वाट भाप इंजन: Difference between revisions

From Vigyanwiki
No edit summary
 
(14 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Industrial Revolution era stream engine design}}
{{Short description|Industrial Revolution era stream engine design}}
{{EngvarB|date=August 2017}}
{{Use dmy dates|date=August 2017}}
{{more citations needed|date=July 2010}}
[[File:Maquina vapor Watt ETSIIM.jpg|thumb|300px|1832 में डी. नेपियर एंड सन (लंदन) द्वारा निर्मित वाट [[डबल-अभिनय सिलेंडर]] का एक बाद का संस्करण | डबल-अभिनय भाप इंजन, अब [[मैड्रिड]] के तकनीकी विश्वविद्यालय (मैड्रिड) के सुपीरियर तकनीकी स्कूल ऑफ इंडस्ट्रियल इंजीनियर्स की लॉबी में ). इस तरह के भाप इंजनों ने ग्रेट ब्रिटेन और दुनिया में [[औद्योगिक क्रांति]] को प्रेरित किया।]]'''वाट भाप इंजन''' का डिजाइन भाप इंजन का समानार्थी बन गया, और मुख्य वाट डिजाइन को बदलने के लिए महत्वपूर्ण रूप से नए डिजाइन शुरू होने से कई साल पहले यह था।


1712 में [[थॉमस न्यूकोमेन]] द्वारा पेश किए गए पहले भाप इंजन, "वायुमंडलीय" डिजाइन के थे। [[पावर स्ट्रोक (इंजन)]] के अंत में, इंजन द्वारा स्थानांतरित की जा रही वस्तु के वजन ने पिस्टन को सिलेंडर के शीर्ष पर खींच लिया क्योंकि भाप पेश की गई थी। फिर सिलेंडर को पानी के एक स्प्रे से ठंडा किया गया, जिससे भाप संघनित हो गई, जिससे सिलेंडर में [[आंशिक वैक्यूम]] बन गया। पिस्टन के शीर्ष पर वायुमंडलीय दबाव ने इसे नीचे धकेल दिया, कार्य वस्तु को ऊपर उठा दिया। [[जेम्स वॉट]] ने देखा कि सिलेंडर को वापस उस बिंदु तक गर्म करने के लिए काफी मात्रा में गर्मी की आवश्यकता होती है जहां भाप तुरंत बिना संघनित हुए सिलेंडर में प्रवेश कर सके। जब सिलिंडर इतना गर्म था कि वह भाप से भर गया तो अगला पॉवर स्ट्रोक शुरू हो सकता था।
[[File:Maquina vapor Watt ETSIIM.jpg|thumb|300px|1832 में डी. नेपियर एंड सन (लंदन) द्वारा निर्मित वाट [[डबल-अभिनय सिलेंडर]] का एक बाद का संस्करण | डबल-अभिनय भाप इंजन, अब [[मैड्रिड]] के तकनीकी विश्वविद्यालय (मैड्रिड) के सुपीरियर तकनीकी स्कूल ऑफ इंडस्ट्रियल इंजीनियर्स की लॉबी में ). इस तरह के भाप इंजनों ने ग्रेट ब्रिटेन और दुनिया में [[औद्योगिक क्रांति]] को प्रेरित किया।]]'''वाट भाप इंजन''' का डिजाइन भाप इंजन का समानार्थी बन गया, और मुख्य वाट डिजाइन को बदलने के लिए महत्वपूर्ण रूप से नए डिजाइन प्रारंभ होने से कई साल पहले यह था।


वाट ने अनुभव किया कि सिलेंडर को गर्म करने के लिए जरूरी गर्मी को एक अलग संघनक सिलेंडर जोड़कर बचाया जा सकता है। पावर सिलेंडर को भाप से भर देने के बाद, द्वितीयक सिलेंडर के लिए एक वाल्व खोला गया, जिससे भाप उसमें प्रवाहित हो सके और संघनित हो सके, जिससे मुख्य सिलेंडर से भाप निकली जिससे बिजली का झटका लगा। भाप संघनित रखने के लिए संघनक सिलेंडर पानी ठंडा किया गया था। पावर स्ट्रोक के अंत में, वाल्व को बंद कर दिया गया था अतएव पिस्टन के शीर्ष पर चले जाने पर पावर सिलेंडर भाप से भर सके। परिणाम न्यूकॉमन के डिजाइन के समान चक्र था, लेकिन बिजली सिलेंडर को ठंडा किए बिना जो तुरंत एक और स्ट्रोक के लिए तैयार था।
वर्ष 1712 में [[थॉमस न्यूकोमेन]] द्वारा पेश किए गए पहले भाप इंजन, "वायुमंडलीय" डिजाइन के थे। [[पावर स्ट्रोक (इंजन)]] के अंत में, इंजन द्वारा स्थानांतरित की जा रही वस्तु के वजन ने पिस्टन को सिलेंडर के शीर्ष पर खींच लिया क्योंकि भाप पेश की गई थी। फिर सिलेंडर को पानी के स्प्रे से ठंडा किया गया, जिससे भाप संघनित हो गई, जिससे सिलेंडर में [[आंशिक वैक्यूम]] बन गया। पिस्टन के शीर्ष पर वायुमंडलीय दबाव ने इसे नीचे धकेल दिया, कार्य वस्तु को ऊपर उठा दिया। [[जेम्स वॉट]] ने देखा कि सिलेंडर को वापस उस बिंदु तक गर्म करने के लिए काफी मात्रा में ऊष्मा की आवश्यकता होती है जहां भाप तुरंत बिना संघनित हुए सिलेंडर में प्रवेश कर सके। जब सिलिंडर इतना गर्म था कि वह भाप से भर गया तो अगला पॉवर स्ट्रोक प्रारंभ हो सकता था।


वाट ने कई वर्षों की अवधि में डिजाइन पर कार्य किया, कंडेनसर की शुरुआत की, और व्यावहारिक रूप से डिजाइन के हर हिस्से में सुधार पेश किया। विशेष रूप से, वाट ने सिलेंडर में पिस्टन को सील करने के विधियों पर परीक्षणों की एक लंबी श्रृंखला का प्रदर्शन किया, जिससे बिजली के नुकसान को रोकने के लिए बिजली के झटके के दौरान रिसाव काफी कम हो गया। इन सभी परिवर्तनों ने एक अधिक विश्वसनीय डिजाइन का निर्माण किया, जो समान मात्रा में बिजली का उत्पादन करने के लिए आधे कोयले का उपयोग करता था।<ref>{{Cite journal
वाट ने अनुभव किया कि सिलेंडर को गर्म करने के लिए जरूरी ऊष्मा को एक अलग संघनक सिलेंडर जोड़कर बचाया जा सकता है। पावर सिलेंडर को भाप से भर देने के बाद, द्वितीयक सिलेंडर के लिए एक वाल्व खोला गया, जिससे भाप उसमें प्रवाहित हो सके और संघनित हो सके, जिससे मुख्य सिलेंडर से भाप निकली जिससे बिजली का झटका लगा। भाप संघनित रखने के लिए संघनक सिलेंडर पानी ठंडा किया गया था। पावर स्ट्रोक के अंत में, वाल्व को बंद कर दिया गया था अतएव पिस्टन के शीर्ष पर चले जाने पर पावर सिलेंडर भाप से भर सके। परिणाम न्यूकॉमन के डिजाइन के समान चक्र था, लेकिन बिजली सिलेंडर को ठंडा किए बिना जो तुरंत एक और स्ट्रोक के लिए तैयार था।
 
वाट ने कई वर्षों की अवधि में डिजाइन पर कार्य किया, कंडेनसर के प्रारंभ की, और व्यावहारिक रूप से डिजाइन के हर भाग में सुधार पेश किया। विशेष रूप से, वाट ने सिलेंडर में पिस्टन को बंद करने के विधियों पर परीक्षणों की एक लंबी श्रृंखला का प्रदर्शन किया, जिससे बिजली की हानि को रोकने के लिए बिजली के झटके के दौरान रिसाव काफी कम हो गया। इन सभी परिवर्तनों ने एक अधिक विश्वसनीय डिजाइन का निर्माण किया, जो समान मात्रा में बिजली का उत्पादन करने के लिए आधे कोयले का उपयोग करता था।<ref>{{Cite journal
  | last1 = Ayres
  | last1 = Ayres
  | first1 = Robert
  | first1 = Robert
Line 18: Line 16:
  }}</ref>
  }}</ref>


नया डिजाइन 1776 में व्यावसायिक रूप से पेश किया गया था, जिसमें पहला उदाहरण [[कैरोन कंपनी]] आयरनवर्क्स को बेचा गया था। वाट ने इंजन में सुधार के लिए कार्य करना जारी रखा, और 1781 में इंजनों की रैखिक गति को रोटरी गति में बदलने के लिए [[सूर्य और ग्रह गियर]] का उपयोग करके एक प्रणाली की शुरुआत की। इसने न केवल मूल पम्पिंग भूमिका में, बल्कि उन भूमिकाओं में प्रत्यक्ष प्रतिस्थापन के रूप में भी उपयोगी बना दिया, जहां पहले पानी के पहिये का उपयोग किया जाता था। औद्योगिक क्रांति में यह एक महत्वपूर्ण क्षण था, क्योंकि बिजली के स्रोत अब कहीं भी स्थित हो सकते हैं, पहले की तरह, उपयुक्त जल स्रोत और स्थलाकृति की आवश्यकता नहीं थी। वाट के साथी मैथ्यू बौल्टन ने इस रोटरी शक्ति का उपयोग करने वाली मशीनों की एक बड़ी संख्या का विकास करना शुरू किया, पहला आधुनिक औद्योगिक कारखाना, [[सोहो फाउंड्री]] का विकास किया, जिसने बदले में नए भाप इंजन डिजाइन तैयार किए। वाट के शुरुआती इंजन मूल न्यूकमेन डिजाइनों की तरह थे जिसमें वे कम दबाव वाली भाप का उपयोग करते थे, और सभी शक्ति वायुमंडलीय दबाव से उत्पन्न होती थी। जब, 1800 के दशक की शुरुआत में, अन्य कंपनियों ने उच्च दबाव वाले भाप इंजन पेश किए, सुरक्षा चिंताओं के कारण वाट सूट का पालन करने के लिए अनिच्छुक था<ref name="Dickinson">
नया डिजाइन 1776 में व्यावसायिक रूप से पेश किया गया था, जिसमें पहला उदाहरण [[कैरोन कंपनी]] आयरनवर्क्स को बेचा गया था। वाट ने इंजन में सुधार के लिए कार्य करना जारी रखा, और 1781 में इंजनों की रैखिक गति को रोटरी गति में बदलने के लिए [[सूर्य और ग्रह गियर]] का उपयोग करके एक प्रणाली के प्रारंभ की। इसने न केवल मूल पम्पिंग भूमिका में, बल्कि उन भूमिकाओं में प्रत्यक्ष प्रतिस्थापन के रूप में भी उपयोगी बना दिया, जहां पहले पानी के पहिये का उपयोग किया जाता था। औद्योगिक क्रांति में यह एक महत्वपूर्ण क्षण था, क्योंकि बिजली के स्रोत अब कहीं भी स्थित हो सकते हैं, पहले की तरह, उपयुक्त जल स्रोत और स्थलाकृति की आवश्यकता नहीं थी। वाट के साथी मैथ्यू बौल्टन ने इस रोटरी शक्ति का उपयोग करने वाली मशीनों की एक बड़ी संख्या का विकास करना प्रारंभ किया, पहला आधुनिक औद्योगिक कारखाना, [[सोहो फाउंड्री]] का विकास किया, जिसने बदले में नए भाप इंजन डिजाइन तैयार किए। वाट के प्रारंभआती इंजन मूल न्यूकमेन डिजाइनों की तरह थे जिसमें वे कम दबाव वाली भाप का उपयोग करते थे, और सभी शक्ति वायुमंडलीय दबाव से उत्पन्न होती थी। जब, 1800 के दशक के प्रारंभ में, अन्य कंपनियों ने उच्च दबाव वाले भाप इंजन पेश किए, सुरक्षा चिंताओं के कारण वाट सूट का पालन करने के लिए अनिच्छुक था<ref name="Dickinson">
{{cite book |title=A Short History of the Steam Engine |last1=Dickinson |first1= Henry Winram
{{cite book |title=A Short History of the Steam Engine |last1=Dickinson |first1= Henry Winram
|year=1939 |publisher = Cambridge University Press
|year=1939 |publisher = Cambridge University Press
Line 24: Line 22:
|page=87
|page=87
}}
}}
</ref> अपने इंजनों के प्रदर्शन में सुधार करना चाहते हैं, वाट ने उच्च-दबाव वाली भाप के उपयोग पर विचार करना शुरू किया, साथ ही डबल-अभिनय अवधारणा और बहु-विस्तार अवधारणा दोनों में कई सिलेंडरों का उपयोग करने वाले डिजाइनों पर भी विचार किया। इन डबल-अभिनय इंजनों को समानांतर गति के आविष्कार की आवश्यकता थी, जिसने सिलेंडर में पिस्टन को सही रखते हुए, अलग-अलग सिलेंडरों की [[पिस्टन छड़ों]] को सीधी रेखाओं में स्थानांतरित करने की अनुमति दी, जबकि चलने वाले बीम कुछ स्तर तक भाप इंजनों में [[क्रॉसहेड]] के माध्यम से चले गए।
</ref> अपने इंजनों के प्रदर्शन में सुधार करना चाहते हैं, वाट ने उच्च-दबाव वाली भाप के उपयोग पर विचार करना प्रारंभ किया, साथ ही डबल-अभिनय अवधारणा और बहु-विस्तार अवधारणा दोनों में कई सिलेंडरों का उपयोग करने वाले डिजाइनों पर भी विचार किया। इन डबल-अभिनय इंजनों को समानांतर गति के आविष्कार की आवश्यकता थी, जिसने सिलेंडर में पिस्टन को सही रखते हुए, अलग-अलग सिलेंडरों की [[पिस्टन छड़ों]] को सीधी रेखाओं में स्थानांतरित करने की अनुमति दी, जबकि चलने वाले बीम कुछ स्तर तक भाप इंजनों में [[क्रॉसहेड]] के माध्यम से चले गए।


