3 डी रेंडरिंग: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{for| | {{for|3D स्केलर फ़ील्ड का प्रतिपादन|वॉल्यूम रेंडरिंग}}3डी स्केलर फ़ील्ड्स की प्रतिपादन के लिए, वॉल्यूम प्रतिपादन देखें। | ||
{{Short description|Process of converting 3D scenes into 2D images}} | {{Short description|Process of converting 3D scenes into 2D images}} | ||
3डी प्रतिपादन [[ कंप्यूटर |कंप्यूटर]] पर [[Index.php?title=3डी मॉडल|3डी मॉडल]] को [[Index.php?title=2डी छवियों|2डी छवियों]] में परिवर्तित करने की [[Index.php?title=3डी कंप्यूटर ग्राफिक्स|3डी कंप्यूटर ग्राफिक्स]] प्रक्रिया है। 3डी प्रतिपादन में [[Index.php?title=फोटोरिअलिस्टिक प्रभाव|फोटोरिअलिस्टिक प्रभाव]] या गैर-फोटोरियलिस्टिक स्टाइल सम्मिलित हो सकते हैं। | 3डी प्रतिपादन [[ कंप्यूटर |कंप्यूटर]] पर [[Index.php?title=3डी मॉडल|3डी मॉडल]] को [[Index.php?title=2डी छवियों|2डी छवियों]] में परिवर्तित करने की [[Index.php?title=3डी कंप्यूटर ग्राफिक्स|3डी कंप्यूटर ग्राफिक्स]] प्रक्रिया है। 3डी प्रतिपादन में [[Index.php?title=फोटोरिअलिस्टिक प्रभाव|फोटोरिअलिस्टिक प्रभाव]] या गैर-फोटोरियलिस्टिक स्टाइल सम्मिलित हो सकते हैं। | ||
| Line 53: | Line 52: | ||
=== छायांकन === | === छायांकन === | ||
छायांकन यह बताता है कि विभिन्न प्रकार के बिखरने को सतह पर कैसे वितरित किया जाता है ( | छायांकन यह बताता है कि विभिन्न प्रकार के बिखरने को सतह पर कैसे वितरित किया जाता है (अर्थात, कौन सा बिखरने वाला कार्य कहां लागू होता है)। इस तरह के विवरण सामान्यतः एक शेडर नामक कार्यक्रम के साथ व्यक्त किए जाते हैं।<ref>The word ''shader'' is sometimes also used for programs that describe local ''geometric'' variation.</ref> छायांकन का एक सरल उदाहरण बनावट मानचित्रण है, जो एक सतह पर प्रत्येक बिंदु पर विसरित रंग को निर्दिष्ट करने के लिए एक [[ रेखापुंज छवि |रेखापुंज छवि]] का उपयोग करता है, इसे और अधिक स्पष्ट विवरण देता है। | ||
कुछ छायांकन तकनीकों में सम्मिलित हैं: | कुछ छायांकन तकनीकों में सम्मिलित हैं: | ||
| Line 60: | Line 59: | ||
=== परिवहन === | === परिवहन === | ||
[[ प्रकाश परिवहन सिद्धांत ]]वर्णन करता है कि एक दृश्य में रोशनी एक स्थान से दूसरे स्थान पर कैसे पहुँचती है।[[ दृश्यता (ज्यामिति) ]]प्रकाश परिवहन का एक प्रमुख घटक है। | [[ प्रकाश परिवहन सिद्धांत |प्रकाश परिवहन सिद्धांत]] वर्णन करता है कि एक दृश्य में रोशनी एक स्थान से दूसरे स्थान पर कैसे पहुँचती है।[[ दृश्यता (ज्यामिति) ]]प्रकाश परिवहन का एक प्रमुख घटक है। | ||
=== प्रक्षेपण === | === प्रक्षेपण === | ||
| Line 100: | Line 99: | ||
{{Computer graphics}} | {{Computer graphics}} | ||
{{DEFAULTSORT:3d Rendering}} | {{DEFAULTSORT:3d Rendering}} | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 02/01/2023]] | [[Category:Created On 02/01/2023]] | ||
