क्वथनांक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 141: Line 141:
* {{Cite NSRW|short=x|wstitle=Boiling-Point}}
* {{Cite NSRW|short=x|wstitle=Boiling-Point}}


{{DEFAULTSORT:Boiling Point}}[[Category: तापमान]] [[Category: दहलीज तापमान]] [[Category: गैसों]]
{{DEFAULTSORT:Boiling Point}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Boiling Point]]
 
[[Category:Created On 18/01/2023|Boiling Point]]
[[Category: Machine Translated Page]]
[[Category:Lua-based templates|Boiling Point]]
[[Category:Created On 18/01/2023]]
[[Category:Machine Translated Page|Boiling Point]]
[[Category:Pages with script errors|Boiling Point]]
[[Category:Short description with empty Wikidata description|Boiling Point]]
[[Category:Templates Vigyan Ready|Boiling Point]]
[[Category:Templates that add a tracking category|Boiling Point]]
[[Category:Templates that generate short descriptions|Boiling Point]]
[[Category:Templates using TemplateData|Boiling Point]]
[[Category:Wikipedia articles incorporating citation to the NSRW|Boiling Point]]
[[Category:Wikipedia articles incorporating citation to the NSRW with an wstitle parameter|Boiling Point]]
[[Category:गैसों|Boiling Point]]
[[Category:तापमान|Boiling Point]]
[[Category:दहलीज तापमान|Boiling Point]]

Latest revision as of 14:33, 28 January 2023

File:Kochendes wasser02.jpg
उबला पानी

किसी पदार्थ का क्वथनांक वह तापमान होता है जिस पर तरल का वाष्प दबाव तरल के आसपास के दबाव के बराबर होता है[1][2] और द्रव वाष्प में बदल जाता है।

किसी तरल का क्वथनांक पर्यावरणीय दबाव के आधार पर भिन्न होता है। आंशिक निर्वात में तरल का क्वथनांक उस तरल की तुलना में कम होता है जब वह वायुमंडलीय दबाव में होता है। कम दबाव पर तरल का क्वथनांक उस तरल की तुलना में कम होता है जब वह वायुमंडलीय दबाव में होता है। 99.97 °C (211.95 °F) समुद्र तल पर मानक दबाव में लेकिन 93.4 °C (200.1 °F) पर 1,905 metres (6,250 ft)[3] ऊंचाई पर होने के कारण पानी उबलता है। किसी दिए गए दबाव के लिए, अलग-अलग तरल पदार्थ अलग-अलग तापमान पर उबलने लगेगा।

किसी तरल पदार्थ का सामान्य क्वथनांक (वायुमंडलीय क्वथनांक या वायुमंडलीय दबाव क्वथनांक भी कहा जाता है) विशेष स्थिति है जिसमें तरल का वाष्प दबाव समुद्र के स्तर पर परिभाषित वायुमंडलीय दबाव, वायुमंडल (इकाई) के बराबर होता है।[4][5] उस तापमान पर, तरल का वाष्प दबाव वायुमंडलीय दबाव को दूर करने के लिए पर्याप्त हो जाता है और वाष्प के बुलबुले तरल पदार्थ के अंदर बनने की अनुमति देता है। मानक क्वथनांक को शुद्ध और व्यावहारिक रसायन के अंतर्राष्ट्रीय संघ द्वारा 1982 से उस तापमान के रूप में परिभाषित किया गया है जिस पर बार (इकाई) के दबाव में उबलता है।[6]

वाष्पीकरण की ऊष्मा किसी पदार्थ की दी गई मात्रा (एक मोल, किग्रा, पाउंड, आदि) को तरल से गैस में दिए गए दबाव (अधिकांशतः वायुमंडलीय दबाव) में बदलने के लिए आवश्यक ऊर्जा है।

