कोल्ड बूट अटैक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Means of compromising computer security by restarting the computer}}
{{short description|Means of compromising computer security by restarting the computer}}
[[ कंप्यूटर सुरक्षा |कंप्यूटर सुरक्षा]] में, एक कोल्ड बूट अटैक (या कुछ हद तक, एक प्लेटफ़ॉर्म रीसेट अटैक) एक प्रकार का [[ साइड चैनल हमला |साइड चैनल अटैक]] है, जिसमें कंप्यूटर पर भौतिक पहुंच वाला एक अटैक करने वाला कंप्यूटर की [[ यादृच्छिक अभिगम स्मृति |रैंडम-एक्सेस मेमोरी]] (RAM) की [[ मेमोरी डंप |मेमोरी डंप]] करता है। ) लक्ष्य मशीन का हार्ड रीसेट करके। सामान्य रूप से कोल्ड बूट अटैक का उपयोग दुर्भावनापूर्ण या आपराधिक खोजी कारणों से चल रहे [[ ऑपरेटिंग सिस्टम |ऑपरेटिंग सिस्टम]] से एन्क्रिप्शन कुंजियों को पुनः प्राप्त करने के लिए किया जाता है।<ref name="MacIver2006">{{cite conference|last=MacIver|first=Douglas|conference-url=http://conference.hackinthebox.org/hitbsecconf2006kl/ |conference=HITBSecConf2006, Malaysia|url=http://www.secguru.com/files/hitbsecconf2006kl/DAY%202%20-%20Douglas%20MacIver%20-%20Pentesting%20BitLocker.pdf|publisher=[[Microsoft]]|title=प्रवेश परीक्षण Windows Vista BitLocker ड्राइव एन्क्रिप्शन|access-date=2008-09-23|date=2006-09-21}}</ref><ref name="halderman2008">{{Cite journal| doi = 10.1145/1506409.1506429| issn = 0001-0782| volume = 52| issue = 5| pages = 91–98| last1 = Halderman| first1 = J. Alex| last2 = Schoen| first2 = Seth D.| last3 = Heninger| first3 = Nadia| last4 = Clarkson| first4 = William| last5 = Paul| first5 = William| last6 = Calandrino| first6 = Joseph A.| last7 = Feldman| first7 = Ariel J.| last8 = Appelbaum| first8 = Jacob| last9 = Felten| first9 = Edward W.| title = ऐसा न हो कि हम याद रखें: एन्क्रिप्शन कुंजियों पर कोल्ड-बूट हमले| journal = Communications of the ACM| date = 2009-05-01| s2cid = 7770695| url = https://www.usenix.org/legacy/event/sec08/tech/full_papers/halderman/halderman.pdf}}</ref><ref name="forensic2011">{{Cite conference| publisher = Defence Research and Development Canada| last1 = Carbone| first1 = Richard| last2 = Bean| first2 = C| last3 = Salois| first3 = M| title = कोल्ड बूट हमले का गहन विश्लेषण| date = January 2011| url = https://www.forensicfocus.com/stable/wp-content/uploads/2011/08/cold_boot_attack_for_forensiscs1.pdf}}</ref> यह अटैक DRAM [[ गतिशील रैंडम-एक्सेस मेमोरी |(गतिशील रैंडम-एक्सेस मेमोरी)]] और [[ स्थिर रैंडम-एक्सेस मेमोरी |स्थिर रैंडम-एक्सेस मेमोरी]] (SRAM) की [[ डेटा अवशेष |डेटा अवशेष]] गुण पर निर्भर करता है। ताकि मेमोरी सामग्री को पुनः प्राप्त किया जा सके। जो पावर स्विच-ऑफ के बाद सेकंड से मिनट तक पढ़ने योग्य रहती है।