विस्फोट: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Sudden release of heat and gas}} {{other uses}} {{more citations needed |date=February 2014}} File:NTS - BEEF - WATUSI.jpg|thumb|upright=1.35|[[ वि...")
 
No edit summary
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Sudden release of heat and gas}}
{{short description|Sudden release of heat and gas}}
{{other uses}}
{{other uses}}
{{more citations needed |date=February 2014}}
[[File:NTS - BEEF - WATUSI.jpg|thumb|upright=1.35|16 टीएनटी का [[ विस्फोट |विस्फोट]]]]
[[File:NTS - BEEF - WATUSI.jpg|thumb|upright=1.35|[[ विस्फोट ]]कों के बराबर 16 टीएनटी का विस्फोट]]
[[File:Explosions.jpg|thumb|upright=1.35|[[ पेट्रोल | पेट्रोल]] विस्फोट, [[ एयर शो |एयर शो]] में सिमुलेशन [[ बम |बम]] ड्रॉप]]'''विस्फोट''' की [[ ऊर्जा |ऊर्जा]] उसके बाहरी आवरण में अत्यधिक [[ मात्रा |मात्रा]] में तेजी से विस्तार करती है, सामान्यतः उच्च [[ तापमान |तापमान]] और उच्च दबाव वाली [[ गैस |गैसों]] के उत्सर्जन के कारण [[ उच्च विस्फोटक |उच्च विस्फोटकों]] द्वारा बनाए गए [[ पराध्वनिक |पराध्वनिक]] के कारण होने वाले विस्फोटों को मुख्य विस्फोट के रूप में जाना जाता है और शाक्ड तरंगें उचित माध्यम में यात्रा करती हैं। सबसोनिक विस्फोट [[ कम विस्फोटक |कम विस्फोटकों]] के कारण धीमी [[ दहन |दहन]] प्रक्रिया के माध्यम बनता है जिसे [[ दमक |दमक]] के रूप में जाना जाता है।
[[File:Explosions.jpg|thumb|upright=1.35|[[ पेट्रोल ]] विस्फोट, एक [[ एयर शो ]] में सिमुलेशन [[ बम ]] ड्रॉप]]एक विस्फोट [[ ऊर्जा ]] की चरम बाहरी रिलीज से जुड़ी [[ मात्रा ]] में एक तेजी से विस्तार है, आमतौर पर उच्च [[ तापमान ]] की पीढ़ी और उच्च दबाव वाली [[ गैस ]]ों की रिहाई के साथ।[[ उच्च विस्फोटक ]]ों द्वारा बनाए गए [[ पराध्वनिक ]] विस्फोटों को विस्फोट के रूप में जाना जाता है और सदमे तरंगों के माध्यम से यात्रा करते हैं।WIKT: सबसोनिक विस्फोट [[ कम विस्फोटक ]]ों द्वारा एक धीमी [[ दहन ]] प्रक्रिया के माध्यम से बनाया जाता है जिसे [[ दमक ]] के रूप में जाना जाता है।


== कारण ==
== कारण ==


एक बड़े विक्ट के कारण प्रकृति में विस्फोट हो सकते हैं: ऊर्जा का प्रवाह।अधिकांश प्राकृतिक विस्फोट [[ ज्वालामुखी ]] या विभिन्न प्रकार की [[ सुपरनोवा ]] प्रक्रियाओं से उत्पन्न होते हैं।विस्फोटक ज्वालामुखी विस्फोट तब होते हैं जब [[ मेग्मा ]] नीचे से उठता है, इसमें बहुत घुलित गैस होती है।मैग्मा के रूप में [[ दबाव ]] की कमी बढ़ जाती है और गैस को समाधान से बाहर बुलबुला करने का कारण बनता है, जिसके परिणामस्वरूप मात्रा में तेजी से वृद्धि होती है।विस्फोट भी प्रभाव की घटनाओं के परिणामस्वरूप होते हैं और घटनाओं में जैसे [[ जलपर्दी विस्फोट ]] (ज्वालामुखी प्रक्रियाओं के कारण भी)।सुपरनोवा जैसी घटनाओं में ब्रह्मांड में पृथ्वी के बाहर विस्फोट भी हो सकते हैं।विस्फोट अक्सर नीलगिरी के जंगलों में [[ बुशफायर ]] के दौरान होते हैं जहां पेड़ में अस्थिर तेल अचानक दहन करते हैं।<ref>{{cite news |url=http://www.theage.com.au/national/fire-power-equalled-1500-atomic-bombs-20090521-bh7r.html?page=-1 | location=Melbourne | work=The Age | title=फायर पावर ने 1500 परमाणु बमों की बराबरी की| first=Karen | last=Kissane | date=2009-05-22 | url-status=live | archive-url=https://web.archive.org/web/20090527014811/http://www.theage.com.au/national/fire-power-equalled-1500-atomic-bombs-20090521-bh7r.html?page=-1 | archive-date=2009-05-27}}</ref>
किसी बड़े विक्ट के कारण प्रकृति में विस्फोट के ऊर्जा का प्रवाह हो सकता हैं।अधिकांशतः प्राकृतिक '''विस्फोट''' [[ ज्वालामुखी |ज्वालामुखी]] या विभिन्न प्रकार की [[ सुपरनोवा |सुपरनोवा]] प्रक्रियाओं से उत्पन्न होते हैं। विस्फोटक ज्वालामुखी विस्फोट तब होते हैं जब [[ मेग्मा |मेग्मा]] नीचे से उठता है, इसमें बहुत घुलित गैस होती है। मैग्मा के रूप में [[ दबाव |दबाव]] की कमी बढ़ जाती है और गैस को समाधान से बाहर बुलबुला करने का कारण बनता है, जिसके परिणामस्वरूप मात्रा में तेजी से वृद्धि होती है। विस्फोट भी प्रभाव की घटनाओं के परिणामस्वरूप होते हैं और घटनाओं में जैसे [[ जलपर्दी विस्फोट |ज्वालामुखी प्रक्रियाओं के कारण होने वाले विस्फोट]] को इसी घटना में सम्मलित किया गया हैं। सुपरनोवा जैसी घटनाओं में ब्रह्मांड में पृथ्वी के बाहर विस्फोट भी हो सकते हैं। विस्फोट अधिकांशतः नीलगिरी के जंगलों में [[ बुशफायर |बुशफायर]] के समय होते हैं जहां पेड़ों में अस्थिर तेल के कारण अचानक दहन होने लगता हैं।<ref>{{cite news |url=http://www.theage.com.au/national/fire-power-equalled-1500-atomic-bombs-20090521-bh7r.html?page=-1 | location=Melbourne | work=The Age | title=फायर पावर ने 1500 परमाणु बमों की बराबरी की| first=Karen | last=Kissane | date=2009-05-22 | url-status=live | archive-url=https://web.archive.org/web/20090527014811/http://www.theage.com.au/national/fire-power-equalled-1500-atomic-bombs-20090521-bh7r.html?page=-1 | archive-date=2009-05-27}}</ref>
 