== परिचय ==
== परिचय ==
Line 34: Line 32:
}}</ref>
}}</ref>


[[File:Newcomen steam engine.jpg|thumb|मॉडल न्यूकमेन वायुमंडलीय इंजन जिस पर वाट ने प्रयोग किया]]गहरी खानों को निकालने का समाधान थॉमस न्यूकॉमन द्वारा खोजा गया था जिन्होंने एक "वायुमंडलीय" इंजन विकसित किया था जो वैक्यूम सिद्धांत पर भी कार्य करता था। इसने एक रॉकिंग बीम के एक छोर पर एक श्रृंखला से जुड़े जंगम पिस्टन युक्त एक सिलेंडर लगाया जो इसके विपरीत छोर से एक यांत्रिक लिफ्ट पंप का कार्य करता था। प्रत्येक स्ट्रोक के तल पर, पिस्टन के नीचे सिलेंडर में भाप को प्रवेश करने की अनुमति दी गई थी। जैसा कि पिस्टन सिलेंडर के भीतर उठा, एक प्रतिसंतुलन द्वारा ऊपर की ओर खींचा गया, इसने वायुमंडलीय दबाव पर भाप खींची। स्ट्रोक के शीर्ष पर भाप के वाल्व को बंद कर दिया गया था, और भाप को ठंडा करने के साधन के रूप में ठंडे पानी को संक्षेप में सिलेंडर में इंजेक्ट किया गया था। इस पानी ने भाप को संघनित किया और पिस्टन के नीचे एक आंशिक निर्वात पैदा किया। इंजन के बाहर का वायुमंडलीय दबाव तब सिलेंडर के अंदर के दबाव से अधिक था, जिससे पिस्टन सिलेंडर में चला गया। पिस्टन, एक श्रृंखला से जुड़ा हुआ है और इसके स्थान पर "रॉकिंग बीम" के एक छोर से जुड़ा हुआ है, बीम के विपरीत छोर को ऊपर उठाते हुए बीम के अंत को नीचे खींच लिया। इसलिए, रस्सियों और जंजीरों के माध्यम से बीम के विपरीत छोर से जुड़ी खदान में गहरा पंप चलाया गया था। पंप ने पानी के स्तंभ को ऊपर की ओर खींचने के स्थान पर धक्का दिया, इसलिए यह किसी भी दूरी तक पानी उठा सकता था। एक बार जब पिस्टन नीचे था, चक्र दोहराया गया।<ref name="Harvnb|Rosen|year-2012|pp" />
[[File:Newcomen steam engine.jpg|thumb|मॉडल न्यूकमेन वायुमंडलीय इंजन जिस पर वाट ने प्रयोग किया]]गहरी खानों को निकालने का समाधान थॉमस न्यूकॉमन द्वारा खोजा गया था जिन्होंने "वायुमंडलीय" इंजन विकसित किया था जो वैक्यूम सिद्धांत पर भी कार्य करता था। इसने रॉकिंग बीम के एक छोर पर श्रृंखला से जुड़े जंगम पिस्टन युक्त एक सिलेंडर को लगाया जो इसके विपरीत छोर से यांत्रिक लिफ्ट पंप का कार्य करता था। प्रत्येक स्ट्रोक के तल पर, पिस्टन के नीचे सिलेंडर में भाप को प्रवेश करने की अनुमति दी गई थी। जैसा कि पिस्टन सिलेंडर के भीतर उठा, इसे प्रतिसंतुलन द्वारा ऊपर की ओर खींचा गया, इसने वायुमंडलीय दबाव पर भाप खींची। स्ट्रोक के शीर्ष पर भाप के वाल्व को बंद कर दिया गया था, और भाप को ठंडा करने के साधन के रूप में ठंडे पानी को संक्षेप में सिलेंडर में इंजेक्ट किया गया था। इस पानी ने भाप को संघनित किया और पिस्टन के नीचे आंशिक निर्वात पैदा किया। इंजन के बाहर का वायुमंडलीय दबाव तब सिलेंडर के अंदर के दबाव से अधिक था, जिससे पिस्टन सिलेंडर में चला गया। पिस्टन, एक श्रृंखला से जुड़ा हुआ है और इसके स्थान पर "रॉकिंग बीम" के एक छोर से जुड़ा हुआ है, बीम के विपरीत छोर को ऊपर उठाते हुए बीम के अंत को नीचे खींच लिया। इसलिए, रस्सियों और जंजीरों के माध्यम से बीम के विपरीत छोर से जुड़ी खदान में गहरा पंप चलाया गया था। पंप ने पानी के स्तंभ को ऊपर की ओर खींचने के स्थान पर धक्का दिया, इसलिए यह किसी भी दूरी तक पानी उठा सकता था। एक बार जब पिस्टन नीचे था, चक्र दोहराया गया।<ref name="Harvnb|Rosen|year-2012|pp" />


न्यूकॉमन इंजन सावेरी इंजन से ज्यादा शक्तिशाली था। पहली बार पानी को 100 गज (91 मीटर) से अधिक की गहराई से उठाया जा सका। 1712 से पहला उदाहरण 500 घोड़ों की एक टीम को बदलने में सक्षम था जिसका उपयोग खदान को बाहर निकालने के लिए किया गया था। ब्रिटेन, फ्रांस, हॉलैंड, स्वीडन और रूस में खानों में पचहत्तर न्यूकॉमन पंपिंग इंजन लगाए गए थे। अगले पचास वर्षों में इंजन के डिज़ाइन में केवल कुछ छोटे परिवर्तन किए गए। यह एक बहुत बड़ी उन्नति थी।
न्यूकॉमन इंजन सावेरी इंजन से ज्यादा शक्तिशाली था। पहली बार पानी को 100 गज (91 मीटर) से अधिक की गहराई से उठाया जा सका। 1712 से पहला उदाहरण 500 घोड़ों की एक टीम को बदलने में सक्षम था जिसका उपयोग खदान को बाहर निकालने के लिए किया गया था। ब्रिटेन, फ्रांस, हॉलैंड, स्वीडन और रूस में खानों में पचहत्तर न्यूकॉमन पंपिंग इंजन लगाए गए थे। अगले पचास वर्षों में इंजन के डिज़ाइन में केवल कुछ छोटे परिवर्तन किए गए। यह एक बहुत बड़ी प्रगति थी।


जबकि न्यूकम इंजन व्यावहारिक लाभ लाए, वे ऊर्जा के उपयोग के मामले में अक्षम थे। बारी-बारी से भाप के जेट भेजने की प्रणाली, फिर ठंडे पानी को सिलेंडर में भेजने का मतलब था कि सिलेंडर की दीवारों को बारी-बारी से गर्म किया जाता था, फिर प्रत्येक स्ट्रोक के साथ ठंडा किया जाता था। भाप का प्रत्येक आवेश तब तक संघनित होता रहेगा जब तक कि सिलेंडर एक बार फिर से कार्य करने वाले तापमान तक नहीं पहुँच जाता। इसलिए प्रत्येक स्ट्रोक में भाप की क्षमता का भाग खो गया।
जबकि न्यूकम इंजन व्यावहारिक लाभ लाए, वे ऊर्जा के उपयोग के मामले में अक्षम थे। बारी-बारी से भाप के जेट भेजने की प्रणाली, फिर ठंडे पानी को सिलेंडर में भेजने का तात्पर्य था कि सिलेंडर की दीवारों को बारी-बारी से गर्म किया जाता था, फिर प्रत्येक स्ट्रोक (प्रहार) के साथ ठंडा किया जाता था। भाप का प्रत्येक आवेश तब तक संघनित होता रहेगा जब तक कि सिलेंडर एक बार फिर से कार्य करने वाले तापमान तक नहीं पहुँचता। इसलिए प्रत्येक स्ट्रोक में कुछ भागो में भाप की क्षमता ख़त्म हो जाता था l


== पृथक कंडेनसर ==
== पृथक कंडेनसर ==
[[File:Watt steam pumping engine.JPG|thumb|left|300px|वाट पंपिंग इंजन के प्रमुख घटक]]1763 में, जेम्स वाट [[ग्लासगो विश्वविद्यालय]] में उपकरण निर्माता के रूप में कार्य कर रहे थे, जब उन्हें एक मॉडल न्यूकमेन इंजन की मरम्मत का कार्य सुपुर्द किया गया था और उन्होंने नोट किया कि यह कितना अक्षम था।<ref>{{cite web|title=जेम्स वाट द्वारा मरम्मत किया गया मॉडल न्यूकमेन इंजन|url=http://www.huntsearch.gla.ac.uk/cgi-bin/foxweb/huntsearch/DetailedResults.fwx?collection=all&SearchTerm=C.29&mdaCode=GLAHM|website=University of Glasgow Hunterian Museum & Art Gallery|access-date=1 July 2014}}</ref>
[[File:Watt steam pumping engine.JPG|thumb|left|300px|वाट पंपिंग इंजन के प्रमुख घटक]]1763 में, जेम्स वाट [[ग्लासगो विश्वविद्यालय]] में उपकरण निर्माता के रूप में कार्य कर रहे थे, जब उन्हें एक मॉडल न्यूकमेन इंजन की मरम्मत का कार्य सुपुर्द किया गया था और उन्होंने नोट किया कि यह कितना अक्षम था।<ref>{{cite web|title=जेम्स वाट द्वारा मरम्मत किया गया मॉडल न्यूकमेन इंजन|url=http://www.huntsearch.gla.ac.uk/cgi-bin/foxweb/huntsearch/DetailedResults.fwx?collection=all&SearchTerm=C.29&mdaCode=GLAHM|website=University of Glasgow Hunterian Museum & Art Gallery|access-date=1 July 2014}}</ref>


1765 में, वाट ने इंजन को एक अलग कंडेनसेशन कक्ष से लैस करने के विचार की कल्पना की, जिसे उन्होंने "कंडेनसर" कहा। क्योंकि संघनित्र और कार्यरत [[सिलेंडर (इंजन)]] अलग थे, सिलेंडर से गर्मी के महत्वपूर्ण नुकसान के बिना संक्षेपण हुआ। संघनित्र हर समय ठंडा और वायुमंडलीय दबाव से नीचे रहता है, जबकि सिलेंडर हर समय गर्म रहता है।
1765 में, वाट ने इंजन को अलग कंडेनसेशन कक्ष से लैस करने के विचार की कल्पना की, जिसे उन्होंने "कंडेनसर" कहा। क्योंकि संघनित्र और कार्यरत [[सिलेंडर (इंजन)]] अलग थे, सिलेंडर से ऊष्मा की हानि के बिना संक्षेपण हुआ। संघनित्र हर समय ठंडा और वायुमंडलीय दबाव से नीचे रहता है, जबकि सिलेंडर हर समय गर्म रहता है।


भाप बॉयलर से [[पिस्टन]] के नीचे सिलेंडर तक खींची गई थी। जब पिस्टन सिलेंडर के शीर्ष पर पहुंच गया, तो स्टीम इनलेट वाल्व बंद हो गया और कंडेनसर के मार्ग को नियंत्रित करने वाला वाल्व खुल गया। कंडेनसर कम दबाव में होने के कारण, सिलेंडर से भाप को कंडेनसर में खींचता है जहां यह ठंडा होता है और जल वाष्प से तरल पानी में संघनित होता है, जिससे कंडेनसर में एक आंशिक वैक्यूम बना रहता है जिसे कनेक्टिंग मार्ग द्वारा सिलेंडर के स्थान पर संचार किया जाता है। बाहरी वायुमंडलीय दबाव ने पिस्टन को सिलेंडर के नीचे धकेल दिया।
भाप बॉयलर से [[पिस्टन]] के नीचे सिलेंडर तक खींची गई थी। जब पिस्टन सिलेंडर के शीर्ष पर पहुंच गया, तो स्टीम इनलेट वाल्व बंद हो गया और कंडेनसर के मार्ग को नियंत्रित करने वाला वाल्व खुल गया। कंडेनसर कम दबाव में होने के कारण, सिलेंडर से भाप को कंडेनसर में खींचता है जहां यह ठंडा होता है और जल वाष्प से तरल पानी में संघनित होता है, जिससे कंडेनसर में एक आंशिक वैक्यूम बना रहता है जिसे कनेक्टिंग मार्ग द्वारा सिलेंडर के स्थान पर संचार किया जाता है। बाहरी वायुमंडलीय दबाव ने पिस्टन को सिलेंडर के नीचे धकेल दिया।


सिलेंडर और कंडेनसर के अलग होने से न्यूकमेन इंजन के काम करने वाले सिलेंडर में भाप के संघनित होने पर होने वाली गर्मी की कमी समाप्त हो गई। इसने न्यूकमेन इंजन की तुलना में वाट इंजन को अधिक दक्षता प्रदान की, जिससे न्यूकमेन इंजन के समान काम करते समय खपत कोयले की मात्रा कम हो गई।
सिलेंडर और कंडेनसर के अलग होने से न्यूकमेन इंजन के कार्य करने वाले सिलेंडर में भाप के संघनित होने पर होने वाली ऊष्मा की कमी समाप्त हो गई। इसने न्यूकमेन इंजन की तुलना में वाट इंजन को अधिक दक्षता प्रदान की, जिससे न्यूकमेन इंजन के समान कार्य करते समय खपत कोयले की मात्रा कम हो गई।


वाट के डिजाइन में, ठंडे पानी को केवल संघनन कक्ष में ही इंजेक्ट किया गया था। इस प्रकार के कंडेनसर को जेट कंडेनसर के रूप में जाना जाता है। कंडेनसर सिलेंडर के नीचे ठंडे पानी के स्नान में स्थित है। स्प्रे के रूप में कंडेनसर में प्रवेश करने वाले पानी की मात्रा भाप की गुप्त गर्मी को अवशोषित करती है, और इसे संघनित भाप की मात्रा के सात गुणा के रूप में निर्धारित किया गया था। संघनित और इंजेक्ट किए गए पानी को तब वायु पंप द्वारा हटा दिया गया था, और आसपास के ठंडे पानी ने शेष तापीय ऊर्जा को अवशोषित करने के लिए 30 डिग्री सेल्सियस से 45 डिग्री सेल्सियस के कंडेनसर तापमान और 0.04 से 0.1 के बराबर दबाव को बनाए रखने के लिए कार्य किया।<ref name=":0">{{Cite book|url=https://archive.org/details/treatiseonsteame01fareuoft|title=स्टीम इंजन पर एक ग्रंथ: ऐतिहासिक, व्यावहारिक और वर्णनात्मक|last=Farey|first=John|date=1827-01-01|publisher=London : Printed for Longman, Rees, Orme, Brown and Green|pages=[https://archive.org/details/treatiseonsteame01fareuoft/page/339 339] ff}}</ref>
वाट के डिजाइन में, ठंडे पानी को केवल संघनन कक्ष में ही इंजेक्ट किया गया था। इस प्रकार के कंडेनसर को जेट कंडेनसर के रूप में जाना जाता है। कंडेनसर सिलेंडर के नीचे ठंडे पानी के स्नान में स्थित है। स्प्रे के रूप में कंडेनसर में प्रवेश करने वाले पानी की मात्रा भाप की गुप्त ऊष्मा को अवशोषित करती है, और इसे संघनित भाप की मात्रा के सात गुणा के रूप में निर्धारित किया गया था। संघनित और इंजेक्ट किए गए पानी को तब वायु पंप द्वारा हटा दिया गया था, और आसपास के ठंडे पानी ने शेष तापीय ऊर्जा को अवशोषित करने के लिए 30 डिग्री सेल्सियस से 45 डिग्री सेल्सियस के कंडेनसर तापमान और 0.04 से 0.1 के बराबर दबाव को बनाए रखने के लिए कार्य किया।<ref name=":0">{{Cite book|url=https://archive.org/details/treatiseonsteame01fareuoft|title=स्टीम इंजन पर एक ग्रंथ: ऐतिहासिक, व्यावहारिक और वर्णनात्मक|last=Farey|first=John|date=1827-01-01|publisher=London : Printed for Longman, Rees, Orme, Brown and Green|pages=[https://archive.org/details/treatiseonsteame01fareuoft/page/339 339] ff}}</ref>