वाष्पीकरण की प्रक्रिया के माध्यम से तरल पदार्थ अपने क्वथनांक से कम तापमान पर वाष्प में बदल सकते हैं। वाष्पीकरण सतह की घटना है जिसमें तरल के किनारे के पास स्थित अणु पर्याप्त तरल दबाव से नहीं बल्कि वाष्प के परिवेश में विचलित हो जाते हैं। दूसरी ओर उबलना ऐसी प्रक्रिया है जिसमें तरल में कहीं भी अणु विचलन करते हैं, जिसके परिणामस्वरूप तरल के भीतर वाष्प के बुलबुले बनने लगते हैं।

संतृप्ति तापमान और दबाव

File:11. Температурата и вриењето на течност.ogv
निर्वात पम्प का उपयोग करके कम दाब पर पानी के कम क्वथनांक का प्रदर्शन।

एक संतृप्त तरल में उतनी ही ऊष्मीय ऊर्जा होती है जितनी बिना उबाले हो सकती है (या इसके विपरीत संतृप्त वाष्प में उतनी ही कम तापीय ऊर्जा होती है जितनी बिना संघनन के हो सकती है)।

'संतृप्ति तापमान' का अर्थ है क्वथनांक। संतृप्ति तापमान संगत संतृप्ति दबाव के लिए तापमान होता है जिस पर तरल अपनी गैस में उबलता है। तरल को तापीय ऊर्जा से संतृप्त कहा जाता है। तापीय ऊर्जा के किसी भी योग के परिणामस्वरूप स्थिति संक्रमण होता है।

इस प्रणाली में दबाव स्थिर (आइसोबैरिक प्रक्रिया ) रहता है, तो संतृप्ति तापमान पर वाष्प अपने तरल स्थिति में तापीय ऊर्जा (गर्मी ) को पृथक कर दिया जाता है। इसी प्रकार संतृप्ति तापमान और दबाव पर तरल अपने वाष्प स्थिति में उबाल जाएगा क्योंकि अतिरिक्त तापीय ऊर्जा लागू होती है।

क्वथनांक उस तापमान से मेल खाता है जिस पर तरल का वाष्प दबाव आसपास के पर्यावरणीय दबाव के बराबर होता है। इस प्रकार, क्वथनांक दबाव पर निर्भर है। क्वथनांक राष्ट्रीय मानक और प्रौद्योगिकी संस्थान या एनआईएसटी, यूएसए के तापमान और 101.325 किलोपास्कल (या 1 वायुमंडलीय दबाव) के दबाव के लिए मानक स्थितियों या 100.000 केपीए के शुद्ध और अनुप्रयुक्त रसायन विज्ञान मानक दबाव के अंतर्राष्ट्रीय संघ के संबंध में प्रकाशित किए जा सकते हैं। अधिक ऊँचाई पर, जहाँ वायुमंडलीय दबाव बहुत कम होता है, क्वथनांक भी कम होता है। क्वथनांक बढ़ते दबाव के साथ महत्वपूर्ण बिंदु (ऊष्मागतिकी) तक बढ़ जाता है, जहां गैस और तरल गुण समान हो जाते हैं। क्वथनांक को महत्वपूर्ण बिंदु से आगे नहीं बढ़ाया जा सकता है। इसी प्रकार क्वथनांक घटते दबाव के साथ घटता है जब तक कि त्रिगुण बिंदु तक नहीं पहुँच जाता हैं। क्वथनांक को तिहरे बिंदु से कम नहीं किया जा सकता है।

यदि वाष्पीकरण की गर्मी और निश्चित तापमान पर तरल के वाष्प के दबाव को जाना जाता है, तो क्वथनांक की गणना क्लौसियस-क्लैप्रोन समीकरण का उपयोग करके की जा सकती है, इस प्रकार:

जहाँ पे:

ब्याज के दबाव पर क्वथनांक है,
आदर्श गैस नियतांक है,
तरल का वाष्प दाब है,
कुछ दबाव है जहां इसी ज्ञात है (सामान्यतः डेटा 1 एटीएम या 100 केपीए पर उपलब्ध होता है),
तरल के वाष्पीकरण की गर्मी है,
उबलने का तापमान है,
प्राकृतिक लघुगणक है।