Revision as of 11:06, 17 January 2023
3डी स्केलर फ़ील्ड्स की प्रतिपादन के लिए, वॉल्यूम प्रतिपादन देखें।
3डी प्रतिपादन कंप्यूटर पर 3डी मॉडल को 2डी छवियों में परिवर्तित करने की 3डी कंप्यूटर ग्राफिक्स प्रक्रिया है। 3डी प्रतिपादन में फोटोरिअलिस्टिक प्रभाव या गैर-फोटोरियलिस्टिक स्टाइल सम्मिलित हो सकते हैं।
प्रतिपादन के तरीके
प्रतिपादन तैयार दृश्य से वास्तविक 2डी छवि या एनीमेशन बनाने की अंतिम प्रक्रिया है। इसकी तुलना वास्तविक जीवन में सेटअप समाप्त होने के बाद फोटो लेने या दृश्य को फिल्माने के लिए की जा सकती है।[1] कई अलग -अलग, और प्रायः विशेष, प्रतिपादन विधियों का विकास किया गया है। ये पॉलीगॉन-आधारित प्रतिपादन के माध्यम से स्पष्ट रूप से गैर-यथार्थवादी वायरफ्रेम प्रतिपादन से लेकर अधिक उन्नत तकनीकों जैसे: स्कैनलाइन प्रतिपादन, रे ट्रेसिंग, या रेडियोसिटी तक हैं। एकल छवि/फ्रेम के लिए प्रतिपादन में सेकंड से लेकर कुछ दिनों तक का समय लग सकता है। सामान्य तौर पर, अलग-अलग तरीके या तो फोटोरियलिस्टिक प्रतिपादन, या वास्तविक समय प्रतिपादन के लिए अनुकूल होते हैं।[2]
वास्तविक समय
इंटरैक्टिव मीडिया, जैसे खेल और सिमुलेशन के लिए प्रतिपादन की गणना और वास्तविक समय में लगभग 20 से 120 फ्रेम प्रति सेकंड की दर से प्रदर्शित की जाती है। वास्तविक समय के प्रतिपादन में, लक्ष्य जितना संभव हो उतना जानकारी दिखाना है जितना आंख एक सेकंड के अंश में संसाधित कर सकता है (ए.के.ए. "एक फ्रेम में": 30 फ्रेम-प्रति-सेकंड एनीमेशन के मामले में, एक फ्रेम एक सेकंड का 30वां हिस्सा सम्मिलित होता है)।
प्राथमिक लक्ष्य स्वीकार्य न्यूनतम प्रतिपादन गति (सामान्यतः 24 फ्रेम प्रति सेकंड, क्योंकि वह न्यूनतम है जो मानव आंख को सफलतापूर्वक आंदोलन का भ्रम पैदा करने के लिए देखने की जरूरत है) पर फोटोरियलिज्म की यथासंभव उच्च डिग्री प्राप्त करना है। वास्तव में, शोषण को उस तरह से लागू किया जा सकता है जिस तरह से आंख दुनिया को 'अनुभूत' करती है, और परिणामस्वरूप, प्रस्तुत की गई अंतिम छवि जरूरी नहीं कि वास्तविक दुनिया की हो, लेकिन मानव आंखों को सहन करने के लिए पर्याप्त है।
प्रतिपादन सॉफ्टवेयर ऐसे दृश्य प्रभावों को अनुकरण कर सकता है जैसे लेंस फ्लेयर्स, फील्ड की गहराई या मोशन ब्लर। ये कैमरे और मानव आंखों की ऑप्टिकल विशेषताओं से उत्पन्न दृश्य घटनाओं को अनुकरण करने का प्रयास हैं। ये प्रभाव एक दृश्य में यथार्थवाद का एक तत्व उधार दे सकते हैं, भले ही प्रभाव मात्र एक कैमरे की एक नकली कलाकृति हो। यह खेल, इंटरैक्टिव दुनिया और वीआरएमएल में नियोजित मूल विधि है।
कंप्यूटर प्रसंस्करण शक्ति में तेजी से वृद्धि ने उच्च-डायनामिक-रेंज प्रतिपादन जैसी तकनीकों सहित वास्तविक समय के प्रतिपादन के लिए भी उत्तरोत्तर उच्च स्तर की यथार्थता की अनुमति दी है। वास्तविक समय प्रतिपादन प्रायः बहुकोणीय होता है और कंप्यूटर के ग्राफ़िक्स प्रोसेसिंग युनिट द्वारा सहायता प्राप्त होती है।[3]
