संकेत पहचान: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Topic in computer science and language technology}}
{{short description|Topic in computer science and language technology}}
[[File:Gesture Recognition.jpg|thumb|एक साधारण संकेत पहचान कलन विधि द्वारा बच्चे के हाथ की स्थिति और गतिवधि का पता लगाया जा रहा है। ]]
[[File:Gesture Recognition.jpg|thumb|एक साधारण संकेत पहचान एल्गोरिथम द्वारा बच्चे के हाथ की स्थिति और गतिवधि का पता लगाया जा रहा है। ]]
[[File:Linux kernel and gaming input-output latency.svg|thumb|300px|मध्यस्थ सामान्य रूप से संकेत पहचान को संसाधित करता है, फिर उपयोगकर्ता को परिणाम भेजता है।]]'''संकेत पहचान,''' [[कंप्यूटर विज्ञान]] और [[भाषा प्रौद्योगिकी]] में एक विषय है, जिसका लक्ष्य गणितीय [[कलन विधि|एल्गोरिथम]] के माध्यम से मानव संकेतों की व्याख्या करना है।<ref name="Kobylarz">{{cite journal | last1=Kobylarz | first1=Jhonatan | last2=Bird | first2=Jordan J. | last3=Faria | first3=Diego R. | last4=Ribeiro | first4=Eduardo Parente | last5=Ekárt | first5=Anikó | title=थम्स अप, थम्स डाउन: गैर-मौखिक मानव-रोबोट इंटरैक्शन वास्तविक समय ईएमजी वर्गीकरण के माध्यम से आगमनात्मक और पर्यवेक्षित ट्रांसडक्टिव ट्रांसफर लर्निंग के माध्यम से| journal=Journal of Ambient Intelligence and Humanized Computing | publisher=Springer Science and Business Media LLC | date=2020-03-07 | volume=11 | issue=12 | pages=6021–6031 | issn=1868-5137 | doi=10.1007/s12652-020-01852-z | doi-access=free }}</ref> यह कंप्यूटर दृष्टि का एक उपविषय है। संकेत किसी भी शारीरिक गति या अवस्था से उत्पन्न हो सकते हैं, लेकिन सामान्य रूप से चेहरे या हाथ से उत्पन्न होते हैं। क्षेत्र में केंद्रित चेहरे और हाथ के आवेश की पहचान से भावनाओं की पहचान सम्मिलित है, क्योंकि वे सभी भाव होते हैं। उपयोगकर्ता शारीरिक रूप से स्पर्श किए बिना उपकरणों को नियंत्रित करने या उनसे अंतः क्रिया करने के लिए सरल संकेत कर सकते हैं। [[सांकेतिक भाषा]] की व्याख्या करने के लिए कैमरों और कंप्यूटर दृष्टि एल्गोरिथम का उपयोग करके कई दृष्टिकोण बनाए गए हैं। हालांकि स्थिति, चाल, समीपस्थता और मानव व्यवहार की पहचान भी संकेत पहचान तकनीक का एक विषय है।<ref>Matthias Rehm, Nikolaus Bee, Elisabeth André, [http://mm-werkstatt.informatik.uni-augsburg.de/files/publications/199/wave_like_an_egyptian_final.pdf Wave Like an Egyptian – Accelerometer Based Gesture Recognition for Culture Specific Interactions], British Computer Society, 2007</ref>
[[File:Linux kernel and gaming input-output latency.svg|thumb|300px|मध्यस्थ सामान्य रूप से संकेत पहचान को संसाधित करता है, फिर उपयोगकर्ता को परिणाम भेजता है।]]'''संकेत पहचान,''' [[कंप्यूटर विज्ञान]] और [[भाषा प्रौद्योगिकी]] में एक विषय है, जिसका लक्ष्य गणितीय [[कलन विधि|एल्गोरिथम]] के माध्यम से मानव संकेतों की व्याख्या करना है।<ref name="Kobylarz">{{cite journal | last1=Kobylarz | first1=Jhonatan | last2=Bird | first2=Jordan J. | last3=Faria | first3=Diego R. | last4=Ribeiro | first4=Eduardo Parente | last5=Ekárt | first5=Anikó | title=थम्स अप, थम्स डाउन: गैर-मौखिक मानव-रोबोट इंटरैक्शन वास्तविक समय ईएमजी वर्गीकरण के माध्यम से आगमनात्मक और पर्यवेक्षित ट्रांसडक्टिव ट्रांसफर लर्निंग के माध्यम से| journal=Journal of Ambient Intelligence and Humanized Computing | publisher=Springer Science and Business Media LLC | date=2020-03-07 | volume=11 | issue=12 | pages=6021–6031 | issn=1868-5137 | doi=10.1007/s12652-020-01852-z | doi-access=free }}</ref> यह कंप्यूटर दृष्टि का एक उपविषय है। संकेत किसी भी शारीरिक गति या अवस्था से उत्पन्न हो सकते हैं, लेकिन सामान्य रूप से चेहरे या हाथ से उत्पन्न होते हैं। क्षेत्र में केंद्रित चेहरे और हाथ के आवेश की पहचान से भावनाओं की पहचान सम्मिलित है, क्योंकि वे सभी भाव होते हैं। उपयोगकर्ता शारीरिक रूप से स्पर्श किए बिना उपकरणों को नियंत्रित करने या उनसे अंतः क्रिया करने के लिए सरल संकेत कर सकते हैं। [[सांकेतिक भाषा]] की व्याख्या करने के लिए कैमरों और कंप्यूटर दृष्टि एल्गोरिथम का उपयोग करके कई दृष्टिकोण बनाए गए हैं। हालांकि स्थिति, चाल, समीपस्थता और मानव व्यवहार की पहचान भी संकेत पहचान तकनीक का एक विषय है।<ref>Matthias Rehm, Nikolaus Bee, Elisabeth André, [http://mm-werkstatt.informatik.uni-augsburg.de/files/publications/199/wave_like_an_egyptian_final.pdf Wave Like an Egyptian – Accelerometer Based Gesture Recognition for Culture Specific Interactions], British Computer Society, 2007</ref>
संकेत पहचान को कंप्यूटर के लिए मानव शरीर की भाषा को समझने के तरीके के रूप में देखा जा सकता है। इस प्रकार पुराने [[टेक्स्ट यूजर इंटरफेस|टेक्स्ट उपयोगकर्ता]] [[टेक्स्ट यूजर इंटरफेस|इंटरफ़ेस]] या [[जीयूआई|ग्राफिकल उपयोगकर्ता इंटरफ़ेस]] की तुलना में मशीनों और मनुष्यों के बीच एक अच्छे संबंध का निर्माण होता है, जो अभी भी कीबोर्ड और माउस के अधिकांश इनपुट को सीमित करता है। तथा बिना किसी यांत्रिक उपकरण के स्वाभाविक रूप से परस्पर क्रिया करता है।
संकेत पहचान को कंप्यूटर के लिए मानव शरीर की भाषा को समझने के तरीके के रूप में देखा जा सकता है। इस प्रकार पुराने [[टेक्स्ट यूजर इंटरफेस|टेक्स्ट उपयोगकर्ता]] [[टेक्स्ट यूजर इंटरफेस|इंटरफ़ेस]] या [[जीयूआई|ग्राफिकल उपयोगकर्ता इंटरफ़ेस]] की तुलना में मशीनों और मनुष्यों के बीच एक अच्छे संबंध का निर्माण होता है, जो अभी भी कीबोर्ड और माउस के अधिकांश इनपुट को सीमित करता है। तथा बिना किसी यांत्रिक उपकरण के स्वाभाविक रूप से परस्पर क्रिया करता है।
Line 46: Line 46:


हालांकि छवि/वीडियो-आधारित संकेत पहचान में बड़ी मात्रा में शोध किया गया है, कार्यान्वयन के बीच उपयोग किए जाने वाले उपकरणों और वातावरण में कुछ भिन्नता होती है।
हालांकि छवि/वीडियो-आधारित संकेत पहचान में बड़ी मात्रा में शोध किया गया है, कार्यान्वयन के बीच उपयोग किए जाने वाले उपकरणों और वातावरण में कुछ भिन्नता होती है।
* तार वाले दस्ताने- ये कंप्यूटर को चुंबकीय या जड़त्वीय नियंत्रित उपकरणों का उपयोग करके हाथों की स्थिति और घुमाव के बारे में इनपुट प्रदान कर सकते हैं। इसके अतिरिक्त, कुछ दस्ताने उच्च स्तर की शुद्धता 5-10 डिग्री के साथ उंगली के '''झुकने का पता लगा स'''कते हैं, यहां तक ​​​​कि उपयोगकर्ता को स्पर्श योग्य प्रतिक्रिया भी प्रदान कर सकते हैं, जो स्पर्श की भावना का अनुकरण करती है। पहला व्यावसायिक रूप से उपलब्ध हाथ से नियंत्रण करने वाला दस्ताने की आकृति का डेटाग्लोव उपकरण था,<ref>Thomas G. Zimmerman, Jaron Lanier, Chuck Blanchard, Steve Bryson, and Young Harvill. http://portal.acm.org. "[http://netzspannung.org/cat/servlet/CatServlet/$files/228648/DataGlove+CHI+1987.pdf A HAND GESTURE INTERFACE DEVICE]." http://portal.acm.org.</ref> एक ग्लोव-टाइप उपकरण जो हाथ की स्थिति, गति और उंगली के झुकने का पता लगा सकता था। यह हाथ के पीछे नीचे चलने वाले फाइबर ऑप्टिक केबल का उपयोग करता है। इसमे हल्की सी स्पंदन उत्पन्न होती है। और जब उंगलियां मुड़ी होती हैं, तो छोटी-छोटी दरारों से प्रकाश निकलता है, और अभाव दर्ज किया जाता है, जिससे हाथ की स्थिति का अनुमान लगाया जाता है।
* तार वाले दस्ताने- ये कंप्यूटर को चुंबकीय या जड़त्वीय नियंत्रित उपकरणों का उपयोग करके हाथों की स्थिति और घुमाव के बारे में इनपुट प्रदान कर सकते हैं। इसके अतिरिक्त, कुछ दस्ताने उच्च स्तर की शुद्धता 5-10 डिग्री के साथ उंगली के झुकने का पता लगा सकते हैं, यहां तक ​​​​कि उपयोगकर्ता को स्पर्श योग्य प्रतिक्रिया भी प्रदान कर सकते हैं, जो स्पर्श की भावना का अनुकरण करती है। पहला व्यावसायिक रूप से उपलब्ध हाथ से नियंत्रण करने वाला दस्ताने की आकृति का डेटाग्लोव उपकरण था,<ref>Thomas G. Zimmerman, Jaron Lanier, Chuck Blanchard, Steve Bryson, and Young Harvill. http://portal.acm.org. "[http://netzspannung.org/cat/servlet/CatServlet/$files/228648/DataGlove+CHI+1987.pdf A HAND GESTURE INTERFACE DEVICE]." http://portal.acm.org.</ref> एक ग्लोव-टाइप उपकरण जो हाथ की स्थिति, गति और उंगली के झुकने का पता लगा सकता था। यह हाथ के विपरीत नीचे चलने वाले तंतु प्रकाशिकी तार का उपयोग करता है। इसमे हल्की सा स्पंदन उत्पन्न होता है। और जब उंगलियां मुड़ी होती हैं, तो छोटी-छोटी छिद्रों से प्रकाश निकलता है, तथा अभाव को पंजीकृत किया जाता है, जिससे हाथ की स्थिति का अनुमान लगाया जाता है।
* गहराई से अवगत कैमरे- [[संरचित प्रकाश]] या [[टाइम-ऑफ-फ्लाइट कैमरा|उड़ान के समय कैमरे]], जैसे कुछ विशेष कैमरों का उपयोग करके कैमरे के माध्यम से कम दूरी पर जो कुछ देखा जा रहा है, उसका गहराई से मानचित्र तैयार किया जा सकता है, और जो देखा जा रहा है, उसके 3डी प्रतिनिधित्व का अनुमान लगाने के लिए इस डेटा का उपयोग किया जाता है। तथा ये अपनी कम दूरी की क्षमताओं के कारण हाथ के संकेतों का पता लगाने के लिए प्रभावी हो सकते हैं।<ref>Yang Liu, Yunde Jia, [https://ieeexplore.ieee.org/abstract/document/1410485/ A Robust Hand Tracking and Gesture Recognition Method for Wearable Visual Interfaces and Its Applications], Proceedings of the Third International Conference on Image and Graphics (ICIG'04), 2004</ref>
* डेप्थ-अवेयर कैमरे- [[संरचित प्रकाश]] या [[टाइम-ऑफ-फ्लाइट कैमरा|उड़ान के समय कैमरे]], जैसे कुछ विशेष कैमरों का उपयोग करके कैमरे के माध्यम से कम दूरी पर जो कुछ देखा जा रहा है, उसका गहनता से मानचित्र तैयार किया जा सकता है, और जो देखा जा रहा है, उसके 3डी प्रतिनिधित्व का अनुमान लगाने के लिए इस डेटा का उपयोग किया जाता है। तथा ये अपनी कम दूरी की क्षमताओं के कारण हाथ के संकेतों का पता लगाने के लिए प्रभावी हो सकते हैं।<ref>Yang Liu, Yunde Jia, [https://ieeexplore.ieee.org/abstract/document/1410485/ A Robust Hand Tracking and Gesture Recognition Method for Wearable Visual Interfaces and Its Applications], Proceedings of the Third International Conference on Image and Graphics (ICIG'04), 2004</ref>
* [[स्टीरियो कैमरे|स्टीरियो(त्रिविम) कैमरे]]- दो कैमरों का उपयोग करके अर्थात जिनके संबंध एक दूसरे से ज्ञात हैं, कैमरों के आउटपुट से एक 3डी प्रतिनिधित्व का अनुमान लगाया जा सकता है। कैमरों के संबंधों को प्राप्त करने के लिए,[[पहली पट्टी]] या [[अवरक्त]] एमिटर जैसे स्थिति निर्धारण संदर्भ का उपयोग किया जा सकता है।<ref>Kue-Bum Lee, Jung-Hyun Kim, Kwang-Seok Hong, [https://ieeexplore.ieee.org/abstract/document/4297013/ An Implementation of Multi-Modal Game Interface Based on PDAs], Fifth International Conference on Software Engineering Research, Management and Applications, 2007</ref> प्रत्यक्ष गति माप 6डी -दृष्टि के संयोजन में संकेतों का सीधे पता लगाया जा सकता है।
* [[स्टीरियो कैमरे|स्टीरियो(त्रिविम) कैमरे]]- दो कैमरों का उपयोग करके अर्थात जिनके संबंध एक दूसरे से ज्ञात हैं, कैमरों के आउटपुट से एक 3डी प्रतिनिधित्व का अनुमान लगाया जा सकता है। कैमरों के संबंधों को प्राप्त करने के लिए [[पहली पट्टी|लेक्सियन स्ट्राइप]] या [[अवरक्त|इन्फ्रारेड]] उत्सर्जक जैसी स्थिति निर्धारण संदर्भ का उपयोग किया जा सकता है।<ref>Kue-Bum Lee, Jung-Hyun Kim, Kwang-Seok Hong, [https://ieeexplore.ieee.org/abstract/document/4297013/ An Implementation of Multi-Modal Game Interface Based on PDAs], Fifth International Conference on Software Engineering Research, Management and Applications, 2007</ref> प्रत्यक्ष गति माप 6डी -दृष्टि के संयोजन में संकेतों का सीधे पता लगाया जा सकता है।
* संकेत पर आधारित नियंत्रक- ये नियंत्रक शरीर के विस्तार के रूप में कार्य करते हैं ताकि जब संकेतों का प्रदर्शन किया जाए।, तो उनकी कुछ गति को सॉफ्टवेयर द्वारा सरलता से अधिकृत जा सके। संकेत आधारित गति अधिकृत करने का एक उदाहरण प्रारूप [[हाथ ट्रैकिंग|हाथ के नियंत्रण]] के माध्यम से है, जिसे आभासी वास्तविकता और संवर्धित वास्तविक अनुप्रयोगों के लिए विकसित किया जा रहा है। इस तकनीक का एक उदाहरण नियंत्रित यूसेन्स कंपनियों और [[गेस्टिगॉन]] द्वारा दिखाया गया है, जो उपयोगकर्ताओं के नियंत्रकों के बिना अपने परिवेश के साथ पारस्परिक क्रिया करने की अनुमति देती हैं।<ref>{{cite web|title=गेस्टिगॉन जेस्चर ट्रैकिंग - टेकक्रंच बाधित|url=https://techcrunch.com/video/gestigon-gesture-tracking/517762030/|website=TechCrunch|access-date=11 October 2016}}</ref><ref>{{cite web|last1=Matney|first1=Lucas|title=uSens नए ट्रैकिंग सेंसर दिखाता है जिसका उद्देश्य मोबाइल VR के लिए समृद्ध अनुभव प्रदान करना है|url=https://techcrunch.com/2016/08/29/usens-unveils-vr-sensor-modules-with-hand-tracking-and-mobile-positional-tracking-tech-baked-in/|website=TechCrunch|date=29 August 2016 |access-date=29 August 2016}}</ref>
* संकेत पर आधारित नियंत्रक- ये नियंत्रक शरीर के विस्तार के रूप में कार्य करते हैं ताकि जब संकेतों का प्रदर्शन किया जाए। तो उनकी कुछ गति को सॉफ्टवेयर द्वारा सरलता से अधिकृत जा सके। संकेत आधारित गति अधिकृत करने का एक उदाहरण प्रारूप [[हाथ ट्रैकिंग|हाथ के नियंत्रण]] के माध्यम से है, जिसे आभासी वास्तविकता और संवर्धित वास्तविक अनुप्रयोगों के लिए विकसित किया जा रहा है। इस तकनीक का एक उदाहरण नियंत्रित यूसेन्स कंपनियों और [[गेस्टिगॉन]] द्वारा दिखाया गया है, जो उपयोगकर्ताओं के नियंत्रकों के बिना अपने परिवेश के साथ पारस्परिक क्रिया करने की अनुमति देती हैं।<ref>{{cite web|title=गेस्टिगॉन जेस्चर ट्रैकिंग - टेकक्रंच बाधित|url=https://techcrunch.com/video/gestigon-gesture-tracking/517762030/|website=TechCrunch|access-date=11 October 2016}}</ref><ref>{{cite web|last1=Matney|first1=Lucas|title=uSens नए ट्रैकिंग सेंसर दिखाता है जिसका उद्देश्य मोबाइल VR के लिए समृद्ध अनुभव प्रदान करना है|url=https://techcrunch.com/2016/08/29/usens-unveils-vr-sensor-modules-with-hand-tracking-and-mobile-positional-tracking-tech-baked-in/|website=TechCrunch|date=29 August 2016 |access-date=29 August 2016}}</ref>
* [[वाई-फाई संवेदन]]<ref>{{Cite journal|last1=Khalili|first1=Abdullah|last2=Soliman|first2=Abdel‐Hamid|last3=Asaduzzaman|first3=Md|last4=Griffiths|first4=Alison|date=March 2020|title=वाई-फाई सेंसिंग: एप्लिकेशन और चुनौतियां|journal=The Journal of Engineering|language=en|volume=2020|issue=3|pages=87–97|doi=10.1049/joe.2019.0790|issn=2051-3305|doi-access=free}}</ref> इसका एक अन्य उदाहरण माउस संकेत नियंत्रण होता है, जहां माउस की गति को किसी व्यक्ति के हाथ से खींचे जाने वाले प्रतीक से जोड़ा जाता है, जो संकेतों का प्रतिनिधित्व करने के लिए समय के साथ शीघ्र परिवर्तन का अध्ययन कर सकता है।<ref>Per Malmestig, Sofie Sundberg, [http://www.tricomsolutions.com/academic_reports.html SignWiiver – implementation of sign language technology] {{webarchive|url=https://web.archive.org/web/20081225190059/http://www.tricomsolutions.com/academic_reports.html |date=2008-12-25 }}</ref><ref>Thomas Schlomer, Benjamin Poppinga, Niels Henze, Susanne Boll, [http://www.wiigee.com/download_files/gesture_recognition_with_a_wii_controller-schloemer_poppinga_henze_boll.pdf Gesture Recognition with a Wii Controller] {{Webarchive|url=https://web.archive.org/web/20130727175427/http://www.wiigee.com/download_files/gesture_recognition_with_a_wii_controller-schloemer_poppinga_henze_boll.pdf |date=2013-07-27 }}, Proceedings of the 2nd international Conference on Tangible and Embedded interaction, 2008</ref><ref>AiLive Inc., [http://www.ailive.net/papers/LiveMoveWhitePaper_en.pdf LiveMove White Paper] {{Webarchive|url=https://web.archive.org/web/20070713013109/http://www.ailive.net/papers/LiveMoveWhitePaper_en.pdf |date=2007-07-13 }}, 2006</ref> सॉफ्टवेयर मानव कंपन और असावधानीपूर्ण गतिविधि के लिए भी क्षतिपूर्ति करता है।<ref name="Wong">''Electronic Design'' September 8, 2011. William Wong. [http://electronicdesign.com/article/embedded/Natural-User-Interface-Employs-Sensor-Integration.aspx Natural User Interface Employs Sensor Integration.]</ref><ref name="Cousins">''Cable & Satellite International'' September/October, 2011. Stephen Cousins. [http://www.csimagazine.com/csi/A-view-to-a-thrill.php A view to a thrill.] {{Webarchive|url=https://web.archive.org/web/20120119075325/http://www.csimagazine.com/csi/A-view-to-a-thrill.php |date=2012-01-19 }}</ref><ref name="TechJournal">''TechJournal South'' January 7, 2008. [https://archive.today/20120401173137/http://www.techjournalsouth.com/2008/01/hillcrest-labs-rings-up-25m-d-round/ Hillcrest Labs rings up $25M D round.]</ref> इन स्मार्ट लाइट एमिटिंग क्यूब के सेंसर का उपयोग हाथों और उंगलियों के साथ-साथ आस-पास की अन्य वस्तुओं को महसूस करने के लिए किया जा सकता है। और डेटा को सक्रिय करने के लिए उपयोग किया जा सकता है। अधिकांश अनुप्रयोग संगीत और ध्वनि संश्लेषण में होता हैं,<ref>''Percussa AudioCubes Blog'' October 4, 2012. [http://www.percussa.com/2012/10/04/gestural-control-of-sound-synthesis-featured-question/ Gestural Control in Sound Synthesis.] {{webarchive|url=https://web.archive.org/web/20150910063754/https://www.percussa.com/2012/10/04/gestural-control-of-sound-synthesis-featured-question |date=2015-09-10 }}</ref> लेकिन अन्य क्षेत्रों में भी लागू किया जा सकता है।
* [[वाई-फाई संवेदन]]<ref>{{Cite journal|last1=Khalili|first1=Abdullah|last2=Soliman|first2=Abdel‐Hamid|last3=Asaduzzaman|first3=Md|last4=Griffiths|first4=Alison|date=March 2020|title=वाई-फाई सेंसिंग: एप्लिकेशन और चुनौतियां|journal=The Journal of Engineering|language=en|volume=2020|issue=3|pages=87–97|doi=10.1049/joe.2019.0790|issn=2051-3305|doi-access=free}}</ref> इसका एक अन्य उदाहरण माउस संकेत नियंत्रण होता है, जहां माउस की गति को किसी व्यक्ति के हाथ से खींचे जाने वाले प्रतीक से जोड़ा जाता है, जो संकेतों का प्रतिनिधित्व करने के लिए समय के साथ शीघ्र परिवर्तन का अध्ययन कर सकता है।<ref>Per Malmestig, Sofie Sundberg, [http://www.tricomsolutions.com/academic_reports.html SignWiiver – implementation of sign language technology] {{webarchive|url=https://web.archive.org/web/20081225190059/http://www.tricomsolutions.com/academic_reports.html |date=2008-12-25 }}</ref><ref>Thomas Schlomer, Benjamin Poppinga, Niels Henze, Susanne Boll, [http://www.wiigee.com/download_files/gesture_recognition_with_a_wii_controller-schloemer_poppinga_henze_boll.pdf Gesture Recognition with a Wii Controller] {{Webarchive|url=https://web.archive.org/web/20130727175427/http://www.wiigee.com/download_files/gesture_recognition_with_a_wii_controller-schloemer_poppinga_henze_boll.pdf |date=2013-07-27 }}, Proceedings of the 2nd international Conference on Tangible and Embedded interaction, 2008</ref><ref>AiLive Inc., [http://www.ailive.net/papers/LiveMoveWhitePaper_en.pdf LiveMove White Paper] {{Webarchive|url=https://web.archive.org/web/20070713013109/http://www.ailive.net/papers/LiveMoveWhitePaper_en.pdf |date=2007-07-13 }}, 2006</ref> सॉफ्टवेयर मानव कंपन और असावधानीपूर्ण गतिविधि के लिए भी क्षतिपूर्ति करता है।<ref name="Wong">''Electronic Design'' September 8, 2011. William Wong. [http://electronicdesign.com/article/embedded/Natural-User-Interface-Employs-Sensor-Integration.aspx Natural User Interface Employs Sensor Integration.]</ref><ref name="Cousins">''Cable & Satellite International'' September/October, 2011. Stephen Cousins. [http://www.csimagazine.com/csi/A-view-to-a-thrill.php A view to a thrill.] {{Webarchive|url=https://web.archive.org/web/20120119075325/http://www.csimagazine.com/csi/A-view-to-a-thrill.php |date=2012-01-19 }}</ref><ref name="TechJournal">''TechJournal South'' January 7, 2008. [https://archive.today/20120401173137/http://www.techjournalsouth.com/2008/01/hillcrest-labs-rings-up-25m-d-round/ Hillcrest Labs rings up $25M D round.]</ref> इन स्मार्ट लाइट एमिटिंग क्यूब के सेंसर का उपयोग हाथों और उंगलियों के साथ-साथ आस-पास की अन्य वस्तुओं को महसूस करने के लिए किया जा सकता है। और डेटा को सक्रिय करने के लिए उपयोग किया जा सकता है। अधिकांश अनुप्रयोग संगीत और ध्वनि संश्लेषण में होता हैं,<ref>''Percussa AudioCubes Blog'' October 4, 2012. [http://www.percussa.com/2012/10/04/gestural-control-of-sound-synthesis-featured-question/ Gestural Control in Sound Synthesis.] {{webarchive|url=https://web.archive.org/web/20150910063754/https://www.percussa.com/2012/10/04/gestural-control-of-sound-synthesis-featured-question |date=2015-09-10 }}</ref> लेकिन अन्य क्षेत्रों में भी लागू किया जा सकता है।


* एकल कैमरा- संकेतों की पहचान के लिए एक मानक 2डी कैमरे का उपयोग किया जा सकता है जहां छवि-आधारित पहचान के अन्य रूपों के लिए संसाधन/पर्यावरण सुविधाजनक नहीं होता है। पहले यह सोचा जाता था। कि एक एकल कैमरा स्टीरियो या डेप्थ-अवेयर कैमरा इतना प्रभावी नहीं हो सकता है, लेकिन कुछ कंपनियां इस सिद्धांत को चुनौती दे रही हैं। एक मानक 2डी कैमरे का उपयोग करके सॉफ़्टवेयर-आधारित संकेत पहचान तकनीक जो स्वस्थ हाथ के संकेतों का पता लगा सकती है।
* एकल कैमरा- संकेत पहचान के लिए एक मानक 2डी कैमरे का उपयोग किया जा सकता है जहां छवि-आधारित पहचान के अन्य रूपों के लिए संसाधन/पर्यावरण सुविधाजनक नहीं होता है। पहले यह सोचा जाता था। कि एक एकल कैमरा स्टीरियो या डेप्थ-अवेयर कैमरा इतना प्रभावी नहीं हो सकता है, लेकिन कुछ कंपनियां इस सिद्धांत को चुनौती दे रही हैं। कि एक मानक 2डी कैमरे का उपयोग करके सॉफ़्टवेयर-आधारित संकेत पहचान तकनीक जो स्वस्थ हाथ के संकेतों का पता लगा सकती है।


