स्पर्शोन्मुख विस्तार: Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 3: Line 3:
स्पर्शोन्मुख विस्तार का सबसे आम प्रकार सकारात्मक या नकारात्मक घातांकों में एक घातांक श्रृंखला है। इस तरह के विस्तार को उत्पन्न करने के तरीके में यूलर-मैकलॉरिन योग सूत्र और [[लाप्लास रूपांतरण]] और मेलिन रूपांतरण समिलित हैं। भागों द्वारा बार-बार एकिकरण प्रायः एक स्पर्शोन्मुख विस्तार को जन्म देता है।
स्पर्शोन्मुख विस्तार का सबसे आम प्रकार सकारात्मक या नकारात्मक घातांकों में एक घातांक श्रृंखला है। इस तरह के विस्तार को उत्पन्न करने के तरीके में यूलर-मैकलॉरिन योग सूत्र और [[लाप्लास रूपांतरण]] और मेलिन रूपांतरण समिलित हैं। भागों द्वारा बार-बार एकिकरण प्रायः एक स्पर्शोन्मुख विस्तार को जन्म देता है।


चूंकि एक [[अभिसरण (गणित)|अभिसरण]] [[टेलर श्रृंखला]] स्पर्शोन्मुख विस्तार की परिभाषा के लिए ठीक बैठती है, इसलिए स्पर्शोन्मुख श्रृंखला का वाक्यांश समान्यतः एक गैर-अभिसरण श्रृंखला का अर्थ है। गैर-अभिसरण के बावजूद, स्पर्शोन्मुख विस्तार तब उपयोगी होता है जब शब्दों को एक सीमित संख्या में काट दिया जाता है। सन्निकटन विस्तारित किए जा रहे फलन की तुलना में अधिक गणितीय रूप से सीमित होने या विस्तारित फलन की गणना की गति में वृद्धि  द्वारा लाभ प्रदान कर सकता है। समान्यतः, सबसे अच्छा सन्निकटन तब दिया जाता है जब श्रृंखला को सबसे छोटे पद पर छोटा किया जाता है। एक स्पर्शोन्मुख विस्तार को इष्टतम रूप से छोटा करने के इस तरीके को '''<nowiki/>'सुपरएसिम्प्टोटिक्स'''' के रूप में जाना जाता है।<ref>{{citation|first=John P.|last= Boyd|title= The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series |journal= [[Acta Applicandae Mathematicae]] |volume=56|issue=1|pages=1–98| year=1999| doi= 10.1023/A:1006145903624|url=https://deepblue.lib.umich.edu/bitstream/2027.42/41670/1/10440_2004_Article_193995.pdf|hdl=2027.42/41670|hdl-access=free}}.</ref> जब त्रुटि समान्यतः {{math|~&thinsp;exp(−''c''/ε)}} के रूप में होती है जहाँ {{math|ε}} विस्तार पैरामीटर है। त्रुटि इस प्रकार विस्तार पैरामीटर के सभी आदेशों से परे है। सुपरएसिम्प्टोटिक त्रुटि में सुधार संभव है, जैसे, डायवर्जेंट टेल के लिए [[बोरेल पुनर्जीवन]] जैसे रिज्यूमेशन तरीकों     
चूंकि एक [[अभिसरण (गणित)|अभिसरण]] [[टेलर श्रृंखला]] स्पर्शोन्मुख विस्तार की परिभाषा के लिए ठीक बैठती है, इसलिए स्पर्शोन्मुख श्रृंखला का वाक्यांश समान्यतः एक गैर-अभिसरण श्रृंखला का अर्थ है। गैर-अभिसरण के बावजूद, स्पर्शोन्मुख विस्तार तब उपयोगी होता है जब शब्दों को एक सीमित संख्या में काट दिया जाता है। सन्निकटन विस्तारित किए जा रहे फलन की तुलना में अधिक गणितीय रूप से सीमित होने या विस्तारित फलन की गणना की गति में वृद्धि  द्वारा लाभ प्रदान कर सकता है। समान्यतः, सबसे अच्छा सन्निकटन तब दिया जाता है जब श्रृंखला को सबसे छोटे पद पर छोटा किया जाता है। एक स्पर्शोन्मुख विस्तार को इष्टतम रूप से छोटा करने के इस तरीके को '''<nowiki/>'सुपरएसिम्प्टोटिक्स'''' के रूप में जाना जाता है।<ref>{{citation|first=John P.|last= Boyd|title= The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series |journal= [[Acta Applicandae Mathematicae]] |volume=56|issue=1|pages=1–98| year=1999| doi= 10.1023/A:1006145903624|url=https://deepblue.lib.umich.edu/bitstream/2027.42/41670/1/10440_2004_Article_193995.pdf|hdl=2027.42/41670|hdl-access=free}}.</ref> जब त्रुटि समान्यतः {{math|~&thinsp;exp(−''c''/ε)}} के रूप में होती है जहाँ {{math|ε}} विस्तार पैरामीटर है। त्रुटि इस प्रकार विस्तार पैरामीटर के सभी आदेशों से परे है। सुपरएसिम्प्टोटिक त्रुटि में सुधार संभव है, जैसे, अपसारी टेल के लिए [[बोरेल पुनर्जीवन]] जैसे रिज्यूमेशन तरीकों     