गैर वास्तविक समय
गैर-संवादात्मक मीडिया के लिए एनिमेशन, जैसे कि फीचर फिल्म और वीडियो, प्रस्तुत करने में अधिक समय ले सकते हैं।[4] गैर-वास्तविक-समय प्रतिपादन उच्च छवि गुणवत्ता प्राप्त करने के लिए सीमित प्रसंस्करण शक्ति का लाभ उठाने में सक्षम बनाता है। अलग -अलग फ़्रेमों के लिए प्रतिपादन समय जटिल दृश्यों के लिए कुछ सेकंड से लेकर कई दिनों तक भिन्न हो सकता है। रेंडर किए गए फ्रेम को हार्ड डिस्क पर संग्रहीत किया जाता है, फिर अन्य मीडिया जैसे मोशन पिक्चर फिल्म या ऑप्टिकल डिस्क में स्थानांतरित किया जाता है। इन फ्रेमों को गति के भ्रम को प्राप्त करने के लिए क्रमिक रूप से उच्च फ़्रेम दर, सामान्यतः 24, 25 या 30 फ़्रेम प्रति सेकंड चित्र हर क्षण में (एफपीएस) पर प्रदर्शित किया जाता है।
जब लक्ष्य फोटो-यथार्थवाद होता है, तो रे ट्रेसिंग, पथ अनुरेखण, फोटॉन मैपिंग या रेडियोसिटी जैसी तकनीकों का उपयोग किया जाता है। यह डिजिटल मीडिया और कलात्मक कार्यों में नियोजित मूल पद्धति है। अन्य स्वाभाविक रूप से होने वाले प्रभावों का अनुकरण करने के उद्देश्य से तकनीकों को विकसित किया गया है, जैसे कि पदार्थ के विभिन्न रूपों के साथ प्रकाश की बातचीत। ऐसी तकनीकों के उदाहरणों में कण प्रणालियां सम्मिलित हैं (जो बारिश, धुएं, या आग का अनुकरण कर सकती हैं),वॉल्यूमेट्रिक प्रकाश व्यवस्था (कोहरे, धूल और अन्य स्थानिक वायुमंडलीय प्रभावों का अनुकरण करने के लिए), कास्टिक (प्रकाशिकी) (असमान प्रकाश-अपवर्तक सतहों द्वारा प्रकाश पर ध्यान केंद्रित करने के लिए अनुकरण करने के लिए , जैसे कि एक स्विमिंग पूल के तल पर दिखाई देने वाली हल्की तरंगें), और उपसतह बिखरने (मानव त्वचा जैसे ठोस वस्तुओं के आयतन के भीतर प्रकाश को प्रतिबिंबित करने के लिए अनुकरण करने के लिए)।
प्रतिपादन प्रक्रिया कम्प्यूटेशनल रूप से महंगी है, जटिल विभिन्न प्रकार की भौतिक प्रक्रियाओं को सिम्युलेटेड किया जा रहा है। कंप्यूटर प्रसंस्करण शक्ति पिछले कुछ वर्षों में तेजी से बढ़ी है, जिससे यथार्थवादी प्रतिपादन के उत्तरोत्तर उच्च स्तर की अनुमति मिलती है। कंप्यूटर जनित एनिमेशन बनाने वाले फिल्म स्टूडियो सामान्यतः समयबद्ध तरीके से चित्र बनाने के लिए रेंडर फार्म का उपयोग करते हैं। यद्यपि, हार्डवेयर लागत में गिरावट का अर्थ है कि होम कंप्यूटर सिस्टम पर 3डी एनिमेशन की थोड़ी मात्रा बनाना पूरी तरह से संभव है, क्योंकि रेंडर फ़ार्म का उपयोग करते समय इसमें लगने वाली लागत सम्मिलित होती है।[5] रेंडरर के आउटपुट का उपयोग प्रायः एक पूर्ण गति-चित्र दृश्य के मात्र एक छोटे हिस्से के रूप में किया जाता है। सामग्री की कई परतों को अलग-अलग प्रस्तुत किया जा सकता है और संयोजन सॉफ़्टवेयर का उपयोग करके अंतिम शॉट में एकीकृत किया जा सकता है।
प्रतिबिंब और छायांकन मॉडल