== कलन विधि ==
== एल्गोरिथम ==


[[File:BigDiagram2.jpg|thumb|400px| संकेतों को नियंत्रित करने और उनका विश्लेषण करने के विभिन्न तरीके उपस्थित हैं, और ऊपर दिए गए आरेख में कुछ मूलभूत परिस्थिति दी गयी हैं। उदाहरण के लिए, वॉल्यूमेट्रिक प्रारूप एक विस्तृत विश्लेषण के लिए आवश्यक जानकारी देते हैं, हालांकि, वे कम्प्यूटेशनल शक्ति के स्थिति में बहुत सघन सिद्ध होते हैं। और वास्तविक समय के विश्लेषण के लिए लागू करने के लिए, और तकनीकी विकास की आवश्यकता होती है। दूसरी ओर उपस्थिति-आधारित प्रारूप को संसाधित करना सरल होता है, लेकिन सामान्य रूप से मानव-कंप्यूटर मे पारस्परिक क्रिया के लिए आवश्यक सामान्यता की कमी होती है।]]इनपुट डेटा के प्रकार के आधार पर संकेत की व्याख्या को अलग-अलग तरीकों से किया जा सकता है। हालाँकि, अधिकांश तकनीकें 3डी समन्वय प्रणाली में दर्शाए गए, प्रमुख बिंदुओं पर निर्भर करती हैं। इनकी सापेक्ष गति के आधार पर इनपुट की गुणवत्ता और कलन विधि के दृष्टिकोण के आधार पर संकेत की उच्च शुद्धता के साथ यह पता लगाया जा सकता है।
[[File:BigDiagram2.jpg|thumb|400px| संकेतों को नियंत्रित करने और उनका विश्लेषण करने के विभिन्न तरीके उपस्थित हैं, और ऊपर दिए गए आरेख में कुछ मूलभूत परिस्थिति दी गयी हैं। उदाहरण के लिए, वॉल्यूमेट्रिक प्रारूप एक विस्तृत विश्लेषण के लिए आवश्यक जानकारी देते हैं, हालांकि, वे कम्प्यूटेशनल शक्ति के स्थिति में बहुत सघन सिद्ध होते हैं। और वास्तविक समय के विश्लेषण के लिए लागू करने के लिए, और तकनीकी विकास की आवश्यकता होती है। दूसरी ओर उपस्थिति-आधारित प्रारूप को संसाधित करना सरल होता है, लेकिन सामान्य रूप से मानव-कंप्यूटर मे पारस्परिक क्रिया के लिए आवश्यक सामान्यता की कमी होती है।]]इनपुट डेटा के प्रकार के आधार पर संकेत की व्याख्या को अलग-अलग तरीकों से किया जा सकता है। हालाँकि, अधिकांश तकनीकें 3डी समन्वय प्रणाली में दर्शाए गए, प्रमुख बिंदुओं पर निर्भर करती हैं। इनकी सापेक्ष गति के आधार पर इनपुट की गुणवत्ता और एल्गोरिथम के दृष्टिकोण के आधार पर संकेत की उच्च शुद्धता के साथ यह पता लगाया जा सकता है।
शरीर के प्रतिक्रिया की व्याख्या करने के लिए, उन्हें सामान्य गुणों के अनुसार वर्गीकृत करना पड़ता है। तथा संदेश गति को व्यक्त किया जा सकता है। उदाहरण के लिए, सांकेतिक भाषा में प्रत्येक संकेत एक शब्द या वाक्यांश का प्रतिनिधित्व करते है।
शरीर के गतिविधि की व्याख्या करने के लिए, उन्हें सामान्य गुणों के अनुसार वर्गीकृत करना पड़ता है। तथा संदेश गति को व्यक्त किया जा सकता है। उदाहरण के लिए, सांकेतिक भाषा में प्रत्येक संकेत एक शब्द या वाक्यांश का प्रतिनिधित्व करते है।


कुछ साहित्य संकेतों की पहचान में दो अलग-अलग दृष्टिकोणों को अलग किया जाता हैं। एक 3डी प्रारूप आधारित और एक स्थिति आधारित,<ref>Vladimir I. Pavlovic, Rajeev Sharma, Thomas S. Huang, [http://www.cs.rutgers.edu/~vladimir/pub/pavlovic97pami.pdf Visual Interpretation of Hand Gestures for Human-Computer Interaction]; A Review, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997</ref> तथा हथेली की स्थिति या संयुक्त कोण जैसे कई महत्वपूर्ण पैरामीटर प्राप्त करने के लिए सबसे प्रमुख विधि शरीर के अंगों के प्रमुख तत्वों की 3डी जानकारी का उपयोग करती है। दूसरी ओर प्रकटन-आधारित प्रणालियाँ प्रत्यक्ष व्याख्या के लिए छवियों या वीडियो का उपयोग करती हैं।
कुछ साहित्य संकेत पहचान में दो अलग-अलग दृष्टिकोणों को अलग किया जाता हैं। एक 3डी प्रारूप आधारित और एक स्थिति आधारित,<ref>Vladimir I. Pavlovic, Rajeev Sharma, Thomas S. Huang, [http://www.cs.rutgers.edu/~vladimir/pub/pavlovic97pami.pdf Visual Interpretation of Hand Gestures for Human-Computer Interaction]; A Review, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997</ref> तथा हथेली की स्थिति या संयुक्त कोण जैसे कई महत्वपूर्ण पैरामीटर प्राप्त करने के लिए सबसे प्रमुख विधि शरीर के अंगों के प्रमुख तत्वों की 3डी जानकारी का उपयोग करती है। दूसरी ओर प्रकटन-आधारित प्रणालियाँ प्रत्यक्ष व्याख्या के लिए छवियों या वीडियो का उपयोग करती हैं।


[[File:Volumetric-hands.jpg|left|thumb|एक वास्तविक हाथ (बाएं) को 3डी जाल संस्करण (दाएं) में शिखर और रेखाओं के संग्रह के रूप में व्याख्या की जाती है।, और संकेत करने के लिए सॉफ्टवेयर उनकी सापेक्ष स्थिति और अंतः क्रिया का उपयोग करता है।]]
[[File:Volumetric-hands.jpg|left|thumb|एक वास्तविक हाथ (बाएं) को 3डी जाल संस्करण (दाएं) में शिखर और रेखाओं के संग्रह के रूप में व्याख्या की जाती है।, और संकेत करने के लिए सॉफ्टवेयर उनकी सापेक्ष स्थिति और अंतः क्रिया का उपयोग करता है।]]


=== 3डी प्रारूप आधारित कलन विधि ===
=== 3डी प्रारूप आधारित एल्गोरिथम ===
3डी प्रारूप दृष्टिकोण वॉल्यूमेट्रिक या कंकाल प्रारूप, यहां तक ​​कि दोनों के संयोजन का भी उपयोग कर सकता है। कंप्यूटर एनीमेशन उद्योग में कंप्यूटर दृष्टि उद्देश्यों के लिए वॉल्यूमेट्रिक दृष्टिकोण का अत्यधिक उपयोग किया गया है। प्रारूप सामान्य रूप से जटिल 3डी सतहों से बनाए जाते हैं, जैसे NURBS या बहुभुज जाल आदिके बने होते है।
3डी प्रारूप दृष्टिकोण वॉल्यूमेट्रिक या कंकाल प्रारूप, यहां तक ​​कि दोनों के संयोजन का भी उपयोग कर सकता है। कंप्यूटर एनीमेशन उद्योग में कंप्यूटर दृष्टि उद्देश्यों के लिए वॉल्यूमेट्रिक दृष्टिकोण का अत्यधिक उपयोग किया गया है। प्रारूप सामान्य रूप से जटिल 3डी सतहों से बनाए जाते हैं, जैसे NURBS या बहुभुज जाल आदि के बने होते है।


इस पद्धति का दोष यह है कि यह बहुत कम्प्यूटेशनल रूप से प्रकृष्ट होता है, और वास्तविक समय विश्लेषण के लिए प्रणाली अभी भी विकसित होना बाकी है। यद्यपि, एक अधिक रोचक दृष्टिकोण व्यक्ति के सबसे महत्वपूर्ण शरीर के अंगों (उदाहरण के लिए बाहों और गर्दन के लिए सिलेंडर, सिर के लिए गोले) के लिए साधारण प्राथमिक वस्तुओं को मैप और विश्लेषण करना होता है कि ये एक दूसरे के साथ कैसे पारस्परिक क्रिया करते हैं। इसके अतिरिक्त, कुछ अवास्तविक संरचनाएं जैसे [[सुपरक्वाड्रिक्स|सुपर क्वाड्रिक्स]] और [[सिलेंडर (ज्यामिति)|सामान्यीकृत सिलेंडर]] शरीर के अंगों को अनुमानित करने के लिए और भी उपयुक्त हो सकते हैं।
इस पद्धति कि कमी यह है कि यह बहुत कम्प्यूटेशनल रूप से प्रकृष्ट होता है, और वास्तविक समय विश्लेषण के लिए प्रणाली अभी भी विकसित होना शेष है। यद्यपि, एक अधिक रोचक दृष्टिकोण व्यक्ति के सबसे महत्वपूर्ण शरीर के अंगों (उदाहरण के लिए बाहों और गर्दन के लिए सिलेंडर, सिर के लिए गोले) के लिए साधारण प्राथमिक वस्तुओं का मैप और विश्लेषण करना होता है कि ये एक दूसरे के साथ कैसे पारस्परिक क्रिया करते हैं। इसके अतिरिक्त, कुछ अवास्तविक संरचनाएं जैसे [[सुपरक्वाड्रिक्स|सुपर क्वाड्रिक्स]] और [[सिलेंडर (ज्यामिति)|सामान्यीकृत सिलेंडर]] शरीर के अंगों को अनुमानित करने के लिए और भी उपयुक्त हो सकते हैं।


[[File:Skeletal-hand.jpg|thumb|कंकाल संस्करण (दाएं) हाथ (बाएं) को प्रभावी ढंग से प्रतिरूपित कर रहा है। इसमें वॉल्यूमेट्रिक संस्करण की तुलना में कम पैरामीटर होते हैं। वास्तविक समय संकेत विश्लेषण प्रणाली के लिए उपयुक्त होता है।]]
[[File:Skeletal-hand.jpg|thumb|कंकाल संस्करण (दाएं) हाथ (बाएं) को प्रभावी ढंग से प्रतिरूपित कर रहा है। इसमें वॉल्यूमेट्रिक संस्करण की तुलना में कम पैरामीटर होते हैं। वास्तविक समय संकेत विश्लेषण प्रणाली के लिए उपयुक्त होता है।]]


=== कंकाल-आधारित कलन विधि ===
=== कंकाल-आधारित एल्गोरिथम ===
3डी प्रारूप के प्रकृष्ट प्रसंस्करण का उपयोग करने और बहुत सारे मापदंडों से निपटने के अतिरिक्त, खंड लंबाई के साथ संयुक्त कोण मापदंडों के सरलीकृत संस्करण का उपयोग कर सकते हैं। इसे शरीर के कंकाल प्रतिनिधित्व के रूप में जाना जाता है, जहां व्यक्ति के आभासी कंकाल की गणना की जाती है। और शरीर के कुछ हिस्सों को कुछ खंडों में मैप किया जाता है। यह विश्लेषण इन खंडों की स्थिति और अभिविन्यास तथा उनमें से प्रत्येक के बीच संबंध का उपयोग करके किया जाता है। उदाहरण के लिए जोड़ों और सापेक्ष स्थिति या अभिविन्यास के बीच का कोण आदि।  
3डी प्रारूप के प्रकृष्ट प्रसंस्करण का उपयोग करने और बहुत सारे मापदंडों से विभाजन के अतिरिक्त, खंड लंबाई के साथ संयुक्त कोण मापदंडों के सरलीकृत संस्करण का उपयोग कर सकते हैं। इसे शरीर के कंकाल प्रतिनिधित्व के रूप में जाना जाता है, जहां व्यक्ति के आभासी कंकाल की गणना की जाती है। और शरीर के कुछ भाग को कुछ खंडों में मैप किया जाता है। यह विश्लेषण इन खंडों की स्थिति और अभिविन्यास तथा उनमें से प्रत्येक के बीच संबंध का उपयोग करके किया जाता है। उदाहरण के लिए जोड़ों और सापेक्ष स्थिति या अभिविन्यास के बीच का कोण आदि।  


कंकाल प्रारूप का उपयोग करने के लाभ:-
कंकाल प्रारूप का उपयोग करने के लाभ:-
* कलन विधि तेज़ होती हैं। क्योंकि केवल मुख्य पैरामीटर का विश्लेषण किया जाता है।
* एल्गोरिथम तेज़ होती हैं। क्योंकि केवल मुख्य पैरामीटर का विश्लेषण किया जाता है।
* टेम्प्लेट डेटाबेस के विरुद्ध प्रतिरूप रूपांतरण मिलान संभव होता है।  
* टेम्प्लेट डेटाबेस के विरुद्ध प्रतिरूप रूपांतरण मिलान संभव होता है।  
* प्रमुख बिंदुओं का उपयोग करने से पता लगाने वाले कार्यक्रम को शरीर के महत्वपूर्ण भागों पर ध्यान केंद्रित करने की अनुमति मिलती है।
* प्रमुख बिंदुओं का उपयोग करने से पता लगाने वाले प्रोग्राम को शरीर के महत्वपूर्ण भागों पर ध्यान केंद्रित करने की अनुमति मिलती है।


[[File:Appearance hands.jpg|left|thumb|ये बाइनरी सिल्हूट (बाएं) या समोच्च (दाएं) चित्र उपस्थिति-आधारित कलन विधि के लिए विशिष्ट इनपुट का प्रतिनिधित्व करते हैं। तथा उनकी तुलना अलग-अलग हाथ के टेम्प्लेट से की जाती है। और यदि वे मेल खाते हैं, तो संवाददाता संकेत का अनुमान लगाया जाता है।]]
[[File:Appearance hands.jpg|left|thumb|ये बाइनरी सिल्हूट (बाएं) या समोच्च (दाएं) चित्र उपस्थिति-आधारित एल्गोरिथम के लिए विशिष्ट इनपुट का प्रतिनिधित्व करते हैं। तथा उनकी तुलना अलग-अलग हाथ के टेम्प्लेट से की जाती है। और यदि वे मेल खाते हैं, तो संवाददाता संकेत का अनुमान लगाया जाता है।]]


=== बाह्याकृति-आधारित प्रारूप ===
=== बाह्याकृति-आधारित प्रारूप ===
ये प्रारूप शरीर के स्थानिक प्रतिनिधित्व का उपयोग नहीं करते हैं, क्योंकि वे टेम्प्लेट डेटाबेस का उपयोग करके सीधे छवियों(images) या वीडियो से पैरामीटर प्राप्त करते हैं। शरीर के कुछ मानव भागों मे, विशेष रूप से हाथों के विकृत 2डी टेम्पलेट्स पर आधारित होते हैं। विरूपणीय टेम्प्लेट किसी वस्तु की रूपरेखा पर बिंदुओं के समूह होते हैं, जिनका उपयोग वस्तु की रूपरेखा सन्निकटन के लिए प्रक्षेप नोड के रूप में किया जाता है। सबसे सरल प्रक्षेप कार्यों में से एक रैखिक कार्य है, जो बिंदु सेट, बिंदु परिवर्तनशीलता मापदंडों और बाहरी विरूपण से एक औसत आकृति का उपयोग करता है। ये टेम्प्लेट-आधारित प्रारूप ज्यादातर हाथ के नियंत्रण के लिए उपयोग किए जाते हैं, लेकिन इन्हें सरल संकेत वर्गीकरण के लिए भी उपयोग किया जा सकता है।
ये प्रारूप शरीर के स्थानिक प्रतिनिधित्व का उपयोग नहीं करते हैं, क्योंकि वे टेम्प्लेट डेटाबेस का उपयोग करके सीधे छवियों या वीडियो से पैरामीटर प्राप्त करते हैं। शरीर के कुछ मानव भागों मे, विशेष रूप से हाथों के विकृत 2डी टेम्पलेट्स पर आधारित होते हैं। विकृत टेम्प्लेट किसी वस्तु की रूपरेखा पर बिंदुओं के समूह होते हैं, जिनका उपयोग वस्तु की रूपरेखा सन्निकटन के लिए प्रक्षेप नोड के रूप में किया जाता है। सबसे सरल प्रक्षेप कार्यों में से एक रैखिक कार्य है, जो बिंदु सेट, बिंदु परिवर्तनशीलता मापदंडों और बाहरी विरूपण से एक औसत आकृति का उपयोग करता है। ये टेम्प्लेट-आधारित प्रारूप अधिकांश हाथ के नियंत्रण के लिए उपयोग किए जाते हैं, लेकिन इन्हें सरल संकेत वर्गीकरण के लिए भी उपयोग किया जा सकता है।


