ट्रोकॉइड: Difference between revisions
No edit summary |
No edit summary |
||
| (5 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
{{Short description|Family of mathematical curves}} | {{Short description|Family of mathematical curves}} | ||
[[File:Cycloid f.gif|thumb|एक रोलिंग सर्कल द्वारा उत्पन्न एक [[चक्रज]] (एक सामान्य ट्रॉकॉइड)।]][[ज्यामिति]] में, '''ट्रोकॉइड''' ([[ग्रीक भाषा]] के शब्द व्हील के लिए, ट्रोकोस) एक रूले ([[वक्र]]) है जो [[रेखा (ज्यामिति)]] के घूमने वाले वृत्त द्वारा बनता है। यह एक वृत्त (जहाँ बिंदु वृत्त के अंदर, अंदर या बाहर हो सकता है) के लिए निर्धारित बिंदु द्वारा खींचा गया वक्र है, क्योंकि यह एक सीधी रेखा के साथ घूमता है।<ref name=":0">{{MathWorld | urlname=Trochoid | title=Trochoid}}</ref> यदि बिंदु वृत्त पर है, तो ट्रोकॉइड को सामान्य (साइक्लॉयड के रूप में भी जाना जाता है) कहा जाता है; यदि बिंदु वृत्त के अंदर है, तो ट्रोकॉइड वक्राकार है; और यदि बिंदु वृत्त के बाहर है, तो ट्रोकॉइड प्रोलेट है। ट्रोचॉइड शब्द [[गाइल्स डे रॉबर्वाल]] द्वारा गढ़ा गया था। | |||
[[File:Cycloid f.gif|thumb|एक रोलिंग सर्कल द्वारा उत्पन्न एक [[चक्रज]] (एक सामान्य ट्रॉकॉइड)।]][[ज्यामिति]] में, ट्रोकॉइड | |||
== मूल विवरण == | == मूल विवरण == | ||
[[File:TrohoidH1,25.gif|thumb|प्रोलेट ट्रोकाइड के साथ {{math|1=''b''/''a'' = 5/4}}]] | [[File:TrohoidH1,25.gif|thumb|प्रोलेट ट्रोकाइड के साथ {{math|1=''b''/''a'' = 5/4}}]] | ||
[[File:TrohoidH0,8.gif|thumb|b/a = 4/5 के साथ एक कर्टेट ट्रोचॉइड]]त्रिज्या के वृत्त के रूप में एक रेखा L के साथ स्लिप हुए बिना रोल करता है, केंद्र C, L के समानांतर चलता है, और घूर्णन विमान में हर दूसरे बिंदु P वृत्त से जुड़ा होता है जो ट्रोकोइड नामक वक्र का पता लगाता है। माना CP = b. | [[File:TrohoidH0,8.gif|thumb|b/a = 4/5 के साथ एक कर्टेट ट्रोचॉइड]]त्रिज्या के वृत्त के रूप में एक रेखा L के साथ स्लिप हुए बिना रोल करता है, केंद्र C, L के समानांतर चलता है, और घूर्णन विमान में हर दूसरे बिंदु P वृत्त से जुड़ा होता है जो ट्रोकोइड नामक वक्र का पता लगाता है। माना CP = b. ट्रॉकॉइड का [[पैरामीट्रिक समीकरण]] जिसके लिए L x-अक्ष है | ||
:<math>x = a\theta - b \sin \theta \,</math> | :<math>x = a\theta - b \sin \theta \,</math> | ||
:<math>y = a - b \cos \theta \,</math> | :<math>y = a - b \cos \theta \,</math> | ||
| Line 34: | Line 32: | ||
\text{hypocycloid: }&\omega_1/\omega_2&=p/q=-r_2/r_1=-(R/r_1-1),\ |p-q|=|p|+|q| \text{ cusps} | \text{hypocycloid: }&\omega_1/\omega_2&=p/q=-r_2/r_1=-(R/r_1-1),\ |p-q|=|p|+|q| \text{ cusps} | ||
\end{array}</math> | \end{array}</math> | ||
जहाँ पे <math>r_2</math> गतिमान अक्ष की कक्षा की त्रिज्या है। ऊपर दी गई क्यूप्स की संख्या किसी भी एपिट्रोकॉइड और हाइपोट्रोकॉइड के लिए भी सही है, क्यूप्स को या तो रेडियल मैक्सिमा या रेडियल मिनिमा द्वारा प्रतिस्थापित किया जाता है। | |||
== यह भी देखें == | == यह भी देखें == | ||
| Line 50: | Line 48: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* [http://jsxgraph.uni-bayreuth.de/wiki/index.php/Trochoid Online experiments with the Trochoid using JSXGraph] | * [http://jsxgraph.uni-bayreuth.de/wiki/index.php/Trochoid Online experiments with the Trochoid using JSXGraph] | ||
[[Category: | [[Category:Articles with short description]] | ||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 25/11/2022]] | [[Category:Created On 25/11/2022]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:रौलेट्स (वक्र)]] | |||