प्रत्येक स्ट्रोक पर कंडेनसर से गर्म घनीभूत निकाला जाता था और एक वैक्यूम पंप द्वारा गर्म कुएं में भेजा जाता था, जिससे बिजली सिलेंडर के नीचे से भाप को बाहर निकालने में भी मदद मिलती थी। अभी भी गर्म घनीभूत को बॉयलर के लिए फीडवाटर के रूप में पुनर्नवीनीकरण किया गया था।
प्रत्येक स्ट्रोक पर कंडेनसर से गर्म घनीभूत निकाला जाता था और एक वैक्यूम पंप द्वारा गर्म कुएं में भेजा जाता था, जिससे बिजली सिलेंडर के नीचे से भाप को बाहर निकालने में भी मदद मिलती थी। अभी भी गर्म घनीभूत को बॉयलर के लिए फीडवाटर के रूप में पुनर्नवीनीकरण किया गया था।


न्यूकमेन डिजाइन में वाट का अगला सुधार सिलेंडर के शीर्ष को सील करना और एक जैकेट के साथ सिलेंडर को घेरना था। पिस्टन के नीचे प्रवेश करने से पहले भाप को जैकेट के माध्यम से पारित किया गया था, पिस्टन और सिलेंडर को इसके भीतर संघनन को रोकने के लिए गर्म रखा गया था। दूसरा सुधार पिस्टन के दूसरी तरफ वैक्यूम के विरुद्ध भाप के विस्तार का उपयोग था। स्ट्रोक के दौरान भाप की आपूर्ति में कटौती की गई, और भाप दूसरी तरफ वैक्यूम के खिलाफ फैल गई। इसने इंजन की दक्षता में वृद्धि की, लेकिन शाफ्ट पर एक चर टोक़ भी बनाया जो कई अनुप्रयोगों के लिए अवांछनीय था, विशेष रूप से पम्पिंग में। वाट ने इसलिए विस्तार को 1:2 के अनुपात तक सीमित कर दिया (यानी भाप की आपूर्ति आधे स्ट्रोक में कट गई)। इसने सैद्धांतिक दक्षता को 6.4% से बढ़ाकर 10.6% कर दिया, जिसमें पिस्टन के दबाव में केवल एक छोटा सा परिवर्तन था।<ref name=":0" /> सुरक्षा चिंताओं के कारण वॉट ने उच्च दाब वाली भाप का उपयोग नहीं किया।<ref name="Dickinson" />{{rp|85}}
न्यूकमेन डिजाइन में वाट का अगला सुधार सिलेंडर के शीर्ष को बंद करना और एक जैकेट के साथ सिलेंडर को घेरना था। पिस्टन के नीचे प्रवेश करने से पहले भाप को जैकेट के माध्यम से पारित किया गया था, पिस्टन और सिलेंडर को इसके भीतर संघनन को रोकने के लिए गर्म रखा गया था। दूसरा सुधार पिस्टन के दूसरी तरफ वैक्यूम के विरुद्ध भाप के विस्तार का उपयोग था। स्ट्रोक के दौरान भाप की आपूर्ति में कटौती की गई, और भाप दूसरी तरफ वैक्यूम के खिलाफ फैल गई। इसने इंजन की दक्षता में वृद्धि की, लेकिन शाफ्ट पर एक चर टोक़ भी बनाया जो कई अनुप्रयोगों के लिए अवांछनीय था, विशेष रूप से पम्पिंग में। वाट ने इसलिए विस्तार को 1:2 के अनुपात तक सीमित कर दिया (यानी भाप की आपूर्ति आधे स्ट्रोक में कट गई)। इसने सैद्धांतिक दक्षता को 6.4% से बढ़ाकर 10.6% कर दिया, जिसमें पिस्टन के दबाव में केवल एक छोटा सा परिवर्तन था।<ref name=":0" /> सुरक्षा चिंताओं के कारण वॉट ने उच्च दाब वाली भाप का उपयोग नहीं किया।<ref name="Dickinson" />{{rp|85}}


न्यूकमेन डिजाइन में वाट का अगला सुधार सिलेंडर के शीर्ष को सील करना और एक जैकेट के साथ सिलेंडर को घेरना था। पिस्टन के नीचे प्रवेश करने से पहले भाप को जैकेट के माध्यम से पारित किया गया था, इसके भीतर संघनन को रोकने के लिए पिस्टन और सिलेंडर को गर्म रखा गया था। दूसरा सुधार पिस्टन के दूसरी तरफ वैक्यूम के खिलाफ भाप के विस्तार का उपयोग था। स्ट्रोक के दौरान भाप की आपूर्ति में कटौती की गई, और दूसरी तरफ वैक्यूम के खिलाफ भाप का विस्तार हुआ। इसने इंजन की दक्षता में वृद्धि की, लेकिन शाफ्ट पर एक परिवर्तनीय टोक़ भी बनाया जो कई अनुप्रयोगों के लिए अवांछनीय था, विशेष रूप से पम्पिंग में। वाट ने इसलिए विस्तार को 1:2 के अनुपात तक सीमित कर दिया (अर्थात भाप की आपूर्ति आधे स्ट्रोक में कट गई)। इसने सैद्धांतिक दक्षता को 6.4% से बढ़ाकर 10.6% कर दिया, जिसमें पिस्टन दबाव में केवल एक छोटा बदलाव था।<ref name=":0" />सुरक्षा चिंताओं के कारण वाट ने उच्च दाब वाली भाप का उपयोग नहीं किया।<ref name="Dickinson" />{{rp|85}}
न्यूकमेन डिजाइन में वाट का अगला सुधार सिलेंडर के शीर्ष को बंद करना और एक जैकेट के साथ सिलेंडर को घेरना था। पिस्टन के नीचे प्रवेश करने से पहले भाप को जैकेट के माध्यम से पारित किया गया था, इसके भीतर संघनन को रोकने के लिए पिस्टन और सिलेंडर को गर्म रखा गया था। दूसरा सुधार पिस्टन के दूसरी तरफ वैक्यूम के खिलाफ भाप के विस्तार का उपयोग था। स्ट्रोक के दौरान भाप की आपूर्ति में कटौती की गई, और दूसरी तरफ वैक्यूम के खिलाफ भाप का विस्तार हुआ। इसने इंजन की दक्षता में वृद्धि की, लेकिन शाफ्ट पर एक परिवर्तनीय टोक़ भी बनाया जो कई अनुप्रयोगों के लिए अवांछनीय था, विशेष रूप से पम्पिंग में। वाट ने इसलिए विस्तार को 1:2 के अनुपात तक सीमित कर दिया (अर्थात भाप की आपूर्ति आधे स्ट्रोक में कट गई)। इसने सैद्धांतिक दक्षता को 6.4% से बढ़ाकर 10.6% कर दिया, जिसमें पिस्टन दबाव में केवल एक छोटा बदलाव था।<ref name=":0" />सुरक्षा चिंताओं के कारण वाट ने उच्च दाब वाली भाप का उपयोग नहीं किया।<ref name="Dickinson" />{{rp|85}}


इन सुधारों के कारण 1776 का पूर्ण विकसित संस्करण तैयार हुआ जो वास्तव में उत्पादन में चला गया।<ref>Hulse David K (1999): "The early development of the steam engine"; TEE Publishing, Leamington Spa, U.K., ISBN, 85761 107 1 p. 127 et seq.</ref>
इन सुधारों के कारण 1776 का पूर्ण विकसित संस्करण तैयार हुआ जो वास्तव में उत्पादन में चला गया।<ref>Hulse David K (1999): "The early development of the steam engine"; TEE Publishing, Leamington Spa, U.K., ISBN, 85761 107 1 p. 127 et seq.</ref>
Line 61: Line 59:
{{main|बोल्टन और वाट}}
{{main|बोल्टन और वाट}}


अलग कंडेनसर ने न्यूकमेन इंजन में सुधार के लिए नाटकीय क्षमता दिखाई, लेकिन एक विपणन योग्य इंजन को सिद्ध करने से पहले वाट अभी भी दुर्गम प्रतीत होने वाली समस्याओं से हतोत्साहित था। मैथ्यू बोल्टन के साथ साझेदारी में प्रवेश करने के बाद ही यह वास्तविकता बन पाई। वाट ने बोल्टन को इंजन में सुधार के बारे में अपने विचारों के बारे में बताया, और बोल्टन, एक उग्र उद्यमी, [[बर्मिंघम]] के निकट सोहो में एक परीक्षण इंजन के विकास के लिए धन देने पर सहमत हुए। अंत में वाट के पास सुविधाओं तक पहुंच थी और कारीगरों का व्यावहारिक अनुभव था जो जल्द ही पहला इंजन काम करने में सक्षम थे। पूरी तरह से विकसित होने के कारण, यह एक समान न्यूकम की तुलना में लगभग 75% कम ईंधन का उपयोग करता है।
अलग कंडेनसर ने न्यूकमेन इंजन में सुधार के लिए नाटकीय क्षमता दिखाई, लेकिन एक विपणन योग्य इंजन को सिद्ध करने से पहले वाट अभी भी दुर्गम प्रतीत होने वाली समस्याओं से हतोत्साहित था। मैथ्यू बोल्टन के साथ साझेदारी में प्रवेश करने के बाद ही यह वास्तविकता बन पाई। वाट ने बोल्टन को इंजन में सुधार के बारे में अपने विचारों के बारे में बताया, और बोल्टन, एक उग्र उद्यमी, [[बर्मिंघम]] के निकट सोहो में एक परीक्षण इंजन के विकास के लिए धन देने पर सहमत हुए। अंत में वाट के पास सुविधाओं तक पहुंच थी और कारीगरों का व्यावहारिक अनुभव था जो जल्द ही पहला इंजन कार्य करने में सक्षम थे। पूरी तरह से विकसित होने के कारण, यह एक समान न्यूकम की तुलना में लगभग 75% कम ईंधन का उपयोग करता है।


1775 में, वाट ने दो बड़े इंजन डिजाइन किए: एक टिपटन ([[Tipton]]) में [[ब्लूमफील्ड कोलियरी]] के लिए, मार्च 1776 में पूरा हुआ, और एक [[श्रॉपशायर]] में ब्रॉस्ली में जॉन विल्किंसन के आयरनवर्क्स के लिए, जो अगले महीने कार्य कर रहा था। एक तीसरा इंजन, पूर्वी लंदन के स्ट्रैटफ़ोर्ड-ले-बो में भी उस गर्मी में काम कर रहा था।<ref>R. L. Hills, ''James Watt: II The Years of Toil, 1775–1785'' (Landmark, Ashbourne, 2005), 58–65.</ref>
1775 में, वाट ने दो बड़े इंजन डिजाइन किए: एक टिपटन ([[Tipton]]) में [[ब्लूमफील्ड कोलियरी]] के लिए, मार्च 1776 में पूरा हुआ, और एक [[श्रॉपशायर]] में ब्रॉस्ली में जॉन विल्किंसन के आयरनवर्क्स के लिए, जो अगले महीने कार्य कर रहा था। एक तीसरा इंजन, पूर्वी लंदन के स्ट्रैटफ़ोर्ड-ले-बो में भी उस ऊष्मा में कार्य कर रहा था।<ref>R. L. Hills, ''James Watt: II The Years of Toil, 1775–1785'' (Landmark, Ashbourne, 2005), 58–65.</ref>


वाट ने कई वर्षों तक अपने भाप इंजनों के लिए सटीक रूप से ऊबा हुआ सिलेंडर प्राप्त करने का असफल प्रयास किया था, और हथौड़े वाले लोहे का उपयोग करने के लिए मजबूर किया गया था, जो गोल नहीं था और पिस्टन के पिछले रिसाव का कारण बना। जोसेफ विकहैम रो ने 1916 में कहा: "जब [[जॉन स्मेटन]] ने पहला इंजन देखा तो उन्होंने सोसाइटी ऑफ इंजीनियर्स को बताया कि 'न तो उपकरण थे और न ही काम करने वाले उपस्थित थे जो पर्याप्त सटीकता के साथ ऐसी जटिल मशीन का निर्माण कर सकते थे'"।<ref name="Roe1916">{{citation | last = Roe | first = Joseph Wickham | title = English and American Tool Builders | publisher = Yale University Press | year = 1916 | location = New Haven, Connecticut | url = https://books.google.com/books?id=X-EJAAAAIAAJ | lccn = 16011753}}. Reprinted by McGraw-Hill, New York and London, 1926 ({{LCCN|27024075}}); and by Lindsay Publications, Inc., Bradley, Illinois, ({{ISBN|978-0-917914-73-7}}).</ref>
वाट ने कई वर्षों तक अपने भाप इंजनों के लिए सटीक रूप से ऊबा हुआ सिलेंडर प्राप्त करने का असफल प्रयास किया था, और हथौड़े वाले लोहे का उपयोग करने के लिए मजबूर किया गया था, जो गोल नहीं था और पिस्टन के पिछले रिसाव का कारण बना। जोसेफ विकहैम रो ने 1916 में कहा: "जब [[जॉन स्मेटन]] ने पहला इंजन देखा तो उन्होंने सोसाइटी ऑफ इंजीनियर्स को बताया कि 'न तो उपकरण थे और न ही कार्य करने वाले उपस्थित थे जो पर्याप्त सटीकता के साथ ऐसी जटिल मशीन का निर्माण कर सकते थे'"।<ref name="Roe1916">{{citation | last = Roe | first = Joseph Wickham | title = English and American Tool Builders | publisher = Yale University Press | year = 1916 | location = New Haven, Connecticut | url = https://books.google.com/books?id=X-EJAAAAIAAJ | lccn = 16011753}}. Reprinted by McGraw-Hill, New York and London, 1926 ({{LCCN|27024075}}); and by Lindsay Publications, Inc., Bradley, Illinois, ({{ISBN|978-0-917914-73-7}}).</ref>


1774 में, जॉन विल्किंसन ने एक बोरिंग मशीन का आविष्कार किया जिसमें काटने के उपकरण को रखने वाले शाफ्ट को दोनों सिरों पर सहारा दिया गया और सिलेंडर के माध्यम से बढ़ाया गया, कैंटिलीवर बोरर्स के विपरीत जो तब उपयोग में थे। बौल्टन ने 1776 में लिखा था कि "श्री विल्किन्सन ने हमें बिना किसी त्रुटि के लगभग कई सिलेंडर बोर कर दिए हैं; 50 इंच व्यास का वह, जिसे हमने टिपटन में रखा है, किसी भी हिस्से में पुराने शिलिंग की मोटाई पर गलत नहीं है"।<ref name="Roe1916" />
1774 में, जॉन विल्किंसन ने एक बोरिंग मशीन का आविष्कार किया जिसमें काटने के उपकरण को रखने वाले शाफ्ट को दोनों सिरों पर सहारा दिया गया और सिलेंडर के माध्यम से बढ़ाया गया, कैंटिलीवर बोरर्स के विपरीत जो तब उपयोग में थे। बौल्टन ने 1776 में लिखा था कि "श्री विल्किन्सन ने हमें बिना किसी त्रुटि के लगभग कई सिलेंडर बोर कर दिए हैं; 50 इंच व्यास का वह, जिसे हमने टिपटन में रखा है, किसी भी भाग में पुराने शिलिंग की मोटाई पर गलत नहीं है"।<ref name="Roe1916" />