 
=== खगोलीय ===
=== खगोलीय ===
[[File:M1-67 & WR124.png|thumb|वुल्फ-रेएट स्टार [[ डब्ल्यूआर 124 ]] के आसपास नेबुला [[ एम 1-67 ]] एक [[ तारकीय विस्फोट ]] के अवशेष हैं, जिसे हम वर्तमान में छह [[ प्रकाश वर्ष ]] के रूप में देखते हैं<ref>
[[File:M1-67 & WR124.png|thumb|वुल्फ-रेएट स्टार [[ डब्ल्यूआर 124 |डब्ल्यूआर 124]] के आसपास नेबुला [[ एम 1-67 |एम 1-67]] [[ तारकीय विस्फोट |तारकीय विस्फोट]] के अवशेष हैं, जिसे हम वर्तमान में छह [[ प्रकाश वर्ष |प्रकाश वर्ष]] के रूप में देखते हैं<ref>
{{cite journal
{{cite journal
  |last1=Van Der Sluys |first1=M. V.
  |last1=Van Der Sluys |first1=M. V.
Line 23: Line 20:
  |doi=10.1051/0004-6361:20021634
  |doi=10.1051/0004-6361:20021634
|s2cid=6142859
|s2cid=6142859
  }}</ref>]]ब्रह्मांड में सबसे बड़े ज्ञात विस्फोटों में [[ सुपरनोवा ]] हैं, जो कुछ प्रकार के स्टार के जीवन के अंत के बाद होते हैं।सौर फ्लेयर सूर्य पर एक सामान्य, बहुत कम ऊर्जावान विस्फोट का एक उदाहरण है, और संभवतः अधिकांश अन्य सितारों पर भी।सौर भड़कना गतिविधि के लिए ऊर्जा स्रोत सूर्य के प्रवाहकीय प्लाज्मा के रोटेशन के परिणामस्वरूप चुंबकीय क्षेत्र लाइनों की उलझन से आता है।एक अन्य प्रकार का बड़ा खगोलीय विस्फोट तब होता है जब एक बहुत बड़ा उल्कापिंड या एक क्षुद्रग्रह किसी अन्य वस्तु की सतह को प्रभावित करता है, जैसे कि एक ग्रह।उदाहरण के लिए, 1908 के [[ तुंगुस्का एस्सेंट ]] घटना को माना जाता है कि एक उल्का हवा के फटने के परिणामस्वरूप हुआ था।
  }}</ref>]]ब्रह्मांड में सबसे बड़े ज्ञात विस्फोटों में [[ सुपरनोवा |सुपरनोवा]] मुख्य विस्फोट की श्रेणी में आता हैं, जो कुछ प्रकार के तारों के जीवनकाल के अंत होने के बाद बनता है। सौर तरंग सूर्य पर सामान्य, बहुत कम ऊर्जावान विस्फोट का उदाहरण है, और संभवतः इसी प्रकार के अन्य अधिकांश सितारों को भी इसी श्रेणी में रखा जा सकता हैं। सौर ऊर्जा के आवेग की गतिविधि के लिए ऊर्जा स्रोत सूर्य के प्रवाहकीय प्लाज्मा के घूर्णन के परिणामस्वरूप चुंबकीय क्षेत्र लाइनों के मेल होने से उत्पादित होता हैं। इस अन्य प्रकार के बड़े खगोलीय विस्फोट तब होते है जब बहुत बड़ा उल्कापिंड या क्षुद्रग्रह किसी अन्य वस्तु की सतह से टकराता हैं, जैसे कि ग्रह। उदाहरण के लिए, 1908 के [[ तुंगुस्का एस्सेंट |तुंगुस्का एस्सेंट]] घटना को माना जाता है कि उल्का हवा के फटने के परिणामस्वरूप हुआ था।


[[ ब्लैक होल ]] विलय, संभवतः [[ बाइनरी ब्लैक होल ]] सिस्टम को शामिल करने की संभावना है, एक [[ गुरुत्वाकर्षण तरंग ]] के रूप में, एक सेकंड के एक अंश में ब्रह्मांड में ऊर्जा के कई सौर द्रव्यमानों को विकीर्ण करने में सक्षम हैं।यह साधारण ऊर्जा और विनाशकारी बलों को आस -पास की वस्तुओं तक पहुंचाने में सक्षम है, लेकिन अंतरिक्ष की विशालता में, आस -पास की वस्तुएं आमतौर पर दुर्लभ होती हैं।<ref name="Forbes2020">{{cite web  
[[ ब्लैक होल |ब्लैक होल]] विलय, संभवतः [[ बाइनरी ब्लैक होल |बाइनरी ब्लैक होल]] सिस्टम को सम्मलित करने की संभावना है, [[ गुरुत्वाकर्षण तरंग |गुरुत्वाकर्षण तरंग]] के रूप में, सेकंड के अंश में ब्रह्मांड में ऊर्जा के कई सौर द्रव्यमानों को विकीर्ण करने में सक्षम हैं। यह साधारण ऊर्जा और विनाशकारी बलों को आस -पास की वस्तुओं तक पहुंचाने में सक्षम है, लेकिन अंतरिक्ष की विशालता में इसके आस -पास की वस्तुएं सामान्यतः दुर्लभ होती हैं।<ref name="Forbes2020">{{cite web  
   |url=https://www.forbes.com/sites/startswithabang/2020/02/15/ask-ethan-could-gravitational-waves-ever-cause-damage-on-earth/
   |url=https://www.forbes.com/sites/startswithabang/2020/02/15/ask-ethan-could-gravitational-waves-ever-cause-damage-on-earth/
   |title=एथन से पूछें: क्या गुरुत्वाकर्षण तरंगें कभी पृथ्वी पर नुकसान का कारण बन सकती हैं?एक धमाके से शुरू होता है|last1=Siegel
   |title=एथन से पूछें: क्या गुरुत्वाकर्षण तरंगें कभी पृथ्वी पर नुकसान का कारण बन सकती हैं?एक धमाके से शुरू होता है|last1=Siegel
Line 32: Line 29:
   |work=[[Forbes]]  
   |work=[[Forbes]]  
   |access-date=7 September 2020
   |access-date=7 September 2020
}}</ref> 21 मई 2019 को [[ GW190521 ]] के रूप में जाना जाने वाला गुरुत्वाकर्षण तरंग, लगभग 100 एमएस अवधि के विलय संकेत का उत्पादन किया, इस दौरान यह अनुमान लगाया गया है कि गुरुत्वाकर्षण ऊर्जा के रूप में 9 सौर द्रव्यमानों को दूर करने का अनुमान है।
}}</ref> 21 मई 2019 को [[ GW190521 |जीडब्ल्यू (GW190521)]] के रूप में जाना जाने वाला गुरुत्वाकर्षण तरंग, लगभग 100 एमएस अवधि के विलय संकेत का उत्पादन किया, इस समय यह अनुमान लगाया गया है कि '''गुरुत्वाकर्षण ऊर्जा''' के रूप में 9 सौर द्रव्यमानों को दूर करने का अनुमान लगाती है।


=== रासायनिक ===
=== रासायनिक ===
सबसे आम कृत्रिम विस्फोटक रासायनिक विस्फोटक हैं, आमतौर पर एक तेजी से और हिंसक [[ ऑक्सीकरण ]] प्रतिक्रिया शामिल होती है जो बड़ी मात्रा में गर्म गैस का उत्पादन करती है।गनपाउडर का आविष्कार करने और उपयोग करने के लिए पहला विस्फोटक था।रासायनिक विस्फोटक प्रौद्योगिकी में अन्य उल्लेखनीय प्रारंभिक विकास 1865 में [[ फ्रेडरिक ऑगस्टस एबेल ]] के नाइट्रोसेलुलोज के विकास और 1866 में अल्फ्रेड नोबेल के [[ बारूद ]] के आविष्कार थे। रासायनिक विस्फोट (दोनों जानबूझकर और आकस्मिक) अक्सर ऑक्सीजन की उपस्थिति में एक इलेक्ट्रिक स्पार्क या फ्लेम द्वारा शुरू किए जाते हैं।ईंधन टैंक, रॉकेट इंजन, आदि में आकस्मिक विस्फोट हो सकते हैं।
सबसे सरल कृत्रिम विस्फोटक रासायनिक विस्फोटक हैं, सामान्यतः तेजी से और हिंसक [[ ऑक्सीकरण |ऑक्सीकरण]] प्रतिक्रिया सम्मलित होती है जो बड़ी मात्रा में गर्म गैस का उत्पादन करती है। गनपाउडर का आविष्कार करने और उपयोग करने के लिए पहला विस्फोटक था।रासायनिक विस्फोटक प्रौद्योगिकी में अन्य उल्लेखनीय प्रारंभिक विकास 1865 में [[ फ्रेडरिक ऑगस्टस एबेल |फ्रेडरिक ऑगस्टस एबेल]] के नाइट्रोसेलुलोज के विकास और 1866 में अल्फ्रेड नोबेल के [[ बारूद |बारूद]] के आविष्कार थे। रासायनिक विस्फोट (दोनों जानबूझकर और आकस्मिक) अधिकांशतः ऑक्सीजन की उपस्थिति में विद्धुत स्पार्क या लौह द्वारा शुरू किए जाते हैं। ईंधन टैंक, रॉकेट इंजन, आदि में आकस्मिक विस्फोट हो सकते हैं।


=== विद्युत और चुंबकीय ===
=== विद्युत और चुंबकीय ===
[[File: Exploded Electrolytic Capacitor.jpg|thumb|एक संधारित्र जो विस्फोट हुआ है]]एक उच्च वर्तमान [[ विद्युत ]] दोष उच्च ऊर्जा विद्युत चाप बनाकर एक 'विद्युत विस्फोट' बना सकता है जो तेजी से धातु और इन्सुलेशन सामग्री को वाष्पित करता है।यह [[ वेल्डिंग की रोशनी ]] खतरा ऊर्जावान [[ स्विचगियर ]] पर काम करने वाले लोगों के लिए एक खतरा है।एक अल्ट्रा-मजबूत इलेक्ट्रोमैग्नेट के भीतर अत्यधिक [[ चुंबकीय दबाव ]] एक चुंबकीय विस्फोट का कारण बन सकता है।
[[File: Exploded Electrolytic Capacitor.jpg|thumb|संधारित्र के कारण विस्फोट]]इस उच्च[[ विद्युत | विद्युत]] त्रुटि से उत्पन्न उच्च ऊर्जा विद्युत चाप के कारण 'विद्युत विस्फोट' बन सकता है जो तेजी से धातु और कुचालकीकरण सामग्री को वाष्पित करता है। यह [[ वेल्डिंग की रोशनी |वेल्डिंग की रोशनी]] के लिए किसी खतरे के ऊर्जावान [[ स्विचगियर |स्विचगियर]] पर कार्य करने वाले लोगों के लिए खतरा है। अल्ट्रा-मजबूत इलेक्ट्रोमैग्नेट के भीतर अत्यधिक [[ चुंबकीय दबाव |चुंबकीय दबाव]] चुंबकीय विस्फोट का कारण बन सकता है।