को नियोजित करके। इस तरह के तरीकों को प्रायः '''हाइपरएसिम्प्टोटिक सन्निकटन''' के रूप में जाना जाता है।
को नियोजित करके। इस तरह के तरीकों को प्रायः '''हाइपरएसिम्प्टोटिक सन्निकटन''' के रूप में जाना जाता है।
Line 26: Line 26:


:<math> f(x) - \sum_{n=0}^{N-1} a_n \varphi_{n}(x) = o(\varphi_{N-1}(x)) \ (x \to L)\ .</math>
:<math> f(x) - \sum_{n=0}^{N-1} a_n \varphi_{n}(x) = o(\varphi_{N-1}(x)) \ (x \to L)\ .</math>
अगर एक या अन्य सभी <math>\ N\ </math> के लिए लागू होता है, तो हम लिखते हैं{{cn|date=November 2017}}
यदि <math>\ N\ </math> सभी कार्यक्षेत्र के लिए लागू होता है, तो हम लिखते हैं{{cn|date=November 2017}}
:<math> f(x) \sim \sum_{n=0}^\infty a_n \varphi_n(x) \ (x \to L)\ .</math>
:<math> f(x) \sim \sum_{n=0}^\infty a_n \varphi_n(x) \ (x \to L)\ .</math>
:
:
<math>\ f\ </math> के एक अभिसरण श्रृंखला के विपरीत, जिसमें श्रृंखला <math>N \to \infty</math> की सीमा में किसी निश्चित <math>\ x\ </math> के लिए अभिसरित होती है, स्पर्शोन्मुख श्रृंखला को<math>\ N\ </math> के अभिसरण के रूप में सोच सकते है। सीमा <math>\ x \to L\ </math> (<math>\ L\ </math> संभवतः अनंत)
<math>\ f\ </math> के एक अभिसरण श्रृंखला के विपरीत, जिसमें श्रृंखला <math>N \to \infty</math> की सीमा में किसी निश्चित <math>\ x\ </math> के लिए अभिसरित होती है, तो स्पर्शोन्मुख श्रृंखला को<math>\ N\ </math> के अभिसरण के रूप में सोच सकते है। सीमा <math>\ x \to L\ </math> (<math>\ L\ </math> संभवतः अनंत)