बॉल्टन और वाट का अभ्यास खान-मालिकों और अन्य ग्राहकों को इंजन बनाने में मदद करना था, उन्हें खड़ा करने के लिए पुरुषों की आपूर्ति करना और कुछ विशेष पुर्जे। हालांकि, उनके पेटेंट से उनका मुख्य लाभ इंजन मालिकों को उनके द्वारा बचाए गए ईंधन की लागत के आधार पर लाइसेंस शुल्क चार्ज करने से प्राप्त हुआ था। उनके इंजनों की अधिक ईंधन दक्षता का मतलब था कि वे उन क्षेत्रों में सबसे आकर्षक थे जहां ईंधन महंगा था, विशेष रूप से [[कॉर्नवाल]], जिसके लिए 1777 में [[व्हील बिजी, टिंग टैंग]] और [[चासवाटर]] खदानों के लिए तीन इंजनों का आदेश दिया गया था।<ref>Hills, 96–105.</ref>
बॉल्टन और वाट का अभ्यास खान-मालिकों और अन्य ग्राहकों को इंजन बनाने में मदद करना था, उन्हें खड़ा करने के लिए पुरुषों की आपूर्ति करना और कुछ विशेष पुर्जे। हालांकि, उनके पेटेंट से उनका मुख्य लाभ इंजन मालिकों को उनके द्वारा बचाए गए ईंधन की लागत के आधार पर लाइसेंस शुल्क चार्ज करने से प्राप्त हुआ था। उनके इंजनों की अधिक ईंधन दक्षता का तात्पर्य था कि वे उन क्षेत्रों में सबसे आकर्षक थे जहां ईंधन महंगा था, विशेष रूप से [[कॉर्नवाल]], जिसके लिए 1777 में [[व्हील बिजी, टिंग टैंग]] और [[चासवाटर]] खदानों के लिए तीन इंजनों का आदेश दिया गया था।<ref>Hills, 96–105.</ref>
== बाद के सुधार ==
== बाद के सुधार ==
[[File:WattParallelMotion.jpg|right|thumb|पम्पिंग इंजन पर वाट की समानांतर गति]]पहले वाट इंजन न्यूकॉमन इंजन की तरह वायुमंडलीय दबाव इंजन थे, लेकिन संक्षेपण सिलेंडर से अलग होने के साथ। कम दाब वाली भाप और आंशिक निर्वात दोनों का उपयोग करके इंजन को चलाने से इंजन के विकास की संभावना बढ़ जाती है।<ref>Hulse David K (2001): "The development of rotary motion by the steam power"; TEE Publishing, Leamington Spa, U.K., {{ISBN|1 85761 119 5}} : p 58 et seq.</ref> वाल्वों की एक व्यवस्था वैकल्पिक रूप से सिलेंडर में कम दबाव वाली भाप को प्रवेश कर सकती है और फिर कंडेनसर से जुड़ सकती है। नतीजतन, पावर स्ट्रोक की दिशा उलटी हो सकती है, जिससे रोटरी मोशन प्राप्त करना आसान हो जाता है। [[सिंगल- और डबल-एक्टिंग सिलेंडर]] इंजन के अतिरिक्त लाभों में दक्षता में वृद्धि, उच्च गति (अधिक शक्ति) और अधिक नियमित गति शामिल थे।
[[File:WattParallelMotion.jpg|right|thumb|पम्पिंग इंजन पर वाट की समानांतर गति]]पहले वाट इंजन न्यूकॉमन इंजन की तरह वायुमंडलीय दबाव इंजन थे, लेकिन संक्षेपण सिलेंडर से अलग होने के साथ। कम दाब वाली भाप और आंशिक निर्वात दोनों का उपयोग करके इंजन को चलाने से इंजन के विकास की संभावना बढ़ जाती है।<ref>Hulse David K (2001): "The development of rotary motion by the steam power"; TEE Publishing, Leamington Spa, U.K., {{ISBN|1 85761 119 5}} : p 58 et seq.</ref> वाल्वों की एक व्यवस्था वैकल्पिक रूप से सिलेंडर में कम दबाव वाली भाप को प्रवेश कर सकती है और फिर कंडेनसर से जुड़ सकती है। नतीजतन, पावर स्ट्रोक की दिशा उलटी हो सकती है, जिससे रोटरी मोशन प्राप्त करना आसान हो जाता है। [[सिंगल- और डबल-एक्टिंग सिलेंडर]] इंजन के अतिरिक्त लाभों में दक्षता में वृद्धि, उच्च गति (अधिक शक्ति) और अधिक नियमित गति सम्मिलित थे।


डबल एक्टिंग पिस्टन के विकास से पहले, बीम और पिस्टन रॉड का जुड़ाव एक श्रृंखला के माध्यम से होता था, जिसका अर्थ था कि शक्ति को केवल एक दिशा में खींचा जा सकता है। यह उन इंजनों में प्रभावी था जिनका उपयोग पानी को पंप करने के लिए किया जाता था, लेकिन पिस्टन की दोहरी क्रिया का मतलब था कि यह धक्का और खींच सकता था। यह तब तक संभव नहीं था जब तक बीम और रॉड एक श्रृंखला से जुड़े हुए थे। इसके अलावा, सीलबंद सिलेंडर के पिस्टन रॉड को सीधे बीम से जोड़ना संभव नहीं था, क्योंकि जब रॉड एक सीधी रेखा में लंबवत रूप से चलती थी, तो बीम को उसके केंद्र में घुमाया जाता था, जिसमें प्रत्येक तरफ एक चाप होता था। बीम और पिस्टन की परस्पर विरोधी क्रियाओं को पाटने के लिए वाट ने समानांतर गति विकसित की। इस उपकरण ने एक पैंटोग्राफ के साथ मिलकर एक चार बार [[लिंकेज]] का उपयोग किया, जो आवश्यक सीधी रेखा गति का उत्पादन करने के लिए बहुत सस्ते में करता था, अगर उसने स्लाइडर प्रकार के लिंकेज का उपयोग किया होता तो उन्हें अपने समाधान पर बहुत गर्व होता।[[File:WattsSteamEngine.jpeg|thumb|left|वाट भाप इंजन<ref>from 3rd edition Britannica 1797</ref>]]दोनों दिशाओं में वैकल्पिक रूप से लगाए गए बल के माध्यम से पिस्टन शाफ्ट से जुड़े बीम होने का मतलब यह भी था कि बीम की गति का उपयोग पहिया को घुमाने के लिए संभव था। बीम की क्रिया को एक घूर्णन गति में बदलने का सबसे सरल समाधान एक क्रैंक द्वारा बीम को एक पहिया से जोड़ना था, लेकिन क्योंकि क्रैंक के उपयोग पर किसी अन्य पक्ष के पेटेंट अधिकार थे, वाट को एक अन्य समाधान के साथ आने के लिए बाध्य होना पड़ा।<ref>[https://mises.org/library/james-watt-monopolist James Watt: Monopolist]</ref> उन्होंने एक कर्मचारी [[विलियम मर्डोक]] द्वारा सुझाए गए [[अधिचक्रीय गियर]] सन एंड प्लैनेट गियर सिस्टम को अपनाया, केवल बाद में, एक बार पेटेंट अधिकार समाप्त हो जाने के बाद, अधिकांश इंजनों पर अधिक परिचित क्रैंक देखा गया।<ref>{{Harvnb|Rosen|2012|pp=176–7}}</ref>
डबल एक्टिंग पिस्टन के विकास से पहले, बीम और पिस्टन रॉड का जुड़ाव एक श्रृंखला के माध्यम से होता था, जिसका अर्थ था कि शक्ति को केवल एक दिशा में खींचा जा सकता है। यह उन इंजनों में प्रभावी था जिनका उपयोग पानी को पंप करने के लिए किया जाता था, लेकिन पिस्टन की दोहरी क्रिया का तात्पर्य था कि यह धक्का और खींच सकता था। यह तब तक संभव नहीं था जब तक बीम और रॉड एक श्रृंखला से जुड़े हुए थे। इसके अलावा, बंदबंद सिलेंडर के पिस्टन रॉड को सीधे बीम से जोड़ना संभव नहीं था, क्योंकि जब रॉड एक सीधी रेखा में लंबवत रूप से चलती थी, तो बीम को उसके केंद्र में घुमाया जाता था, जिसमें प्रत्येक तरफ एक चाप होता था। बीम और पिस्टन की परस्पर विरोधी क्रियाओं को पाटने के लिए वाट ने समानांतर गति विकसित की। इस उपकरण ने एक पैंटोग्राफ के साथ मिलकर एक चार बार [[लिंकेज]] का उपयोग किया, जो आवश्यक सीधी रेखा गति का उत्पादन करने के लिए बहुत सस्ते में करता था, अगर उसने स्लाइडर प्रकार के लिंकेज का उपयोग किया होता तो उन्हें अपने समाधान पर बहुत गर्व होता।[[File:WattsSteamEngine.jpeg|thumb|left|वाट भाप इंजन<ref>from 3rd edition Britannica 1797</ref>]]दोनों दिशाओं में वैकल्पिक रूप से लगाए गए बल के माध्यम से पिस्टन शाफ्ट से जुड़े बीम होने का तात्पर्य यह भी था कि बीम की गति का उपयोग पहिया को घुमाने के लिए संभव था। बीम की क्रिया को घूर्णन गति में बदलने का सबसे सरल समाधान एक क्रैंक द्वारा बीम को पहिये से जोड़ना था, लेकिन क्योंकि क्रैंक के उपयोग पर किसी अन्य पक्ष के पेटेंट अधिकार थे, वाट को एक अन्य समाधान के साथ आने के लिए बाध्य होना पड़ा।<ref>[https://mises.org/library/james-watt-monopolist James Watt: Monopolist]</ref> उन्होंने एक कर्मचारी [[विलियम मर्डोक]] द्वारा सुझाए गए [[अधिचक्रीय गियर]] सन एंड प्लैनेट गियर सिस्टम को अपनाया, केवल बाद में, एक बार पेटेंट अधिकार समाप्त हो जाने के बाद, अधिकांश इंजनों पर अधिक परिचित क्रैंक देखा गया।<ref>{{Harvnb|Rosen|2012|pp=176–7}}</ref>


क्रैंक से जुड़ा मुख्य पहिया बड़ा और भारी था, जो एक [[चक्का]] के रूप में काम करता था, जो एक बार गति में सेट हो जाता था, इसकी गति से एक निरंतर शक्ति बनी रहती थी और बारी-बारी से स्ट्रोक की क्रिया को सुचारू करता था। इसके घूमने वाले केंद्रीय शाफ्ट के लिए, बेल्ट और गियर को विभिन्न प्रकार की मशीनरी चलाने के लिए जोड़ा जा सकता है।
क्रैंक से जुड़ा मुख्य पहिया बड़ा और भारी था, जो एक [[चक्का]] के रूप में कार्य करता था, जो एक बार गति में सेट हो जाता था, इसकी गति से निरंतर शक्ति बनी रहती थी और बारी-बारी से स्ट्रोक की क्रिया को सुचारू करता था। इसके घूमने वाले केंद्रीय शाफ्ट के लिए, बेल्ट और गियर को विभिन्न प्रकार की मशीनरी चलाने के लिए जोड़ा जा सकता है।


क्योंकि कारखाने की मशीनरी को एक स्थिर गति से संचालित करने की आवश्यकता थी, वाट ने एक भाप नियामक वाल्व को एक केन्द्रापसारक गवर्नर से जोड़ा, जिसे उन्होंने पवन चक्कियों की गति को स्वचालित रूप से नियंत्रित करने के लिए उपयोग किए जाने वाले से अनुकूलित किया।<ref>{{cite book|title= भाप-इंजन के विकास का इतिहास|last=Thurston|first= Robert H.|year=1875 |publisher =D. Appleton & Co.
क्योंकि कारखाने की मशीनरी को स्थिर गति से संचालित करने की आवश्यकता थी, वाट ने एक भाप नियामक वाल्व को एक केन्द्रापसारक गवर्नर से जोड़ा, जिसे उन्होंने पवन चक्कियों की गति को स्वचालित रूप से नियंत्रित करने के लिए उपयोग किए जाने वाले से अनुकूलित किया।<ref>{{cite book|title= भाप-इंजन के विकास का इतिहास|last=Thurston|first= Robert H.|year=1875 |publisher =D. Appleton & Co.
|pages=116 |url= http://himedo.net/TheHopkinThomasProject/TimeLine/Wales/Steam/URochesterCollection/Thurston/index.html}} This is the first edition.  Modern paperback editions are available.</ref> केन्द्रापसारक एक वास्तविक गति [[पीआईडी नियंत्रक]] नहीं था क्योंकि यह लोड में परिवर्तन के जवाब में एक निर्धारित गति नहीं पकड़ सकता था।<ref>{{cite book|title=कंट्रोल इंजीनियरिंग का इतिहास 1800-1930|last=Bennett|first= S.|year=1979 |publisher =Peter Peregrinus Ltd.|location= London|isbn= 0-86341-047-2|pages=47, 22}}</ref>
|pages=116 |url= http://himedo.net/TheHopkinThomasProject/TimeLine/Wales/Steam/URochesterCollection/Thurston/index.html}} This is the first edition.  Modern paperback editions are available.</ref> केन्द्रापसारक वास्तविक गति [[पीआईडी नियंत्रक]] नहीं था क्योंकि यह लोड में परिवर्तन के जवाब में एक निर्धारित गति नहीं पकड़ सकता था।<ref>{{cite book|title=कंट्रोल इंजीनियरिंग का इतिहास 1800-1930|last=Bennett|first= S.|year=1979 |publisher =Peter Peregrinus Ltd.|location= London|isbn= 0-86341-047-2|pages=47, 22}}</ref>


इन सुधारों ने ब्रिटिश उद्योग के लिए शक्ति के मुख्य स्रोतों के रूप में जल चक्र और घोड़ों को प्रतिस्थापित करने के लिए भाप इंजन की अनुमति दी, जिससे यह भौगोलिक बाधाओं से मुक्त हो गया और औद्योगिक क्रांति में मुख्य चालकों में से एक बन गया।
इन सुधारों ने ब्रिटिश उद्योग के लिए शक्ति के मुख्य स्रोतों के रूप में जल चक्र और घोड़ों को प्रतिस्थापित करने के लिए भाप इंजन की अनुमति दी, जिससे यह भौगोलिक बाधाओं से मुक्त हो गया और औद्योगिक क्रांति में मुख्य चालकों में से एक बन गया।