=== मैकेनिकल और वाष्प ===
=== यांत्रिकी और वाष्प ===
रासायनिक या परमाणु के विपरीत एक भौतिक प्रक्रिया, जैसे कि आंतरिक दबाव के तहत एक सील या आंशिक रूप से सील कंटेनर के फटने को अक्सर विस्फोट के रूप में संदर्भित किया जाता है।उदाहरणों में एक ओवरहीट बॉयलर या बीन्स का एक साधारण टिन कैन शामिल है जो आग में फेंक दिया जाता है।
रासायनिक या परमाणु के विपरीत भौतिक प्रक्रिया, जैसे कि आंतरिक दबाव के अनुसार सील या आंशिक रूप से सील कंटेनर के फटने को अधिकांशतः विस्फोट के रूप में संदर्भित किया जाता है। उदाहरणों में अधिकतम ऊष्मा बॉयलर या बीन्स का साधारण टिन कैन सम्मलित है जो आग में फेंक दिया जाता है।


[[ BLEVE ]] एक प्रकार का यांत्रिक विस्फोट होता है जो तब हो सकता है जब एक दबाव वाले तरल युक्त एक जहाज टूट जाता है, जिससे तरल वाष्पीकरण के रूप में मात्रा में तेजी से वृद्धि होती है।ध्यान दें कि कंटेनर की सामग्री एक बाद के रासायनिक विस्फोट का कारण बन सकती है, जिसके प्रभाव नाटकीय रूप से अधिक गंभीर हो सकते हैं, जैसे कि आग के बीच में एक [[ प्रोपेन ]] टैंक।ऐसे मामले में, यांत्रिक विस्फोट के प्रभावों के लिए जब टैंक विफल हो जाता है, तो जारी किए गए विस्फोट से प्रभाव को जोड़ा जाता है (शुरू में तरल और फिर लगभग तुरंत गैसीयस) एक इग्निशन स्रोत की उपस्थिति में प्रोपेन होता है।इस कारण से, आपातकालीन कार्यकर्ता अक्सर दो घटनाओं के बीच अंतर करते हैं।
[[ BLEVE |ब्लीव (BLEVE)]] प्रकार के यांत्रिक विस्फोट होते हैं जो तब होते हैं जब दबाव वाले तरल युक्त जहाज टूट जाता है, जिससे तरल वाष्पीकरण के रूप में मात्रा में तेजी से वृद्धि होती है। ध्यान दें कि एकीकृत करने वाली सामग्री बाद के रासायनिक विस्फोट का कारण बन सकती है, जिसके प्रभाव नाटकीय रूप से यह अधिक गंभीर रूप ले सकती हैं, जैसे कि [[ प्रोपेन |प्रोपेन]] टैंक के कारण लगने वाली आग इसका एक मुख्य उदाहरण हैं। ऐसी स्थिति में यांत्रिक विस्फोट के प्रभावों के लिए जब टैंक विफल हो जाता है, तो जारी किए गए विस्फोट से प्रभाव को जोड़ा जाता है (शुरू में तरल और फिर लगभग तुरंत गैसीयस) इग्निशन स्रोत की उपस्थिति में प्रोपेन होता है। इस कारणवश आपातकालीन कार्यकर्ता अधिकांशतः दो घटनाओं के बीच अंतर करने में सफल हो पाते हैं।


=== परमाणु ===
=== परमाणु ===
{{Main|Nuclear explosion|Effects of nuclear explosions}}
{{Main|परमाणु विस्फोट|परमाणु विस्फोटों के प्रभाव}}
तारकीय [[ परमाणु विस्फोट ]]ों के अलावा, एक [[ परमाणु हथियार ]] एक प्रकार का विस्फोटक हथियार है जो अपने विनाशकारी बल को [[ परमाणु विखंडन ]] से या विखंडन और संलयन के संयोजन से प्राप्त करता है।नतीजतन, यहां तक कि एक छोटी उपज वाला परमाणु हथियार भी उपलब्ध सबसे बड़े पारंपरिक विस्फोटकों की तुलना में काफी अधिक शक्तिशाली है, जिसमें एक ही हथियार पूरी तरह से पूरे शहर को पूरी तरह से नष्ट करने में सक्षम है।
तारकीय [[ परमाणु विस्फोट |परमाणु विस्फोट]] के अतिरिक्त, [[ परमाणु हथियार |परमाणु हथियार]] प्रकार का विस्फोटक हथियार है जो अपने विनाशकारी बल को [[ परमाणु विखंडन |परमाणु विखंडन]] से या विखंडन और संलयन के संयोजन से प्राप्त करता है। परिणामस्वरूप, यहां तक कि छोटी उपज वाला परमाणु हथियार भी उपलब्ध सबसे बड़े पारंपरिक विस्फोटकों की तुलना में बहुत अधिक शक्तिशाली है, जिसमें हथियार पूरी प्रकार से पूरे शहर को पूरी प्रकार से नष्ट करने में सक्षम है।


== गुण ==
== गुण ==


=== बल ===
=== बल ===
[[File:Defense.gov photo essay 090818-M-8752R-138.jpg|thumb|प्रशिक्षण के दौरान एक परीक्षण द्वार के खिलाफ एक उल्लंघन चार्ज विस्फोट]]विस्फोटक बल विस्फोटक की सतह के लंबवत दिशा में जारी किया जाता है।यदि विस्फोट के दौरान एक ग्रेनेड मध्य हवा में है, तो विस्फोट की दिशा 360 ° होगी।इसके विपरीत, एक आकार के चार्ज में विस्फोटक बल अधिक स्थानीय विस्फोट का उत्पादन करने के लिए केंद्रित होते हैं;आकार के आरोपों का उपयोग अक्सर सैन्य द्वारा दरवाजों या दीवारों को तोड़ने के लिए किया जाता है।
[[File:Defense.gov photo essay 090818-M-8752R-138.jpg|thumb|प्रशिक्षण के समय परीक्षण द्वार के खिलाफ उल्लंघन आवेश विस्फोट]]विस्फोटक बल विस्फोटक की सतह के लंबवत दिशा में जारी किया जाता है। यदि विस्फोट के समय ग्रेनेड मध्य हवा में है, तो विस्फोट की दिशा 360° होगी। इसके विपरीत, आकार के आवेश में विस्फोटक बल अधिक स्थानीय विस्फोट का उत्पादन करने के लिए केंद्रित होते हैं, इस प्रकार के आकार का उपयोग अधिकांशतः सैन्य द्वारा दरवाजों या दीवारों को तोड़ने के लिए किया जाता है।


=== वेग ===
=== वेग ===
प्रतिक्रिया की गति वह है जो एक साधारण दहन प्रतिक्रिया से एक विस्फोटक प्रतिक्रिया को अलग करती है।जब तक प्रतिक्रिया बहुत तेजी से नहीं होती है, तब तक थर्मल रूप से विस्तारित गैसों को मध्यम रूप से मध्यम रूप से विघटित किया जाएगा, जिसमें दबाव में कोई बड़ा अंतर नहीं होगा और कोई विस्फोट नहीं होगा।एक चिमनी में लकड़ी की आग जलती है, उदाहरण के लिए, निश्चित रूप से गर्मी का विकास और गैसों के गठन का विकास होता है, लेकिन न तो अचानक पर्याप्त दबाव अंतर बनाने के लिए तेजी से पर्याप्त रूप से मुक्त किया जाता है और फिर विस्फोट का कारण बनता है।इसकी तुलना एक [[ बैटरी (बिजली) ]] के ऊर्जा निर्वहन के बीच के अंतर से की जा सकती है, जो धीमी है, और एक [[ कैमरा ]] फ्लैश में उस तरह के फ्लैश [[ संधारित्र ]] की, जो एक ही बार में अपनी ऊर्जा जारी करता है।
प्रतिक्रिया की गति वह है जो साधारण दहन प्रतिक्रिया से विस्फोटक प्रतिक्रिया को अलग करती है।जब तक प्रतिक्रिया बहुत तेजी से नहीं होती है, तब तक उष्मीय रूप से विस्तारित गैसों को मध्यम रूप से मध्यम रूप से विघटित किया जाएगा, जिसमें दबाव में कोई बड़ा अंतर नहीं होगा और कोई विस्फोट नहीं होगा। मुख्यतः चिमनी में लकड़ी के कारण आग जलती है, उदाहरण के लिए, निश्चित रूप से गर्मी का विकास और गैसों के गठन का विकास होता है, लेकिन न तो अचानक पर्याप्त दबाव अंतर बनाने के लिए तेजी से पर्याप्त रूप से मुक्त किया जाता है और फिर विस्फोट का कारण बनता है। इसकी तुलना [[ बैटरी (बिजली) |बैटरी (बिजली)]] के ऊर्जा निर्वहन के बीच के अंतर से की जा सकती है जो कि धीमी होती है, और [[ कैमरा |कैमरे]] के फ्लैश में उसी प्रकार के फ्लैश [[ संधारित्र |संधारित्र]] की अपनी ऊर्जा जारी करता है।