संतृप्ति दबाव संगत संतृप्ति तापमान के लिए दबाव होता है जिस पर तरल अपने वाष्प स्थिति में उबलता है। संतृप्ति दबाव और संतृप्ति तापमान का सीधा संबंध है: जैसे संतृप्ति दबाव बढ़ता है, वैसे ही संतृप्ति तापमान बढ़ जाता है।

यदि प्रणाली में तापमान स्थिर रहता है (एक इज़ोटेर्माल सिस्टम), संतृप्ति दबाव और तापमान पर वाष्प अपने तरल स्थिति में संघनित होना शुरू हो जाएगा क्योंकि सिस्टम का दबाव बढ़ जाता है। इसी तरह, संतृप्ति दबाव और तापमान पर तरल अपने वाष्प स्थिति में वाष्पीकरण को फ्लैश करने के लिए प्रवृत्त होगा क्योंकि सिस्टम दबाव कम हो जाता है।

पानी के मानक क्वथनांक के संबंध में दो परंपराएँ हैं: सामान्य क्वथनांक है 99.97 °C (211.9 °F) 1 एटीएम (अर्थात, 101.325 केपीए) के दबाव पर 100 kPa (1 बार) 99.61 °C (211.3 °F) के मानक दबाव पर पानी का IUPAC-अनुशंसित मानक क्वथनांक[7] होता है।[6][8] तुलना के लिए, एवेरेस्ट पर्वत की चोटी पर, पर 8,848 m (29,029 ft) ऊंचाई, दबाव लगभग है 34 kPa (255 Torr)[9] और पानी का क्वथनांक होता है। 71 °C (160 °F) सेल्सियस तापमान पैमाने को 1954 तक दो बिंदुओं द्वारा परिभाषित किया गया था: 0 °C को जल हिमांक द्वारा परिभाषित किया गया था और 100 °C को मानक वायुमंडलीय दबाव पर जल क्वथनांक द्वारा परिभाषित किया गया था।

सामान्य क्वथनांक और तरल पदार्थ के वाष्प दबाव के बीच संबंध

File:Vapor pressure chart.svg
विभिन्न तरल पदार्थों के लिए लॉग-लिन वाष्प दबाव चार्ट

किसी दिए गए तापमान पर तरल का वाष्प दबाव जितना अधिक होता है, तरल का सामान्य क्वथनांक (अर्थात वायुमंडलीय दबाव पर क्वथनांक) उतना ही कम होता है।

दाईं ओर वाष्प दाब चार्ट में विभिन्न प्रकार के तरल पदार्थों के लिए वाष्प दाब बनाम तापमान के ग्राफ हैं।[10] जैसा कि चार्ट में देखा जा सकता है, उच्चतम वाष्प दबाव वाले तरल पदार्थों में सबसे कम सामान्य क्वथनांक होते हैं।

उदाहरण के लिए, किसी दिए गए तापमान पर, मिथाइल क्लोराइड में चार्ट में किसी भी तरल पदार्थ का उच्चतम वाष्प दबाव होता है। इसका न्यूनतम सामान्य क्वथनांक (−24.2 °C) भी होता है, जहां मिथाइल क्लोराइड (नीली रेखा) का वाष्प दाब वक्र पूर्ण वाष्प दाब के वायुमंडल (वातावरण (इकाई)) की क्षैतिज दाब रेखा को काटता है।

एक तरल पदार्थ का महत्वपूर्ण बिंदु (ऊष्मप्रवैगिकी) उच्चतम तापमान (और दबाव) है जो वास्तव में उबलता है।

पानी का वाष्प दाब भी देखें।

रासायनिक तत्वों का क्वथनांक

सबसे कम क्वथनांक वाला तत्व हीलियम है। रेनीयाम और टंगस्टन के दोनों क्वथनांक मानक दबाव में 5000 केल्विन से अधिक होते हैं, क्योंकि अत्यधिक तापमान को सटीक रूप से पूर्वाग्रह के बिना मापना कठिन होता है, दोनों को साहित्य में उच्च क्वथनांक के रूप में उद्धृत किया गया है।[11]