<ref name="halderman2008"/><ref name="skorobogatov2002">{{Cite conference| publisher = University of Cambridge| last = Skorobogatov| first = Sergei| title = स्थैतिक रैम में कम तापमान डेटा अवशेष| date = June 2002| url = https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf}}</ref><ref name="bitlocker2008">{{cite web|last=MacIver|first=Douglas|date=2008-02-25|title=सिस्टम इंटीग्रिटी टीम ब्लॉग: बिटलॉकर को कोल्ड अटैक (और अन्य खतरों) से बचाना|url=https://docs.microsoft.com/en-us/archive/blogs/si_team/protecting-bitlocker-from-cold-attacks-and-other-threats|access-date=2020-06-24|publisher=[[Microsoft]]}}</ref>
'''''[[ कंप्यूटर सुरक्षा |कंप्यूटर सुरक्षा]] में''''', एक कोल्ड बूट अटैक(आक्षेप) या कुछ हद तक एक प्लेटफ़ॉर्म रीसेट अटैक एक प्रकार का [[ साइड चैनल हमला |साइड चैनल अटैक]] होता है, जिसमें कंप्यूटर पर भौतिक पहुंच वाला एक अटैक करने वाला कंप्यूटर की [[ यादृच्छिक अभिगम स्मृति |रैंडम-एक्सेस मेमोरी]] (RAM) को [[ मेमोरी डंप |मेमोरी खराब]] करता है। प्रदर्शन मशीन का हार्ड रीसेट करके सामान्य रूप से कोल्ड बूट अटैक का उपयोग दुर्भावनापूर्ण या आपराधिक खोजी कारणों से चल रहे [[ ऑपरेटिंग सिस्टम |ऑपरेटिंग सिस्टम]] से कूटलेखन कुंजियों को पुनः प्राप्त करने के लिए किया जाता है।<ref name="MacIver2006">{{cite conference|last=MacIver|first=Douglas|conference-url=http://conference.hackinthebox.org/hitbsecconf2006kl/ |conference=HITBSecConf2006, Malaysia|url=http://www.secguru.com/files/hitbsecconf2006kl/DAY%202%20-%20Douglas%20MacIver%20-%20Pentesting%20BitLocker.pdf|publisher=[[Microsoft]]|title=प्रवेश परीक्षण Windows Vista BitLocker ड्राइव एन्क्रिप्शन|access-date=2008-09-23|date=2006-09-21}}</ref><ref name="halderman2008">{{Cite journal| doi = 10.1145/1506409.1506429| issn = 0001-0782| volume = 52| issue = 5| pages = 91–98| last1 = Halderman| first1 = J. Alex| last2 = Schoen| first2 = Seth D.| last3 = Heninger| first3 = Nadia| last4 = Clarkson| first4 = William| last5 = Paul| first5 = William| last6 = Calandrino| first6 = Joseph A.| last7 = Feldman| first7 = Ariel J.| last8 = Appelbaum| first8 = Jacob| last9 = Felten| first9 = Edward W.| title = ऐसा न हो कि हम याद रखें: एन्क्रिप्शन कुंजियों पर कोल्ड-बूट हमले| journal = Communications of the ACM| date = 2009-05-01| s2cid = 7770695| url = https://www.usenix.org/legacy/event/sec08/tech/full_papers/halderman/halderman.pdf}}</ref><ref name="forensic2011">{{Cite conference| publisher = Defence Research and Development Canada| last1 = Carbone| first1 = Richard| last2 = Bean| first2 = C| last3 = Salois| first3 = M| title = कोल्ड बूट हमले का गहन विश्लेषण| date = January 2011| url = https://www.forensicfocus.com/stable/wp-content/uploads/2011/08/cold_boot_attack_for_forensiscs1.pdf}}</ref> यह अटैक [[ गतिशील रैंडम-एक्सेस मेमोरी |गतिशील रैंडम-एक्सेस मेमोरी (DRAM)]] और [[ स्थिर रैंडम-एक्सेस मेमोरी |स्थिर रैंडम-एक्सेस मेमोरी]] (SRAM) की [[ डेटा अवशेष |डेटा अवशेष]] गुण पर निर्भर करता है। ताकि भंडारण सामग्री को पुनः प्राप्त किया जा सके। जो पावर स्विच-ऑफ के बाद सेकंड से मिनट तक पढ़ने योग्य रहती है।