एक सतह के स्वरूप का वर्णन करने के लिए परावर्तन/प्रकीर्णन और छायांकन के मॉडल का उपयोग किया जाता है। यद्यपि ये मुद्दे अपने आप में समस्याओं की तरह लग सकते हैं, लेकिन इनका अध्ययन लगभग अनन्य रूप से प्रतिपादन के संदर्भ में किया जाता है। आधुनिक 3डी कंप्यूटर ग्राफिक्स फोंग प्रतिबिंब मॉडल (फोंग छायांकन के साथ भ्रमित नहीं होना ) नामक एक सरलीकृत प्रतिबिंब मॉडल पर बहुत अधिक निर्भर करते हैं। प्रकाश के अपवर्तन में, एक महत्वपूर्ण अवधारणा अपवर्तक सूचकांक है; अधिकांश 3डी प्रोग्रामिंग कार्यान्वयन में, इस मान के लिए शब्द "अपवर्तन का सूचकांक" है (सामान्यतः आईओआर को छोटा किया जाता है)।
छायांकन को दो अलग -अलग तकनीकों में तोड़ा जा सकता है, जिनका प्रायः स्वतंत्र रूप से अध्ययन किया जाता है:
- सतह छायांकन - सतह पर प्रकाश कैसे फैलता है (ज्यादातर वीडियो गेम में वास्तविक समय 3डी प्रतिपादन के लिए स्कैनलाइन प्रतिपादन में उपयोग किया जाता है)
- परावर्तन/प्रकीर्णन - किसी दिए गए बिंदु पर प्रकाश किसी सतह के साथ कैसे मेलजोल करता है (सीजीआई स्टिल 3डी छवियों और सीजीआई गैर-संवादात्मक 3डी एनिमेशन दोनों में गैर-वास्तविक समय के फोटोरिअलिस्टिक और कलात्मक 3डी प्रतिपादन के लिए ज्यादातर किरण-निशान रेंडर में उपयोग किया जाता है)
सतह छायांकन एल्गोरिदम
3डी कंप्यूटर ग्राफिक्स में लोकप्रिय सतह छायांकन एल्गोरिदम में सम्मिलित हैं:
- सपाट छायांकन : एक तकनीक जो बहुभुज के "सामान्य" और प्रकाश स्रोत की स्थिति और तीव्रता के आधार पर किसी वस्तु के प्रत्येक बहुभुज को छायांकित करती है
- गौरॉड छायांकन : 1971 में एच. गौराद द्वारा आविष्कृत; सुचारू रूप से छायांकित सतहों का अनुकरण करने के लिए एक तेज़ और संसाधन-सचेत वर्टेक्स छायांकन तकनीक का उपयोग किया जाता है
- फोंग छायांकन: बुई तुओंग फोंग द्वारा आविष्कार किया गया; स्पेक्युलर हाइलाइट्स और चिकनी छायांकित सतहों का अनुकरण करने के लिए उपयोग किया जाता है
प्रतिबिंब
परावर्तन या प्रकीर्णन किसी दिए गए बिंदु पर आने वाली और बाहर जाने वाली रोशनी के बीच संबंध है। बिखरने का विवरण सामान्यतः द्विदिश बिखरने वाले वितरण समारोह या बीएसडीएफ के संदर्भ में दिया जाता है।[6]
छायांकन
छायांकन यह बताता है कि विभिन्न प्रकार के बिखरने को सतह पर कैसे वितरित किया जाता है (अर्थात, कौन सा बिखरने वाला कार्य कहां लागू होता है)। इस तरह के विवरण सामान्यतः एक शेडर नामक कार्यक्रम के साथ व्यक्त किए जाते हैं।[7] छायांकन का एक सरल उदाहरण बनावट मानचित्रण है, जो एक सतह पर प्रत्येक बिंदु पर विसरित रंग को निर्दिष्ट करने के लिए एक रेखापुंज छवि का उपयोग करता है, इसे और अधिक स्पष्ट विवरण देता है।
कुछ छायांकन तकनीकों में सम्मिलित हैं:
- उभार का मानचित्रण : जिम ब्लिन द्वारा आविष्कार किया गया, एक सामान्य-परटर्बेशन तकनीक जिसका उपयोग झुर्रीदार सतहों का अनुकरण करने के लिए किया जाता है।[8]
- सेल छायांकन : एक तकनीक जिसका उपयोग हाथ से बनाए गए एनीमेशन के रूप की नकल करने के लिए किया जाता है।
परिवहन