बाह्याकृति-आधारित प्रारूप का उपयोग करके संकेत को पता लगाने का दूसरा तरीका संकेत टेम्प्लेट के रूप में छवि अनुक्रम का उपयोग करता है। इस पद्धति के पैरामीटर या स्वयं चित्र होते हैं, तथा इनसे प्राप्त कुछ विशेषताएं अधिकांश समय, केवल एक मोनोस्कोपिक या दो स्टीरियोस्कोपिक दृश्यों का उपयोग किया जाता है।
बाह्याकृति-आधारित प्रारूप का उपयोग करके संकेत को पता लगाने का दूसरा तरीका संकेत टेम्प्लेट के रूप में छवि अनुक्रम का उपयोग करना होता है। इस पद्धति के पैरामीटर या अपने चित्र होते हैं, तथा इनसे प्राप्त कुछ विशेषताएं अधिकांश समय मे एक मोनोस्कोपिक या दो स्टीरियोस्कोपिक दृश्यों का उपयोग किया जाता है।


=== [[विद्युतपेशीलेखन|इलेक्ट्रोमायोग्राफी]]-आधारित प्रारूप ===
=== [[विद्युतपेशीलेखन|इलेक्ट्रोमायोग्राफी]]-आधारित प्रारूप ===
इलेक्ट्रोमोग्राफी (ईएमजी) शरीर में मांसपेशियों द्वारा उत्पादित विद्युत संकेतों के अध्ययन से संबंधित होता है। हाथ की मांसपेशियों से प्राप्त आँकड़ा वर्गीकरण के माध्यम से क्रिया को वर्गीकृत करना संभव है। और इस प्रकार संकेत बाहरी सॉफ़्टवेयर में निर्विष्ट करता है।<ref name="Kobylarz"/> उपभोक्ता ईएमजी उपकरण गैर-संक्रामक दृष्टिकोण जैसे, हाथ या पैर बैंड और ब्लूटूथ के माध्यम से जोड़ने की अनुमति देते हैं। इसके कारण, ईएमजी को दृश्य विधियों पर एक फायदा होता है। क्योंकि उपयोगकर्ता को इनपुट देने के लिए कैमरे का सामना करने की आवश्यकता नहीं होती है, जिससे गतिविधि को अधिक स्वतंत्रता मिलती है।
इलेक्ट्रोमोग्राफी (ईएमजी) शरीर में मांसपेशियों द्वारा उत्पादित विद्युत संकेतों के अध्ययन से संबंधित होता है। हाथ की मांसपेशियों से प्राप्त आँकड़ा वर्गीकरण के माध्यम से गतिविधि को वर्गीकृत करना संभव है। और इस प्रकार संकेत बाहरी सॉफ़्टवेयर में निर्विष्ट होते है।<ref name="Kobylarz"/> उपभोक्ता ईएमजी उपकरण गैर-संक्रामक दृष्टिकोण जैसे, हाथ या पैर बैंड और ब्लूटूथ के माध्यम से जोड़ने की अनुमति देते हैं। इसके कारण, ईएमजी को दृश्य विधियों पर एक लाभ होता है। क्योंकि उपयोगकर्ता को इनपुट देने के लिए कैमरे का सामना करने की आवश्यकता नहीं होती है, जिससे गतिविधि को अधिक स्वतंत्रता मिलती है।


== चुनौतियां ==
== चुनौतियां ==


संकेत पहचान सॉफ़्टवेयर की शुद्धता और उपयोगिता से जुड़ी कई चुनौतियाँ हैं। छवि-आधारित संकेत पहचान के लिए उपयोग किए गए उपकरण और [[छवि शोर|छवि ध्वनि]] की सीमाएँ हैं। छवियां या वीडियो लगातार प्रकाश में या एक ही स्थान पर नहीं हो सकते हैं। पृष्ठभूमि में सामान या उपयोगकर्ताओं की विशिष्ट विशेषताओ की पहचान को और अधिक जटिल बना सकती हैं।
संकेत पहचान सॉफ़्टवेयर की शुद्धता और उपयोगिता से जुड़ी कई चुनौतियाँ हैं। छवि-आधारित संकेत पहचान के लिए उपयोग किए गए उपकरण और [[छवि शोर|छवि ध्वनि]] की सीमाएँ होती हैं। छवियां या वीडियो लगातार प्रकाश में या एक ही स्थान पर नहीं हो सकते हैं। वातावरण में सामान या उपयोगकर्ताओं की विशिष्ट विशेषताओ की पहचान को और अधिक जटिल बना सकती हैं।


छवि-आधारित संकेत पहचान के लिए विभिन्न प्रकार के कार्यान्वयन भी सामान्य उपयोग के लिए प्रौद्योगिकी की व्यवहार्यता के लिए समस्याएँ उत्पन्न कर सकते हैं। उदाहरण के लिए, एक कैमरे के लिए व्यवस्थित की गयी कलन विधि दूसरे कैमरे के लिए काम नहीं कर सकता है। पृष्ठभूमि ध्वनि की मात्रा भी नियंत्रित और पहचान की कठिनाइयों का कारण बनती है, प्रायः जब रूकावट आंशिक और पूर्ण होती है। इसके अतिरिक्त, कैमरे से दूरी और कैमरे का विश्लेषण और गुणवत्ता भी पहचान शुद्धता में भिन्नता का कारण बनती है।
छवि-आधारित संकेत पहचान के लिए विभिन्न प्रकार के कार्यान्वयन भी सामान्य उपयोग के लिए प्रौद्योगिकी की व्यवहार्यता के लिए समस्याएँ उत्पन्न कर सकते हैं। उदाहरण: एक कैमरे के लिए व्यवस्थित की गई एल्गोरिथम दूसरे कैमरे के लिए कार्य नहीं कर सकती है। बैकग्राउन्ड ध्वनि की मात्रा भी नियंत्रित और पहचान की कठिनाइयों का कारण बनती है। प्रायः जब रूकावट आंशिक और पूर्ण होती है। इसके अतिरिक्त, कैमरे से दूरी और कैमरे का विश्लेषण और गुणवत्ता भी पहचान शुद्धता में भिन्नता का कारण बनती है।


दृश्य संवेदकों द्वारा मानव संकेतों को अधिकृत करने के लिए जटिल कंप्यूटर दृष्टि विधियों की भी आवश्यकता होती है।
दृश्य संवेदकों द्वारा मानव संकेतों को अधिकृत करने के लिए जटिल कंप्यूटर दृष्टि विधियों की भी आवश्यकता होती है।
Line 102: Line 102:
pages 529- 534, {{ISBN|0-7695-2122-3}}, {{doi|10.1109/AFGR.2004.1301587}}.</ref><ref>Stenger B, Thayananthan A, Torr PH, Cipolla R: [https://wayback.archive-it.org/all/20080221223332/http://www.bmva.ac.uk/sullivan/prizethesis-2005.pdf "Model-based hand tracking using a hierarchical Bayesian filter"], IEEE Transactions on  IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(9):1372-84, Sep 2006.</ref><ref>A Erol, G Bebis, M Nicolescu, RD Boyle, X Twombly, [http://www.cse.unr.edu/~bebis/handposerev.pdf "Vision-based hand pose estimation: A review"], Computer Vision and Image Understanding
pages 529- 534, {{ISBN|0-7695-2122-3}}, {{doi|10.1109/AFGR.2004.1301587}}.</ref><ref>Stenger B, Thayananthan A, Torr PH, Cipolla R: [https://wayback.archive-it.org/all/20080221223332/http://www.bmva.ac.uk/sullivan/prizethesis-2005.pdf "Model-based hand tracking using a hierarchical Bayesian filter"], IEEE Transactions on  IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(9):1372-84, Sep 2006.</ref><ref>A Erol, G Bebis, M Nicolescu, RD Boyle, X Twombly, [http://www.cse.unr.edu/~bebis/handposerev.pdf "Vision-based hand pose estimation: A review"], Computer Vision and Image Understanding
Volume 108, Issues 1-2, October–November 2007, Pages 52-73
Volume 108, Issues 1-2, October–November 2007, Pages 52-73
Special Issue on Vision for Human-Computer Interaction, {{doi|10.1016/j.cviu.2006.10.012}}.</ref> या सिर की गतिविधियों, चेहरे के भावों या एक्टक देखने वाले को अधिकृत करने के लिए किया जाता है।  
Special Issue on Vision for Human-Computer Interaction, {{doi|10.1016/j.cviu.2006.10.012}}.</ref> या सिर की गतिविधियों, चेहरे के भावों या एक्टक देखने वाली दृष्टि को अधिकृत करने के लिए किया जाता है।  


=== सामाजिक स्वीकार्यता ===
=== सामाजिक स्वीकार्यता ===
Line 108: Line 108:


==== मोबाइल उपकरण ====
==== मोबाइल उपकरण ====
मोबाइल और छोटा आकार के कारक उपकरणों पर संकेत इंटरफ़ेस अधिकांश गति संवेदक जैसे जड़त्वीय मापन इकाइयों (आईएमयू) की उपस्थिति से समर्थित होते हैं। इन उपकरणों पर, संकेत संवेदन की गति द्वारा पहचाने जाने में सक्षम संचलन-आधारित संकेत करने वाले उपयोगकर्ताओं पर निर्भर करता है। यह संभावित रूप से सूक्ष्म या निम्न-गति संकेतों से संकेतों को अधिकृत करना चुनौतीपूर्ण बना सकता है।, क्योंकि उन्हें प्राकृतिक संचलन या ध्वनि से अलग करना जटिल हो सकता है। संकेतों की उपयोगिता के एक सर्वेक्षण और अध्ययन के माध्यम से शोधकर्ताओं ने प्राप्त किया। कि संकेत जो सूक्ष्म गति को सम्मिलित करते हैं, उपस्थिति तकनीक के समान दिखाई देते हैं, प्रत्येक क्रिया के समान दिखते हैं या महसूस करते हैं, और जो सुखद हैं।, उन्हे उपयोगकर्ताओं द्वारा स्वीकार किए जाने की अधिक संभावना होती है, जबकि जो संकेत अजीब दिखते हैं, असहज प्रदर्शन, संचार में हस्तक्षेप करते हैं, असामान्य गतिविधि में सम्मिलित होने के कारण उपयोगकर्ताओं द्वारा उनके उपयोग को अस्वीकार करने की अधिक संभावना होती है।<ref name=":0" /> मोबाइल उपकरण संकेतों की सामाजिक स्वीकार्यता संकेत और सामाजिक संदर्भ की स्वाभाविकता पर बहुत अधिक निर्भर करती है।
मोबाइल और छोटे आकार के उपकरणों पर संकेत इंटरफ़ेस अधिकांश गति संवेदक जैसे जड़त्वीय मापन इकाइयों (आईएमयू) की उपस्थिति से समर्थित होते हैं। इन उपकरणों पर, संकेत संवेदन की गति द्वारा पहचाने जाने में सक्षम संचलन-आधारित संकेत करने वाले उपयोगकर्ताओं पर निर्भर करता है। यह संभावित रूप से सूक्ष्म या निम्न-गति संकेतों से संकेतों को अधिकृत करना चुनौतीपूर्ण बना सकता है। क्योंकि उन्हें प्राकृतिक संचलन या ध्वनि से अलग करना जटिल होता है। संकेतों की उपयोगिता के एक सर्वेक्षण और अध्ययन के माध्यम से शोधकर्ताओं ने प्राप्त किया। कि संकेत जो सूक्ष्म गति को सम्मिलित करते हैं, उपस्थिति तकनीक के समान दिखाई देते हैं, प्रत्येक क्रिया के समान दिखते हैं या महसूस करते हैं, और जो सुखद हैं। उन्हे उपयोगकर्ताओं द्वारा स्वीकार किए जाने की अधिक संभावना होती है, जबकि जो संकेत अजीब दिखते हैं, असहज प्रदर्शन, संचार में व्यवधान करते हैं, असामान्य गतिविधि में सम्मिलित होने के कारण उपयोगकर्ताओं द्वारा उनके उपयोग को अस्वीकार करने की अधिक संभावना होती है।<ref name=":0" /> मोबाइल उपकरण संकेतों की सामाजिक स्वीकार्यता संकेत और सामाजिक संदर्भ की स्वाभाविकता पर बहुत अधिक निर्भर करती है।