=== गर्मी का विकास ===
=== गर्मी का विकास ===
बड़ी मात्रा में गर्मी की पीढ़ी सबसे विस्फोटक रासायनिक प्रतिक्रियाओं के साथ होती है।अपवादों को एंट्रोपिक विस्फोट कहा जाता है और इसमें एसीटोन [[ पेरोक्साइड ]] जैसे कार्बनिक पेरोक्साइड शामिल हैं।<ref>{{Cite journal
बड़ी मात्रा में गर्मी की पीढ़ी सबसे विस्फोटक रासायनिक प्रतिक्रियाओं के साथ होती है। अपवादों को एंट्रोपिक विस्फोट कहा जाता है और इसमें एसीटोन [[ पेरोक्साइड |पेरोक्साइड]] जैसे कार्बनिक पेरोक्साइड सम्मलित हैं।<ref>{{Cite journal
| volume = 127
| volume = 127
| issue = 4
| issue = 4
Line 82: Line 79:
| last8 = Keinan
| last8 = Keinan
| first8 = Ehud
| first8 = Ehud
}}</ref> यह [[ गर्मी ]] की तेजी से मुक्ति है जो उच्च दबावों का विस्तार करने और उत्पन्न करने के लिए अधिकांश विस्फोटक प्रतिक्रियाओं के गैसीय उत्पादों का कारण बनती है।जारी गैस के उच्च दबावों की यह तेजी से पीढ़ी विस्फोट का गठन करती है।अपर्याप्त रैपिडिटी के साथ गर्मी की मुक्ति से विस्फोट नहीं होगा।उदाहरण के लिए, हालांकि कोयले की एक इकाई द्रव्यमान [[ नाइट्रोग्लिसरीन ]] की एक इकाई द्रव्यमान के रूप में पांच गुना अधिक गर्मी पैदा करती है, कोयले को विस्फोटक ([[ कोयला धूल विस्फोट ]] को छोड़कर) के रूप में इस्तेमाल नहीं किया जा सकता है क्योंकि जिस दर पर यह इस गर्मी की उपज देता है वह काफी धीमा है।वास्तव में, एक पदार्थ जो कम तेजी से जलता है (यानी धीमा दहन) वास्तव में एक विस्फोटक की तुलना में अधिक कुल गर्मी विकसित कर सकता है जो तेजी से (यानी तेजी से दहन) को विस्फोट करता है।पूर्व में, धीमी गति से दहन जलते हुए पदार्थ की आंतरिक ऊर्जा (यानी [[ रासायनिक क्षमता ]]) को अधिक रूप से परिवर्तित करता है, जबकि बाद में, बाद में, तेज दहन (यानी विस्फोट) में अधिक आंतरिक ऊर्जा को परिवेश में काम में परिवर्तित करता है (यानी कम आंतरिक ऊर्जा गर्मी में परिवर्तित);सी.एफ.गर्मी और [[ काम (थर्मोडायनामिक्स) ]] ऊर्जा के बराबर रूप हैं।इस विषय के अधिक गहन उपचार के लिए दहन की गर्मी देखें।
}}</ref> यह [[ गर्मी |गर्मी]] की तेजी से मुक्ति है जो उच्च दबावों का विस्तार करने और उत्पन्न करने के लिए अधिकांश विस्फोटक प्रतिक्रियाओं के गैसीय उत्पादों का कारण बनती है। जारी गैस के उच्च दबावों की यह तेजी से पीढ़ी विस्फोट का गठन करती है। अपर्याप्त तेजी के साथ गर्मी की मुक्ति से विस्फोट नहीं होगा। उदाहरण के लिए, चूंकि कोयले की इकाई द्रव्यमान [[ नाइट्रोग्लिसरीन |नाइट्रोग्लिसरीन]] की इकाई द्रव्यमान के रूप में पांच गुना अधिक गर्मी पैदा करती है, कोयले को विस्फोटक ([[ कोयला धूल विस्फोट | कोयला धूल विस्फोट]] को छोड़कर) के रूप में उपयोग नहीं किया जा सकता है क्योंकि जिस दर पर यह इस गर्मी की उपज देता है वह बहुत धीमा है। वास्तव में, पदार्थ जो कम तेजी से जलता है (अर्ताथ धीमा दहन) वास्तव में विस्फोटक की तुलना में अधिक कुल गर्मी विकसित कर सकता है जो तेजी से (अर्ताथ तेजी से दहन) को विस्फोट करता है। पूर्व में, धीमी गति से दहन जलते हुए पदार्थ की आंतरिक ऊर्जा (अर्ताथ [[ रासायनिक क्षमता |रासायनिक क्षमता]] ) को अधिक रूप से परिवर्तित करता है, जबकि बाद में, बाद में, तेज दहन (अर्ताथ विस्फोट) में अधिक आंतरिक ऊर्जा को परिवेश में कार्य में परिवर्तित करता है (अर्ताथ कम आंतरिक ऊर्जा गर्मी में परिवर्तित), सी.एफ. के द्वारा गर्मी और [[ काम (थर्मोडायनामिक्स) |कार्य (थर्मोडायनामिक्स)]] ऊर्जा के बराबर रूप हैं। इस विषय के अधिक गहन अध्ययन के लिए दहन की गर्मी देखें।


जब उसके घटकों से एक रासायनिक यौगिक बनता है, तो गर्मी या तो अवशोषित हो सकती है या जारी की जा सकती है।परिवर्तन के दौरान अवशोषित या बंद गर्मी की मात्रा को [[ गठन की गर्मी ]] कहा जाता है।विस्फोटक प्रतिक्रियाओं में पाए जाने वाले ठोस और गैसों के लिए संरचनाओं के हीट को 25 & nbsp; ° C और वायुमंडलीय दबाव के तापमान के लिए निर्धारित किया गया है, और आम तौर पर प्रति ग्राम-अणु किलोजल की इकाइयों में दिया जाता है।एक सकारात्मक मूल्य इंगित करता है कि गर्मी अपने तत्वों से यौगिक के गठन के दौरान अवशोषित होती है;इस तरह की प्रतिक्रिया को एंडोथर्मिक प्रतिक्रिया कहा जाता है।विस्फोटक प्रौद्योगिकी में केवल ऐसी सामग्री जो [[ एक्ज़ोथिर्मिक ]] होती है - जिसमें गर्मी की शुद्ध मुक्ति होती है और गठन की नकारात्मक गर्मी होती है - ब्याज की होती है।प्रतिक्रिया गर्मी को या तो निरंतर दबाव या निरंतर मात्रा के आधार पर मापा जाता है।यह प्रतिक्रिया की गर्मी है जिसे विस्फोट की गर्मी के रूप में ठीक से व्यक्त किया जा सकता है।
जब उसके घटकों से रासायनिक यौगिक बनता है, तो गर्मी या तो अवशोषित हो सकती है या जारी की जा सकती है। परिवर्तन के समय अवशोषित या बंद गर्मी की मात्रा को [[ गठन की गर्मी |गठन की गर्मी]] कहा जाता है। विस्फोटक की प्रतिक्रियाओं में पाए जाने वाले ठोस और गैसों के लिए संरचनाओं के ऊष्मा को 25° C और वायुमंडलीय दबाव के तापमान के लिए निर्धारित किया गया है और सामान्यतः प्रति ग्राम-अणु किलोजल की इकाइयों में दिया जाता है। यह धनात्मक मूल्य इंगित करता है कि गर्मी अपने तत्वों से यौगिक के गठन के समय अवशोषित होती है, इस प्रकार की प्रतिक्रिया को एंडोथर्मिक प्रतिक्रिया कहा जाता है। विस्फोटक प्रौद्योगिकी में केवल ऐसी सामग्री जो [[ एक्ज़ोथिर्मिक |एक्ज़ोथिर्मिक]] होती है - जिसमें गर्मी की शुद्ध मुक्ति होती है और गठन की ऋणात्मक गर्मी होती है - ब्याज की होती है। इस प्रतिक्रिया की गर्मी को या तो निरंतर दबाव या निरंतर मात्रा के आधार पर मापा जाता है। यह प्रतिक्रिया की गर्मी है जिसे विस्फोट की गर्मी के रूप में ठीक से व्यक्त किया जा सकता है।