वाट भाप के इंजन की कार्यप्रणाली पर मौलिक अनुसंधान से भी संबंधित थे। उनका सबसे उल्लेखनीय मापने वाला उपकरण, जो आज भी उपयोग में है, पिस्टन की स्थिति के अनुसार सिलेंडर के भीतर भाप के दबाव को मापने के लिए एक मैनोमीटर को शामिल करने वाला वाट [[संकेतक आरेख]] है, जो भाप के दबाव को इसके कार्य के रूप में प्रस्तुत करने के लिए आरेख को सक्षम करता है पूरे चक्र में मात्रा।
वाट भाप के इंजन की कार्यप्रणाली पर मौलिक अनुसंधान से भी संबंधित थे। उनका सबसे उल्लेखनीय मापने वाला उपकरण, जो आज भी उपयोग में है, पिस्टन की स्थिति के अनुसार सिलेंडर के भीतर भाप के दबाव को मापने के लिए एक मैनोमीटर को सम्मिलित करने वाला वाट [[संकेतक आरेख]] है, जो भाप के दबाव को इसके कार्य के रूप में प्रस्तुत करने के लिए आरेख को सक्षम करता है पूरे चक्र में मात्रा।




Line 89: Line 87:
दुनिया का सबसे पुराना कार्य करने वाला इंजन [[स्मेथविक इंजन]] है, जिसे मई 1779 में सेवा में लाया गया था और अब बर्मिंघम में थिंकटैंक, बर्मिंघम में (पूर्व में अब निष्क्रिय विज्ञान और उद्योग संग्रहालय, बर्मिंघम में)।
दुनिया का सबसे पुराना कार्य करने वाला इंजन [[स्मेथविक इंजन]] है, जिसे मई 1779 में सेवा में लाया गया था और अब बर्मिंघम में थिंकटैंक, बर्मिंघम में (पूर्व में अब निष्क्रिय विज्ञान और उद्योग संग्रहालय, बर्मिंघम में)।
[[विल्टशायर]] के [[क्रॉफ्टन पंपिंग स्टेशन]] में 1812 बौल्टन और वाट इंजन अपने मूल इंजन हाउस में अभी भी सबसे पुराना है और अभी भी वह कार्य करने में सक्षम है जिसके लिए इसे स्थापित किया गया था। यह [[केनेट और एवन नहर]] के लिए पानी पंप करने के लिए उपयोग किया गया था; पूरे वर्ष के कुछ सप्ताहांतों में आधुनिक पंप बंद कर दिए जाते हैं और क्रॉफ्टन के दो भाप इंजन अभी भी इस कार्य को करते हैं।
[[विल्टशायर]] के [[क्रॉफ्टन पंपिंग स्टेशन]] में 1812 बौल्टन और वाट इंजन अपने मूल इंजन हाउस में अभी भी सबसे पुराना है और अभी भी वह कार्य करने में सक्षम है जिसके लिए इसे स्थापित किया गया था। यह [[केनेट और एवन नहर]] के लिए पानी पंप करने के लिए उपयोग किया गया था; पूरे वर्ष के कुछ सप्ताहांतों में आधुनिक पंप बंद कर दिए जाते हैं और क्रॉफ्टन के दो भाप इंजन अभी भी इस कार्य को करते हैं।
सबसे पुराना मौजूदा घूर्णी भाप इंजन, [[व्हिटब्रेड इंजन]] (1785 से, अब तक का तीसरा घूर्णी इंजन), सिडनी, ऑस्ट्रेलिया में [[पावरहाउस संग्रहालय]] में स्थित है।
सबसे पुराना उपस्थिता घूर्णी भाप इंजन, [[व्हिटब्रेड इंजन]] (1785 से, अब तक का तीसरा घूर्णी इंजन), सिडनी, ऑस्ट्रेलिया में [[पावरहाउस संग्रहालय]] में स्थित है।
1788 का बोल्टन-वाट इंजन विज्ञान संग्रहालय (लंदन)|विज्ञान संग्रहालय, लंदन में पाया जा सकता है।<ref name="Science Museum, lap engine, 1788" >{{cite web
1788 का बोल्टन-वाट इंजन विज्ञान संग्रहालय (लंदन)|विज्ञान संग्रहालय, लंदन में पाया जा सकता है।<ref name="Science Museum, lap engine, 1788" >{{cite web
   |title=बोल्टन और वाट, 1788 द्वारा घूर्णी भाप इंजन|url=http://www.sciencemuseum.org.uk/objects/motive_power/1861-46.aspx  
   |title=बोल्टन और वाट, 1788 द्वारा घूर्णी भाप इंजन|url=http://www.sciencemuseum.org.uk/objects/motive_power/1861-46.aspx  
   |publisher=Science Museum
   |publisher=Science Museum
}}</ref> जबकि एक 1817 [[उड़ाने वाला इंजन]], जिसे पहले नेथर्टन, वेस्ट मिडलैंड्स आयरनवर्क्स ऑफ़ MW ग्रेज़ब्रुक में उपयोग किया जाता था, अब बर्मिंघम में A38(M) मोटरवे की शुरुआत में एक ट्रैफ़िक द्वीप [[डार्टमाउथ सर्कस]] को सजाता है।
}}</ref> जबकि एक 1817 [[उड़ाने वाला इंजन]], जिसे पहले नेथर्टन, वेस्ट मिडलैंड्स आयरनवर्क्स ऑफ़ MW ग्रेज़ब्रुक में उपयोग किया जाता था, अब बर्मिंघम में A38(M) मोटरवे के प्रारंभ में एक ट्रैफ़िक द्वीप [[डार्टमाउथ सर्कस]] को सजाता है।


डियरबॉर्न, मिशिगन में [[हेनरी फ़ोर्ड]] संग्रहालय में 1788 वाट के घूर्णी इंजन की प्रतिकृति है। यह बोल्टन-वाट इंजन का पूर्ण पैमाने पर कार्य करने वाला मॉडल है। अमेरिकी उद्योगपति हेनरी फोर्ड ने 1932 में अंग्रेजी निर्माता चार्ल्स समरफील्ड से प्रतिकृति इंजन की शुरुआत की।<ref>{{cite web|title=हेनरी फोर्ड संग्रहालय|url= https://www.thehenryford.org/collections-and-research/digital-collections/artifact/275719/}}</ref> संग्रहालय में एक मूल बोल्टन और वाट वायुमंडलीय पंप इंजन भी है, जो मूल रूप से बर्मिंघम में नहर पंपिंग के लिए उपयोग किया जाता है,<ref>{{cite web|title=हेनरी फोर्ड संग्रहालय|url= https://www.thehenryford.org/collections-and-research/digital-collections/artifact/3174/}}</ref> नीचे दिखाया गया है, और बाउयर स्ट्रीट पम्पिंग स्टेशन पर सीटू में उपयोग में है<ref>{{cite web|title=रोइंग्टन रिकॉर्ड्स|url= http://rowingtonrecords.com/Tiger/Canals/Warwick%20and%20Birmingham%20Canal/index.html#img=DSC00273.JPG}}</ref> 1796 से 1854 तक, और बाद में 1929 में डियरबॉर्न को हटा दिया गया।
डियरबॉर्न, मिशिगन में [[हेनरी फ़ोर्ड]] संग्रहालय में 1788 वाट के घूर्णी इंजन की प्रतिकृति है। यह बोल्टन-वाट इंजन का पूर्ण पैमाने पर कार्य करने वाला मॉडल है। अमेरिकी उद्योगपति हेनरी फोर्ड ने 1932 में अंग्रेजी निर्माता चार्ल्स समरफील्ड से प्रतिकृति इंजन के प्रारंभ की।<ref>{{cite web|title=हेनरी फोर्ड संग्रहालय|url= https://www.thehenryford.org/collections-and-research/digital-collections/artifact/275719/}}</ref> संग्रहालय में एक मूल बोल्टन और वाट वायुमंडलीय पंप इंजन भी है, जो मूल रूप से बर्मिंघम में नहर पंपिंग के लिए उपयोग किया जाता है,<ref>{{cite web|title=हेनरी फोर्ड संग्रहालय|url= https://www.thehenryford.org/collections-and-research/digital-collections/artifact/3174/}}</ref> नीचे दिखाया गया है, और बाउयर स्ट्रीट पम्पिंग स्टेशन पर सीटू में उपयोग में है<ref>{{cite web|title=रोइंग्टन रिकॉर्ड्स|url= http://rowingtonrecords.com/Tiger/Canals/Warwick%20and%20Birmingham%20Canal/index.html#img=DSC00273.JPG}}</ref> 1796 से 1854 तक, और बाद में 1929 में डियरबॉर्न को हटा दिया गया।


<gallery class="center">
<gallery class="center">
Line 105: Line 103:
[[File:Daveys engine 1885.jpg|thumb|डेविस इंजन 1885]]
[[File:Daveys engine 1885.jpg|thumb|डेविस इंजन 1885]]


[[Category:Articles with hatnote templates targeting a nonexistent page|Watt Steam Engine]]
[[Category:Articles with invalid date parameter in template|Watt Steam Engine]]
[[Category:Articles with short description|Watt Steam Engine]]
[[Category:CS1|Watt Steam Engine]]
[[Category:CS1 errors|Watt Steam Engine]]
[[Category:Collapse templates|Watt Steam Engine]]
[[Category:Commons category link is locally defined|Watt Steam Engine]]
[[Category:Created On 26/12/2022|Watt Steam Engine]]


== हालिया घटनाक्रम ==
वाट के विस्तार इंजन को आम तौर पर केवल ऐतिहासिक रुचि के रूप में ही माना जाता है। हालाँकि कुछ हालिया विकास हैं जो प्रौद्योगिकी के पुनर्जागरण का कारण बन सकते हैं। आज, उद्योग द्वारा उत्पन्न 100 और 150 डिग्री सेल्सियस के बीच तापमान के साथ भारी मात्रा में बेकार भाप और बेकार गर्मी है। इसके अलावा, सोलरथर्मल कलेक्टर, भूतापीय ऊर्जा स्रोत और बायोमास रिएक्टर इस तापमान रेंज में गर्मी पैदा करते हैं। इस ऊर्जा का उपयोग करने के लिए प्रौद्योगिकियां हैं, विशेष रूप से ऑर्गेनिक रैंकिन चक्र। सिद्धांत रूप में, ये भाप टर्बाइन हैं जो पानी का उपयोग नहीं करते हैं लेकिन एक द्रव (एक प्रशीतक) जो 100 डिग्री सेल्सियस से नीचे के तापमान पर वाष्पित हो जाता है। हालांकि ऐसी प्रणालियां काफी जटिल हैं। ये 6 से 20 बार के दबाव के साथ कार्य करते हैं, जिससे पूरे सिस्टम को पूरी तरह से सील करना पड़ता है।


विस्तार इंजन यहां महत्वपूर्ण लाभ प्रदान कर सकता है, विशेष रूप से 2 से 100 किलोवाट की कम बिजली रेटिंग के लिए: 1:5 के विस्तार अनुपात के साथ, सैद्धांतिक दक्षता 15% तक पहुंच जाती है, जो ओआरसी सिस्टम की सीमा में है। विस्तार इंजन पानी का उपयोग कार्यशील तरल के रूप में करता है जो सरल, सस्ता, गैर विषैले, गैर ज्वलनशील और गैर संक्षारक है। यह वायुमंडलीय के करीब और नीचे के दबाव पर कार्य करता है, जिससे सीलिंग की समस्या नहीं होती है। और यह एक साधारण मशीन है, जिसका अर्थ लागत प्रभावशीलता है। साउथेम्प्टन विश्वविद्यालय / यूके के शोधकर्ता वर्तमान में अपशिष्ट भाप और अपशिष्ट गर्मी से ऊर्जा उत्पन्न करने के लिए वाट के इंजन का एक आधुनिक संस्करण विकसित कर रहे हैं। उन्होंने सिद्धांत में सुधार किया, यह प्रदर्शित करते हुए कि 17.4% तक की सैद्धांतिक क्षमता (और 11% की वास्तविक क्षमता) संभव है।<ref>{{Cite journal|last=Müller|first=Gerald|year=2015|title=मजबूर विस्तार के साथ वायुमंडलीय भाप इंजन की प्रायोगिक जांच|url=https://eprints.soton.ac.uk/381695/1/Revised%2520manuscript%2520Muller%252022_06_2014.pdf|access-date=5 March 2018|journal=Renewable Energy|volume=75|pages=348–355|doi=10.1016/j.renene.2014.09.061}}</ref>  
 
[[File:25 Watt Condensing Engine Model 2016.jpg|thumb|साउथेम्प्टन विश्वविद्यालय में निर्मित और परीक्षण किया गया 25 वाट प्रायोगिक संघनक इंजन|alt=]]सिद्धांत को प्रदर्शित करने के लिए, एक 25 वाट का प्रायोगिक मॉडल इंजन बनाया गया और उसका परीक्षण किया गया। इंजन में भाप के विस्तार के साथ-साथ इलेक्ट्रॉनिक नियंत्रण जैसी नई सुविधाएँ शामिल हैं। तस्वीर 2016 में निर्मित और परीक्षण किए गए मॉडल को दिखाती है।<ref>{{Cite web|url=https://the-condensing-engine-project.com/technology/model-tests/|title=मॉडल परीक्षण, एमके 1|date=2016-10-08|website=The Condensing Engine Project|language=en|access-date=2019-08-25}}</ref> वर्तमान में, एक स्केल-अप 2 kW इंजन के निर्माण और परीक्षण के लिए एक परियोजना तैयार की जा रही है।<ref>{{Cite web|url=https://the-condensing-engine-project.com/crowd-funding/|title=क्राउड फंडिंग|date=2016-10-09|website=The Condensing Engine Project|language=en|access-date=2019-08-25}}</ref>
 
 
 
 
 
 
== नव गतिविधि ==
वाट के विस्तार इंजन को सामान्यतः केवल ऐतिहासिक हित के रूप में माना जाता है। यद्यपि कुछ हाल के घटनाक्रम हैं जो प्रौद्योगिकी के पुनर्जागरण का कारण बन सकते हैं। आज, उद्योग द्वारा उत्पन्न 100 और 150 डिग्री सेल्सियस के बीच तापमान के साथ अपशिष्ट भाप और अपशिष्ट ऊष्मा की भारी मात्रा है। इसके अलावा, सोलरथर्मल कलेक्टर, भू-तापीय ऊर्जा स्रोत और बायोमास रिएक्टर इस तापमान सीमा में ऊष्मा पैदा करते हैं। इस ऊर्जा का उपयोग करने के लिए प्रौद्योगिकियां हैं, विशेष रूप से ऑर्गेनिक रैंकिन साइकिल। सिद्धांत रूप में, ये भाप टर्बाइन हैं जो पानी का उपयोग नहीं करते हैं लेकिन द्रव (प्रशीतक) जो 100 डिग्री सेल्सियस से नीचे तापमान पर वाष्पित हो जाता है। हालांकि ऐसी प्रणालियां काफी जटिल हैं। ये 6 से 20 बार के दबाव से कार्य करते हैं, जिससे पूरी प्रणाली को संपूर्ण रूप से बंद करना पड़ता है।
 