==== शरीर और [[पहनने योग्य कंप्यूटर|धारणीय कंप्यूटर]] ====
==== शरीर और [[पहनने योग्य कंप्यूटर|धारणीय कंप्यूटर]] ====
धारणीय या पहनने योग्य कंप्यूटर सामान्य रूप से पारंपरिक मोबाइल उपकरणों से भिन्न होते हैं, जिसमें उनका उपयोग और परस्पर क्रिया का स्थान उपयोगकर्ता के शरीर पर होता है। इन संदर्भों में, संकेत इंटरफ़ेस पारंपरिक निविष्ट विधियों पर चयनित किए जा सकते हैं, क्योंकि उनका छोटा आकार [[टच स्क्रीन|टचस्क्रीन]] या [[कंप्यूटर कीबोर्ड]] को कम आकर्षक बनाता है। फिर भी, जब संकेतों पर परस्पर क्रिया की बात आती है, तो वे मोबाइल उपकरणों के समान सामाजिक स्वीकार्यता बाधाओं में से अनेक को साझा करते हैं। हालांकि, धारणीय कंप्यूटरों को दृष्टि से छिपाने या अन्य प्रतिदिन की वस्तुओं में एकीकृत करने की संभावना, जैसे कि कपड़े, संकेतों को सामान्य कपड़ों की अंतः क्रिया की नकल करने की अनुमति देते हैं, जैसे कि शर्ट कॉलर को समायोजित करना या किसी के सामने की पैंट की जेब को रगड़ना।<ref name="Walter 2013">{{Cite book|last1=Walter|first1=Robert|last2=Bailly|first2=Gilles|last3=Müller|first3=Jörg|s2cid=2041073|date=2013|title=पोज बनाओ|chapter=पोज बनाओ : Revealing mid-air gestures on public displays|journal=Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI '13|pages=841–850|location=New York, New York, USA|publisher=ACM Press|doi=10.1145/2470654.2470774|isbn=9781450318990|chapter-url=https://eref.uni-bayreuth.de/42090/}}</ref><ref name=":1">{{Cite journal|last1=Profita|first1=Halley P.|last2=Clawson|first2=James|last3=Gilliland|first3=Scott|last4=Zeagler|first4=Clint|last5=Starner|first5=Thad|last6=Budd|first6=Jim|last7=Do|first7=Ellen Yi-Luen|s2cid=3236927|date=2013|title=डोंट माइंड मी टचिंग माई राइट: ए केस स्टडी ऑफ इंटरेक्टिंग विथ ऑन-बॉडी टेक्नोलॉजी इन पब्लिक|journal=Proceedings of the 2013 International Symposium on Wearable Computers|series=ISWC '13|location=New York, NY, USA|publisher=ACM|pages=89–96|doi=10.1145/2493988.2494331|isbn=9781450321273}}</ref> धारणीय कंप्यूटर परस्पर क्रिया के लिए एक प्रमुख विचार उपकरण प्लेसमेंट और अंतः क्रिया के लिए स्थान है। [[संयुक्त राज्य अमेरिका]] और [[दक्षिण कोरिया]] में पहनने योग्य उपकरण पारस्परिक क्रिया के प्रति तीसरे पक्ष के दृष्टिकोण की खोज करने वाले एक अध्ययन में पुरुषों और महिलाओं के पहनने योग्य कंप्यूटिंग उपयोग की धारणा में अंतर पाया गया।, आंशिक रूप से सामाजिक संवेदनशील माने जाने वाले शरीर के विभिन्न क्षेत्रों के कारण।<ref name=":1" /> शरीर पर अनुमानित इंटरफ़ेस की सामाजिक स्वीकार्यता की जांच करने वाले एक अन्य अध्ययन में समान परिणाम पाए गए। तथा दोनों अध्ययनों में कमर और ऊपरी शरीर (महिलाओं के लिए) के आसपास स्तरीय क्षेत्रों को कम से कम स्वीकार्य माना गया है।, जबकि प्रकोष्ठ और कलाई के आसपास के क्षेत्रों को सबसे अधिक स्वीकार्य माना गया है।<ref>{{Cite journal|last1=Harrison|first1=Chris|last2=Faste|first2=Haakon|s2cid=1121501|date=2014|title=ऑन-बॉडी अनुमानित इंटरफेस के लिए स्थान और स्पर्श के निहितार्थ|journal=Proceedings of the 2014 Conference on Designing Interactive Systems|series=DIS '14|location=New York, NY, USA|publisher=ACM|pages=543–552|doi=10.1145/2598510.2598587|isbn=9781450329026}}</ref>
धारणीय या पहनने योग्य कंप्यूटर सामान्य रूप से परंपरागत मोबाइल उपकरणों से भिन्न होते हैं, जिसमें उनका उपयोग और परस्पर क्रिया का स्थान उपयोगकर्ता के शरीर पर होता है। इन संदर्भों में, संकेत इंटरफ़ेस परंपरागत निविष्ट विधियों पर चयनित किए जा सकते हैं, क्योंकि उनका छोटा आकार [[टच स्क्रीन|टचस्क्रीन]] या [[कंप्यूटर कीबोर्ड]] को कम आकर्षक बनाता है। फिर भी, जब संकेतों पर परस्पर क्रिया की बात आती है, तो वे मोबाइल उपकरणों के समान सामाजिक स्वीकार्यता बाधाओं में से अनेक को साझा करते हैं। हालांकि, धारणीय कंप्यूटरों को दृष्टि से छिपाने या अन्य प्रतिदिन की वस्तुओं में एकीकृत करने की संभावना, जैसे कि कपड़े, संकेतों को सामान्य कपड़ों की अंतः क्रिया की नकल करने की अनुमति देते हैं, जैसे कि शर्ट कॉलर को समायोजित करना या किसी के सामने की पैंट की जेब को रगड़ना।<ref name="Walter 2013">{{Cite book|last1=Walter|first1=Robert|last2=Bailly|first2=Gilles|last3=Müller|first3=Jörg|s2cid=2041073|date=2013|title=पोज बनाओ|chapter=पोज बनाओ : Revealing mid-air gestures on public displays|journal=Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI '13|pages=841–850|location=New York, New York, USA|publisher=ACM Press|doi=10.1145/2470654.2470774|isbn=9781450318990|chapter-url=https://eref.uni-bayreuth.de/42090/}}</ref><ref name=":1">{{Cite journal|last1=Profita|first1=Halley P.|last2=Clawson|first2=James|last3=Gilliland|first3=Scott|last4=Zeagler|first4=Clint|last5=Starner|first5=Thad|last6=Budd|first6=Jim|last7=Do|first7=Ellen Yi-Luen|s2cid=3236927|date=2013|title=डोंट माइंड मी टचिंग माई राइट: ए केस स्टडी ऑफ इंटरेक्टिंग विथ ऑन-बॉडी टेक्नोलॉजी इन पब्लिक|journal=Proceedings of the 2013 International Symposium on Wearable Computers|series=ISWC '13|location=New York, NY, USA|publisher=ACM|pages=89–96|doi=10.1145/2493988.2494331|isbn=9781450321273}}</ref> धारणीय कंप्यूटर परस्पर क्रिया के लिए एक प्रमुख विचार उपकरण प्लेसमेंट और अंतः क्रिया के लिए स्थिति है। [[संयुक्त राज्य अमेरिका]] और [[दक्षिण कोरिया]] में पहनने योग्य उपकरण पारस्परिक क्रिया के प्रति तीसरे पक्ष के दृष्टिकोण की खोज करने वाले एक अध्ययन में पुरुषों और महिलाओं के पहनने योग्य कंप्यूटिंग उपयोग की धारणा में अंतर पाया गया। आंशिक रूप से सामाजिक संवेदनशील माने जाने वाले शरीर के विभिन्न क्षेत्रों के कारण।<ref name=":1" /> शरीर पर अनुमानित इंटरफ़ेस की सामाजिक स्वीकार्यता की जांच करने वाले एक अन्य अध्ययन में समान परिणाम पाए गए। तथा दोनों अध्ययनों में कमर और ऊपरी शरीर (महिलाओं के लिए) के आसपास स्तरीय क्षेत्रों को कम से कम स्वीकार्य माना गया है। जबकि प्रकोष्ठ और कलाई के आसपास के क्षेत्रों को सबसे अधिक स्वीकार्य माना गया है।<ref>{{Cite journal|last1=Harrison|first1=Chris|last2=Faste|first2=Haakon|s2cid=1121501|date=2014|title=ऑन-बॉडी अनुमानित इंटरफेस के लिए स्थान और स्पर्श के निहितार्थ|journal=Proceedings of the 2014 Conference on Designing Interactive Systems|series=DIS '14|location=New York, NY, USA|publisher=ACM|pages=543–552|doi=10.1145/2598510.2598587|isbn=9781450329026}}</ref>
==== सार्वजनिक संस्थापन ====
==== सार्वजनिक संस्थापन ====
[[इंटरएक्टिव कियोस्क|सार्वजनिक संस्थापन]], जैसे कि पारस्परिक प्रभाव सार्वजनिक प्रदर्शन, सूचना तक पहुंच की अनुमति देते हैं। और सार्वजनिक वातावरण जैसे संग्रहालयों, प्रदर्शनी और शल्य कक्षों में पारस्परिक मीडिया प्रदर्शित करते हैं।<ref name=":2">{{Cite journal|last1=Reeves|first1=Stuart|last2=Benford|first2=Steve|last3=O'Malley|first3=Claire|last4=Fraser|first4=Mike|s2cid=5739231|date=2005|title=दर्शक अनुभव डिजाइनिंग|journal=Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI '05|pages=741–750|location=New York, New York, USA|publisher=ACM Press|doi=10.1145/1054972.1055074|isbn=978-1581139983|url=http://eprints.nottingham.ac.uk/252/1/p133-reeves.pdf}}</ref> जबकि टच स्क्रीन सार्वजनिक प्रदर्शन के लिए इनपुट का एक लगातार रूप है, संकेत इंटरफ़ेस अतिरिक्त लाभ प्रदान करते हैं। जैसे कि बेहतर स्वच्छता, दूर से अंतः क्रिया, बेहतर खोज, और प्रदर्शनकारी अंतः क्रिया का पक्ष ले सकते हैं।<ref name="Walter 2013"/> तथा सार्वजनिक प्रदर्शनों के साथ सांकेतिक अंतः क्रिया के लिए एक महत्वपूर्ण विचार दर्शकों की उच्च संभावना या अपेक्षा सम्मिलित होती है।<ref name=":2" />
[[इंटरएक्टिव कियोस्क|सार्वजनिक संस्थापन]], जैसे कि पारस्परिक प्रभाव सार्वजनिक प्रदर्शन सूचना तक पहुंच की अनुमति देते हैं। और सार्वजनिक वातावरण जैसे संग्रहालयों, प्रदर्शनी और शल्य कक्षों में पारस्परिक मीडिया प्रदर्शित करते हैं।<ref name=":2">{{Cite journal|last1=Reeves|first1=Stuart|last2=Benford|first2=Steve|last3=O'Malley|first3=Claire|last4=Fraser|first4=Mike|s2cid=5739231|date=2005|title=दर्शक अनुभव डिजाइनिंग|journal=Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI '05|pages=741–750|location=New York, New York, USA|publisher=ACM Press|doi=10.1145/1054972.1055074|isbn=978-1581139983|url=http://eprints.nottingham.ac.uk/252/1/p133-reeves.pdf}}</ref> जबकि टच स्क्रीन सार्वजनिक प्रदर्शन के लिए लगातार इनपुट का रूप है, संकेत इंटरफ़ेस अतिरिक्त लाभ प्रदान करते हैं। जैसे कि अपेक्षाकृत स्वच्छता, दूर से अंतः क्रिया, अपेक्षाकृत खोज, और प्रदर्शनकारी अंतः क्रिया का पक्ष ले सकते हैं।<ref name="Walter 2013"/> तथा सार्वजनिक प्रदर्शनों के साथ सांकेतिक अंतः क्रिया के लिए एक महत्वपूर्ण विचार दर्शकों की उच्च संभावना या अपेक्षा सम्मिलित होती है।<ref name=":2" />
=== गोरिल्ला आर्म ===
=== गोरिल्ला आर्म ===
गोरिल्ला आर्म लंबवत उन्मुख टच-स्क्रीन या लाइट-पेन के उपयोग का एक पार्श्व प्रभाव था। जो लंबे समय तक उपयोग की अवधि के बाद उपयोगकर्ताओ के हाथ मे थकान और बेचैनी महसूस करने का कारण बनने लगा था। इसी कारण इस प्रभाव ने 1980 के दशक में प्रारम्भिक लोकप्रियता के अतिरिक्त टच-स्क्रीन इनपुट की गिरावट में योगदान दिया था।<ref>{{cite web|url=http://www.zdnet.com/windows-7-no-arm-in-it-4010008314/|title=विंडोज 7? इसमें हाथ नहीं है|author=Rupert Goodwins|work=ZDNet}}</ref><ref>{{cite web|url=http://www.catb.org/jargon/html/G/gorilla-arm.html|title=गोरिल्ला बांह|work=catb.org}}</ref>
गोरिल्ला आर्म लंबवत उन्मुख टच-स्क्रीन या लाइट-पेन के उपयोग का एक पार्श्व प्रभाव था। जो लंबे समय तक उपयोग की अवधि के बाद उपयोगकर्ताओ के हाथ मे थकान और असुविधा अनुभव करने का कारण बनने लगा था। इसी कारण इस प्रभाव ने 1980 के दशक में प्रारम्भिक लोकप्रियता के अतिरिक्त टच-स्क्रीन इनपुट की गिरावट(डिक्लाइन) में योगदान दिया था।<ref>{{cite web|url=http://www.zdnet.com/windows-7-no-arm-in-it-4010008314/|title=विंडोज 7? इसमें हाथ नहीं है|author=Rupert Goodwins|work=ZDNet}}</ref><ref>{{cite web|url=http://www.catb.org/jargon/html/G/gorilla-arm.html|title=गोरिल्ला बांह|work=catb.org}}</ref>


हाथ की थकान और गोरिल्ला आर्म के पार्श्व प्रभाव को मापने के लिए शोधकर्ताओं ने कंज्यूम्ड एंड्योरेंस नामक एक तकनीक विकसित की थी।<ref>Hincapié-Ramos, J.D., Guo, X., Moghadasian, P. and Irani. P. 2014. [http://hci.cs.umanitoba.ca/projects-and-research/details/ce "Consumed Endurance: A Metric to Quantify Arm Fatigue of Mid-Air Interactions"]. In Proceedings of the 32nd annual ACM conference on Human factors in computing systems (CHI '14). ACM, New York, NY, USA, 1063–1072. DOI=10.1145/2556288.2557130</ref><ref>Hincapié-Ramos, J.D., Guo, X., and Irani, P. 2014. [http://hci.cs.umanitoba.ca/projects-and-research/details/ce "The Consumed Endurance Workbench: A Tool to Assess Arm Fatigue During Mid-Air Interactions"]. In Proceedings of the 2014 companion publication on Designing interactive systems (DIS Companion '14). ACM, New York, NY, USA, 109-112. DOI=10.1145/2598784.2602795</ref>
हाथ की थकान और गोरिल्ला आर्म के पार्श्व प्रभाव को मापने के लिए शोधकर्ताओं ने कंज्यूम्ड एंड्योरेंस नामक एक तकनीक विकसित की थी।<ref>Hincapié-Ramos, J.D., Guo, X., Moghadasian, P. and Irani. P. 2014. [http://hci.cs.umanitoba.ca/projects-and-research/details/ce "Consumed Endurance: A Metric to Quantify Arm Fatigue of Mid-Air Interactions"]. In Proceedings of the 32nd annual ACM conference on Human factors in computing systems (CHI '14). ACM, New York, NY, USA, 1063–1072. DOI=10.1145/2556288.2557130</ref><ref>Hincapié-Ramos, J.D., Guo, X., and Irani, P. 2014. [http://hci.cs.umanitoba.ca/projects-and-research/details/ce "The Consumed Endurance Workbench: A Tool to Assess Arm Fatigue During Mid-Air Interactions"]. In Proceedings of the 2014 companion publication on Designing interactive systems (DIS Companion '14). ACM, New York, NY, USA, 109-112. DOI=10.1145/2598784.2602795</ref>

Revision as of 10:12, 2 January 2023

एक साधारण संकेत पहचान एल्गोरिथम द्वारा बच्चे के हाथ की स्थिति और गतिवधि का पता लगाया जा रहा है।
मध्यस्थ सामान्य रूप से संकेत पहचान को संसाधित करता है, फिर उपयोगकर्ता को परिणाम भेजता है।

संकेत पहचान, कंप्यूटर विज्ञान और भाषा प्रौद्योगिकी में एक विषय है, जिसका लक्ष्य गणितीय एल्गोरिथम के माध्यम से मानव संकेतों की व्याख्या करना है।[1] यह कंप्यूटर दृष्टि का एक उपविषय है। संकेत किसी भी शारीरिक गति या अवस्था से उत्पन्न हो सकते हैं, लेकिन सामान्य रूप से चेहरे या हाथ से उत्पन्न होते हैं। क्षेत्र में केंद्रित चेहरे और हाथ के आवेश की पहचान से भावनाओं की पहचान सम्मिलित है, क्योंकि वे सभी भाव होते हैं। उपयोगकर्ता शारीरिक रूप से स्पर्श किए बिना उपकरणों को नियंत्रित करने या उनसे अंतः क्रिया करने के लिए सरल संकेत कर सकते हैं। सांकेतिक भाषा की व्याख्या करने के लिए कैमरों और कंप्यूटर दृष्टि एल्गोरिथम का उपयोग करके कई दृष्टिकोण बनाए गए हैं। हालांकि स्थिति, चाल, समीपस्थता और मानव व्यवहार की पहचान भी संकेत पहचान तकनीक का एक विषय है।[2]

संकेत पहचान को कंप्यूटर के लिए मानव शरीर की भाषा को समझने के तरीके के रूप में देखा जा सकता है। इस प्रकार पुराने टेक्स्ट उपयोगकर्ता इंटरफ़ेस या ग्राफिकल उपयोगकर्ता इंटरफ़ेस की तुलना में मशीनों और मनुष्यों के बीच एक अच्छे संबंध का निर्माण होता है, जो अभी भी कीबोर्ड और माउस के अधिकांश इनपुट को सीमित करता है। तथा बिना किसी यांत्रिक उपकरण के स्वाभाविक रूप से परस्पर क्रिया करता है।

संक्षिप्त विवरण

संकेत पहचान की विशेषताएं:

  • उच्च शुद्धता
  • उच्च स्थिरता
  • किसी उपकरण को खोलने का शीघ्र समय

वर्तमान परिदृश्य में संकेत पहचान के प्रमुख अनुप्रयोग क्षेत्र हैं।[when?]