<ref name="halderman2008"/><ref name="skorobogatov2002">{{Cite conference| publisher = University of Cambridge| last = Skorobogatov| first = Sergei| title = स्थैतिक रैम में कम तापमान डेटा अवशेष| date = June 2002| url = https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf}}</ref><ref name="bitlocker2008">{{cite web|last=MacIver|first=Douglas|date=2008-02-25|title=सिस्टम इंटीग्रिटी टीम ब्लॉग: बिटलॉकर को कोल्ड अटैक (और अन्य खतरों) से बचाना|url=https://docs.microsoft.com/en-us/archive/blogs/si_team/protecting-bitlocker-from-cold-attacks-and-other-threats|access-date=2020-06-24|publisher=[[Microsoft]]}}</ref>


चल रहे कंप्यूटर तक भौतिक पहुंच वाला एक हमलावर सामान्य रूप से मशीन को कोल्ड-बूट करके और एक फ़ाइल में प्री-बूट भौतिक मेमोरी की सामग्री को डंप करने के लिए एक हटाने योग्य डिस्क से एक हल्के ऑपरेटिंग सिस्टम को बूट करके एक कोल्ड बूट हमले को अंजाम देता है।<ref name="memTool2008">{{cite web |website=Center for Information Technology Policy |title=मेमोरी रिसर्च प्रोजेक्ट सोर्स कोड|access-date=2018-11-06 |date=2008-06-16 |url=https://citp.princeton.edu/research/memory/code/ |archive-url=https://web.archive.org/web/20130605132146/https://citp.princeton.edu/research/memory/code/ |archive-date=2013-06-05 |url-status=dead}}</ref><ref name="halderman2008" /> एक हमलावर तब कुंजी खोज हमलों के विभिन्न रूपों का उपयोग करते हुए कुंजी जैसे संवेदनशील डेटा को खोजने के लिए मेमोरी से डंप किए गए डेटा का विश्लेषण करने के लिए स्वतंत्र है।<ref>{{cite press release|url=http://www.prnewswire.com/news-releases/passware-software-cracks-bitlocker-encryption-open-78212917.html|title=पासवेयर सॉफ़्टवेयर ने बिटलॉकर एन्क्रिप्शन को खोल दिया है|date=2009-12-01|publisher=PR Newswire}}</ref><ref name="hargreaves2008">{{Cite conference| doi = 10.1109/ARES.2008.109| conference = 2008 Third International Conference on Availability, Reliability and Security| pages = 1369–1376| last1 = Hargreaves| first1 = C.| last2 = Chivers| first2 = H.| title = एक रेखीय स्कैन का उपयोग करके मेमोरी से एन्क्रिप्शन कुंजियों की पुनर्प्राप्ति| book-title = 2008 Third International Conference on Availability, Reliability and Security| date = March 2008 | isbn = 978-0-7695-3102-1|url = https://www.researchgate.net/publication/221548532}}</ref> चूंकि कोल्ड बूट हमले रैंडम-एक्सेस मेमोरी को लक्षित करते हैं, [[ पूर्ण डिस्क एन्क्रिप्शन |पूर्ण डिस्क एन्क्रिप्शन]] योजनाएं, यहां तक ​​कि स्थापित एक [[ विश्वसनीय प्लेटफ़ॉर्म मॉड्यूल |विश्वसनीय प्लेटफ़ॉर्म मॉड्यूल]] के साथ भी इस तरह के हमले के खिलाफ अप्रभावी हैं।