== उदाहरण ==
== उदाहरण ==
Line 35: Line 35:
[[File:AsymptoticExpansionExample.svg|thumb|गामा फलन (बाएं) के स्पर्शोन्मुख विस्तार में भिन्नात्मक त्रुटि के निरपेक्ष मान के प्लॉट। क्षैतिज अक्ष स्पर्शोन्मुख विस्तार में शब्दों की संख्या है। नीले बिंदु के लिए हैं {{nowrap|1=''x''&thinsp;=&thinsp;2}} और लाल बिंदु के लिए हैं {{nowrap|1=''x''&thinsp;=&thinsp;3}}. यह देखा जा सकता है कि कम से कम त्रुटि तब सामने आती है जब के लिए 14 शब्द होते हैं {{nowrap|1=''x''&thinsp;=&thinsp;2}}, और 20 शर्तों के लिए {{nowrap|1=''x''&thinsp;=&thinsp;3}}, जिसके परे त्रुटि विचलन करती है।]]* [[गामा फलन]] (स्टर्लिंग का सन्निकटन)<math display="block"> \frac{e^x}{x^x\sqrt{2\pi x}} \Gamma(x+1) \sim 1+\frac{1}{12x}+\frac{1}{288x^2}-\frac{139}{51840x^3}-\cdots\ (x \to \infty)</math>
[[File:AsymptoticExpansionExample.svg|thumb|गामा फलन (बाएं) के स्पर्शोन्मुख विस्तार में भिन्नात्मक त्रुटि के निरपेक्ष मान के प्लॉट। क्षैतिज अक्ष स्पर्शोन्मुख विस्तार में शब्दों की संख्या है। नीले बिंदु के लिए हैं {{nowrap|1=''x''&thinsp;=&thinsp;2}} और लाल बिंदु के लिए हैं {{nowrap|1=''x''&thinsp;=&thinsp;3}}. यह देखा जा सकता है कि कम से कम त्रुटि तब सामने आती है जब के लिए 14 शब्द होते हैं {{nowrap|1=''x''&thinsp;=&thinsp;2}}, और 20 शर्तों के लिए {{nowrap|1=''x''&thinsp;=&thinsp;3}}, जिसके परे त्रुटि विचलन करती है।]]* [[गामा फलन]] (स्टर्लिंग का सन्निकटन)<math display="block"> \frac{e^x}{x^x\sqrt{2\pi x}} \Gamma(x+1) \sim 1+\frac{1}{12x}+\frac{1}{288x^2}-\frac{139}{51840x^3}-\cdots\ (x \to \infty)</math>
* [[घातीय अभिन्न]]<math display="block">x e^x E_1(x) \sim \sum_{n=0}^\infty \frac{(-1)^nn!}{x^n} \ (x \to \infty) </math>
* [[घातीय अभिन्न]]<math display="block">x e^x E_1(x) \sim \sum_{n=0}^\infty \frac{(-1)^nn!}{x^n} \ (x \to \infty) </math>
* [[लॉगरिदमिक इंटीग्रल]]<math display="block">\operatorname{li}(x) \sim \frac{x}{\ln x} \sum_{k=0}^{\infty} \frac{k!}{(\ln x)^k}</math>
* [[लॉगरिदमिक इंटीग्रल|लॉगरिदमिक]] [[घातीय अभिन्न|अभिन्न]]<math display="block">\operatorname{li}(x) \sim \frac{x}{\ln x} \sum_{k=0}^{\infty} \frac{k!}{(\ln x)^k}</math>
* [[रीमैन जीटा फ़ंक्शन|रीमैन जीप फलन]]<math display="block">\zeta(s) \sim \sum_{n=1}^{N}n^{-s} - \frac{N^{1-s}}{s-1} - \frac{N^{-s}}{2} + N^{-s} \sum_{m=1}^\infty \frac{B_{2m} s^{\overline{2m-1}}}{(2m)! N^{2m-1}}</math>जहाँ पर <math>B_{2m}</math> [[बर्नौली नंबर]] हैं और <math>s^{\overline{2m-1}}</math> एक उभरता हुआ भाज्य है। यह विस्तार सभी जटिल S के लिए मान्य है और प्रायः N के बड़े पर्याप्त मूल्य का उपयोग करके जीटा फलन की गणना करने के लिए प्रयोग किया जाता है, उदाहरण के लिए <math>N > |s|</math>.
* [[रीमैन जीटा फ़ंक्शन|रीमैन जीप फलन]]<math display="block">\zeta(s) \sim \sum_{n=1}^{N}n^{-s} - \frac{N^{1-s}}{s-1} - \frac{N^{-s}}{2} + N^{-s} \sum_{m=1}^\infty \frac{B_{2m} s^{\overline{2m-1}}}{(2m)! N^{2m-1}}</math>जहाँ पर <math>B_{2m}</math> [[बर्नौली नंबर]] हैं और <math>s^{\overline{2m-1}}</math> एक उभरता हुआ भाज्य है। यह विस्तार सभी जटिल S के लिए मान्य है और प्रायः N के बड़े पर्याप्त मूल्य का उपयोग करके जीटा फलन की गणना करने के लिए प्रयोग किया जाता है, उदाहरण के लिए <math>N > |s|</math>.
* [[त्रुटि फलन]]<math display="block"> \sqrt{\pi}x e^{x^2}{\rm erfc}(x) \sim 1+\sum_{n=1}^\infty (-1)^n \frac{(2n-1)!!}{(2x^2)^n} \ (x \to \infty)</math> जहाँ पर {{math|(2''n''&thinsp;−&thinsp;1)!!}} [[दोगुना भाज्य]] है।
* [[त्रुटि फलन]]<math display="block"> \sqrt{\pi}x e^{x^2}{\rm erfc}(x) \sim 1+\sum_{n=1}^\infty (-1)^n \frac{(2n-1)!!}{(2x^2)^n} \ (x \to \infty)</math> जहाँ पर {{math|(2''n''&thinsp;−&thinsp;1)!!}} [[दोगुना भाज्य]] है।
Line 43: Line 43:


:<math>\frac{1}{1-w}=\sum_{n=0}^\infty w^n.</math>
:<math>\frac{1}{1-w}=\sum_{n=0}^\infty w^n.</math>
बाईं ओर की अभिव्यक्ति पूरे जटिल तल  <math>w\ne 1</math>, पर मान्य है, जबकि दाहिनी ओर केवल <math>|w|< 1</math> के लिए अभिसरित होती है। दोनों पक्षों को <math>e^{-w/t}</math> से गुणा और एकीकृत करने से प्राप्त होता है
बाईं ओर की अभिव्यक्ति पूरे जटिल तल  <math>w\ne 1</math>, पर मान्य है, जबकि दाहिनी ओर केवल <math>|w|< 1</math> के लिए अभिसरित होती है। दोनों पक्षों को <math>e^{-w/t}</math> से गुणा औप्रात करने से प्राप् होता है


:<math>\int_0^\infty \frac{e^{-\frac{w}{t}}}{1-w}\, dw = \sum_{n=0}^\infty t^{n+1} \int_0^\infty e^{-u} u^n\, du,</math>
:<math>\int_0^\infty \frac{e^{-\frac{w}{t}}}{1-w}\, dw = \sum_{n=0}^\infty t^{n+1} \int_0^\infty e^{-u} u^n\, du,</math>

Revision as of 10:39, 28 December 2022

गणित में, स्पर्शोन्मुख विस्तार, स्पर्शोन्मुख श्रृंखला या पॉइंकेयर विस्तार (हेनरी पॉइनकेयर के बाद) कार्यों की एक औपचारिक श्रृंखला है, जिसमें वह गुण है जो शब्दों की सीमित संख्या के बाद श्रृंखला को छोटा करता है, किसी दिए गए फलन के लिए एक सन्निकटन प्रदान करता है क्योंकि फलन का तर्क एक विशेष अनंत बिंदु की ओर जाता है। डिंगल (1973) द्वारा की गयी जांच से पता चलता है कि स्पर्शोन्मुख विस्तार का भिन्न भाग अव्यक्त रूप से सार्थक है, अर्थात इसमें विस्तारित फलन के सटीक मूल्य के बारे में जानकारी समिलित है।