विस्तार इंजन यहां महत्वपूर्ण लाभ प्रदान कर सकता है, विशेष रूप से 2 से 100 किलोवाट (kW) की कम बिजली रेटिंग के लिए: 1: 5 के विस्तार अनुपात के साथ, सैद्धांतिक दक्षता 15% तक पहुंच जाती है, जो ORC सिस्टम की सीमा में है। विस्तार इंजन पानी का उपयोग कार्यशील तरल पदार्थ के रूप में करता है जो सरल, सस्ता, गैर विषैले, गैर ज्वलनशील और गैर संक्षारक है। यह वायुमंडलीय के करीब और नीचे दबाव पर कार्य करता है, ताकि बंदिंग कोई समस्या न हो। और यह एक साधारण मशीन है, जिसका अर्थ लागत प्रभावशीलता है। साउथेम्प्टन / यूके विश्वविद्यालय के शोधकर्ता वर्तमान में अपशिष्ट भाप और अपशिष्ट ऊष्मा से ऊर्जा उत्पन्न करने के लिए वाट के इंजन का आधुनिक संस्करण विकसित कर रहे हैं। उन्होंने यह प्रदर्शित करते हुए सिद्धांत में सुधार किया कि 17.4% तक की सैद्धांतिक क्षमता (और 11% की वास्तविक क्षमता) संभव है।<ref>{{Cite journal|last=Müller|first=Gerald|year=2015|title=मजबूर विस्तार के साथ वायुमंडलीय भाप इंजन की प्रायोगिक जांच|url=https://eprints.soton.ac.uk/381695/1/Revised%2520manuscript%2520Muller%252022_06_2014.pdf|access-date=5 March 2018|journal=Renewable Energy|volume=75|pages=348–355|doi=10.1016/j.renene.2014.09.061}}</ref>
 
25 वाट प्रायोगिक संघनक इंजन का निर्माण और परीक्षण साउथेम्प्टन विश्वविद्यालय में किया गया। सिद्धांत को प्रदर्शित करने के लिए, एक 25 वाट प्रायोगिक मॉडल इंजन का निर्माण और परीक्षण किया गया। इंजन में भाप विस्तार के साथ-साथ इलेक्ट्रॉनिक नियंत्रण जैसी नई सुविधाएँ भी सम्मिलित हैं। चित्र 2016 में निर्मित और परीक्षण किए गए मॉडल को दिखाता है।<ref>{{Cite web|url=https://the-condensing-engine-project.com/technology/model-tests/|title=मॉडल परीक्षण, एमके 1|date=2016-10-08|website=The Condensing Engine Project|language=en|access-date=2019-08-25}}</ref> वर्तमान में, एक स्केल-अप 2 kW इंजन के निर्माण और परीक्षण की परियोजना तैयार की जा रही है।<ref>{{Cite web|url=https://the-condensing-engine-project.com/crowd-funding/|title=क्राउड फंडिंग|date=2016-10-09|website=The Condensing Engine Project|language=en|access-date=2019-08-25}}</ref>
 
== यह भी देखें ==
== यह भी देखें ==
* [[कार्नाट चक्र]]
* [[कार्नाट चक्र]]
* [[कॉर्लिस स्टीम इंजन]]
* [[कॉर्लिस स्टीम इंजन]]
*[[इंजन गर्म करें]]
*[[कॉर्लिस स्टीम इंजन|ऊष्मा इंजन]]
* [[ऊष्मप्रवैगिकी]]
* [[ऊष्मप्रवैगिकी]]
*: श्रेणी: संरक्षित बीम इंजन
*संरक्षित बीम इंजन
*[[इवान पोलज़ुनोव]] ने 1766 में एक डुअल-पिस्टन स्टीम इंजन बनाया, लेकिन बड़े पैमाने पर उत्पादन करने से पहले ही उसकी मृत्यु हो गई
*[[इवान पोलज़ुनोव]] ने 1766 में एक डुअल-पिस्टन स्टीम इंजन बनाया, लेकिन बड़े पैमाने पर उत्पादन करने से पहले ही उसकी मृत्यु हो गई।


==संदर्भ==
==संदर्भ==
Line 131: Line 131:




==इस पेज में लापता आंतरिक लिंक की सूची==
*मैड्रिड के तकनीकी विश्वविद्यालय
*भाप का इंजन
*Newcom वायुमंडलीय इंजन
*पानी का चक्का
*तलरूप
*मैथ्यू बोल्टन
*खुदाई
*वायु - दाब
*वाष्पीकरण
*ब्रसेल्स
*जॉन विल्किंसन (उद्योगपति)
*बोल्टन और वाट
*प्रत्यागामी इंजन
*पेंटोग्राफ (परिवहन)
*केन्द्रापसारक राज्यपाल
*हेनरी फोर्ड संग्रहालय
*A38 (एम) मोटरवे
*वयर्थ ऊष्मा
*कार्बनिक रैंकिन चक्र
==बाहरी कड़ियाँ==
==बाहरी कड़ियाँ==
{{commons category-inline|James Watt|<br />Watt steam engines}}
{{commons category-inline|James Watt|<br />Watt steam engines}}
Line 163: Line 141:
{{Steam engine configurations}}
{{Steam engine configurations}}


{{DEFAULTSORT:Watt Steam Engine}}[[श्रेणी: औद्योगिक क्रांति]]
{{DEFAULTSORT:Watt Steam Engine}}
[[श्रेणी: स्कॉटिश आविष्कार]]
[[श्रेणी:जेम्स वाट|भाप इंजन]]
[[श्रेणी: भाप इंजन का इतिहास]]
[[श्रेणी:बीम इंजन]]
[[श्रेणी:स्थिर भाप इंजन]]
[[श्रेणी: ऊष्मप्रवैगिकी]]


[[Category:Articles with hatnote templates targeting a nonexistent page|Watt Steam Engine]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Watt Steam Engine]]
[[Category:Articles with invalid date parameter in template|Watt Steam Engine]]
[[Category:Articles with invalid date parameter in template|Watt Steam Engine]]
[[Category:Articles with short description|Watt Steam Engine]]
[[Category:Articles with short description|Watt Steam Engine]]
[[Category:CS1]]
[[Category:CS1|Watt Steam Engine]]
[[Category:CS1 errors]]
[[Category:CS1 English-language sources (en)|Watt Steam Engine]]
[[Category:CS1 errors|Watt Steam Engine]]
[[Category:CS1 français-language sources (fr)|Watt Steam Engine]]
[[Category:CS1 maint|Watt Steam Engine]]
[[Category:CS1 Ελληνικά-language sources (el)|Watt Steam Engine]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates|Watt Steam Engine]]
[[Category:Collapse templates|Watt Steam Engine]]
[[Category:Commons category link is locally defined|Watt Steam Engine]]
[[Category:Commons category link is locally defined|Watt Steam Engine]]
Line 181: Line 158:
[[Category:EngvarB from August 2017|Watt Steam Engine]]
[[Category:EngvarB from August 2017|Watt Steam Engine]]
[[Category:Machine Translated Page|Watt Steam Engine]]
[[Category:Machine Translated Page|Watt Steam Engine]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Watt Steam Engine]]
[[Category:Pages with script errors|Watt Steam Engine]]
[[Category:Short description with empty Wikidata description|Watt Steam Engine]]
[[Category:Sidebars with styles needing conversion|Watt Steam Engine]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Watt Steam Engine]]
[[Category:Templates based on the Citation/CS1 Lua module|Watt Steam Engine]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats|Watt Steam Engine]]
[[Category:Templates that are not mobile friendly|Watt Steam Engine]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData|Watt Steam Engine]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates|Watt Steam Engine]]

Latest revision as of 10:45, 8 January 2023

डबल-अभिनय भाप इंजन, अब मैड्रिड के तकनीकी विश्वविद्यालय (मैड्रिड) के सुपीरियर तकनीकी स्कूल ऑफ इंडस्ट्रियल इंजीनियर्स की लॉबी में ). इस तरह के भाप इंजनों ने ग्रेट ब्रिटेन और दुनिया में औद्योगिक क्रांति को प्रेरित किया।

वाट भाप इंजन का डिजाइन भाप इंजन का समानार्थी बन गया, और मुख्य वाट डिजाइन को बदलने के लिए महत्वपूर्ण रूप से नए डिजाइन प्रारंभ होने से कई साल पहले यह था।

वर्ष 1712 में थॉमस न्यूकोमेन द्वारा पेश किए गए पहले भाप इंजन, "वायुमंडलीय" डिजाइन के थे। पावर स्ट्रोक (इंजन) के अंत में, इंजन द्वारा स्थानांतरित की जा रही वस्तु के वजन ने पिस्टन को सिलेंडर के शीर्ष पर खींच लिया क्योंकि भाप पेश की गई थी। फिर सिलेंडर को पानी के स्प्रे से ठंडा किया गया, जिससे भाप संघनित हो गई, जिससे सिलेंडर में आंशिक वैक्यूम बन गया। पिस्टन के शीर्ष पर वायुमंडलीय दबाव ने इसे नीचे धकेल दिया, कार्य वस्तु को ऊपर उठा दिया। जेम्स वॉट ने देखा कि सिलेंडर को वापस उस बिंदु तक गर्म करने के लिए काफी मात्रा में ऊष्मा की आवश्यकता होती है जहां भाप तुरंत बिना संघनित हुए सिलेंडर में प्रवेश कर सके। जब सिलिंडर इतना गर्म था कि वह भाप से भर गया तो अगला पॉवर स्ट्रोक प्रारंभ हो सकता था।

वाट ने अनुभव किया कि सिलेंडर को गर्म करने के लिए जरूरी ऊष्मा को एक अलग संघनक सिलेंडर जोड़कर बचाया जा सकता है। पावर सिलेंडर को भाप से भर देने के बाद, द्वितीयक सिलेंडर के लिए एक वाल्व खोला गया, जिससे भाप उसमें प्रवाहित हो सके और संघनित हो सके, जिससे मुख्य सिलेंडर से भाप निकली जिससे बिजली का झटका लगा। भाप संघनित रखने के लिए संघनक सिलेंडर पानी ठंडा किया गया था। पावर स्ट्रोक के अंत में, वाल्व को बंद कर दिया गया था अतएव पिस्टन के शीर्ष पर चले जाने पर पावर सिलेंडर भाप से भर सके। परिणाम न्यूकॉमन के डिजाइन के समान चक्र था, लेकिन बिजली सिलेंडर को ठंडा किए बिना जो तुरंत एक और स्ट्रोक के लिए तैयार था।

वाट ने कई वर्षों की अवधि में डिजाइन पर कार्य किया, कंडेनसर के प्रारंभ की, और व्यावहारिक रूप से डिजाइन के हर भाग में सुधार पेश किया। विशेष रूप से, वाट ने सिलेंडर में पिस्टन को बंद करने के विधियों पर परीक्षणों की एक लंबी श्रृंखला का प्रदर्शन किया, जिससे बिजली की हानि को रोकने के लिए बिजली के झटके के दौरान रिसाव काफी कम हो गया। इन सभी परिवर्तनों ने एक अधिक विश्वसनीय डिजाइन का निर्माण किया, जो समान मात्रा में बिजली का उत्पादन करने के लिए आधे कोयले का उपयोग करता था।[1]

नया डिजाइन 1776 में व्यावसायिक रूप से पेश किया गया था, जिसमें पहला उदाहरण कैरोन कंपनी आयरनवर्क्स को बेचा गया था। वाट ने इंजन में सुधार के लिए कार्य करना जारी रखा, और 1781 में इंजनों की रैखिक गति को रोटरी गति में बदलने के लिए सूर्य और ग्रह गियर का उपयोग करके एक प्रणाली के प्रारंभ की। इसने न केवल मूल पम्पिंग भूमिका में, बल्कि उन भूमिकाओं में प्रत्यक्ष प्रतिस्थापन के रूप में भी उपयोगी बना दिया, जहां पहले पानी के पहिये का उपयोग किया जाता था। औद्योगिक क्रांति में यह एक महत्वपूर्ण क्षण था, क्योंकि बिजली के स्रोत अब कहीं भी स्थित हो सकते हैं, पहले की तरह, उपयुक्त जल स्रोत और स्थलाकृति की आवश्यकता नहीं थी। वाट के साथी मैथ्यू बौल्टन ने इस रोटरी शक्ति का उपयोग करने वाली मशीनों की एक बड़ी संख्या का विकास करना प्रारंभ किया, पहला आधुनिक औद्योगिक कारखाना, सोहो फाउंड्री का विकास किया, जिसने बदले में नए भाप इंजन डिजाइन तैयार किए। वाट के प्रारंभआती इंजन मूल न्यूकमेन डिजाइनों की तरह थे जिसमें वे कम दबाव वाली भाप का उपयोग करते थे, और सभी शक्ति वायुमंडलीय दबाव से उत्पन्न होती थी। जब, 1800 के दशक के प्रारंभ में, अन्य कंपनियों ने उच्च दबाव वाले भाप इंजन पेश किए, सुरक्षा चिंताओं के कारण वाट सूट का पालन करने के लिए अनिच्छुक था[2] अपने इंजनों के प्रदर्शन में सुधार करना चाहते हैं, वाट ने उच्च-दबाव वाली भाप के उपयोग पर विचार करना प्रारंभ किया, साथ ही डबल-अभिनय अवधारणा और बहु-विस्तार अवधारणा दोनों में कई सिलेंडरों का उपयोग करने वाले डिजाइनों पर भी विचार किया। इन डबल-अभिनय इंजनों को समानांतर गति के आविष्कार की आवश्यकता थी, जिसने सिलेंडर में पिस्टन को सही रखते हुए, अलग-अलग सिलेंडरों की पिस्टन छड़ों को सीधी रेखाओं में स्थानांतरित करने की अनुमति दी, जबकि चलने वाले बीम कुछ स्तर तक भाप इंजनों में क्रॉसहेड के माध्यम से चले गए।

परिचय

1698 में, अंग्रेजी यांत्रिक डिजाइनर थॉमस सेवरी ने एक पम्पिंग उपकरण का आविष्कार किया जो वाष्प को संघनित करके बनाए गए निर्वात के माध्यम से एक कुएं से सीधे पानी खींचने के लिए भाप का उपयोग करता था। उपकरण को खानों की निकासी के लिए भी प्रस्तावित किया गया था, लेकिन यह केवल लगभग 25 फीट तक तरल पदार्थ खींच सकता था, जिसका अर्थ है कि यह खदान के फर्श से इस दूरी के भीतर स्थित होना चाहिए। जैसे-जैसे खदानें गहरी होती गईं, यह प्रायः अव्यवहारिक होता गया। बाद के इंजनों की तुलना में इसमें बड़ी मात्रा में ईंधन की खपत भी हुई।[3]