<ref name="halderman2008" /> ऐसा इसलिए है, क्योंकि समस्या मूल रूप से एक हार्डवेयर (असुरक्षित मेमोरी) है और [[ सॉफ़्टवेयर |सॉफ़्टवेयर]] समस्या नहीं है। हालांकि, रैंडम-एक्सेस मेमोरी में संवेदनशील डेटा को संग्रहीत करने से बचने के लिए भौतिक पहुंच को सीमित करके और आधुनिक तकनीकों का उपयोग करके दुर्भावनापूर्ण पहुंच को रोका जा सकता है।
चल रहे कंप्यूटर तक भौतिक पहुंच वाला एक अटैक सामान्य रूप से मशीन को कोल्ड-बूट करके और एक फ़ाइल में प्री-बूट भौतिक भंडारण की सामग्री को खराब करने के लिए एक हटाने योग्य डिस्क से एक हल्के ऑपरेटिंग सिस्टम को बूट करके एक कोल्ड बूट अटैक को अंजाम देता है।<ref name="memTool2008">{{cite web |website=Center for Information Technology Policy |title=मेमोरी रिसर्च प्रोजेक्ट सोर्स कोड|access-date=2018-11-06 |date=2008-06-16 |url=https://citp.princeton.edu/research/memory/code/ |archive-url=https://web.archive.org/web/20130605132146/https://citp.princeton.edu/research/memory/code/ |archive-date=2013-06-05 |url-status=dead}}</ref><ref name="halderman2008" /> एक आक्रमण करने वाला तब कुंजी खोज अटैकों के विभिन्न रूपों का उपयोग करते हुए कुंजी जैसे संवेदनशील डेटा को खोजने के लिए मेमोरी से डंप किए गए डेटा का विश्लेषण करने के लिए स्वतंत्र है।<ref>{{cite press release|url=http://www.prnewswire.com/news-releases/passware-software-cracks-bitlocker-encryption-open-78212917.html|title=पासवेयर सॉफ़्टवेयर ने बिटलॉकर एन्क्रिप्शन को खोल दिया है|date=2009-12-01|publisher=PR Newswire}}</ref><ref name="hargreaves2008">{{Cite conference| doi = 10.1109/ARES.2008.109| conference = 2008 Third International Conference on Availability, Reliability and Security| pages = 1369–1376| last1 = Hargreaves| first1 = C.| last2 = Chivers| first2 = H.| title = एक रेखीय स्कैन का उपयोग करके मेमोरी से एन्क्रिप्शन कुंजियों की पुनर्प्राप्ति| book-title = 2008 Third International Conference on Availability, Reliability and Security| date = March 2008 | isbn = 978-0-7695-3102-1|url = https://www.researchgate.net/publication/221548532}}</ref> चूंकि कोल्ड बूट हमले रैंडम-एक्सेस मेमोरी को लक्षित करते हैं, [[ पूर्ण डिस्क एन्क्रिप्शन |पूर्ण डिस्क कूटलेखन]] योजनाएं, यहां तक ​​कि स्थापित एक [[ विश्वसनीय प्लेटफ़ॉर्म मॉड्यूल |विश्वसनीय प्लेटफ़ॉर्म मॉड्यूल]] के साथ भी इस तरह के अटैक के विपरीत अप्रभावी होते हैं।<ref name="halderman2008" /> ऐसा इसलिए है, क्योंकि समस्या मूल रूप से एक हार्डवेयर असुरक्षित भंडारण है और [[ सॉफ़्टवेयर |सॉफ़्टवेयर]] समस्या नहीं होती है। हालांकि, रैंडम-एक्सेस मेमोरी में संवेदनशील आँकड़ा को संग्रहीत करने से बचने के लिए भौतिक पहुंच को सीमित करके और आधुनिक तकनीकों का उपयोग करके दुर्भावनापूर्ण पहुंच को रोका जा सकता है।