Latest revision as of 17:36, 1 January 2023
ज्यामिति में, ट्रोकॉइड (ग्रीक भाषा के शब्द व्हील के लिए, ट्रोकोस) एक रूले (वक्र) है जो रेखा (ज्यामिति) के घूमने वाले वृत्त द्वारा बनता है। यह एक वृत्त (जहाँ बिंदु वृत्त के अंदर, अंदर या बाहर हो सकता है) के लिए निर्धारित बिंदु द्वारा खींचा गया वक्र है, क्योंकि यह एक सीधी रेखा के साथ घूमता है।[1] यदि बिंदु वृत्त पर है, तो ट्रोकॉइड को सामान्य (साइक्लॉयड के रूप में भी जाना जाता है) कहा जाता है; यदि बिंदु वृत्त के अंदर है, तो ट्रोकॉइड वक्राकार है; और यदि बिंदु वृत्त के बाहर है, तो ट्रोकॉइड प्रोलेट है। ट्रोचॉइड शब्द गाइल्स डे रॉबर्वाल द्वारा गढ़ा गया था।
मूल विवरण
त्रिज्या के वृत्त के रूप में एक रेखा L के साथ स्लिप हुए बिना रोल करता है, केंद्र C, L के समानांतर चलता है, और घूर्णन विमान में हर दूसरे बिंदु P वृत्त से जुड़ा होता है जो ट्रोकोइड नामक वक्र का पता लगाता है। माना CP = b. ट्रॉकॉइड का पैरामीट्रिक समीकरण जिसके लिए L x-अक्ष है
जहाँ θ चर कोण है जिसके माध्यम से वृत्त लुढ़कता है।
कर्टेट, सामान्य, प्रोलेट
यदि P वृत्त के अंदर स्थित है ( b < a ), इसकी परिधि ( b = a ), या बाहर ( b > a ) पर, ट्रोचॉइड को कर्टेट ("अनुबंधित"), सामान्य, या प्रोलेट ("विस्तारित") के रूप में वर्णित किया गया है।[2] जब एक सामान्य रूप से गियर वाली साइकिल को एक सीधी रेखा के साथ पैडल किया जाता है, तो एक कर्ट ट्रोचॉइड को पेडल (जमीन के सापेक्ष) द्वारा ट्रेस किया जाता है। [3] जब एक नाव को चप्पू के पहियों द्वारा निरंतर वेग से चलाया जाता है तो पैडल की नोक (पानी की सतह के सापेक्ष) से एक प्रोलेट ट्रोचॉइड का पता लगाया जाता है; इस वक्र में लूप होते हैं। एक सामान्य ट्रोकॉइड, जिसे साइक्लोइड भी कहा जाता है, में उन बिंदुओं पर क्यूप्स होते हैं जहां P लाइन L को छूता है।
सामान्य विवरण
ट्रोचॉइड को एक बिंदु के स्थान के रूप में परिभाषित करेगा जो अधिक सामान्य बिंदु पर स्थित अक्ष के चारों ओर एक स्थिर दर पर घूमता है ,
x-y-समतल में किस धुरी का एक सीधी रेखा में निरंतर दर पर अनुवादित की जा रही है,
या चारों ओर एक गोलाकार पथ (दूसरी कक्षा)। (हाइपोट्रोकॉइड / एपिट्रोकॉइड केस),
गति की दरों का अनुपात और क्या गतिमान अक्ष सीधे या वृत्ताकार पथ में अनुवादित करता है, ट्रॉकॉइड के आकार को निर्धारित करता है। एक सीधे पथ के स्थिति में, एक पूर्ण घूर्णन आवधिक (पुनरावृत्ति) स्थान की एक अवधि के साथ मेल खाता है। गतिमान अक्ष के लिए एक वृत्ताकार पथ के मामले में, लोकस केवल तभी आवधिक होता है जब इन कोणीय गतियों का अनुपात, , एक परिमेय संख्या है, मान लीजिए , कहाँ पे & सह अभाज्य हैं, इस मामले में, एक अवधि के होते हैं चलती धुरी के चारों ओर परिक्रमा करता है और बिंदु के चारों ओर गतिमान अक्ष की कक्षाएँ . त्रिज्या के एक चक्र की परिधि पर एक बिंदु के ठिकाने का पता लगाकर उत्पन्न एपिसाइक्लोइड और हाइपोसाइक्लॉइड के विशेष मामले जबकि इसे त्रिज्या के एक स्थिर वृत्त की परिधि पर घुमाया जाता है , निम्नलिखित गुण हैं:
जहाँ पे गतिमान अक्ष की कक्षा की त्रिज्या है। ऊपर दी गई क्यूप्स की संख्या किसी भी एपिट्रोकॉइड और हाइपोट्रोकॉइड के लिए भी सही है, क्यूप्स को या तो रेडियल मैक्सिमा या रेडियल मिनिमा द्वारा प्रतिस्थापित किया जाता है।
यह भी देखें
- अरस्तू का पहिया विरोधाभास
- ब्राचिस्टोक्रोन
- साइक्लोगन
- चक्रवात
- एपिट्रोकॉइड
- हाइपोट्रोकॉइड
- आवधिक कार्यों की सूची
- रूले (वक्र)
- स्पाइरोग्राफ
- ट्रोकोइडल तरंग
संदर्भ
- ↑ Weisstein, Eric W. "Trochoid". MathWorld.
- ↑ "Trochoid". Xah Math. Retrieved October 4, 2014.
- ↑ The Bicycle Pulling Puzzle. Archived from the original on 2021-12-11.