क्वथनांक शुद्ध यौगिक की संदर्भ संपत्ति के रूप में

जैसा कि किसी दिए गए शुद्ध रासायनिक यौगिक के वाष्प दबाव बनाम तापमान के लघुगणक के उपरोक्त प्लॉट से देखा जा सकता है, इसका सामान्य क्वथनांक उस यौगिक की समग्र अस्थिरता (रसायन विज्ञान) के संकेत के रूप में काम कर सकता है। किसी दिए गए शुद्ध यौगिक में केवल सामान्य क्वथनांक होता है, यदि कोई हो, और यौगिक का सामान्य क्वथनांक और गलनांक संदर्भ पुस्तकों में सूचीबद्ध उस यौगिक के लिए विशिष्ट भौतिक गुण के रूप में काम कर सकता है। किसी यौगिक का सामान्य क्वथनांक जितना अधिक होता है, समग्र रूप से वह यौगिक उतना ही कम अस्थिर होता है, और इसके विपरीत, किसी यौगिक का सामान्य क्वथनांक जितना कम होता है, समग्र रूप से वह यौगिक उतना ही अधिक अस्थिर होता है। कुछ यौगिक अपने सामान्य क्वथनांक, या कभी-कभी अपने गलनांक तक पहुँचने से पहले ही उच्च तापमान पर विघटित हो जाते हैं। स्थिर यौगिक के लिए, क्वथनांक इसके तिगुने बिंदु से इसके महत्वपूर्ण बिंदु (ऊष्मागतिकी) तक होता है, जो बाहरी दबाव पर निर्भर करता है। इसके त्रिगुण बिंदु से परे, यौगिक का सामान्य क्वथनांक, यदि कोई हो, तो उसके गलनांक से अधिक होता है। इस महत्वपूर्ण बिंदु से हटकर यौगिक के तरल और वाष्प स्थिति में विलीन हो जाते हैं, जिसे अतितापित गैस कहा जाता है। किसी दिए गए तापमान पर, यदि किसी यौगिक का सामान्य क्वथनांक कम है, तो वह यौगिक सामान्यतः वायुमंडलीय बाहरी दबाव में गैस के रूप में अधिकांशतः रहेगा। यदि यौगिक का सामान्य क्वथनांक अधिक है, तो वह यौगिक वायुमंडलीय बाहरी दबाव पर दिए गए तापमान पर तरल या ठोस के रूप में अधिकांशतः हो सकता है, और यदि इसके वाष्प समाहित हैं, तो यह अपने वाष्प (यदि वाष्पशील) के साथ संतुलन में अधिकांशतः होगा। यदि किसी यौगिक के वाष्प निहित नहीं हैं, तो कुछ वाष्पशील यौगिक अपने उच्च क्वथनांक के अतिरिक्त अंततः वाष्पित हो सकते हैं।