== तकनीकी विवरण ==
== तकनीकी विवरण ==
[[File:Canned-air.jpg|thumb|right|लिक्विड नाइट्रोजन, [[ फ्रीज स्प्रे ]] या कंप्रेस्ड एयर कैन को मेमोरी मॉड्यूल को ठंडा करने के लिए सुधारा जा सकता है, और इस तरह वाष्पशील मेमोरी के क्षरण को धीमा कर सकता है।]][[ डीआईएमएम |DIMM]] मेमोरी मॉड्यूल धीरे-धीरे समय के साथ डेटा खो देते हैं क्योंकि वे बिजली खो देते हैं, लेकिन बिजली खो जाने पर तुरंत सभी डेटा नहीं खोते हैं।<ref name="halderman2008"/><ref name="cellPhones2018">{{Cite book| last = Bali| first = Ranbir Singh| title = सेल फोन पर कोल्ड बूट अटैक| location = Concordia University of Edmonton| date = July 2018| url = https://www.researchgate.net/publication/326211565}}</ref> तापमान और पर्यावरण की स्थिति के आधार पर, मेमोरी मॉड्यूल संभावित रूप से कम से कम कुछ डेटा को पावर लॉस के बाद 90 मिनट तक बनाए रख सकते हैं।<ref name="cellPhones2018"/> कुछ मेमोरी मॉड्यूल के साथ, एक हमले के लिए समय खिड़की को फ्रीज स्प्रे से ठंडा करके घंटों या हफ्तों तक बढ़ाया जा सकता है। इसके अलावा, चूंकि बिट समय के साथ स्मृति में गायब हो जाते हैं, उनका पुनर्निर्माण किया जा सकता है, क्योंकि वे पूर्वानुमेय तरीके से मिट जाते हैं।<ref name="halderman2008"/> नतीजतन, एक हमलावर कोल्ड बूट हमले को अंजाम देकर अपनी सामग्री का मेमोरी डंप कर सकता है। कोल्ड बूट हमले को सफलतापूर्वक निष्पादित करने की क्षमता अलग-अलग प्रणालियों, मेमोरी के प्रकारों, मेमोरी निर्माताओं और मदरबोर्ड गुणों में काफी भिन्न होती है, और सॉफ्टवेयर-आधारित तरीकों या डीएमए हमले से अधिक कठिन हो सकती है।<ref name="carbone2011">{{cite web |url=http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA545078|archive-url=https://web.archive.org/web/20130408131959/http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA545078 |archive-date=April 8, 2013|format=pdf|title=कोल्ड बूट अटैक का गहन विश्लेषण: क्या इसका उपयोग ध्वनि फोरेंसिक मेमोरी अधिग्रहण के लिए किया जा सकता है?|last1=Carbone|first1=R.|last2=Bean|first2=C|last3=Salois|first3=M.| date=January 2011 |website=Defense Technical Information Center}}</ref> जबकि वर्तमान शोध का ध्यान डिस्क एन्क्रिप्शन पर है, स्मृति में रखा गया कोई भी संवेदनशील डेटा हमले के प्रति संवेदनशील है।<ref name="halderman2008"/>
[[File:Canned-air.jpg|thumb|right|तरल नाइट्रोजन, [[ फ्रीज स्प्रे |फ्रीज स्प्रे]] या संपीड़ित हवा के डिब्बे को मेमोरी मॉड्यूल को ठंडा करने के लिए सुधारा जा सकता है, और इस तरह वाष्पशील मेमोरी के क्षरण को धीमा कर सकता है।]][[ डीआईएमएम |DIMM]] मेमोरी मॉड्यूल धीरे-धीरे समय के साथ डेटा खो देते हैं, क्योंकि वे बिजली खो देते हैं, लेकिन बिजली खो जाने पर तुरंत सभी डेटा नहीं खोते हैं।