स्पर्शोन्मुख विस्तार का सबसे आम प्रकार सकारात्मक या नकारात्मक घातांकों में एक घातांक श्रृंखला है। इस तरह के विस्तार को उत्पन्न करने के तरीके में यूलर-मैकलॉरिन योग सूत्र और लाप्लास रूपांतरण और मेलिन रूपांतरण समिलित हैं। भागों द्वारा बार-बार एकिकरण प्रायः एक स्पर्शोन्मुख विस्तार को जन्म देता है।

चूंकि एक अभिसरण टेलर श्रृंखला स्पर्शोन्मुख विस्तार की परिभाषा के लिए ठीक बैठती है, इसलिए स्पर्शोन्मुख श्रृंखला का वाक्यांश समान्यतः एक गैर-अभिसरण श्रृंखला का अर्थ है। गैर-अभिसरण के बावजूद, स्पर्शोन्मुख विस्तार तब उपयोगी होता है जब शब्दों को एक सीमित संख्या में काट दिया जाता है। सन्निकटन विस्तारित किए जा रहे फलन की तुलना में अधिक गणितीय रूप से सीमित होने या विस्तारित फलन की गणना की गति में वृद्धि द्वारा लाभ प्रदान कर सकता है। समान्यतः, सबसे अच्छा सन्निकटन तब दिया जाता है जब श्रृंखला को सबसे छोटे पद पर छोटा किया जाता है। एक स्पर्शोन्मुख विस्तार को इष्टतम रूप से छोटा करने के इस तरीके को 'सुपरएसिम्प्टोटिक्स' के रूप में जाना जाता है।[1] जब त्रुटि समान्यतः ~ exp(−c/ε) के रूप में होती है जहाँ ε विस्तार पैरामीटर है। त्रुटि इस प्रकार विस्तार पैरामीटर के सभी आदेशों से परे है। सुपरएसिम्प्टोटिक त्रुटि में सुधार संभव है, जैसे, अपसारी टेल के लिए बोरेल पुनर्जीवन जैसे रिज्यूमेशन तरीकों

को नियोजित करके। इस तरह के तरीकों को प्रायः हाइपरएसिम्प्टोटिक सन्निकटन के रूप में जाना जाता है।

इस आलेख में प्रयुक्त अंकन के लिए स्पर्शोन्मुख विश्लेषण और बिग ओ नोटेशन देखें।

औपचारिक परिभाषा

पहले हम एक स्पर्शोन्मुख पैमाने को परिभाषित करते हैं, और फिर एक स्पर्शोन्मुख विस्तार की औपचारिक परिभाषा देते हैं।

यदि किसी कार्यक्षेत्र पर निरंतर कार्यों का अनुक्रम है, और यदि कार्यक्षेत्र का एक सीमा बिंदु है, तो अनुक्रम एक स्पर्शोन्मुख पैमाने का गठन करता है। यदि प्रत्येक n के लिए,

( को अनंत के रूप में लिया जा सकता है।) दूसरे शब्दों में, कार्यों का एक क्रम स्पर्शोन्मुख पैमाना है यदि अनुक्रम में प्रत्येक कार्य सीमा में सख्ती से धीमा हो जाता है पिछले फलन की तुलना में।

यदिस्पर्शोन्मुख पैमाने के कार्यक्षेत्र पर एक निरंतर कार्य है, तब f के पास एक औपचारिक श्रृंखला के रूप में, क्रम का स्पर्शोन्मुख विस्तार है

यदि

या

यदि सभी कार्यक्षेत्र के लिए लागू होता है, तो हम लिखते हैं[citation needed]

के एक अभिसरण श्रृंखला के विपरीत, जिसमें श्रृंखला की सीमा में किसी निश्चित के लिए अभिसरित होती है, तो स्पर्शोन्मुख श्रृंखला को के अभिसरण के रूप में सोच सकते है। सीमा ( संभवतः अनंत)

उदाहरण

गामा फलन (बाएं) के स्पर्शोन्मुख विस्तार में भिन्नात्मक त्रुटि के निरपेक्ष मान के प्लॉट। क्षैतिज अक्ष स्पर्शोन्मुख विस्तार में शब्दों की संख्या है। नीले बिंदु के लिए हैं x = 2 और लाल बिंदु के लिए हैं x = 3. यह देखा जा सकता है कि कम से कम त्रुटि तब सामने आती है जब के लिए 14 शब्द होते हैं x = 2, और 20 शर्तों के लिए x = 3, जिसके परे त्रुटि विचलन करती है।