संकेत पहचान कंप्यूटर दृष्टि और वास्तविकि प्रोद्योगिकी की तकनीकों से की जा सकती है।[5]

साहित्य में संकेतों या अधिक सामान्य मानव प्रस्तुत और कंप्यूटर से जुड़े कैमरों द्वारा संचलन को अधिकृत करने पर कंप्यूटर दृष्टि क्षेत्र में चल रहे कार्य सम्मिलित हैं।[6][7][8][9]

संकेत पहचान और पेन कंप्यूटिंग: पेन कंप्यूटिंग एक सिस्टम के हार्डवेयर प्रभाव को कम करती है। कीबोर्ड और माऊस जैसे पारंपरिक अंकीय उद्देश्यों से पूर्ण नियंत्रण के लिए उपयोग की जाने वाली भौतिक दुनिया की वस्तुओं की सीमा को भी बढ़ाती है। संकेत पहचान शब्द का उपयोग गैर टेक्स्ट इनपुट लिखावट प्रतीकों के लिए अधिक संकीर्ण रूप से प्रदर्शित करने के लिए किया गया है, जैसे कि ग्राफिक्स टैब्लेट पर अंकन, मल्टीटच संकेत और माउस संकेत पहचान। यह पॉइंटिंग उपकरण कर्सर के साथ प्रतीकों के आरेखण के माध्यम से कंप्यूटर मे पारस्परिक होते है।[10][11][12]

संकेत प्रकार

कंप्यूटर इंटरफ़ेस में दो प्रकार के संकेत प्रसिद्ध है।[13] हम ऑनलाइन संकेतों पर विचार करते हैं, जिसे अनुमापन और घूर्णन जैसे प्रत्यक्ष प्रकलन (कम्प्यूटर) के रूप में भी माना जा सकता है, और इसके विपरीत, ऑफ़लाइन संकेतों को सामान्य रूप से अंतः क्रिया समाप्त होने के बाद संसाधित किया जाता है। संदर्भ मेनू को सक्रिय करने के लिए एक वृत्त खींचा जाता है।

  • ऑफलाइन संकेत: वे संकेत जो वस्तु के साथ उपयोगकर्ता की पारस्परिक क्रिया के बाद सक्रिय होते हैं। एक उदाहरण मेनू को सक्रिय करने के लिए एक संकेत है।
  • ऑनलाइन संकेत: प्रत्यक्ष प्रकलन संकेतों का उपयोग किसी स्पर्श योग्य वस्तु को मापने या घुमाने के लिए किया जाता है।

टचरहित इंटरफ़ेस

संकेत नियंत्रण के संबंध में टचलेस(टचरहित) उपयोगकर्ता इंटरफ़ेस एक विकसित तकनीक है। जो टचलेस उपयोगकर्ता इंटरफ़ेस (टीयूआई) कीबोर्ड, माउस या स्क्रीन को स्पर्श के अतिरिक्त शरीर की गति और संकेतों के माध्यम से कंप्यूटर को कमांड करने की प्रक्रिया है।[14] संकेत नियंत्रण के अतिरिक्त टचलेस इंटरफ़ेस व्यापक रूप से लोकप्रिय हो रहे हैं। क्योंकि वे उपकरणों को भौतिक रूप से स्पर्श किए बिना उनसे पारस्परिक क्रिया करने की क्षमता प्रदान करते हैं।

टचलेस तकनीक के प्रकार

इस प्रकार के इंटरफ़ेस का उपयोग करने वाले कई उपकरण होते हैं। जैसे स्मार्टफोन, लैपटॉप, गेम, टीवी और संगीत उपकरण आदि।

एक प्रकार का टचलेस इंटरफ़ेस कंपनी की विजिटर प्रबन्धन प्रणाली को सक्रिय करने के लिए स्मार्टफोन की ब्लूटूथ कनेक्टिविटी का उपयोग करता है। यह कोविड-19 महामारी के समय जैसे इंटरफ़ेस को स्पर्श करने से रोकता है।[15]

इनपुट उपकरण

किसी व्यक्ति की गतिविधियों को नियंत्रित करना और यह निर्धारित करने की क्षमता कि वे कौन से संकेतों का प्रदर्शन कर रहे हैं। यह विभिन्न उपकरणों के माध्यम से प्राप्त किया जा सकता है। गतिज उपयोगकर्ता इंटरफ़ेस (केयूआई) एक विकसित प्रकार के उपयोगकर्ता इंटरफ़ेस हैं। जो उपयोगकर्ताओं को वस्तुओं और निकायों की गति के माध्यम से कंप्यूटिंग उपकरणों के साथ पारस्परिक क्रिया करने की अनुमति देते हैं।[citation needed] केयूआई के उदाहरणों में वास्तविक उपयोगकर्ता इंटरफ़ेस और गति अवगत खेल जैसे Wii और माइक्रोसॉफ्ट का किनेक्ट, और अन्य पारस्परिक योजनाए सम्मिलित हैं।[16]

हालांकि छवि/वीडियो-आधारित संकेत पहचान में बड़ी मात्रा में शोध किया गया है, कार्यान्वयन के बीच उपयोग किए जाने वाले उपकरणों और वातावरण में कुछ भिन्नता होती है।

  • तार वाले दस्ताने- ये कंप्यूटर को चुंबकीय या जड़त्वीय नियंत्रित उपकरणों का उपयोग करके हाथों की स्थिति और घुमाव के बारे में इनपुट प्रदान कर सकते हैं। इसके अतिरिक्त, कुछ दस्ताने उच्च स्तर की शुद्धता 5-10 डिग्री के साथ उंगली के झुकने का पता लगा सकते हैं, यहां तक ​​​​कि उपयोगकर्ता को स्पर्श योग्य प्रतिक्रिया भी प्रदान कर सकते हैं, जो स्पर्श की भावना का अनुकरण करती है। पहला व्यावसायिक रूप से उपलब्ध हाथ से नियंत्रण करने वाला दस्ताने की आकृति का डेटाग्लोव उपकरण था,[17] एक ग्लोव-टाइप उपकरण जो हाथ की स्थिति, गति और उंगली के झुकने का पता लगा सकता था। यह हाथ के विपरीत नीचे चलने वाले तंतु प्रकाशिकी तार का उपयोग करता है। इसमे हल्की सा स्पंदन उत्पन्न होता है। और जब उंगलियां मुड़ी होती हैं, तो छोटी-छोटी छिद्रों से प्रकाश निकलता है, तथा अभाव को पंजीकृत किया जाता है, जिससे हाथ की स्थिति का अनुमान लगाया जाता है।
  • डेप्थ-अवेयर कैमरे- संरचित प्रकाश या उड़ान के समय कैमरे, जैसे कुछ विशेष कैमरों का उपयोग करके कैमरे के माध्यम से कम दूरी पर जो कुछ देखा जा रहा है, उसका गहनता से मानचित्र तैयार किया जा सकता है, और जो देखा जा रहा है, उसके 3डी प्रतिनिधित्व का अनुमान लगाने के लिए इस डेटा का उपयोग किया जाता है। तथा ये अपनी कम दूरी की क्षमताओं के कारण हाथ के संकेतों का पता लगाने के लिए प्रभावी हो सकते हैं।[18]
  • स्टीरियो(त्रिविम) कैमरे- दो कैमरों का उपयोग करके अर्थात जिनके संबंध एक दूसरे से ज्ञात हैं, कैमरों के आउटपुट से एक 3डी प्रतिनिधित्व का अनुमान लगाया जा सकता है। कैमरों के संबंधों को प्राप्त करने के लिए लेक्सियन स्ट्राइप या इन्फ्रारेड उत्सर्जक जैसी स्थिति निर्धारण संदर्भ का उपयोग किया जा सकता है।[19] प्रत्यक्ष गति माप 6डी -दृष्टि के संयोजन में संकेतों का सीधे पता लगाया जा सकता है।
  • संकेत पर आधारित नियंत्रक- ये नियंत्रक शरीर के विस्तार के रूप में कार्य करते हैं ताकि जब संकेतों का प्रदर्शन किया जाए। तो उनकी कुछ गति को सॉफ्टवेयर द्वारा सरलता से अधिकृत जा सके। संकेत आधारित गति अधिकृत करने का एक उदाहरण प्रारूप हाथ के नियंत्रण के माध्यम से है, जिसे आभासी वास्तविकता और संवर्धित वास्तविक अनुप्रयोगों के लिए विकसित किया जा रहा है। इस तकनीक का एक उदाहरण नियंत्रित यूसेन्स कंपनियों और गेस्टिगॉन द्वारा दिखाया गया है, जो उपयोगकर्ताओं के नियंत्रकों के बिना अपने परिवेश के साथ पारस्परिक क्रिया करने की अनुमति देती हैं।[20][21]
  • वाई-फाई संवेदन[22] इसका एक अन्य उदाहरण माउस संकेत नियंत्रण होता है, जहां माउस की गति को किसी व्यक्ति के हाथ से खींचे जाने वाले प्रतीक से जोड़ा जाता है, जो संकेतों का प्रतिनिधित्व करने के लिए समय के साथ शीघ्र परिवर्तन का अध्ययन कर सकता है।[23][24][25] सॉफ्टवेयर मानव कंपन और असावधानीपूर्ण गतिविधि के लिए भी क्षतिपूर्ति करता है।[26][27][28] इन स्मार्ट लाइट एमिटिंग क्यूब के सेंसर का उपयोग हाथों और उंगलियों के साथ-साथ आस-पास की अन्य वस्तुओं को महसूस करने के लिए किया जा सकता है। और डेटा को सक्रिय करने के लिए उपयोग किया जा सकता है। अधिकांश अनुप्रयोग संगीत और ध्वनि संश्लेषण में होता हैं,[29] लेकिन अन्य क्षेत्रों में भी लागू किया जा सकता है।
  • एकल कैमरा- संकेत पहचान के लिए एक मानक 2डी कैमरे का उपयोग किया जा सकता है जहां छवि-आधारित पहचान के अन्य रूपों के लिए संसाधन/पर्यावरण सुविधाजनक नहीं होता है। पहले यह सोचा जाता था। कि एक एकल कैमरा स्टीरियो या डेप्थ-अवेयर कैमरा इतना प्रभावी नहीं हो सकता है, लेकिन कुछ कंपनियां इस सिद्धांत को चुनौती दे रही हैं। कि एक मानक 2डी कैमरे का उपयोग करके सॉफ़्टवेयर-आधारित संकेत पहचान तकनीक जो स्वस्थ हाथ के संकेतों का पता लगा सकती है।

एल्गोरिथम

File:BigDiagram2.jpg
संकेतों को नियंत्रित करने और उनका विश्लेषण करने के विभिन्न तरीके उपस्थित हैं, और ऊपर दिए गए आरेख में कुछ मूलभूत परिस्थिति दी गयी हैं। उदाहरण के लिए, वॉल्यूमेट्रिक प्रारूप एक विस्तृत विश्लेषण के लिए आवश्यक जानकारी देते हैं, हालांकि, वे कम्प्यूटेशनल शक्ति के स्थिति में बहुत सघन सिद्ध होते हैं। और वास्तविक समय के विश्लेषण के लिए लागू करने के लिए, और तकनीकी विकास की आवश्यकता होती है। दूसरी ओर उपस्थिति-आधारित प्रारूप को संसाधित करना सरल होता है, लेकिन सामान्य रूप से मानव-कंप्यूटर मे पारस्परिक क्रिया के लिए आवश्यक सामान्यता की कमी होती है।

इनपुट डेटा के प्रकार के आधार पर संकेत की व्याख्या को अलग-अलग तरीकों से किया जा सकता है। हालाँकि, अधिकांश तकनीकें 3डी समन्वय प्रणाली में दर्शाए गए, प्रमुख बिंदुओं पर निर्भर करती हैं। इनकी सापेक्ष गति के आधार पर इनपुट की गुणवत्ता और एल्गोरिथम के दृष्टिकोण के आधार पर संकेत की उच्च शुद्धता के साथ यह पता लगाया जा सकता है।

शरीर के गतिविधि की व्याख्या करने के लिए, उन्हें सामान्य गुणों के अनुसार वर्गीकृत करना पड़ता है। तथा संदेश गति को व्यक्त किया जा सकता है। उदाहरण के लिए, सांकेतिक भाषा में प्रत्येक संकेत एक शब्द या वाक्यांश का प्रतिनिधित्व करते है।

कुछ साहित्य संकेत पहचान में दो अलग-अलग दृष्टिकोणों को अलग किया जाता हैं। एक 3डी प्रारूप आधारित और एक स्थिति आधारित,[30] तथा हथेली की स्थिति या संयुक्त कोण जैसे कई महत्वपूर्ण पैरामीटर प्राप्त करने के लिए सबसे प्रमुख विधि शरीर के अंगों के प्रमुख तत्वों की 3डी जानकारी का उपयोग करती है। दूसरी ओर प्रकटन-आधारित प्रणालियाँ प्रत्यक्ष व्याख्या के लिए छवियों या वीडियो का उपयोग करती हैं।