=== प्रतिक्रिया की दीक्षा ===
=== प्रतिक्रिया की दीक्षा ===


एक रासायनिक विस्फोटक एक यौगिक या मिश्रण है, जो गर्मी या सदमे के आवेदन पर, अत्यधिक रैपिडिटी के साथ विघटित या पुनर्व्यवस्थित करता है, बहुत गैस और गर्मी की उपज देता है।कई पदार्थों को आमतौर पर वर्गीकृत नहीं किया जाता है क्योंकि विस्फोटक इन चीजों में से एक, या दो भी कर सकते हैं।
एक रासायनिक विस्फोटक यौगिक या मिश्रण है, जो गर्मी या शाक्ड तरंग के कारण अत्यधिक तेजी के साथ विघटित या पुनर्व्यवस्थित करता है, बहुत गैस और गर्मी की उपज देता है। कई पदार्थों को सामान्यतः वर्गीकृत नहीं किया जाता है क्योंकि विस्फोटक इन चीजों में से एक या दो भी कर सकते हैं।


विस्फोटक सामग्री के द्रव्यमान के एक छोटे से हिस्से में सदमे, गर्मी, या एक [[ उत्प्रेरक ]] (कुछ विस्फोटक रासायनिक प्रतिक्रियाओं के मामले में) के आवेदन द्वारा शुरू किए जाने में एक प्रतिक्रिया सक्षम होनी चाहिए।एक ऐसी सामग्री जिसमें पहले तीन कारक मौजूद हैं, को विस्फोटक के रूप में स्वीकार नहीं किया जा सकता है जब तक कि जरूरत पड़ने पर प्रतिक्रिया नहीं की जा सकती।
विस्फोटक सामग्री के द्रव्यमान के छोटे से भाग में शाक्ड तरंग, गर्मी, या [[ उत्प्रेरक |उत्प्रेरक]] (कुछ विस्फोटक रासायनिक प्रतिक्रियाओं के स्थिति में) के कारण शुरू किए जाने में प्रतिक्रिया सक्षम होनी चाहिए। ऐसी सामग्री जिसमें पहले तीन कारक सम्मलित हैं इसको विस्फोटक के रूप में स्वीकार नहीं किया जा सकता है जब तक कि जरूरत पड़ने पर प्रतिक्रिया नहीं की जा सकती।


=== विखंडन ===
=== विखंडन ===
विखंडन एक उच्च विस्फोटक विस्फोट के परिणामस्वरूप कणों का संचय और प्रक्षेपण है।टुकड़े से उत्पन्न हो सकते हैं: एक संरचना के कुछ हिस्सों (जैसे [[ कांच ]], [[ संरचनात्मक सामग्री ]] के टुकड़े, या छत सामग्री), स्ट्रैट और/या विभिन्न सतह-[[ स्तर ]]ीय भूगर्भिक विशेषताएं (जैसे ढीली [[ रॉक (भूविज्ञान) ]] एस, [[ मिट्टी ]], या [[ रेत ]]) का पता चलाविस्फोटक के आसपास के आवरण, और/या किसी भी अन्य ढीले विविध वस्तुओं को विस्फोट से सदमे की लहर से वाष्पीकृत नहीं किया गया।उच्च वेग, कम कोण के टुकड़े अन्य आसपास के उच्च विस्फोटक वस्तुओं को शुरू करने के लिए पर्याप्त ऊर्जा के साथ सैकड़ों मीटर की यात्रा कर सकते हैं, कर्मियों को घायल या मार सकते हैं, और/या वाहनों या संरचनाओं को नुकसान पहुंचाते हैं।
विखंडन उच्च विस्फोटक के विस्फोट के परिणामस्वरूप कणों का संचय और प्रक्षेपण है। टुकड़े से उत्पन्न हो सकते हैं: संरचना के कुछ भागों (जैसे [[ कांच |कांच]], [[ संरचनात्मक सामग्री |संरचनात्मक सामग्री]] के टुकड़े, या छत सामग्री), स्ट्रैट और/या विभिन्न सतह-[[ स्तर | स्तरीय]] भूगर्भिक विशेषताएं (जैसे ढीली [[ रॉक (भूविज्ञान) |रॉक (भूविज्ञान)]] एस, [[ मिट्टी |मिट्टी]] या [[ रेत |रेत]] ) का पता लगाकर विस्फोटक के आसपास के आवरण, और/या किसी भी अन्य ढीले विविध वस्तुओं को विस्फोट से शाक्ड की लहर से वाष्पीकृत नहीं किया गया। उच्च वेग, कम कोण के टुकड़े अन्य आसपास के उच्च विस्फोटक वस्तुओं को शुरू करने के लिए पर्याप्त ऊर्जा के साथ सैकड़ों मीटर की यात्रा कर सकते हैं, कर्मियों को विस्फोटित करके खत्म कर सकते हैं, और/या वाहनों या संरचनाओं को हानि पहुंचाते हैं।


== उल्लेखनीय उदाहरण ==
== उल्लेखनीय उदाहरण ==
{{Further|Largest artificial non-nuclear explosions}}
{{Further|सबसे बड़ा कृत्रिम गैर-परमाणु विस्फोट}}
 


=== रासायनिक ===
=== रासायनिक ===
* 1626 [[ वांग फैक्ट्री एक्सप्वायल ]]
* 1626 [[ वांग फैक्ट्री एक्सप्वायल |वांग फैक्ट्री एक्सप्वायल]]
* 1887 [[ नानाइमो माइन विस्फोट ]]
* 1887 [[ नानाइमो माइन विस्फोट |नानाइमो माइन विस्फोट]]
* 1917 [[ हैलिफ़ैक्स विस्फोट ]]
* 1917 [[ हैलिफ़ैक्स विस्फोट |हैलिफ़ैक्स विस्फोट]]
* 1917 [[ मेसिन की लड़ाई (1917) ]]
* 1917 [[ मेसिन की लड़ाई (1917) |मेसिन की लड़ाई (1917)]]
* 1921 ओप्पाऊ विस्फोट
* 1921 ओप्पाऊ विस्फोट
* [[ 1944 बॉम्बे विस्फोट ]]
* [[ 1944 बॉम्बे विस्फोट |1944 बॉम्बे विस्फोट]]
* 1944 [[ पोर्ट शिकागो आपदा ]]
* 1944 [[ पोर्ट शिकागो आपदा |पोर्ट शिकागो आपदा]]
* 1944 राफ फाउल विस्फोट
* 1944 राफ फाउल विस्फोट
* 1947 Cádiz विस्फोट
* 1947 केडिज विस्फोट
* 1947 [[ टेक्सास सिटी आपदा ]]
* 1947 [[ टेक्सास सिटी आपदा |टेक्सास सिटी आपदा]]
* 1960 [[ नेडेलिन तबाही ]]
* 1960 [[ नेडेलिन तबाही |नेडेलिन तबाही]]
* 1969 सोवियत एन 1 रॉकेट#लॉन्च इतिहास
* 1969 सोवियत एन 1 रॉकेट लॉन्च इतिहास
* 1974 फ्लिक्सबोरो आपदा
* 1974 फ्लिक्सबोरो आपदा
* 1998 [[ पेपकॉन आपदा ]], हेंडरसन, नेवादा
* 1998 [[ पेपकॉन आपदा |पेपकॉन आपदा]], हेंडरसन, नेवादा
* [[ 1988 पूले विस्फोट ]]
* [[ 1988 पूले विस्फोट |1988 पूले विस्फोट]]
* 1994 [[ पोर्ट नील उर्वरक संयंत्र विस्फोट ]]
* 1994 [[ पोर्ट नील उर्वरक संयंत्र विस्फोट |पोर्ट नील उर्वरक संयंत्र विस्फोट]]
* 2001 [[ AZF (कारखाना) ]]
* 2001 [[ AZF (कारखाना) |एजेडएफ (कारखाना)]]
* 2004 Ryongchon आपदा
* 2004 रियोंगचोन आपदा
* [[ 2005 हर्टफोर्डशायर ऑयल स्टोरेज टर्मिनल फायर ]]
* [[ 2005 हर्टफोर्डशायर ऑयल स्टोरेज टर्मिनल फायर |2005 हर्टफोर्डशायर ऑयल स्टोरेज टर्मिनल फायर]]
* 2008 गेरडेक विस्फोट
* 2008 गेरडेक विस्फोट
* 2009 कैटोनो ऑयल रिफाइनरी फायर
* 2009 कैटोनो ऑयल रिफाइनरी फायर
* 2013 [[ पश्चिम उर्वरक कंपनी विस्फोट ]]
* 2013 [[ पश्चिम उर्वरक कंपनी विस्फोट |पश्चिम उर्वरक कंपनी विस्फोट]]
* [[ 2015 तियानजिन विस्फोट ]]
* [[ 2015 तियानजिन विस्फोट |2015 तियानजिन विस्फोट]]
* [[ 2020 बेरूत विस्फोट ]]
* [[ 2020 बेरूत विस्फोट |2020 बेरूत विस्फोट]]