* गामा फलन (स्टर्लिंग का सन्निकटन)

  • घातीय अभिन्न
  • लॉगरिदमिक अभिन्न
  • रीमैन जीप फलन
    जहाँ पर बर्नौली नंबर हैं और एक उभरता हुआ भाज्य है। यह विस्तार सभी जटिल S के लिए मान्य है और प्रायः N के बड़े पर्याप्त मूल्य का उपयोग करके जीटा फलन की गणना करने के लिए प्रयोग किया जाता है, उदाहरण के लिए .
  • त्रुटि फलन
    जहाँ पर (2n − 1)!! दोगुना भाज्य है।

काम किया उदाहरण

स्पर्शोन्मुख विस्तार प्रायः तब होता है जब एक औपचारिक अभिव्यक्ति में एक साधारण श्रृंखला का उपयोग किया जाता है जो अभिसरण के अपने कार्यक्षेत्र के बाहर मूल्यों को लेने के लिए मजबूर करता है। इस प्रकार, उदाहरण के लिए, एक साधारण श्रृंखला से शुरू कर सकते है

बाईं ओर की अभिव्यक्ति पूरे जटिल तल , पर मान्य है, जबकि दाहिनी ओर केवल के लिए अभिसरित होती है। दोनों पक्षों को से गुणा औप्रात करने से प्राप् होता है

बायीं ओर समाकल (जिसे कौशी प्रमुख मूल्य के रूप में समझा जाता है) को चरघातांकी समाकलन के रूप में व्यक्त किया जा सकता है। दाहिनी ओर के समाकल को गामा फलन के रूप में पहचाना जा सकता है। दोनों का मूल्यांकन करने पर, कोई भी व्यक्ति स्पर्शोन्मुख विस्तार प्राप्त कर सकता है।

यहाँ, t के किसी भी गैर-शून्य मान के लिए दाहिनी ओर स्पष्ट रूप से अभिसारी नहीं है। हालाँकि, शब्दों की एक सीमित संख्या के लिए दाईं ओर श्रृंखला को छोटा करके, के मान के लिए एक बहुत अच्छा सन्निकटन प्राप्त किया जा सकता है। को प्रतिस्थापित करना और ध्यान देना कि इस लेख में पहले दिए गए स्पर्शोन्मुख विस्तार का परिणाम है।

गुण

किसी दिए गए स्पर्शोन्मुख पैमाने के लिए विशिष्टता

किसी दिए गए स्पर्शोन्मुख पैमाने के लिए फलन का स्पर्शोन्मुख विस्तार अनोखा है।[2] यानी गुणांक विशिष्ट रूप से निम्नलिखित तरीके से निर्धारित किए जाते हैं:

जहाँ पर इस स्पर्शोन्मुख विस्तार का सीमा बिंदु है (हो सकता है ).

किसी दिए गए फलन के लिए गैर-विशिष्टता

एक दिया हुआ फलन में कई स्पर्शोन्मुख विस्तार हो सकते हैं (प्रत्येक एक अलग स्पर्शोन्मुख पैमाने के साथ)।[2]


अधीनता

एक स्पर्शोन्मुख विस्तार एक से अधिक कार्यों के लिए स्पर्शोन्मुख विस्तार हो सकता है।[2]


यह भी देखें

संबंधित क्षेत्र

स्पर्शोन्मुख तरीके

टिप्पणियाँ

  1. Boyd, John P. (1999), "The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series" (PDF), Acta Applicandae Mathematicae, 56 (1): 1–98, doi:10.1023/A:1006145903624, hdl:2027.42/41670.
  2. 2.0 2.1 2.2 S.J.A. Malham, "An introduction to asymptotic analysis", Heriot-Watt University.


संदर्भ

बाहरी संबंध