दाढ़ द्रव्यमान के कार्य के रूप में अल्केन्स, [[ एल्केन ]], ईथर , हैलोजेनोकेन, एल्डिहाइड , कीटोन , अल्कोहल (रसायन) और कार्बोज़ाइलिक तेजाब के क्वथनांक सामान्यतः, आयोनिक बंध वाले यौगिकों में उच्च सामान्य क्वथनांक होते हैं, यदि वे ऐसे उच्च तापमान तक पहुंचने से पहले विघटित नहीं होते हैं। कई धातु ओं का क्वथनांक उच्च होता है, लेकिन सभी का नहीं। बहुत सामान्यतः - अन्य कारकों के समान होने के साथ - यौगिकों में सहसंयोजक बंधित अणु ओं के साथ, जैसे अणु (या आणविक द्रव्यमान) का आकार बढ़ता है, सामान्य क्वथनांक बढ़ता है। जब आणविक आकार मैक्रो मोलेक्यूल , बहुलक, या अन्यथा बहुत बड़ा हो जाता है, तो क्वथनांक तक पहुंचने से पहले यौगिक अधिकांशतः उच्च तापमान पर विघटित हो जाता है। अन्य कारक जो यौगिक के सामान्य क्वथनांक को प्रभावित करता है, वह है इसके अणुओं की ध्रुवीयता (रसायन विज्ञान) । जैसे-जैसे किसी यौगिक के अणुओं की ध्रुवता बढ़ती है, उसका सामान्य क्वथनांक बढ़ता है, अन्य कारक समान होते हैं। अणु की हाइड्रोजन बॉन्ड (तरल अवस्था में) बनाने की क्षमता निकट से संबंधित है, जो अणुओं के लिए तरल अवस्था को छोड़ना कठिन बना देता है और इस प्रकार यौगिक के सामान्य क्वथनांक को बढ़ा देता है। सरल कार्बोक्जिलिक एसिड अणुओं के बीच हाइड्रोजन बंध न बनाकर मंद हो जाते हैं। क्वथनांक को प्रभावित करने वाला मामूली कारक अणु का आकार है। अणु के आकार को अधिक कॉम्पैक्ट बनाने से अधिक सतह क्षेत्र वाले समकक्ष अणु की तुलना में सामान्य क्वथनांक थोड़ा कम हो जाता है।

ब्यूटेन (C4H10) समावयव क्वथनांक की तुलना
साधारण नाम n-ब्यूटेन आईसोब्यूटेन
आईयूपीएसी नाम ब्यूटेन 2-मेथाइल प्रोपेन
आण्विक

प्रपत्र

File:Butane-3D-balls.png File:Isobutane-3D-balls.png
उबलना

बिंदु (डिग्री सेल्सियस)

−0.5 −11.7
पेंटेन आइसोमर क्वथनांक की तुलना
साधारण नाम n-पैंटेन आईसोपैंटेन नियोपैंटेन
आईयूपीएसी नाम पैंटेन 2-मिथाइलब्यूटेन 2,2-डाइमिथाइलप्रोपेन
आण्विक

प्रपत्र

File:Pentane-3D-balls.png File:Isopentane-3D-balls.png File:Neopentane-3D-balls.png
उबलना

बिंदु (डिग्री सेल्सियस)

36.0 27.7 9.5
Error creating thumbnail:
दो काल्पनिक केवल कमजोर रूप से अंतःक्रिया करने वाले घटकों का द्विआधारी क्वथनांक आरेख बिना azeotrope के

अधिकांश वाष्पशील यौगिक (परिवेश के तापमान के आसपास कहीं भी) मध्यवर्ती तरल स्थिति से गुजरते हैं, जबकि ठोस स्थिति से गर्म होकर अंततः वाष्प स्थिति में बदल जाते हैं। उबलने की तुलना में, उच्च बनाने की क्रिया (स्थिति संक्रमण) भौतिक परिवर्तन है जिसमें ठोस सीधे वाष्प में बदल जाता है, जो कुछ विशेष स्थितियों में होता है जैसे कि वायुमंडलीय दबाव में कार्बन डाइऑक्साइड के साथ। ऐसे यौगिकों के लिए, उर्ध्वपातन बिंदु ऐसा तापमान होता है जिस पर ठोस सीधे वाष्प में बदल जाता है जिसका वाष्प दबाव बाहरी दबाव के बराबर होता है।

अशुद्धता और मिश्रण

पिछले भाग में शुद्ध यौगिकों के क्वथनांकों के बारे में बताया गया था। वाष्प के दबाव और पदार्थों के क्वथनांक भंग अशुद्धियों (विलेय ) या अन्य मिश्रणीय यौगिकों की उपस्थिति से प्रभावित हो सकते हैं, अशुद्धियों या अन्य यौगिकों की एकाग्रता के आधार पर प्रभाव की डिग्री परिवर्तित हो सकती हैं। गैर-वाष्पशील अशुद्धियों की उपस्थिति जैसे नमक (रसायन विज्ञान) या वाष्पशीलता (रसायन विज्ञान) के यौगिक मुख्य घटक यौगिक की तुलना में बहुत कम है, इसके मोल अंश और समाधान (रसायन) को कम कर देता है। समाधान की अस्थिरता, और इस प्रकार सामान्य क्वथनांक को विलेय की सांद्रता के अनुपात में बढ़ा देता है। इस प्रभाव को क्वथनांक उन्नयन कहा जाता है। सामान्य उदाहरण के रूप में, खारा पानी शुद्ध पानी की तुलना में अधिक तापमान पर उबलता है।

