.
  92. 92.0 92.1 92.2 92.3 92.4 Lehto 1968, p. 829.
  93. Bounoughaz, M.; Salhi, E.; Benzine, K.; Ghali, E.; Dalard, F. (2003). "एक वाणिज्यिक बलिदान एनोड से अल्जीरियाई जस्ता और जस्ता के विद्युत रासायनिक व्यवहार का एक तुलनात्मक अध्ययन". Journal of Materials Science. 38 (6): 1139–1145. Bibcode:2003JMatS..38.1139B. doi:10.1023/A:1022824813564. S2CID 135744939.
  94. Stwertka 1998, p. 99.
  95. Besenhard, Jürgen O. (1999). बैटरी सामग्री की पुस्तिका (PDF). Wiley-VCH. Bibcode:1999hbm..book.....B. ISBN 978-3-527-29469-5. Retrieved 2008-10-08.
  96. Wiaux, J.-P.; Waefler, J.-P. (1995). "पुनर्चक्रण जस्ता बैटरी: उपभोक्ता अपशिष्ट प्रबंधन में एक आर्थिक चुनौती". Journal of Power Sources. 57 (1–2): 61–65. Bibcode:1995JPS....57...61W. doi:10.1016/0378-7753(95)02242-2.
  97. Culter, T. (1996). रिचार्जेबल जिंक-एयर बैटरी तकनीक के लिए एक डिज़ाइन गाइड. p. 616. doi:10.1109/SOUTHC.1996.535134. ISBN 978-0-7803-3268-3. S2CID 106826667. {{cite book}}: |journal= ignored (help)
  98. Whartman, Jonathan; Brown, Ian. "इलेक्ट्रिक स्कूटर और इलेक्ट्रिक बसों को चलाने के लिए जिंक एयर बैटरी-बैटरी हाइब्रिड" (PDF). The 15th International Electric Vehicle Symposium. Archived from the original (PDF) on 2006-03-12. Retrieved 2008-10-08.
  99. Cooper, J. F.; Fleming, D.; Hargrove, D.; Koopman; R.; Peterman, K. (1995). "फ्लीट इलेक्ट्रिक व्हीकल प्रोपल्शन के लिए एक रिफ्यूलेबल जिंक/एयर बैटरी". NASA Sti/Recon Technical Report N. Society of Automotive Engineers future transportation technology conference and exposition. 96: 11394. Bibcode:1995STIN...9611394C. OSTI 82465.
  100. Eastern Alloys contributors. "डाईकास्टिंग मिश्र". Maybrook, NY: Eastern Alloys. Retrieved 2009-01-19. {{cite web}}: |author= has generic name (help)
  101. Buxbaum, Gunter; Pfaff, Gerhard (2005). "Cadmium Pigments". औद्योगिक अकार्बनिक पिगमेंट. Wiley-VCH. pp. 121–123. ISBN 978-3-527-30363-2.
  102. "बैटरी संग्रह; रीसाइक्लिंग, प्रकृति संरक्षित". European Union. Retrieved November 4, 2008.
  103. Hopkinson, G. R.; Goodman, T. M.; Prince, S. R. (2004). डिटेक्टर सरणी उपकरण के उपयोग और अंशांकन के लिए एक गाइड. SPIE Press. p. 125. Bibcode:2004gucd.book.....H. ISBN 978-0-8194-5532-1.
  104. "2003 का पारा न्यूनीकरण अधिनियम". United States. Congress. Senate. Committee on Environment and Public Works. Retrieved 2009-06-06.
  105. Surmann, P.; Zeyat, H. (Nov 2005). "स्व-नवीकरणीय गैर-पारा इलेक्ट्रोड का उपयोग करके वोल्टामेट्रिक विश्लेषण". Analytical and Bioanalytical Chemistry. 383 (6): 1009–13. doi:10.1007/s00216-005-0069-7. PMID 16228199. S2CID 22732411.
  106. FDA. "टीकों में थिमेरोसल". Retrieved October 25, 2006.
  107. "सीआरबी कमोडिटी इयरबुक (वार्षिक)". The CRB Commodity Yearbook: 173. 2000. ISSN 1076-2906.
  108. Leopold, B. R. (2002). "अध्याय 3: बुध को शामिल करने वाली निर्माण प्रक्रियाएँ। यूनाइटेड स्टेट्स में मर्करी का उपयोग और विमोचन" (PDF). National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. Archived from the original (PDF) on June 21, 2007. Retrieved May 1, 2007.
  109. "पारा सेल प्रक्रिया का क्लोरीन ऑनलाइन आरेख". Euro Chlor. Archived from the original on September 18, 2011. Retrieved 2012-04-09.
  110. 110.0 110.1 110.2 Broadley, M. R.; White, P. J.; Hammond, J. P.; Zelko, I.; Lux, A. (2007). "पौधों में जिंक". New Phytologist. 173 (4): 677–702. doi:10.1111/j.1469-8137.2007.01996.x. PMID 17286818.
  111. Prasad A. S. (2008). "मानव स्वास्थ्य में जिंक: प्रतिरक्षा कोशिकाओं पर जिंक का प्रभाव". Mol. Med. 14 (5–6): 353–7. doi:10.2119/2008-00033.Prasad. PMC 2277319. PMID 18385818.
  112. Zinc's role in microorganisms is particularly reviewed in: Sugarman, B. (1983). "Zinc and infection". Reviews of Infectious Diseases. 5 (1): 137–47. doi:10.1093/clinids/5.1.137. PMID 6338570.
  113. Rink, L.; Gabriel, P. (2000). "जिंक और प्रतिरक्षा प्रणाली". Proc Nutr Soc. 59 (4): 541–52. doi:10.1017/S0029665100000781. PMID 11115789.
  114. Wapnir, Raul A. (1990). प्रोटीन पोषण और खनिज अवशोषण. Boca Raton, Florida: CRC Press. ISBN 978-0-8493-5227-0.
  115. Hambidge, K. M.; Krebs, N. F. (2007). "जिंक की कमी: एक विशेष चुनौती". J. Nutr. 137 (4): 1101–5. doi:10.1093/jn/137.4.1101. PMID 17374687.
  116. Connie W. Bales; Christine Seel Ritchie (21 May 2009). क्लिनिकल न्यूट्रिशन एंड एजिंग की हैंडबुक. Springer. pp. 151–. ISBN 978-1-60327-384-8. Retrieved 23 June 2011.
  117. Maret, W.; Sandstead, H. H. (2006). "जिंक की आवश्यकताएं और जिंक सप्लीमेंट के जोखिम और लाभ". Journal of Trace Elements in Medicine and Biology. 20 (1): 3–18. doi:10.1016/j.jtemb.2006.01.006. PMID 16632171.
  118. "जिंक - सारांश". Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). Institute of Medicine, Food and Nutrition Board. Retrieved 2010-03-30.
  119. Nogawa, Koji; Kobayashi, E.; Okubo, Y.; Suwazono, Y. (2004). "जापान में पर्यावरणीय कैडमियम जोखिम, प्रतिकूल प्रभाव और निवारक उपाय". Biometals. 17 (5): 581–587. doi:10.1023/B:BIOM.0000045742.81440.9c. PMID 15688869. S2CID 8053594.