मॉडल न्यूकमेन वायुमंडलीय इंजन जिस पर वाट ने प्रयोग किया

गहरी खानों को निकालने का समाधान थॉमस न्यूकॉमन द्वारा खोजा गया था जिन्होंने "वायुमंडलीय" इंजन विकसित किया था जो वैक्यूम सिद्धांत पर भी कार्य करता था। इसने रॉकिंग बीम के एक छोर पर श्रृंखला से जुड़े जंगम पिस्टन युक्त एक सिलेंडर को लगाया जो इसके विपरीत छोर से यांत्रिक लिफ्ट पंप का कार्य करता था। प्रत्येक स्ट्रोक के तल पर, पिस्टन के नीचे सिलेंडर में भाप को प्रवेश करने की अनुमति दी गई थी। जैसा कि पिस्टन सिलेंडर के भीतर उठा, इसे प्रतिसंतुलन द्वारा ऊपर की ओर खींचा गया, इसने वायुमंडलीय दबाव पर भाप खींची। स्ट्रोक के शीर्ष पर भाप के वाल्व को बंद कर दिया गया था, और भाप को ठंडा करने के साधन के रूप में ठंडे पानी को संक्षेप में सिलेंडर में इंजेक्ट किया गया था। इस पानी ने भाप को संघनित किया और पिस्टन के नीचे आंशिक निर्वात पैदा किया। इंजन के बाहर का वायुमंडलीय दबाव तब सिलेंडर के अंदर के दबाव से अधिक था, जिससे पिस्टन सिलेंडर में चला गया। पिस्टन, एक श्रृंखला से जुड़ा हुआ है और इसके स्थान पर "रॉकिंग बीम" के एक छोर से जुड़ा हुआ है, बीम के विपरीत छोर को ऊपर उठाते हुए बीम के अंत को नीचे खींच लिया। इसलिए, रस्सियों और जंजीरों के माध्यम से बीम के विपरीत छोर से जुड़ी खदान में गहरा पंप चलाया गया था। पंप ने पानी के स्तंभ को ऊपर की ओर खींचने के स्थान पर धक्का दिया, इसलिए यह किसी भी दूरी तक पानी उठा सकता था। एक बार जब पिस्टन नीचे था, चक्र दोहराया गया।[3]

न्यूकॉमन इंजन सावेरी इंजन से ज्यादा शक्तिशाली था। पहली बार पानी को 100 गज (91 मीटर) से अधिक की गहराई से उठाया जा सका। 1712 से पहला उदाहरण 500 घोड़ों की एक टीम को बदलने में सक्षम था जिसका उपयोग खदान को बाहर निकालने के लिए किया गया था। ब्रिटेन, फ्रांस, हॉलैंड, स्वीडन और रूस में खानों में पचहत्तर न्यूकॉमन पंपिंग इंजन लगाए गए थे। अगले पचास वर्षों में इंजन के डिज़ाइन में केवल कुछ छोटे परिवर्तन किए गए। यह एक बहुत बड़ी प्रगति थी।

जबकि न्यूकम इंजन व्यावहारिक लाभ लाए, वे ऊर्जा के उपयोग के मामले में अक्षम थे। बारी-बारी से भाप के जेट भेजने की प्रणाली, फिर ठंडे पानी को सिलेंडर में भेजने का तात्पर्य था कि सिलेंडर की दीवारों को बारी-बारी से गर्म किया जाता था, फिर प्रत्येक स्ट्रोक (प्रहार) के साथ ठंडा किया जाता था। भाप का प्रत्येक आवेश तब तक संघनित होता रहेगा जब तक कि सिलेंडर एक बार फिर से कार्य करने वाले तापमान तक नहीं पहुँचता। इसलिए प्रत्येक स्ट्रोक में कुछ भागो में भाप की क्षमता ख़त्म हो जाता था l

पृथक कंडेनसर

वाट पंपिंग इंजन के प्रमुख घटक

1763 में, जेम्स वाट ग्लासगो विश्वविद्यालय में उपकरण निर्माता के रूप में कार्य कर रहे थे, जब उन्हें एक मॉडल न्यूकमेन इंजन की मरम्मत का कार्य सुपुर्द किया गया था और उन्होंने नोट किया कि यह कितना अक्षम था।[4]

1765 में, वाट ने इंजन को अलग कंडेनसेशन कक्ष से लैस करने के विचार की कल्पना की, जिसे उन्होंने "कंडेनसर" कहा। क्योंकि संघनित्र और कार्यरत सिलेंडर (इंजन) अलग थे, सिलेंडर से ऊष्मा की हानि के बिना संक्षेपण हुआ। संघनित्र हर समय ठंडा और वायुमंडलीय दबाव से नीचे रहता है, जबकि सिलेंडर हर समय गर्म रहता है।

भाप बॉयलर से पिस्टन के नीचे सिलेंडर तक खींची गई थी। जब पिस्टन सिलेंडर के शीर्ष पर पहुंच गया, तो स्टीम इनलेट वाल्व बंद हो गया और कंडेनसर के मार्ग को नियंत्रित करने वाला वाल्व खुल गया। कंडेनसर कम दबाव में होने के कारण, सिलेंडर से भाप को कंडेनसर में खींचता है जहां यह ठंडा होता है और जल वाष्प से तरल पानी में संघनित होता है, जिससे कंडेनसर में एक आंशिक वैक्यूम बना रहता है जिसे कनेक्टिंग मार्ग द्वारा सिलेंडर के स्थान पर संचार किया जाता है। बाहरी वायुमंडलीय दबाव ने पिस्टन को सिलेंडर के नीचे धकेल दिया।

सिलेंडर और कंडेनसर के अलग होने से न्यूकमेन इंजन के कार्य करने वाले सिलेंडर में भाप के संघनित होने पर होने वाली ऊष्मा की कमी समाप्त हो गई। इसने न्यूकमेन इंजन की तुलना में वाट इंजन को अधिक दक्षता प्रदान की, जिससे न्यूकमेन इंजन के समान कार्य करते समय खपत कोयले की मात्रा कम हो गई।

वाट के डिजाइन में, ठंडे पानी को केवल संघनन कक्ष में ही इंजेक्ट किया गया था। इस प्रकार के कंडेनसर को जेट कंडेनसर के रूप में जाना जाता है। कंडेनसर सिलेंडर के नीचे ठंडे पानी के स्नान में स्थित है। स्प्रे के रूप में कंडेनसर में प्रवेश करने वाले पानी की मात्रा भाप की गुप्त ऊष्मा को अवशोषित करती है, और इसे संघनित भाप की मात्रा के सात गुणा के रूप में निर्धारित किया गया था। संघनित और इंजेक्ट किए गए पानी को तब वायु पंप द्वारा हटा दिया गया था, और आसपास के ठंडे पानी ने शेष तापीय ऊर्जा को अवशोषित करने के लिए 30 डिग्री सेल्सियस से 45 डिग्री सेल्सियस के कंडेनसर तापमान और 0.04 से 0.1 के बराबर दबाव को बनाए रखने के लिए कार्य किया।[5]

प्रत्येक स्ट्रोक पर कंडेनसर से गर्म घनीभूत निकाला जाता था और एक वैक्यूम पंप द्वारा गर्म कुएं में भेजा जाता था, जिससे बिजली सिलेंडर के नीचे से भाप को बाहर निकालने में भी मदद मिलती थी। अभी भी गर्म घनीभूत को बॉयलर के लिए फीडवाटर के रूप में पुनर्नवीनीकरण किया गया था।

न्यूकमेन डिजाइन में वाट का अगला सुधार सिलेंडर के शीर्ष को बंद करना और एक जैकेट के साथ सिलेंडर को घेरना था। पिस्टन के नीचे प्रवेश करने से पहले भाप को जैकेट के माध्यम से पारित किया गया था, पिस्टन और सिलेंडर को इसके भीतर संघनन को रोकने के लिए गर्म रखा गया था। दूसरा सुधार पिस्टन के दूसरी तरफ वैक्यूम के विरुद्ध भाप के विस्तार का उपयोग था। स्ट्रोक के दौरान भाप की आपूर्ति में कटौती की गई, और भाप दूसरी तरफ वैक्यूम के खिलाफ फैल गई। इसने इंजन की दक्षता में वृद्धि की, लेकिन शाफ्ट पर एक चर टोक़ भी बनाया जो कई अनुप्रयोगों के लिए अवांछनीय था, विशेष रूप से पम्पिंग में। वाट ने इसलिए विस्तार को 1:2 के अनुपात तक सीमित कर दिया (यानी भाप की आपूर्ति आधे स्ट्रोक में कट गई)। इसने सैद्धांतिक दक्षता को 6.4% से बढ़ाकर 10.6% कर दिया, जिसमें पिस्टन के दबाव में केवल एक छोटा सा परिवर्तन था।[5] सुरक्षा चिंताओं के कारण वॉट ने उच्च दाब वाली भाप का उपयोग नहीं किया।[2]: 85 

न्यूकमेन डिजाइन में वाट का अगला सुधार सिलेंडर के शीर्ष को बंद करना और एक जैकेट के साथ सिलेंडर को घेरना था। पिस्टन के नीचे प्रवेश करने से पहले भाप को जैकेट के माध्यम से पारित किया गया था, इसके भीतर संघनन को रोकने के लिए पिस्टन और सिलेंडर को गर्म रखा गया था। दूसरा सुधार पिस्टन के दूसरी तरफ वैक्यूम के खिलाफ भाप के विस्तार का उपयोग था। स्ट्रोक के दौरान भाप की आपूर्ति में कटौती की गई, और दूसरी तरफ वैक्यूम के खिलाफ भाप का विस्तार हुआ। इसने इंजन की दक्षता में वृद्धि की, लेकिन शाफ्ट पर एक परिवर्तनीय टोक़ भी बनाया जो कई अनुप्रयोगों के लिए अवांछनीय था, विशेष रूप से पम्पिंग में। वाट ने इसलिए विस्तार को 1:2 के अनुपात तक सीमित कर दिया (अर्थात भाप की आपूर्ति आधे स्ट्रोक में कट गई)। इसने सैद्धांतिक दक्षता को 6.4% से बढ़ाकर 10.6% कर दिया, जिसमें पिस्टन दबाव में केवल एक छोटा बदलाव था।[5]सुरक्षा चिंताओं के कारण वाट ने उच्च दाब वाली भाप का उपयोग नहीं किया।[2]: 85 

इन सुधारों के कारण 1776 का पूर्ण विकसित संस्करण तैयार हुआ जो वास्तव में उत्पादन में चला गया।[6]

मैथ्यू बोल्टन और जेम्स वाट की साझेदारी

अलग कंडेनसर ने न्यूकमेन इंजन में सुधार के लिए नाटकीय क्षमता दिखाई, लेकिन एक विपणन योग्य इंजन को सिद्ध करने से पहले वाट अभी भी दुर्गम प्रतीत होने वाली समस्याओं से हतोत्साहित था। मैथ्यू बोल्टन के साथ साझेदारी में प्रवेश करने के बाद ही यह वास्तविकता बन पाई। वाट ने बोल्टन को इंजन में सुधार के बारे में अपने विचारों के बारे में बताया, और बोल्टन, एक उग्र उद्यमी, बर्मिंघम के निकट सोहो में एक परीक्षण इंजन के विकास के लिए धन देने पर सहमत हुए। अंत में वाट के पास सुविधाओं तक पहुंच थी और कारीगरों का व्यावहारिक अनुभव था जो जल्द ही पहला इंजन कार्य करने में सक्षम थे। पूरी तरह से विकसित होने के कारण, यह एक समान न्यूकम की तुलना में लगभग 75% कम ईंधन का उपयोग करता है।

1775 में, वाट ने दो बड़े इंजन डिजाइन किए: एक टिपटन (Tipton) में ब्लूमफील्ड कोलियरी के लिए, मार्च 1776 में पूरा हुआ, और एक श्रॉपशायर में ब्रॉस्ली में जॉन विल्किंसन के आयरनवर्क्स के लिए, जो अगले महीने कार्य कर रहा था। एक तीसरा इंजन, पूर्वी लंदन के स्ट्रैटफ़ोर्ड-ले-बो में भी उस ऊष्मा में कार्य कर रहा था।[7]

वाट ने कई वर्षों तक अपने भाप इंजनों के लिए सटीक रूप से ऊबा हुआ सिलेंडर प्राप्त करने का असफल प्रयास किया था, और हथौड़े वाले लोहे का उपयोग करने के लिए मजबूर किया गया था, जो गोल नहीं था और पिस्टन के पिछले रिसाव का कारण बना। जोसेफ विकहैम रो ने 1916 में कहा: "जब जॉन स्मेटन ने पहला इंजन देखा तो उन्होंने सोसाइटी ऑफ इंजीनियर्स को बताया कि 'न तो उपकरण थे और न ही कार्य करने वाले उपस्थित थे जो पर्याप्त सटीकता के साथ ऐसी जटिल मशीन का निर्माण कर सकते थे'"।[8]

1774 में, जॉन विल्किंसन ने एक बोरिंग मशीन का आविष्कार किया जिसमें काटने के उपकरण को रखने वाले शाफ्ट को दोनों सिरों पर सहारा दिया गया और सिलेंडर के माध्यम से बढ़ाया गया, कैंटिलीवर बोरर्स के विपरीत जो तब उपयोग में थे। बौल्टन ने 1776 में लिखा था कि "श्री विल्किन्सन ने हमें बिना किसी त्रुटि के लगभग कई सिलेंडर बोर कर दिए हैं; 50 इंच व्यास का वह, जिसे हमने टिपटन में रखा है, किसी भी भाग में पुराने शिलिंग की मोटाई पर गलत नहीं है"।[8]

बॉल्टन और वाट का अभ्यास खान-मालिकों और अन्य ग्राहकों को इंजन बनाने में मदद करना था, उन्हें खड़ा करने के लिए पुरुषों की आपूर्ति करना और कुछ विशेष पुर्जे। हालांकि, उनके पेटेंट से उनका मुख्य लाभ इंजन मालिकों को उनके द्वारा बचाए गए ईंधन की लागत के आधार पर लाइसेंस शुल्क चार्ज करने से प्राप्त हुआ था। उनके इंजनों की अधिक ईंधन दक्षता का तात्पर्य था कि वे उन क्षेत्रों में सबसे आकर्षक थे जहां ईंधन महंगा था, विशेष रूप से कॉर्नवाल, जिसके लिए 1777 में व्हील बिजी, टिंग टैंग और चासवाटर खदानों के लिए तीन इंजनों का आदेश दिया गया था।[9]