=== परमाणु ===
=== परमाणु ===
* [[ ट्रिनिटी टेस्ट ]]
* [[ ट्रिनिटी टेस्ट |ट्रिनिटी टेस्ट]]
* [[ आइवी माइक ]]
* [[ आइवी माइक |आइवी माइक]]
* [[ कैसल ब्रावो ]]
* [[ कैसल ब्रावो |कैसल ब्रावो]]
* ज़ार बॉम्बा
* ज़ार बॉम्बा
* [[ हिरोशिमा और नागासाकी के परमाणु बमबारी ]]
* [[ हिरोशिमा और नागासाकी के परमाणु बमबारी |हिरोशिमा और नागासाकी के परमाणु बमबारी]]


=== ज्वालामुखी ===
=== ज्वालामुखी ===
{{main|Volcanic Explosivity Index}}
{{main|ज्वालामुखी विस्फोट सूचकांक}}
* [[ सेंटोरिनी ]]
* [[ सेंटोरिनी |सेंटोरिनी]]
* [[ क्राकाटा ]]
* [[ क्राकाटा ]]
* माउंट सेंट हेलेंस
* माउंट सेंट हेलेंस
Line 146: Line 142:


== व्युत्पत्ति ==
== व्युत्पत्ति ==
शास्त्रीय लैटिन {{Lang|la|explōdō}} मंच से एक बुरे अभिनेता को फुलाने का मतलब है, एक अभिनेता को शोर करके मंच पर चलाने के लिए, {{Lang|la|ex-}} ("आउट") + {{Lang|la|plaudō}} ("ताली बजाने के लिए; सराहना करने के लिए")।आधुनिक अर्थ बाद में विकसित हुआ:<ref>[[wikt:explode#Etymology]]</ref>
मौलिक लैटिन विस्फोट का अर्थ है मंच से अभिनेता को फुफकारना, ''ex-'' (“बाहरी (out) ”) + प्लाउडो (''plaudō)'' हाथ से ताली बजाकर किसी अभिनेता को शोर मचाकर मंच से भगा देना।
* शास्त्रीय लैटिन: शोर करकर एक अभिनेता को मंच से बाहर निकालने के लिए इसलिए कि बाहर ड्राइव करना या अस्वीकार करना
अंग्रेजी में:
* लगभग 1538: ताली बजाने से बाहर या बंद ड्राइव करें (मूल रूप से नाटकीय)
* लगभग 1660: हिंसा और अचानक शोर के साथ बाहर ड्राइव करें
* लगभग 1790: एक जोर से शोर के साथ जाओ
* 1882 के आसपास: पहले विनाशकारी बल के साथ फटने के रूप में उपयोग करें


== यह भी देखें ==
इस प्रकार आधुनिक समय में इसका अर्थ कुछ इस प्रकार विकसित हुआ:<ref>[[wikt:explode#Etymology]]</ref>
{{Sister project links| wikt=explosion | commons=no | b=no | n=no | q=Explosion | s=no | v=no | voy=no | species=no | d=no}}
* मौलिक लैटिन: शोर मचाकर किसी अभिनेता को मंच से भगाएं" इसलिए इसका अर्थ है ड्राइव को "बाहर निकालना" या "अस्वीकार करना" अंग्रेजी में:


{{cmn|colwidth=30em|
* लगभग 1538: "मूल स्थिति में नाटकीय रूप से ताली बजाकर ड्राइव को बाहर निकालना"
* [[Combustion]]
* लगभग 1660: हिंसा और अचानक शोर के साथ ड्राइव को बाहर करें
* [[Deflagration]]
* लगभग 1790: जोर से शोर करके ड्राइव को बाहर निकाले
* [[Detonation]]
* 1882 के आसपास: सर्वप्रथम "विनाशकारी बल के साथ फूटना" जिसका उपयोग किया जाने लगा।
* [[Dust explosion]]
* [[Electrical equipment in hazardous areas|Standards for electrical equipment in potentially explosive environments]]
* [[Explosion protection]]
* [[Explosive limit]]
* [[Fuel tank explosion]]
* [[Implosion (mechanical process)]]: [[Opposite (semantics)|opposite]] of explosion
* [[Internal combustion engine]]
* [[Mushroom cloud]]
* [[Piston engine]]
* [[Plofkraak]]
* [[Total body disruption]], a cause of death typically associated with explosion
* [[Underwater explosion]]
}}


== यह भी देखें ==
{{cmn|colwidth=30em|* [[दहन]]
* [[अपमान]]
* [[विस्फोट]]
* [[धूल विस्फोट]]
* [[खतरनाक क्षेत्रों में विद्युत उपकरण|संभावित विस्फोटक वातावरण में विद्युत उपकरणों के लिए मानक]]
* [[विस्फोट सुरक्षा]]
* [[विस्फोटक सीमा]]
* [[ईंधन टैंक विस्फोट]]
* [[विस्फोट (यांत्रिक प्रक्रिया)]]: [[विपरीत (शब्दार्थ)|विपरीत]] विस्फोट
* [[आंतरिक दहन इंजन]]
* [[मशरूम के बादल]]
* [[पिस्टन इंजन]]
* [[प्लॉफक्राक]]
* [[टोटल बॉडी डिसरप्शन]], मौत का एक कारण जो आमतौर पर विस्फोट से जुड़ा होता है
* [[पानी के नीचे विस्फोट]]}}


==इस पृष्ठ में गुम आंतरिक लिंक की सूची==
*टीएनटी समकक्ष
*शॉक वेव
*युकलिप्टुस
*प्रभाव घटना
*तारा
*उल्का हवा का फट
*सौर फ्लेयर्स
*इलेक्ट्रिक आर्क
*आकार का प्रभार
*उपद्रव विस्फोट
*ज्वलन की ऊष्मा
*रफ फॉल्ड विस्फोट
*ओप्पू विस्फोट
*फ्लेक्सबोरो आपदा
*रियॉन्गचॉन आपदा
*ज़ार बम
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}


{{Authority control}}
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[श्रेणी: विस्फोट | विस्फोट ]]
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 27/12/2022]]
[[Category:Created On 27/12/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]

Latest revision as of 11:22, 24 January 2023

16 टीएनटी का विस्फोट
पेट्रोल विस्फोट, एयर शो में सिमुलेशन बम ड्रॉप

विस्फोट की ऊर्जा उसके बाहरी आवरण में अत्यधिक मात्रा में तेजी से विस्तार करती है, सामान्यतः उच्च तापमान और उच्च दबाव वाली गैसों के उत्सर्जन के कारण उच्च विस्फोटकों द्वारा बनाए गए पराध्वनिक के कारण होने वाले विस्फोटों को मुख्य विस्फोट के रूप में जाना जाता है और शाक्ड तरंगें उचित माध्यम में यात्रा करती हैं। सबसोनिक विस्फोट कम विस्फोटकों के कारण धीमी दहन प्रक्रिया के माध्यम बनता है जिसे दमक के रूप में जाना जाता है।

कारण

किसी बड़े विक्ट के कारण प्रकृति में विस्फोट के ऊर्जा का प्रवाह हो सकता हैं।अधिकांशतः प्राकृतिक विस्फोट ज्वालामुखी या विभिन्न प्रकार की सुपरनोवा प्रक्रियाओं से उत्पन्न होते हैं। विस्फोटक ज्वालामुखी विस्फोट तब होते हैं जब मेग्मा नीचे से उठता है, इसमें बहुत घुलित गैस होती है। मैग्मा के रूप में दबाव की कमी बढ़ जाती है और गैस को समाधान से बाहर बुलबुला करने का कारण बनता है, जिसके परिणामस्वरूप मात्रा में तेजी से वृद्धि होती है। विस्फोट भी प्रभाव की घटनाओं के परिणामस्वरूप होते हैं और घटनाओं में जैसे ज्वालामुखी प्रक्रियाओं के कारण होने वाले विस्फोट को इसी घटना में सम्मलित किया गया हैं। सुपरनोवा जैसी घटनाओं में ब्रह्मांड में पृथ्वी के बाहर विस्फोट भी हो सकते हैं। विस्फोट अधिकांशतः नीलगिरी के जंगलों में बुशफायर के समय होते हैं जहां पेड़ों में अस्थिर तेल के कारण अचानक दहन होने लगता हैं।[1]