एक वास्तविक हाथ (बाएं) को 3डी जाल संस्करण (दाएं) में शिखर और रेखाओं के संग्रह के रूप में व्याख्या की जाती है।, और संकेत करने के लिए सॉफ्टवेयर उनकी सापेक्ष स्थिति और अंतः क्रिया का उपयोग करता है।

3डी प्रारूप आधारित एल्गोरिथम

3डी प्रारूप दृष्टिकोण वॉल्यूमेट्रिक या कंकाल प्रारूप, यहां तक ​​कि दोनों के संयोजन का भी उपयोग कर सकता है। कंप्यूटर एनीमेशन उद्योग में कंप्यूटर दृष्टि उद्देश्यों के लिए वॉल्यूमेट्रिक दृष्टिकोण का अत्यधिक उपयोग किया गया है। प्रारूप सामान्य रूप से जटिल 3डी सतहों से बनाए जाते हैं, जैसे NURBS या बहुभुज जाल आदि के बने होते है।

इस पद्धति कि कमी यह है कि यह बहुत कम्प्यूटेशनल रूप से प्रकृष्ट होता है, और वास्तविक समय विश्लेषण के लिए प्रणाली अभी भी विकसित होना शेष है। यद्यपि, एक अधिक रोचक दृष्टिकोण व्यक्ति के सबसे महत्वपूर्ण शरीर के अंगों (उदाहरण के लिए बाहों और गर्दन के लिए सिलेंडर, सिर के लिए गोले) के लिए साधारण प्राथमिक वस्तुओं का मैप और विश्लेषण करना होता है कि ये एक दूसरे के साथ कैसे पारस्परिक क्रिया करते हैं। इसके अतिरिक्त, कुछ अवास्तविक संरचनाएं जैसे सुपर क्वाड्रिक्स और सामान्यीकृत सिलेंडर शरीर के अंगों को अनुमानित करने के लिए और भी उपयुक्त हो सकते हैं।

कंकाल संस्करण (दाएं) हाथ (बाएं) को प्रभावी ढंग से प्रतिरूपित कर रहा है। इसमें वॉल्यूमेट्रिक संस्करण की तुलना में कम पैरामीटर होते हैं। वास्तविक समय संकेत विश्लेषण प्रणाली के लिए उपयुक्त होता है।

कंकाल-आधारित एल्गोरिथम

3डी प्रारूप के प्रकृष्ट प्रसंस्करण का उपयोग करने और बहुत सारे मापदंडों से विभाजन के अतिरिक्त, खंड लंबाई के साथ संयुक्त कोण मापदंडों के सरलीकृत संस्करण का उपयोग कर सकते हैं। इसे शरीर के कंकाल प्रतिनिधित्व के रूप में जाना जाता है, जहां व्यक्ति के आभासी कंकाल की गणना की जाती है। और शरीर के कुछ भाग को कुछ खंडों में मैप किया जाता है। यह विश्लेषण इन खंडों की स्थिति और अभिविन्यास तथा उनमें से प्रत्येक के बीच संबंध का उपयोग करके किया जाता है। उदाहरण के लिए जोड़ों और सापेक्ष स्थिति या अभिविन्यास के बीच का कोण आदि।

कंकाल प्रारूप का उपयोग करने के लाभ:-

  • एल्गोरिथम तेज़ होती हैं। क्योंकि केवल मुख्य पैरामीटर का विश्लेषण किया जाता है।
  • टेम्प्लेट डेटाबेस के विरुद्ध प्रतिरूप रूपांतरण मिलान संभव होता है।
  • प्रमुख बिंदुओं का उपयोग करने से पता लगाने वाले प्रोग्राम को शरीर के महत्वपूर्ण भागों पर ध्यान केंद्रित करने की अनुमति मिलती है।
ये बाइनरी सिल्हूट (बाएं) या समोच्च (दाएं) चित्र उपस्थिति-आधारित एल्गोरिथम के लिए विशिष्ट इनपुट का प्रतिनिधित्व करते हैं। तथा उनकी तुलना अलग-अलग हाथ के टेम्प्लेट से की जाती है। और यदि वे मेल खाते हैं, तो संवाददाता संकेत का अनुमान लगाया जाता है।

बाह्याकृति-आधारित प्रारूप

ये प्रारूप शरीर के स्थानिक प्रतिनिधित्व का उपयोग नहीं करते हैं, क्योंकि वे टेम्प्लेट डेटाबेस का उपयोग करके सीधे छवियों या वीडियो से पैरामीटर प्राप्त करते हैं। शरीर के कुछ मानव भागों मे, विशेष रूप से हाथों के विकृत 2डी टेम्पलेट्स पर आधारित होते हैं। विकृत टेम्प्लेट किसी वस्तु की रूपरेखा पर बिंदुओं के समूह होते हैं, जिनका उपयोग वस्तु की रूपरेखा सन्निकटन के लिए प्रक्षेप नोड के रूप में किया जाता है। सबसे सरल प्रक्षेप कार्यों में से एक रैखिक कार्य है, जो बिंदु सेट, बिंदु परिवर्तनशीलता मापदंडों और बाहरी विरूपण से एक औसत आकृति का उपयोग करता है। ये टेम्प्लेट-आधारित प्रारूप अधिकांश हाथ के नियंत्रण के लिए उपयोग किए जाते हैं, लेकिन इन्हें सरल संकेत वर्गीकरण के लिए भी उपयोग किया जा सकता है।

बाह्याकृति-आधारित प्रारूप का उपयोग करके संकेत को पता लगाने का दूसरा तरीका संकेत टेम्प्लेट के रूप में छवि अनुक्रम का उपयोग करना होता है। इस पद्धति के पैरामीटर या अपने चित्र होते हैं, तथा इनसे प्राप्त कुछ विशेषताएं अधिकांश समय मे एक मोनोस्कोपिक या दो स्टीरियोस्कोपिक दृश्यों का उपयोग किया जाता है।

इलेक्ट्रोमायोग्राफी-आधारित प्रारूप

इलेक्ट्रोमोग्राफी (ईएमजी) शरीर में मांसपेशियों द्वारा उत्पादित विद्युत संकेतों के अध्ययन से संबंधित होता है। हाथ की मांसपेशियों से प्राप्त आँकड़ा वर्गीकरण के माध्यम से गतिविधि को वर्गीकृत करना संभव है। और इस प्रकार संकेत बाहरी सॉफ़्टवेयर में निर्विष्ट होते है।[1] उपभोक्ता ईएमजी उपकरण गैर-संक्रामक दृष्टिकोण जैसे, हाथ या पैर बैंड और ब्लूटूथ के माध्यम से जोड़ने की अनुमति देते हैं। इसके कारण, ईएमजी को दृश्य विधियों पर एक लाभ होता है। क्योंकि उपयोगकर्ता को इनपुट देने के लिए कैमरे का सामना करने की आवश्यकता नहीं होती है, जिससे गतिविधि को अधिक स्वतंत्रता मिलती है।

चुनौतियां

संकेत पहचान सॉफ़्टवेयर की शुद्धता और उपयोगिता से जुड़ी कई चुनौतियाँ हैं। छवि-आधारित संकेत पहचान के लिए उपयोग किए गए उपकरण और छवि ध्वनि की सीमाएँ होती हैं। छवियां या वीडियो लगातार प्रकाश में या एक ही स्थान पर नहीं हो सकते हैं। वातावरण में सामान या उपयोगकर्ताओं की विशिष्ट विशेषताओ की पहचान को और अधिक जटिल बना सकती हैं।

छवि-आधारित संकेत पहचान के लिए विभिन्न प्रकार के कार्यान्वयन भी सामान्य उपयोग के लिए प्रौद्योगिकी की व्यवहार्यता के लिए समस्याएँ उत्पन्न कर सकते हैं। उदाहरण: एक कैमरे के लिए व्यवस्थित की गई एल्गोरिथम दूसरे कैमरे के लिए कार्य नहीं कर सकती है। बैकग्राउन्ड ध्वनि की मात्रा भी नियंत्रित और पहचान की कठिनाइयों का कारण बनती है। प्रायः जब रूकावट आंशिक और पूर्ण होती है। इसके अतिरिक्त, कैमरे से दूरी और कैमरे का विश्लेषण और गुणवत्ता भी पहचान शुद्धता में भिन्नता का कारण बनती है।

दृश्य संवेदकों द्वारा मानव संकेतों को अधिकृत करने के लिए जटिल कंप्यूटर दृष्टि विधियों की भी आवश्यकता होती है।

उदाहरण के लिए हाथ का नियंत्रण और हाथ की स्थिति पहचान के लिए[31][32][33][34][35][36][37][38][39] या सिर की गतिविधियों, चेहरे के भावों या एक्टक देखने वाली दृष्टि को अधिकृत करने के लिए किया जाता है।

सामाजिक स्वीकार्यता

स्मार्टफोन और स्मार्ट घड़ी जैसे उपभोक्ताओ को मोबाइल उपकरणों पर संकेत इंटरफ़ेस को स्वीकार करना एक महत्वपूर्ण चुनौती संकेत इनपुट की सामाजिक स्वीकार्यता के निहितार्थ से उत्पन्न होती है। जबकि संकेत कई नए रूप कारक कंप्यूटरों पर तेज और सटीक इनपुट की सुविधा प्रदान कर सकते हैं, उनका स्वीकार कारना और उपयोगिता अधिकांश तकनीकी कारकों के अतिरिक्त सामाजिक कारकों द्वारा सीमित होती है। इसके लिए, संकेत इनपुट विधियों के प्रतिरूपण विभिन्न सामाजिक संदर्भों में संकेतों को करने के लिए तकनीकी विचारों और उपयोगकर्ता की इच्छा दोनों को संतुलित करने का प्रयास कर सकते हैं।[40] इसके अतिरिक्त, विभिन्न उपकरण हार्डवेयर और संवेदन यन्त्र विभिन्न प्रकार के पहचानने योग्य संकेतों का समर्थन करते हैं।

मोबाइल उपकरण

मोबाइल और छोटे आकार के उपकरणों पर संकेत इंटरफ़ेस अधिकांश गति संवेदक जैसे जड़त्वीय मापन इकाइयों (आईएमयू) की उपस्थिति से समर्थित होते हैं। इन उपकरणों पर, संकेत संवेदन की गति द्वारा पहचाने जाने में सक्षम संचलन-आधारित संकेत करने वाले उपयोगकर्ताओं पर निर्भर करता है। यह संभावित रूप से सूक्ष्म या निम्न-गति संकेतों से संकेतों को अधिकृत करना चुनौतीपूर्ण बना सकता है। क्योंकि उन्हें प्राकृतिक संचलन या ध्वनि से अलग करना जटिल होता है। संकेतों की उपयोगिता के एक सर्वेक्षण और अध्ययन के माध्यम से शोधकर्ताओं ने प्राप्त किया। कि संकेत जो सूक्ष्म गति को सम्मिलित करते हैं, उपस्थिति तकनीक के समान दिखाई देते हैं, प्रत्येक क्रिया के समान दिखते हैं या महसूस करते हैं, और जो सुखद हैं। उन्हे उपयोगकर्ताओं द्वारा स्वीकार किए जाने की अधिक संभावना होती है, जबकि जो संकेत अजीब दिखते हैं, असहज प्रदर्शन, संचार में व्यवधान करते हैं, असामान्य गतिविधि में सम्मिलित होने के कारण उपयोगकर्ताओं द्वारा उनके उपयोग को अस्वीकार करने की अधिक संभावना होती है।[40] मोबाइल उपकरण संकेतों की सामाजिक स्वीकार्यता संकेत और सामाजिक संदर्भ की स्वाभाविकता पर बहुत अधिक निर्भर करती है।

शरीर और धारणीय कंप्यूटर

धारणीय या पहनने योग्य कंप्यूटर सामान्य रूप से परंपरागत मोबाइल उपकरणों से भिन्न होते हैं, जिसमें उनका उपयोग और परस्पर क्रिया का स्थान उपयोगकर्ता के शरीर पर होता है। इन संदर्भों में, संकेत इंटरफ़ेस परंपरागत निविष्ट विधियों पर चयनित किए जा सकते हैं, क्योंकि उनका छोटा आकार टचस्क्रीन या कंप्यूटर कीबोर्ड को कम आकर्षक बनाता है। फिर भी, जब संकेतों पर परस्पर क्रिया की बात आती है, तो वे मोबाइल उपकरणों के समान सामाजिक स्वीकार्यता बाधाओं में से अनेक को साझा करते हैं। हालांकि, धारणीय कंप्यूटरों को दृष्टि से छिपाने या अन्य प्रतिदिन की वस्तुओं में एकीकृत करने की संभावना, जैसे कि कपड़े, संकेतों को सामान्य कपड़ों की अंतः क्रिया की नकल करने की अनुमति देते हैं, जैसे कि शर्ट कॉलर को समायोजित करना या किसी के सामने की पैंट की जेब को रगड़ना।[41][42] धारणीय कंप्यूटर परस्पर क्रिया के लिए एक प्रमुख विचार उपकरण प्लेसमेंट और अंतः क्रिया के लिए स्थिति है। संयुक्त राज्य अमेरिका और दक्षिण कोरिया में पहनने योग्य उपकरण पारस्परिक क्रिया के प्रति तीसरे पक्ष के दृष्टिकोण की खोज करने वाले एक अध्ययन में पुरुषों और महिलाओं के पहनने योग्य कंप्यूटिंग उपयोग की धारणा में अंतर पाया गया। आंशिक रूप से सामाजिक संवेदनशील माने जाने वाले शरीर के विभिन्न क्षेत्रों के कारण।[42] शरीर पर अनुमानित इंटरफ़ेस की सामाजिक स्वीकार्यता की जांच करने वाले एक अन्य अध्ययन में समान परिणाम पाए गए। तथा दोनों अध्ययनों में कमर और ऊपरी शरीर (महिलाओं के लिए) के आसपास स्तरीय क्षेत्रों को कम से कम स्वीकार्य माना गया है। जबकि प्रकोष्ठ और कलाई के आसपास के क्षेत्रों को सबसे अधिक स्वीकार्य माना गया है।[43]

सार्वजनिक संस्थापन

सार्वजनिक संस्थापन, जैसे कि पारस्परिक प्रभाव सार्वजनिक प्रदर्शन सूचना तक पहुंच की अनुमति देते हैं। और सार्वजनिक वातावरण जैसे संग्रहालयों, प्रदर्शनी और शल्य कक्षों में पारस्परिक मीडिया प्रदर्शित करते हैं।[44] जबकि टच स्क्रीन सार्वजनिक प्रदर्शन के लिए लगातार इनपुट का रूप है, संकेत इंटरफ़ेस अतिरिक्त लाभ प्रदान करते हैं। जैसे कि अपेक्षाकृत स्वच्छता, दूर से अंतः क्रिया, अपेक्षाकृत खोज, और प्रदर्शनकारी अंतः क्रिया का पक्ष ले सकते हैं।[41] तथा सार्वजनिक प्रदर्शनों के साथ सांकेतिक अंतः क्रिया के लिए एक महत्वपूर्ण विचार दर्शकों की उच्च संभावना या अपेक्षा सम्मिलित होती है।[44]