मिश्रणीय यौगिकों (घटकों) के अन्य मिश्रणों में, अलग-अलग अस्थिरता के दो या दो से अधिक घटक हो सकते हैं, प्रत्येक में किसी भी दबाव में अपना शुद्ध घटक क्वथनांक होता है। मिश्रण में अन्य वाष्पशील घटकों की उपस्थिति वाष्प के दबाव को प्रभावित करती है और इस प्रकार क्वथनांक और मिश्रण में सभी घटकों के ओस के बिंदु के तापमान पर निर्भर करती है जिस पर वाष्प संघनन तरल में परिवर्तित हो जाता है। इसके अतिरिक्त, किसी भी दिए गए तापमान पर, ऐसे अधिकांश स्थितियों में वाष्प की संरचना तरल की संरचना से भिन्न होती है। मिश्रण में वाष्पशील घटकों के बीच इन प्रभावों को स्पष्ट करने के लिए, क्वथनांक आरेख का सामान्यतः उपयोग किया जाता है। आसवन उबलने और [सामान्यतः] संघनन की प्रक्रिया है जो तरल और वाष्प स्थितिों के बीच संरचना में इन अंतरों का लाभ उठाती है।

टेबल

यह भी देखें

संदर्भ

  1. Goldberg, David E. (1988). 3,000 Solved Problems in Chemistry (1st ed.). McGraw-Hill. section 17.43, p. 321. ISBN 0-07-023684-4.
  2. Theodore, Louis; Dupont, R. Ryan; Ganesan, Kumar, eds. (1999). Pollution Prevention: The Waste Management Approach to the 21st Century. CRC Press. section 27, p. 15. ISBN 1-56670-495-2.
  3. "Boiling Point of Water and Altitude". www.engineeringtoolbox.com.
  4. General Chemistry Glossary Purdue University website page
  5. Reel, Kevin R.; Fikar, R. M.; Dumas, P. E.; Templin, Jay M. & Van Arnum, Patricia (2006). AP Chemistry (REA) – The Best Test Prep for the Advanced Placement Exam (9th ed.). Research & Education Association. section 71, p. 224. ISBN 0-7386-0221-3.
  6. 6.0 6.1 Cox, J. D. (1982). "Notation for states and processes, significance of the word standard in chemical thermodynamics, and remarks on commonly tabulated forms of thermodynamic functions". Pure and Applied Chemistry. 54 (6): 1239–1250. doi:10.1351/pac198254061239.
  7. Standard Pressure IUPAC defines the "standard pressure" as being 105 Pa (which amounts to 1 bar).
  8. Appendix 1: Property Tables and Charts (SI Units), Scroll down to Table A-5 and read the temperature value of 99.61 °C at a pressure of 100 kPa (1 bar). Obtained from McGraw-Hill's Higher Education website.
  9. West, J. B. (1999). "Barometric pressures on Mt. Everest: New data and physiological significance". Journal of Applied Physiology. 86 (3): 1062–6. doi:10.1152/jappl.1999.86.3.1062. PMID 10066724. S2CID 27875962.
  10. Perry, R.H.; Green, D.W., eds. (1997). Perry's Chemical Engineers' Handbook (7th ed.). McGraw-Hill. ISBN 0-07-049841-5.
  11. DeVoe, Howard (2000). Thermodynamics and Chemistry (1st ed.). Prentice-Hall. ISBN 0-02-328741-1.


बाहरी कड़ियाँ