खगोलीय

वुल्फ-रेएट स्टार डब्ल्यूआर 124 के आसपास नेबुला एम 1-67 तारकीय विस्फोट के अवशेष हैं, जिसे हम वर्तमान में छह प्रकाश वर्ष के रूप में देखते हैं[2]

ब्रह्मांड में सबसे बड़े ज्ञात विस्फोटों में सुपरनोवा मुख्य विस्फोट की श्रेणी में आता हैं, जो कुछ प्रकार के तारों के जीवनकाल के अंत होने के बाद बनता है। सौर तरंग सूर्य पर सामान्य, बहुत कम ऊर्जावान विस्फोट का उदाहरण है, और संभवतः इसी प्रकार के अन्य अधिकांश सितारों को भी इसी श्रेणी में रखा जा सकता हैं। सौर ऊर्जा के आवेग की गतिविधि के लिए ऊर्जा स्रोत सूर्य के प्रवाहकीय प्लाज्मा के घूर्णन के परिणामस्वरूप चुंबकीय क्षेत्र लाइनों के मेल होने से उत्पादित होता हैं। इस अन्य प्रकार के बड़े खगोलीय विस्फोट तब होते है जब बहुत बड़ा उल्कापिंड या क्षुद्रग्रह किसी अन्य वस्तु की सतह से टकराता हैं, जैसे कि ग्रह। उदाहरण के लिए, 1908 के तुंगुस्का एस्सेंट घटना को माना जाता है कि उल्का हवा के फटने के परिणामस्वरूप हुआ था।

ब्लैक होल विलय, संभवतः बाइनरी ब्लैक होल सिस्टम को सम्मलित करने की संभावना है, गुरुत्वाकर्षण तरंग के रूप में, सेकंड के अंश में ब्रह्मांड में ऊर्जा के कई सौर द्रव्यमानों को विकीर्ण करने में सक्षम हैं। यह साधारण ऊर्जा और विनाशकारी बलों को आस -पास की वस्तुओं तक पहुंचाने में सक्षम है, लेकिन अंतरिक्ष की विशालता में इसके आस -पास की वस्तुएं सामान्यतः दुर्लभ होती हैं।[3] 21 मई 2019 को जीडब्ल्यू (GW190521) के रूप में जाना जाने वाला गुरुत्वाकर्षण तरंग, लगभग 100 एमएस अवधि के विलय संकेत का उत्पादन किया, इस समय यह अनुमान लगाया गया है कि गुरुत्वाकर्षण ऊर्जा के रूप में 9 सौर द्रव्यमानों को दूर करने का अनुमान लगाती है।

रासायनिक

सबसे सरल कृत्रिम विस्फोटक रासायनिक विस्फोटक हैं, सामान्यतः तेजी से और हिंसक ऑक्सीकरण प्रतिक्रिया सम्मलित होती है जो बड़ी मात्रा में गर्म गैस का उत्पादन करती है। गनपाउडर का आविष्कार करने और उपयोग करने के लिए पहला विस्फोटक था।रासायनिक विस्फोटक प्रौद्योगिकी में अन्य उल्लेखनीय प्रारंभिक विकास 1865 में फ्रेडरिक ऑगस्टस एबेल के नाइट्रोसेलुलोज के विकास और 1866 में अल्फ्रेड नोबेल के बारूद के आविष्कार थे। रासायनिक विस्फोट (दोनों जानबूझकर और आकस्मिक) अधिकांशतः ऑक्सीजन की उपस्थिति में विद्धुत स्पार्क या लौह द्वारा शुरू किए जाते हैं। ईंधन टैंक, रॉकेट इंजन, आदि में आकस्मिक विस्फोट हो सकते हैं।

विद्युत और चुंबकीय

संधारित्र के कारण विस्फोट

इस उच्च विद्युत त्रुटि से उत्पन्न उच्च ऊर्जा विद्युत चाप के कारण 'विद्युत विस्फोट' बन सकता है जो तेजी से धातु और कुचालकीकरण सामग्री को वाष्पित करता है। यह वेल्डिंग की रोशनी के लिए किसी खतरे के ऊर्जावान स्विचगियर पर कार्य करने वाले लोगों के लिए खतरा है। अल्ट्रा-मजबूत इलेक्ट्रोमैग्नेट के भीतर अत्यधिक चुंबकीय दबाव चुंबकीय विस्फोट का कारण बन सकता है।

यांत्रिकी और वाष्प

रासायनिक या परमाणु के विपरीत भौतिक प्रक्रिया, जैसे कि आंतरिक दबाव के अनुसार सील या आंशिक रूप से सील कंटेनर के फटने को अधिकांशतः विस्फोट के रूप में संदर्भित किया जाता है। उदाहरणों में अधिकतम ऊष्मा बॉयलर या बीन्स का साधारण टिन कैन सम्मलित है जो आग में फेंक दिया जाता है।

ब्लीव (BLEVE) प्रकार के यांत्रिक विस्फोट होते हैं जो तब होते हैं जब दबाव वाले तरल युक्त जहाज टूट जाता है, जिससे तरल वाष्पीकरण के रूप में मात्रा में तेजी से वृद्धि होती है। ध्यान दें कि एकीकृत करने वाली सामग्री बाद के रासायनिक विस्फोट का कारण बन सकती है, जिसके प्रभाव नाटकीय रूप से यह अधिक गंभीर रूप ले सकती हैं, जैसे कि प्रोपेन टैंक के कारण लगने वाली आग इसका एक मुख्य उदाहरण हैं। ऐसी स्थिति में यांत्रिक विस्फोट के प्रभावों के लिए जब टैंक विफल हो जाता है, तो जारी किए गए विस्फोट से प्रभाव को जोड़ा जाता है (शुरू में तरल और फिर लगभग तुरंत गैसीयस) इग्निशन स्रोत की उपस्थिति में प्रोपेन होता है। इस कारणवश आपातकालीन कार्यकर्ता अधिकांशतः दो घटनाओं के बीच अंतर करने में सफल हो पाते हैं।

परमाणु

तारकीय परमाणु विस्फोट के अतिरिक्त, परमाणु हथियार प्रकार का विस्फोटक हथियार है जो अपने विनाशकारी बल को परमाणु विखंडन से या विखंडन और संलयन के संयोजन से प्राप्त करता है। परिणामस्वरूप, यहां तक कि छोटी उपज वाला परमाणु हथियार भी उपलब्ध सबसे बड़े पारंपरिक विस्फोटकों की तुलना में बहुत अधिक शक्तिशाली है, जिसमें हथियार पूरी प्रकार से पूरे शहर को पूरी प्रकार से नष्ट करने में सक्षम है।

गुण

बल

प्रशिक्षण के समय परीक्षण द्वार के खिलाफ उल्लंघन आवेश विस्फोट

विस्फोटक बल विस्फोटक की सतह के लंबवत दिशा में जारी किया जाता है। यदि विस्फोट के समय ग्रेनेड मध्य हवा में है, तो विस्फोट की दिशा 360° होगी। इसके विपरीत, आकार के आवेश में विस्फोटक बल अधिक स्थानीय विस्फोट का उत्पादन करने के लिए केंद्रित होते हैं, इस प्रकार के आकार का उपयोग अधिकांशतः सैन्य द्वारा दरवाजों या दीवारों को तोड़ने के लिए किया जाता है।

वेग

प्रतिक्रिया की गति वह है जो साधारण दहन प्रतिक्रिया से विस्फोटक प्रतिक्रिया को अलग करती है।जब तक प्रतिक्रिया बहुत तेजी से नहीं होती है, तब तक उष्मीय रूप से विस्तारित गैसों को मध्यम रूप से मध्यम रूप से विघटित किया जाएगा, जिसमें दबाव में कोई बड़ा अंतर नहीं होगा और कोई विस्फोट नहीं होगा। मुख्यतः चिमनी में लकड़ी के कारण आग जलती है, उदाहरण के लिए, निश्चित रूप से गर्मी का विकास और गैसों के गठन का विकास होता है, लेकिन न तो अचानक पर्याप्त दबाव अंतर बनाने के लिए तेजी से पर्याप्त रूप से मुक्त किया जाता है और फिर विस्फोट का कारण बनता है। इसकी तुलना बैटरी (बिजली) के ऊर्जा निर्वहन के बीच के अंतर से की जा सकती है जो कि धीमी होती है, और कैमरे के फ्लैश में उसी प्रकार के फ्लैश संधारित्र की अपनी ऊर्जा जारी करता है।