<ref name="halderman2008"/><ref name="cellPhones2018">{{Cite book| last = Bali| first = Ranbir Singh| title = सेल फोन पर कोल्ड बूट अटैक| location = Concordia University of Edmonton| date = July 2018| url = https://www.researchgate.net/publication/326211565}}</ref> तापमान और पर्यावरण की स्थिति के आधार पर मेमोरी मॉड्यूल संभावित रूप से कम से कम कुछ डेटा को शक्ति खोने के बाद 90 मिनट तक बनाए रख सकते हैं।<ref name="cellPhones2018"/> कुछ मेमोरी मॉड्यूल के साथ एक अटैक के लिए समय खिड़की को फ्रीज स्प्रे से ठंडा करके घंटों या हफ्तों तक बढ़ाया जा सकता है। इसके अतिरिक्त चूंकि बिट समय के साथ मेमोरी में गायब हो जाते हैं, तथा उनका पुनर्निर्माण किया जा सकता है, क्योंकि वे पूर्वानुमेय तरीके से मिट जाते हैं।<ref name="halderman2008"/> इसके परिणाम स्वरूप एक आक्रमण करने वाला कोल्ड बूट अटैक को अंजाम देकर अपनी सामग्री का मेमोरी खराब कर सकता है। कोल्ड बूट अटैक को सफलतापूर्वक निष्पादित करने की क्षमता अलग-अलग प्रणालियों, मेमोरी के प्रकारों, मेमोरी निर्माताओं और मदरबोर्ड के गुणों में लगभग भिन्न होती है, और सॉफ्टवेयर-आधारित तरीकों या DMA अटैक से अधिक जटिल हो सकती है।<ref name="carbone2011">{{cite web |url=http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA545078|archive-url=https://web.archive.org/web/20130408131959/http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA545078 |archive-date=April 8, 2013|format=pdf|title=कोल्ड बूट अटैक का गहन विश्लेषण: क्या इसका उपयोग ध्वनि फोरेंसिक मेमोरी अधिग्रहण के लिए किया जा सकता है?|last1=Carbone|first1=R.|last2=Bean|first2=C|last3=Salois|first3=M.| date=January 2011 |website=Defense Technical Information Center}}</ref> जबकि वर्तमान शोध का ध्यान डिस्क कूटलेखन पर होता है, मेमोरी में रखा गया कोई भी संवेदनशील आँकड़ा अटैक के प्रति संवेदनशील होता है।<ref name="halderman2008"/>


हमलावर कोल्ड बूट हमलों को बलपूर्वक और अचानक लक्ष्य मशीन को रिबूट करके और फिर  [[ यूएसबी फ्लैश ड्राइव |USB फ्लैश ड्राइव]], [[ CD-ROM |CD-ROM]] या [[ नेटवर्क बूट |नेटवर्क बूट]] पर पहले से स्थापित ऑपरेटिंग सिस्टम को बूट करके करते हैं।<ref name="forensic2011"/> ऐसे मामलों में जहां लक्ष्य मशीन को हार्ड रीसेट करना व्यावहारिक नहीं है, एक हमलावर वैकल्पिक रूप से मूल सिस्टम से मेमोरी मॉड्यूल को भौतिक रूप से हटा सकता है और जल्दी से हमलावर के नियंत्रण में एक संगत मशीन में रख सकता है, जिसे मेमोरी तक पहुंचने के लिए बूट किया जाता है।<ref name="halderman2008"/> इसके बाद रैम से डंप किए गए डेटा के खिलाफ आगे का विश्लेषण किया जा सकता है।
आक्रमण करने वाला कोल्ड बूट आक्रमणों को बलपूर्वक और अचानक नियोजित यंत्र को पुनः प्रारम्भ करके और पुनः [[ यूएसबी फ्लैश ड्राइव |USB फ्लैश ड्राइव]], [[ CD-ROM |CD-ROM]] या [[ नेटवर्क बूट |नेटवर्क बूट]] पर पहले से स्थापित ऑपरेटिंग सिस्टम को बूट करके करते हैं।<ref name="forensic2011"/> ऐसे परिस्थितियों में जहां नियोजित यंत्र को हार्ड रीसेट करना प्रयोगात्मक नहीं होता है, एक आक्रमण करने वाला वैकल्पिक रूप से मूल सिस्टम से मेमोरी मॉड्यूल को भौतिक रूप से हटा सकता है और जल्दी से आक्रामक के नियंत्रण में एक संगत यंत्र में रख सकता है, जिसे मेमोरी तक पहुंचने के लिए बूट किया जाता है।<ref name="halderman2008"/> इसके बाद रैम से खराब किए गए डेटा के खिलाफ आगे का विश्लेषण किया जा सकता है।