प्रकाश परिवहन सिद्धांत वर्णन करता है कि एक दृश्य में रोशनी एक स्थान से दूसरे स्थान पर कैसे पहुँचती है।दृश्यता (ज्यामिति) प्रकाश परिवहन का एक प्रमुख घटक है।
प्रक्षेपण
छायांकित त्रि-आयामी वस्तुओं को चपटा होना चाहिए ताकि डिस्प्ले डिवाइस - अर्थात् एक मॉनिटर - इसे मात्र दो आयामों में प्रदर्शित कर सके, इस प्रक्रिया को 3डी प्रक्षेपण कहा जाता है। यह प्रक्षेपण और अधिकांश अनुप्रयोगों के लिए, परिप्रेक्ष्य प्रक्षेपण का उपयोग करके किया जाता है।परिप्रेक्ष्य प्रक्षेपण के पीछे मूल विचार यह है कि जो वस्तुएं आगे दूर होती हैं उन्हें उन वस्तुओं के संबंध में छोटा किया जाता हैं जो आंख के करीब होती हैं। प्रेक्षक से दूरी के ऋणात्मक की शक्ति तक बढ़ाए गए फैलाव स्थिरांक को गुणा करके कार्यक्रम परिप्रेक्ष्य उत्पन्न करते हैं। एक के फैलाव स्थिरांक का अर्थ है कि कोई परिप्रेक्ष्य नहीं है। उच्च फैलाव स्थिरांक एक "फिश-आई" प्रभाव पैदा कर सकते हैं जिसमें छवि विरूपण होने लगता है। वर्तनी विषयक प्रक्षेपण का उपयोग मुख्य रूप से कंप्यूटर एडेड डिजाइन या कंप्यूटर सहायतायुक्त विनिर्माण में किया जाता है, जहां वैज्ञानिक मॉडलिंग के लिए सटीक माप और तीसरे आयाम के संरक्षण की आवश्यकता होती है।
प्रतिपादन इंजन
प्रतिपादन इंजन एक साथ आ सकते हैं या 3डी मॉडलिंग सॉफ्टवेयर के साथ एकीकृत हो सकते हैं, लेकिन स्टैंडअलोन सॉफ्टवेयर भी है। कुछ प्रतिपादन इंजन कई 3डी सॉफ्टवेयर के साथ संगत हैं, जबकि कुछ एक के लिए विशिष्ट हैं।
यह भी देखें
- वास्तु प्रतिपादन
- परिवेशी बाधा
- कंप्यूटर दृष्टी
- ज्यामिति पाइपलाइन
- ज्यामिति प्रसंस्करण
- ग्राफिक्स
- ग्राफिक्स प्रोसेसिंग यूनिट (जीपीयू)
- चित्रमय आउटपुट युक्ति
- मूर्ति प्रोद्योगिकी
- औद्योगिक सीटी स्कैनिंग
- चित्रकार का एल्गोरिथ्म
- समानांतर प्रतिपादन
- प्रतिबिंब (कंप्यूटर ग्राफिक्स)
- सिग ग्राफ
- खंड प्रतिपादन
नोट्स और संदर्भ
- ↑ Badler, Norman I. "3D Object Modeling Lecture Series" (PDF). University of North Carolina at Chapel Hill. Archived (PDF) from the original on 2013-03-19.
- ↑ "Non-Photorealistic Rendering". Duke University. Retrieved 2018-07-23.
- ↑ "The Science of 3D Rendering". The Institute for Digital Archaeology (in British English). Retrieved 2019-01-19.
- ↑ Christensen, Per H.; Jarosz, Wojciech. "The Path to Path-Traced Movies" (PDF). Archived (PDF) from the original on 2019-06-26.
- ↑ "How render farm pricing actually works". GarageFarm (in English). 2021-10-24. Retrieved 2021-10-24.
- ↑ "Fundamentals of Rendering - Reflectance Functions" (PDF). Ohio State University. Archived (PDF) from the original on 2017-06-11.
- ↑ The word shader is sometimes also used for programs that describe local geometric variation.
- ↑ "Bump Mapping". web.cs.wpi.edu. Retrieved 2018-07-23.