गर्मी का विकास

बड़ी मात्रा में गर्मी की पीढ़ी सबसे विस्फोटक रासायनिक प्रतिक्रियाओं के साथ होती है। अपवादों को एंट्रोपिक विस्फोट कहा जाता है और इसमें एसीटोन पेरोक्साइड जैसे कार्बनिक पेरोक्साइड सम्मलित हैं।[4] यह गर्मी की तेजी से मुक्ति है जो उच्च दबावों का विस्तार करने और उत्पन्न करने के लिए अधिकांश विस्फोटक प्रतिक्रियाओं के गैसीय उत्पादों का कारण बनती है। जारी गैस के उच्च दबावों की यह तेजी से पीढ़ी विस्फोट का गठन करती है। अपर्याप्त तेजी के साथ गर्मी की मुक्ति से विस्फोट नहीं होगा। उदाहरण के लिए, चूंकि कोयले की इकाई द्रव्यमान नाइट्रोग्लिसरीन की इकाई द्रव्यमान के रूप में पांच गुना अधिक गर्मी पैदा करती है, कोयले को विस्फोटक ( कोयला धूल विस्फोट को छोड़कर) के रूप में उपयोग नहीं किया जा सकता है क्योंकि जिस दर पर यह इस गर्मी की उपज देता है वह बहुत धीमा है। वास्तव में, पदार्थ जो कम तेजी से जलता है (अर्ताथ धीमा दहन) वास्तव में विस्फोटक की तुलना में अधिक कुल गर्मी विकसित कर सकता है जो तेजी से (अर्ताथ तेजी से दहन) को विस्फोट करता है। पूर्व में, धीमी गति से दहन जलते हुए पदार्थ की आंतरिक ऊर्जा (अर्ताथ रासायनिक क्षमता ) को अधिक रूप से परिवर्तित करता है, जबकि बाद में, बाद में, तेज दहन (अर्ताथ विस्फोट) में अधिक आंतरिक ऊर्जा को परिवेश में कार्य में परिवर्तित करता है (अर्ताथ कम आंतरिक ऊर्जा गर्मी में परिवर्तित), सी.एफ. के द्वारा गर्मी और कार्य (थर्मोडायनामिक्स) ऊर्जा के बराबर रूप हैं। इस विषय के अधिक गहन अध्ययन के लिए दहन की गर्मी देखें।

जब उसके घटकों से रासायनिक यौगिक बनता है, तो गर्मी या तो अवशोषित हो सकती है या जारी की जा सकती है। परिवर्तन के समय अवशोषित या बंद गर्मी की मात्रा को गठन की गर्मी कहा जाता है। विस्फोटक की प्रतिक्रियाओं में पाए जाने वाले ठोस और गैसों के लिए संरचनाओं के ऊष्मा को 25° C और वायुमंडलीय दबाव के तापमान के लिए निर्धारित किया गया है और सामान्यतः प्रति ग्राम-अणु किलोजल की इकाइयों में दिया जाता है। यह धनात्मक मूल्य इंगित करता है कि गर्मी अपने तत्वों से यौगिक के गठन के समय अवशोषित होती है, इस प्रकार की प्रतिक्रिया को एंडोथर्मिक प्रतिक्रिया कहा जाता है। विस्फोटक प्रौद्योगिकी में केवल ऐसी सामग्री जो एक्ज़ोथिर्मिक होती है - जिसमें गर्मी की शुद्ध मुक्ति होती है और गठन की ऋणात्मक गर्मी होती है - ब्याज की होती है। इस प्रतिक्रिया की गर्मी को या तो निरंतर दबाव या निरंतर मात्रा के आधार पर मापा जाता है। यह प्रतिक्रिया की गर्मी है जिसे विस्फोट की गर्मी के रूप में ठीक से व्यक्त किया जा सकता है।

प्रतिक्रिया की दीक्षा

एक रासायनिक विस्फोटक यौगिक या मिश्रण है, जो गर्मी या शाक्ड तरंग के कारण अत्यधिक तेजी के साथ विघटित या पुनर्व्यवस्थित करता है, बहुत गैस और गर्मी की उपज देता है। कई पदार्थों को सामान्यतः वर्गीकृत नहीं किया जाता है क्योंकि विस्फोटक इन चीजों में से एक या दो भी कर सकते हैं।

विस्फोटक सामग्री के द्रव्यमान के छोटे से भाग में शाक्ड तरंग, गर्मी, या उत्प्रेरक (कुछ विस्फोटक रासायनिक प्रतिक्रियाओं के स्थिति में) के कारण शुरू किए जाने में प्रतिक्रिया सक्षम होनी चाहिए। ऐसी सामग्री जिसमें पहले तीन कारक सम्मलित हैं इसको विस्फोटक के रूप में स्वीकार नहीं किया जा सकता है जब तक कि जरूरत पड़ने पर प्रतिक्रिया नहीं की जा सकती।

विखंडन

विखंडन उच्च विस्फोटक के विस्फोट के परिणामस्वरूप कणों का संचय और प्रक्षेपण है। टुकड़े से उत्पन्न हो सकते हैं: संरचना के कुछ भागों (जैसे कांच, संरचनात्मक सामग्री के टुकड़े, या छत सामग्री), स्ट्रैट और/या विभिन्न सतह- स्तरीय भूगर्भिक विशेषताएं (जैसे ढीली रॉक (भूविज्ञान) एस, मिट्टी या रेत ) का पता लगाकर विस्फोटक के आसपास के आवरण, और/या किसी भी अन्य ढीले विविध वस्तुओं को विस्फोट से शाक्ड की लहर से वाष्पीकृत नहीं किया गया। उच्च वेग, कम कोण के टुकड़े अन्य आसपास के उच्च विस्फोटक वस्तुओं को शुरू करने के लिए पर्याप्त ऊर्जा के साथ सैकड़ों मीटर की यात्रा कर सकते हैं, कर्मियों को विस्फोटित करके खत्म कर सकते हैं, और/या वाहनों या संरचनाओं को हानि पहुंचाते हैं।

उल्लेखनीय उदाहरण

रासायनिक

परमाणु

ज्वालामुखी

तारकीय

व्युत्पत्ति

मौलिक लैटिन विस्फोट का अर्थ है मंच से अभिनेता को फुफकारना, ex- (“बाहरी (out) ”) + प्लाउडो (plaudō) हाथ से ताली बजाकर किसी अभिनेता को शोर मचाकर मंच से भगा देना।

इस प्रकार आधुनिक समय में इसका अर्थ कुछ इस प्रकार विकसित हुआ:[5]

  • मौलिक लैटिन: शोर मचाकर किसी अभिनेता को मंच से भगाएं" इसलिए इसका अर्थ है ड्राइव को "बाहर निकालना" या "अस्वीकार करना" अंग्रेजी में:
  • लगभग 1538: "मूल स्थिति में नाटकीय रूप से ताली बजाकर ड्राइव को बाहर निकालना"
  • लगभग 1660: हिंसा और अचानक शोर के साथ ड्राइव को बाहर करें
  • लगभग 1790: जोर से शोर करके ड्राइव को बाहर निकाले
  • 1882 के आसपास: सर्वप्रथम "विनाशकारी बल के साथ फूटना" जिसका उपयोग किया जाने लगा।

यह भी देखें

संदर्भ

  1. Kissane, Karen (2009-05-22). "फायर पावर ने 1500 परमाणु बमों की बराबरी की". The Age. Melbourne. Archived from the original on 2009-05-27.
  2. Van Der Sluys, M. V.; Lamers, H. J. G. L. M. (2003). "The dynamics of the nebula M1-67 around the run-away Wolf-Rayet star WR 124". Astronomy and Astrophysics. 398: 181–194. arXiv:astro-ph/0211326. Bibcode:2003A&A...398..181V. doi:10.1051/0004-6361:20021634. S2CID 6142859.
  3. Siegel, Ethan (15 February 2020). "एथन से पूछें: क्या गुरुत्वाकर्षण तरंगें कभी पृथ्वी पर नुकसान का कारण बन सकती हैं?एक धमाके से शुरू होता है". Forbes. Retrieved 7 September 2020.
  4. Dubnikova, Faina; Kosloff, Ronnie; Almog, Joseph; Zeiri, Yehuda; Boese, Roland; Itzhaky, Harel; Alt, Aaron; Keinan, Ehud (2005-02-01). "Triacetone Triperoxide का अपघटन एक एन्ट्रोपिक विस्फोट है". Journal of the American Chemical Society. 127 (4): 1146–1159. doi:10.1021/ja0464903. PMID 15669854.
  5. wikt:explode#Etymology