बाद के सुधार

पम्पिंग इंजन पर वाट की समानांतर गति

पहले वाट इंजन न्यूकॉमन इंजन की तरह वायुमंडलीय दबाव इंजन थे, लेकिन संक्षेपण सिलेंडर से अलग होने के साथ। कम दाब वाली भाप और आंशिक निर्वात दोनों का उपयोग करके इंजन को चलाने से इंजन के विकास की संभावना बढ़ जाती है।[10] वाल्वों की एक व्यवस्था वैकल्पिक रूप से सिलेंडर में कम दबाव वाली भाप को प्रवेश कर सकती है और फिर कंडेनसर से जुड़ सकती है। नतीजतन, पावर स्ट्रोक की दिशा उलटी हो सकती है, जिससे रोटरी मोशन प्राप्त करना आसान हो जाता है। सिंगल- और डबल-एक्टिंग सिलेंडर इंजन के अतिरिक्त लाभों में दक्षता में वृद्धि, उच्च गति (अधिक शक्ति) और अधिक नियमित गति सम्मिलित थे। डबल एक्टिंग पिस्टन के विकास से पहले, बीम और पिस्टन रॉड का जुड़ाव एक श्रृंखला के माध्यम से होता था, जिसका अर्थ था कि शक्ति को केवल एक दिशा में खींचा जा सकता है। यह उन इंजनों में प्रभावी था जिनका उपयोग पानी को पंप करने के लिए किया जाता था, लेकिन पिस्टन की दोहरी क्रिया का तात्पर्य था कि यह धक्का और खींच सकता था। यह तब तक संभव नहीं था जब तक बीम और रॉड एक श्रृंखला से जुड़े हुए थे। इसके अलावा, बंदबंद सिलेंडर के पिस्टन रॉड को सीधे बीम से जोड़ना संभव नहीं था, क्योंकि जब रॉड एक सीधी रेखा में लंबवत रूप से चलती थी, तो बीम को उसके केंद्र में घुमाया जाता था, जिसमें प्रत्येक तरफ एक चाप होता था। बीम और पिस्टन की परस्पर विरोधी क्रियाओं को पाटने के लिए वाट ने समानांतर गति विकसित की। इस उपकरण ने एक पैंटोग्राफ के साथ मिलकर एक चार बार लिंकेज का उपयोग किया, जो आवश्यक सीधी रेखा गति का उत्पादन करने के लिए बहुत सस्ते में करता था, अगर उसने स्लाइडर प्रकार के लिंकेज का उपयोग किया होता तो उन्हें अपने समाधान पर बहुत गर्व होता।

वाट भाप इंजन[11]

दोनों दिशाओं में वैकल्पिक रूप से लगाए गए बल के माध्यम से पिस्टन शाफ्ट से जुड़े बीम होने का तात्पर्य यह भी था कि बीम की गति का उपयोग पहिया को घुमाने के लिए संभव था। बीम की क्रिया को घूर्णन गति में बदलने का सबसे सरल समाधान एक क्रैंक द्वारा बीम को पहिये से जोड़ना था, लेकिन क्योंकि क्रैंक के उपयोग पर किसी अन्य पक्ष के पेटेंट अधिकार थे, वाट को एक अन्य समाधान के साथ आने के लिए बाध्य होना पड़ा।[12] उन्होंने एक कर्मचारी विलियम मर्डोक द्वारा सुझाए गए अधिचक्रीय गियर सन एंड प्लैनेट गियर सिस्टम को अपनाया, केवल बाद में, एक बार पेटेंट अधिकार समाप्त हो जाने के बाद, अधिकांश इंजनों पर अधिक परिचित क्रैंक देखा गया।[13]

क्रैंक से जुड़ा मुख्य पहिया बड़ा और भारी था, जो एक चक्का के रूप में कार्य करता था, जो एक बार गति में सेट हो जाता था, इसकी गति से निरंतर शक्ति बनी रहती थी और बारी-बारी से स्ट्रोक की क्रिया को सुचारू करता था। इसके घूमने वाले केंद्रीय शाफ्ट के लिए, बेल्ट और गियर को विभिन्न प्रकार की मशीनरी चलाने के लिए जोड़ा जा सकता है।

क्योंकि कारखाने की मशीनरी को स्थिर गति से संचालित करने की आवश्यकता थी, वाट ने एक भाप नियामक वाल्व को एक केन्द्रापसारक गवर्नर से जोड़ा, जिसे उन्होंने पवन चक्कियों की गति को स्वचालित रूप से नियंत्रित करने के लिए उपयोग किए जाने वाले से अनुकूलित किया।[14] केन्द्रापसारक वास्तविक गति पीआईडी नियंत्रक नहीं था क्योंकि यह लोड में परिवर्तन के जवाब में एक निर्धारित गति नहीं पकड़ सकता था।[15]

इन सुधारों ने ब्रिटिश उद्योग के लिए शक्ति के मुख्य स्रोतों के रूप में जल चक्र और घोड़ों को प्रतिस्थापित करने के लिए भाप इंजन की अनुमति दी, जिससे यह भौगोलिक बाधाओं से मुक्त हो गया और औद्योगिक क्रांति में मुख्य चालकों में से एक बन गया।

वाट भाप के इंजन की कार्यप्रणाली पर मौलिक अनुसंधान से भी संबंधित थे। उनका सबसे उल्लेखनीय मापने वाला उपकरण, जो आज भी उपयोग में है, पिस्टन की स्थिति के अनुसार सिलेंडर के भीतर भाप के दबाव को मापने के लिए एक मैनोमीटर को सम्मिलित करने वाला वाट संकेतक आरेख है, जो भाप के दबाव को इसके कार्य के रूप में प्रस्तुत करने के लिए आरेख को सक्षम करता है पूरे चक्र में मात्रा।


संरक्षित वाट इंजन

सबसे पुराना जीवित वाट इंजन 1777 का ओल्ड बेस (बीम इंजन) है, जो अब विज्ञान संग्रहालय, लंदन में है। दुनिया का सबसे पुराना कार्य करने वाला इंजन स्मेथविक इंजन है, जिसे मई 1779 में सेवा में लाया गया था और अब बर्मिंघम में थिंकटैंक, बर्मिंघम में (पूर्व में अब निष्क्रिय विज्ञान और उद्योग संग्रहालय, बर्मिंघम में)। विल्टशायर के क्रॉफ्टन पंपिंग स्टेशन में 1812 बौल्टन और वाट इंजन अपने मूल इंजन हाउस में अभी भी सबसे पुराना है और अभी भी वह कार्य करने में सक्षम है जिसके लिए इसे स्थापित किया गया था। यह केनेट और एवन नहर के लिए पानी पंप करने के लिए उपयोग किया गया था; पूरे वर्ष के कुछ सप्ताहांतों में आधुनिक पंप बंद कर दिए जाते हैं और क्रॉफ्टन के दो भाप इंजन अभी भी इस कार्य को करते हैं। सबसे पुराना उपस्थिता घूर्णी भाप इंजन, व्हिटब्रेड इंजन (1785 से, अब तक का तीसरा घूर्णी इंजन), सिडनी, ऑस्ट्रेलिया में पावरहाउस संग्रहालय में स्थित है। 1788 का बोल्टन-वाट इंजन विज्ञान संग्रहालय (लंदन)|विज्ञान संग्रहालय, लंदन में पाया जा सकता है।[16] जबकि एक 1817 उड़ाने वाला इंजन, जिसे पहले नेथर्टन, वेस्ट मिडलैंड्स आयरनवर्क्स ऑफ़ MW ग्रेज़ब्रुक में उपयोग किया जाता था, अब बर्मिंघम में A38(M) मोटरवे के प्रारंभ में एक ट्रैफ़िक द्वीप डार्टमाउथ सर्कस को सजाता है।

डियरबॉर्न, मिशिगन में हेनरी फ़ोर्ड संग्रहालय में 1788 वाट के घूर्णी इंजन की प्रतिकृति है। यह बोल्टन-वाट इंजन का पूर्ण पैमाने पर कार्य करने वाला मॉडल है। अमेरिकी उद्योगपति हेनरी फोर्ड ने 1932 में अंग्रेजी निर्माता चार्ल्स समरफील्ड से प्रतिकृति इंजन के प्रारंभ की।[17] संग्रहालय में एक मूल बोल्टन और वाट वायुमंडलीय पंप इंजन भी है, जो मूल रूप से बर्मिंघम में नहर पंपिंग के लिए उपयोग किया जाता है,[18] नीचे दिखाया गया है, और बाउयर स्ट्रीट पम्पिंग स्टेशन पर सीटू में उपयोग में है[19] 1796 से 1854 तक, और बाद में 1929 में डियरबॉर्न को हटा दिया गया।

हैथोर्न, डेवी एंड कंपनी द्वारा निर्मित वाट इंजन

1880 के दशक में, हैथोर्न डेवी एंड कंपनी / लीड्स ने बाहरी कंडेनसर के साथ 1 एचपी (hp) / 125 आरपीएम (rpm) वायुमंडलीय इंजन का उत्पादन किया, लेकिन भाप विस्तार के बिना। यह तर्क दिया गया है कि यह संभवत: निर्मित होने वाला अंतिम व्यावसायिक वायुमंडलीय इंजन था। वायुमंडलीय इंजन के रूप में, इसमें दाबित बायलर नहीं था। इसे छोटे व्यवसायों के लिए बनाया गया था।[20]

डेविस इंजन 1885






नव गतिविधि

वाट के विस्तार इंजन को सामान्यतः केवल ऐतिहासिक हित के रूप में माना जाता है। यद्यपि कुछ हाल के घटनाक्रम हैं जो प्रौद्योगिकी के पुनर्जागरण का कारण बन सकते हैं। आज, उद्योग द्वारा उत्पन्न 100 और 150 डिग्री सेल्सियस के बीच तापमान के साथ अपशिष्ट भाप और अपशिष्ट ऊष्मा की भारी मात्रा है। इसके अलावा, सोलरथर्मल कलेक्टर, भू-तापीय ऊर्जा स्रोत और बायोमास रिएक्टर इस तापमान सीमा में ऊष्मा पैदा करते हैं। इस ऊर्जा का उपयोग करने के लिए प्रौद्योगिकियां हैं, विशेष रूप से ऑर्गेनिक रैंकिन साइकिल। सिद्धांत रूप में, ये भाप टर्बाइन हैं जो पानी का उपयोग नहीं करते हैं लेकिन द्रव (प्रशीतक) जो 100 डिग्री सेल्सियस से नीचे तापमान पर वाष्पित हो जाता है। हालांकि ऐसी प्रणालियां काफी जटिल हैं। ये 6 से 20 बार के दबाव से कार्य करते हैं, जिससे पूरी प्रणाली को संपूर्ण रूप से बंद करना पड़ता है।

विस्तार इंजन यहां महत्वपूर्ण लाभ प्रदान कर सकता है, विशेष रूप से 2 से 100 किलोवाट (kW) की कम बिजली रेटिंग के लिए: 1: 5 के विस्तार अनुपात के साथ, सैद्धांतिक दक्षता 15% तक पहुंच जाती है, जो ORC सिस्टम की सीमा में है। विस्तार इंजन पानी का उपयोग कार्यशील तरल पदार्थ के रूप में करता है जो सरल, सस्ता, गैर विषैले, गैर ज्वलनशील और गैर संक्षारक है। यह वायुमंडलीय के करीब और नीचे दबाव पर कार्य करता है, ताकि बंदिंग कोई समस्या न हो। और यह एक साधारण मशीन है, जिसका अर्थ लागत प्रभावशीलता है। साउथेम्प्टन / यूके विश्वविद्यालय के शोधकर्ता वर्तमान में अपशिष्ट भाप और अपशिष्ट ऊष्मा से ऊर्जा उत्पन्न करने के लिए वाट के इंजन का आधुनिक संस्करण विकसित कर रहे हैं। उन्होंने यह प्रदर्शित करते हुए सिद्धांत में सुधार किया कि 17.4% तक की सैद्धांतिक क्षमता (और 11% की वास्तविक क्षमता) संभव है।[21]

25 वाट प्रायोगिक संघनक इंजन का निर्माण और परीक्षण साउथेम्प्टन विश्वविद्यालय में किया गया। सिद्धांत को प्रदर्शित करने के लिए, एक 25 वाट प्रायोगिक मॉडल इंजन का निर्माण और परीक्षण किया गया। इंजन में भाप विस्तार के साथ-साथ इलेक्ट्रॉनिक नियंत्रण जैसी नई सुविधाएँ भी सम्मिलित हैं। चित्र 2016 में निर्मित और परीक्षण किए गए मॉडल को दिखाता है।[22] वर्तमान में, एक स्केल-अप 2 kW इंजन के निर्माण और परीक्षण की परियोजना तैयार की जा रही है।[23]

यह भी देखें

संदर्भ

  1. Ayres, Robert (1989). "तकनीकी परिवर्तन और लंबी तरंगें" (PDF): 13. {{cite journal}}: Cite journal requires |journal= (help)
  2. 2.0 2.1 2.2 Dickinson, Henry Winram (1939). A Short History of the Steam Engine. Cambridge University Press. p. 87. ISBN 978-1-108-01228-7.
  3. 3.0 3.1 Rosen, William (2012). द मोस्ट पावरफुल आइडिया इन द वर्ल्ड: ए स्टोरी ऑफ स्टीम, इंडस्ट्री एंड इनवेंशन. University of Chicago Press. p. 137. ISBN 978-0226726342.
  4. "जेम्स वाट द्वारा मरम्मत किया गया मॉडल न्यूकमेन इंजन". University of Glasgow Hunterian Museum & Art Gallery. Retrieved 1 July 2014.
  5. 5.0 5.1 5.2 Farey, John (1827-01-01). स्टीम इंजन पर एक ग्रंथ: ऐतिहासिक, व्यावहारिक और वर्णनात्मक. London : Printed for Longman, Rees, Orme, Brown and Green. pp. 339 ff.
  6. Hulse David K (1999): "The early development of the steam engine"; TEE Publishing, Leamington Spa, U.K., ISBN, 85761 107 1 p. 127 et seq.
  7. R. L. Hills, James Watt: II The Years of Toil, 1775–1785 (Landmark, Ashbourne, 2005), 58–65.
  8. 8.0 8.1 Roe, Joseph Wickham (1916), English and American Tool Builders, New Haven, Connecticut: Yale University Press, LCCN 16011753. Reprinted by McGraw-Hill, New York and London, 1926 (LCCN 27-24075); and by Lindsay Publications, Inc., Bradley, Illinois, (ISBN 978-0-917914-73-7).
  9. Hills, 96–105.
  10. Hulse David K (2001): "The development of rotary motion by the steam power"; TEE Publishing, Leamington Spa, U.K., ISBN 1 85761 119 5 : p 58 et seq.
  11. from 3rd edition Britannica 1797
  12. James Watt: Monopolist
  13. Rosen 2012, pp. 176–7
  14. Thurston, Robert H. (1875). भाप-इंजन के विकास का इतिहास. D. Appleton & Co. p. 116. This is the first edition. Modern paperback editions are available.
  15. Bennett, S. (1979). कंट्रोल इंजीनियरिंग का इतिहास 1800-1930. London: Peter Peregrinus Ltd. pp. 47, 22. ISBN 0-86341-047-2.
  16. "बोल्टन और वाट, 1788 द्वारा घूर्णी भाप इंजन". Science Museum.
  17. "हेनरी फोर्ड संग्रहालय".
  18. "हेनरी फोर्ड संग्रहालय".
  19. "रोइंग्टन रिकॉर्ड्स".
  20. "1885 का डेवी का इंजन".
  21. Müller, Gerald (2015). "मजबूर विस्तार के साथ वायुमंडलीय भाप इंजन की प्रायोगिक जांच" (PDF). Renewable Energy. 75: 348–355. doi:10.1016/j.renene.2014.09.061. Retrieved 5 March 2018.
  22. "मॉडल परीक्षण, एमके 1". The Condensing Engine Project (in English). 2016-10-08. Retrieved 2019-08-25.
  23. "क्राउड फंडिंग". The Condensing Engine Project (in English). 2016-10-09. Retrieved 2019-08-25.


बाहरी कड़ियाँ

Media related to
Watt steam engines
at Wikimedia Commons