इस पेज में लापता आंतरिक लिंक की सूची

  • पारा (तत्व)
  • कोपरनिकस
  • प्रति-चुंबकीय
  • लचीला
  • क्रिस्टल की संरचना
  • लोहा
  • इलेक्ट्रिकल कंडक्टीविटी
  • जंग
  • सोना
  • नोबल गैस
  • धात्विक बंधन
  • ताँबा
  • प्रमुख
  • घर्षण का गुणन
  • उच्च दबाव सोडियम
  • धात्विक बंधन
  • क्षारीय मृदा
  • धातु के रूप-रंग का एक अधातु पदार्थ
  • परिसरों की स्थिरता स्थिरांक
  • अमाइन
  • आवधिक प्रवृत्ति
  • अलकाली धातु
  • लोहा (द्वितीय) सल्फाइड
  • परमाणु का आधा घेरा
  • क्रोमियम (द्वितीय) सल्फाइड
  • एल्कलाइन अर्थ मेटल
  • रस-विधा
  • कैथोडिक प्रतिरक्षण
  • वोल्टाइक ढेर
  • जस्ता कार्बोनेट
  • प्राचीन थेब्स (बोईओतिया)
  • बरस रही (धातु विज्ञान)
  • विद्युत चुम्बकीय वर्णक्रम
  • बाट और माप पर सामान्य सम्मेलन
  • बुध ग्रह)
  • पारा (पौराणिक कथा)
  • भाग प्रति दस लाख
  • स्फेलेराइट
  • हाफ लाइफ
  • विलियू नदी
  • गेओचेमिस्त्र्य
  • वैक्यूम आसवन
  • तलछट
  • परमाणु क्रमांक
  • विरोधी जंग
  • हॉट डिप गल्वनाइजिंग
  • पैसिवेशन (रसायन विज्ञान)
  • जंग प्रतिरोध
  • मिश्रण (दंत चिकित्सा)
  • तत्व का पता लगाएं
  • bioaccumulation

ग्रन्थसूची