गोरिल्ला आर्म

गोरिल्ला आर्म लंबवत उन्मुख टच-स्क्रीन या लाइट-पेन के उपयोग का एक पार्श्व प्रभाव था। जो लंबे समय तक उपयोग की अवधि के बाद उपयोगकर्ताओ के हाथ मे थकान और असुविधा अनुभव करने का कारण बनने लगा था। इसी कारण इस प्रभाव ने 1980 के दशक में प्रारम्भिक लोकप्रियता के अतिरिक्त टच-स्क्रीन इनपुट की गिरावट(डिक्लाइन) में योगदान दिया था।[45][46]

हाथ की थकान और गोरिल्ला आर्म के पार्श्व प्रभाव को मापने के लिए शोधकर्ताओं ने कंज्यूम्ड एंड्योरेंस नामक एक तकनीक विकसित की थी।[47][48]

यह भी देखें

संदर्भ

  1. 1.0 1.1 Kobylarz, Jhonatan; Bird, Jordan J.; Faria, Diego R.; Ribeiro, Eduardo Parente; Ekárt, Anikó (2020-03-07). "थम्स अप, थम्स डाउन: गैर-मौखिक मानव-रोबोट इंटरैक्शन वास्तविक समय ईएमजी वर्गीकरण के माध्यम से आगमनात्मक और पर्यवेक्षित ट्रांसडक्टिव ट्रांसफर लर्निंग के माध्यम से". Journal of Ambient Intelligence and Humanized Computing. Springer Science and Business Media LLC. 11 (12): 6021–6031. doi:10.1007/s12652-020-01852-z. ISSN 1868-5137.
  2. Matthias Rehm, Nikolaus Bee, Elisabeth André, Wave Like an Egyptian – Accelerometer Based Gesture Recognition for Culture Specific Interactions, British Computer Society, 2007
  3. "पेटेंट लैंडस्केप रिपोर्ट हैंड जेस्चर रिकग्निशन पैटसीर प्रो". PatSeer (in English). Retrieved 2017-11-02.
  4. Chai, Xiujuan, et al. "Sign language recognition and translation with kinect[dead link] Archived 2021-01-10 at the Wayback Machine." IEEE Conf. on AFGR. Vol. 655. 2013.
  5. Sultana A, Rajapuspha T (2012), "Vision Based Gesture Recognition for Alphabetical Hand Gestures Using the SVM Classifier"[permanent dead link], International Journal of Computer Science & Engineering Technology (IJCSET)., 2012
  6. Pavlovic, V., Sharma, R. & Huang, T. (1997), "Visual interpretation of hand gestures for human-computer interaction: A review", IEEE Transactions on Pattern Analysis and Machine Intelligence, July, 1997. Vol. 19(7), pp. 677 -695.
  7. R. Cipolla and A. Pentland, Computer Vision for Human-Machine Interaction, Cambridge University Press, 1998, ISBN 978-0-521-62253-0
  8. Ying Wu and Thomas S. Huang, "Vision-Based Gesture Recognition: A Review" Archived 2011-08-25 at the Wayback Machine, In: Gesture-Based Communication in Human-Computer Interaction, Volume 1739 of Springer Lecture Notes in Computer Science, pages 103-115, 1999, ISBN 978-3-540-66935-7, doi:10.1007/3-540-46616-9
  9. Alejandro Jaimes and Nicu Sebe, Multimodal human–computer interaction: A survey Archived 2011-06-06 at the Wayback Machine, Computer Vision and Image Understanding Volume 108, Issues 1-2, October–November 2007, Pages 116-134 Special Issue on Vision for Human-Computer Interaction, doi:10.1016/j.cviu.2006.10.019
  10. Dopertchouk, Oleg; "Recognition of Handwriting Gestures", gamedev.net, January 9, 2004
  11. Chen, Shijie; "Gesture Recognition Techniques in Handwriting Recognition Application", Frontiers in Handwriting Recognition p 142-147 November 2010
  12. Balaji, R; Deepu, V; Madhvanath, Sriganesh; Prabhakaran, Jayasree "Handwritten Gesture Recognition for Gesture Keyboard" Archived 2008-09-06 at the Wayback Machine, Hewlett-Packard Laboratories
  13. Dietrich Kammer, Mandy Keck, Georg Freitag, Markus Wacker, Taxonomy and Overview of Multi-touch Frameworks: Architecture, Scope, and Features Archived 2011-01-25 at the Wayback Machine
  14. "टचलेस यूजर इंटरफेस परिभाषा पीसी पत्रिका विश्वकोश से". pcmag.com (in English). Retrieved 2017-07-28.
  15. "टचलेस इंटरेक्शन प्रौद्योगिकियों की उभरती आवश्यकता". ResearchGate (in English). Retrieved 2021-06-30.
  16. S. Benford; H. Schnadelbach; B. Koleva; B. Gaver; A. Schmidt; A. Boucher; A. Steed; R. Anastasi; C. Greenhalgh; T. Rodden; H. Gellersen (2003). "समझदार, समझदार और वांछनीय: भौतिक इंटरफेस डिजाइन करने के लिए एक रूपरेखा" (PDF). CiteSeerX 10.1.1.190.2504. Archived from the original (PDF) on January 26, 2006. {{cite journal}}: Cite journal requires |journal= (help)
  17. Thomas G. Zimmerman, Jaron Lanier, Chuck Blanchard, Steve Bryson, and Young Harvill. http://portal.acm.org. "A HAND GESTURE INTERFACE DEVICE." http://portal.acm.org.
  18. Yang Liu, Yunde Jia, A Robust Hand Tracking and Gesture Recognition Method for Wearable Visual Interfaces and Its Applications, Proceedings of the Third International Conference on Image and Graphics (ICIG'04), 2004
  19. Kue-Bum Lee, Jung-Hyun Kim, Kwang-Seok Hong, An Implementation of Multi-Modal Game Interface Based on PDAs, Fifth International Conference on Software Engineering Research, Management and Applications, 2007
  20. "गेस्टिगॉन जेस्चर ट्रैकिंग - टेकक्रंच बाधित". TechCrunch. Retrieved 11 October 2016.
  21. Matney, Lucas (29 August 2016). "uSens नए ट्रैकिंग सेंसर दिखाता है जिसका उद्देश्य मोबाइल VR के लिए समृद्ध अनुभव प्रदान करना है". TechCrunch. Retrieved 29 August 2016.
  22. Khalili, Abdullah; Soliman, Abdel‐Hamid; Asaduzzaman, Md; Griffiths, Alison (March 2020). "वाई-फाई सेंसिंग: एप्लिकेशन और चुनौतियां". The Journal of Engineering (in English). 2020 (3): 87–97. doi:10.1049/joe.2019.0790. ISSN 2051-3305.
  23. Per Malmestig, Sofie Sundberg, SignWiiver – implementation of sign language technology Archived 2008-12-25 at the Wayback Machine
  24. Thomas Schlomer, Benjamin Poppinga, Niels Henze, Susanne Boll, Gesture Recognition with a Wii Controller Archived 2013-07-27 at the Wayback Machine, Proceedings of the 2nd international Conference on Tangible and Embedded interaction, 2008
  25. AiLive Inc., LiveMove White Paper Archived 2007-07-13 at the Wayback Machine, 2006
  26. Electronic Design September 8, 2011. William Wong. Natural User Interface Employs Sensor Integration.
  27. Cable & Satellite International September/October, 2011. Stephen Cousins. A view to a thrill. Archived 2012-01-19 at the Wayback Machine
  28. TechJournal South January 7, 2008. Hillcrest Labs rings up $25M D round.
  29. Percussa AudioCubes Blog October 4, 2012. Gestural Control in Sound Synthesis. Archived 2015-09-10 at the Wayback Machine
  30. Vladimir I. Pavlovic, Rajeev Sharma, Thomas S. Huang, Visual Interpretation of Hand Gestures for Human-Computer Interaction; A Review, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997
  31. Ivan Laptev and Tony Lindeberg "Tracking of Multi-state Hand Models Using Particle Filtering and a Hierarchy of Multi-scale Image Features", Proceedings Scale-Space and Morphology in Computer Vision, Volume 2106 of Springer Lecture Notes in Computer Science, pages 63-74, Vancouver, BC, 1999. ISBN 978-3-540-42317-1, doi:10.1007/3-540-47778-0
  32. von Hardenberg, Christian; Bérard, François (2001). "नंगे हाथ मानव-कंप्यूटर संपर्क". Proceedings of the 2001 workshop on Perceptive user interfaces. ACM International Conference Proceeding Series. Vol. 15 archive. Orlando, Florida. pp. 1–8. CiteSeerX 10.1.1.23.4541.
  33. Lars Bretzner, Ivan Laptev, Tony Lindeberg "Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering", Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, Washington, DC, USA, 21–21 May 2002, pages 423-428. ISBN 0-7695-1602-5, doi:10.1109/AFGR.2002.1004190
  34. Domitilla Del Vecchio, Richard M. Murray Pietro Perona, "Decomposition of human motion into dynamics-based primitives with application to drawing tasks" Archived 2010-02-02 at the Wayback Machine, Automatica Volume 39, Issue 12, December 2003, Pages 2085–2098 , doi:10.1016/S0005-1098(03)00250-4.
  35. Thomas B. Moeslund and Lau Nørgaard, "A Brief Overview of Hand Gestures used in Wearable Human Computer Interfaces" Archived 2011-07-19 at the Wayback Machine, Technical report: CVMT 03-02, ISSN 1601-3646, Laboratory of Computer Vision and Media Technology, Aalborg University, Denmark.
  36. M. Kolsch and M. Turk "Fast 2D Hand Tracking with Flocks of Features and Multi-Cue Integration" Archived 2008-08-21 at the Wayback Machine, CVPRW '04. Proceedings Computer Vision and Pattern Recognition Workshop, May 27-June 2, 2004, doi:10.1109/CVPR.2004.71
  37. Xia Liu Fujimura, K., "Hand gesture recognition using depth data", Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, May 17–19, 2004 pages 529- 534, ISBN 0-7695-2122-3, doi:10.1109/AFGR.2004.1301587.
  38. Stenger B, Thayananthan A, Torr PH, Cipolla R: "Model-based hand tracking using a hierarchical Bayesian filter", IEEE Transactions on IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(9):1372-84, Sep 2006.
  39. A Erol, G Bebis, M Nicolescu, RD Boyle, X Twombly, "Vision-based hand pose estimation: A review", Computer Vision and Image Understanding Volume 108, Issues 1-2, October–November 2007, Pages 52-73 Special Issue on Vision for Human-Computer Interaction, doi:10.1016/j.cviu.2006.10.012.
  40. 40.0 40.1 Rico, Julie; Brewster, Stephen (2010). "मोबाइल इंटरफेस के लिए प्रयोग करने योग्य इशारे: सामाजिक स्वीकार्यता का मूल्यांकन". Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI '10. New York, NY, USA: ACM: 887–896. doi:10.1145/1753326.1753458. ISBN 9781605589299. S2CID 16118067.
  41. 41.0 41.1 Walter, Robert; Bailly, Gilles; Müller, Jörg (2013). "पोज बनाओ : Revealing mid-air gestures on public displays". पोज बनाओ. pp. 841–850. doi:10.1145/2470654.2470774. ISBN 9781450318990. S2CID 2041073. {{cite book}}: |journal= ignored (help)
  42. 42.0 42.1 Profita, Halley P.; Clawson, James; Gilliland, Scott; Zeagler, Clint; Starner, Thad; Budd, Jim; Do, Ellen Yi-Luen (2013). "डोंट माइंड मी टचिंग माई राइट: ए केस स्टडी ऑफ इंटरेक्टिंग विथ ऑन-बॉडी टेक्नोलॉजी इन पब्लिक". Proceedings of the 2013 International Symposium on Wearable Computers. ISWC '13. New York, NY, USA: ACM: 89–96. doi:10.1145/2493988.2494331. ISBN 9781450321273. S2CID 3236927.
  43. Harrison, Chris; Faste, Haakon (2014). "ऑन-बॉडी अनुमानित इंटरफेस के लिए स्थान और स्पर्श के निहितार्थ". Proceedings of the 2014 Conference on Designing Interactive Systems. DIS '14. New York, NY, USA: ACM: 543–552. doi:10.1145/2598510.2598587. ISBN 9781450329026. S2CID 1121501.
  44. 44.0 44.1 Reeves, Stuart; Benford, Steve; O'Malley, Claire; Fraser, Mike (2005). "दर्शक अनुभव डिजाइनिंग" (PDF). Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI '05. New York, New York, USA: ACM Press: 741–750. doi:10.1145/1054972.1055074. ISBN 978-1581139983. S2CID 5739231.
  45. Rupert Goodwins. "विंडोज 7? इसमें हाथ नहीं है". ZDNet.
  46. "गोरिल्ला बांह". catb.org.
  47. Hincapié-Ramos, J.D., Guo, X., Moghadasian, P. and Irani. P. 2014. "Consumed Endurance: A Metric to Quantify Arm Fatigue of Mid-Air Interactions". In Proceedings of the 32nd annual ACM conference on Human factors in computing systems (CHI '14). ACM, New York, NY, USA, 1063–1072. DOI=10.1145/2556288.2557130
  48. Hincapié-Ramos, J.D., Guo, X., and Irani, P. 2014. "The Consumed Endurance Workbench: A Tool to Assess Arm Fatigue During Mid-Air Interactions". In Proceedings of the 2014 companion publication on Designing interactive systems (DIS Companion '14). ACM, New York, NY, USA, 109-112. DOI=10.1145/2598784.2602795


इस पेज में लापता आंतरिक लिंक की सूची

  • हाव-भाव
  • चेहरा
  • भावना पहचान
  • proxemics
  • शरीर की भाषा का कंप्यूटर प्रसंस्करण
  • वास्तविक उपयोगकर्ता इंटरफ़ेस
  • तार वाला दस्ताना
  • गहराई का नक्शा
  • गति चित्रांकन
  • यूसेंस
  • जड़त्वीय माप की इकाई
  • मोबाइल उपकरण
  • 3डी मुद्रा अनुमान

बाहरी कड़ियाँ

श्रेणी:कंप्यूटर दृष्टि के अनुप्रयोग श्रेणी:आभासी वास्तविकता श्रेणी:वस्तु पहचान और Categoryीकरण श्रेणी: उपयोगकर्ता इंटरफ़ेस तकनीक श्रेणी: मानव-कंप्यूटर संपर्क का इतिहास