मेमोरी से डेटा निकालने के लिए भी इसी तरह के हमले का इस्तेमाल किया जा सकता है, जैसे कि डीएमए हमला जो [[ फायरवायर |फायरवायर]] जैसे हाई-स्पीड एक्सपेंशन पोर्ट के माध्यम से भौतिक मेमोरी तक पहुंचने की अनुमति देता है।<ref name="forensic2011"/> कुछ मामलों में कोल्ड बूट हमले को प्राथमिकता दी जा सकती है, जैसे कि जब हार्डवेयर क्षति का उच्च जोखिम हो। हाई-स्पीड एक्सपेंशन पोर्ट का उपयोग कुछ मामलों में [[ शार्ट सर्किट |शार्ट सर्किट]] या भौतिक रूप से हार्डवेयर को नुकसान पहुंचा सकता है।<ref name="forensic2011"/>
मेमोरी से आँकड़ा निकालने के लिए भी इसी तरह के अटैक का उपयोग किया जा सकता है, जैसे कि DMA अटैक, जो [[ फायरवायर |फायरवायर]] जैसे उच्च गति विस्तार द्वार के माध्यम से भौतिक मेमोरी तक पहुंचने की अनुमति देता है।<ref name="forensic2011"/> कुछ स्थितियों में कोल्ड बूट अटैक को प्राथमिकता दी जा सकती है, जैसे कि जब हार्डवेयर क्षति का उच्च जोखिम हो। उच्च गति विस्तार द्वार का उपयोग कुछ स्थितियों में [[ शार्ट सर्किट |लघु परिपथ]] या भौतिक रूप से हार्डवेयर को नुकसान पहुंचा सकता है।<ref name="forensic2011"/>
== उपयोग ==
== उपयोग ==



Revision as of 20:45, 13 December 2022

कंप्यूटर सुरक्षा में, एक कोल्ड बूट अटैक(आक्षेप) या कुछ हद तक एक प्लेटफ़ॉर्म रीसेट अटैक एक प्रकार का साइड चैनल अटैक होता है, जिसमें कंप्यूटर पर भौतिक पहुंच वाला एक अटैक करने वाला कंप्यूटर की रैंडम-एक्सेस मेमोरी (RAM) को मेमोरी खराब करता है। प्रदर्शन मशीन का हार्ड रीसेट करके सामान्य रूप से कोल्ड बूट अटैक का उपयोग दुर्भावनापूर्ण या आपराधिक खोजी कारणों से चल रहे ऑपरेटिंग सिस्टम से कूटलेखन कुंजियों को पुनः प्राप्त करने के लिए किया जाता है।[1][2][3] यह अटैक गतिशील रैंडम-एक्सेस मेमोरी (DRAM) और स्थिर रैंडम-एक्सेस मेमोरी (SRAM) की डेटा अवशेष गुण पर निर्भर करता है। ताकि भंडारण सामग्री को पुनः प्राप्त किया जा सके। जो पावर स्विच-ऑफ के बाद सेकंड से मिनट तक पढ़ने योग्य रहती है।[2][4][5]

चल रहे कंप्यूटर तक भौतिक पहुंच वाला एक अटैक सामान्य रूप से मशीन को कोल्ड-बूट करके और एक फ़ाइल में प्री-बूट भौतिक भंडारण की सामग्री को खराब करने के लिए एक हटाने योग्य डिस्क से एक हल्के ऑपरेटिंग सिस्टम को बूट करके एक कोल्ड बूट अटैक को अंजाम देता है।[6][2] एक आक्रमण करने वाला तब कुंजी खोज अटैकों के विभिन्न रूपों का उपयोग करते हुए कुंजी जैसे संवेदनशील डेटा को खोजने के लिए मेमोरी से डंप किए गए डेटा का विश्लेषण करने के लिए स्वतंत्र है।[7][8] चूंकि कोल्ड बूट हमले रैंडम-एक्सेस मेमोरी को लक्षित करते हैं, पूर्ण डिस्क कूटलेखन योजनाएं, यहां तक ​​कि स्थापित एक विश्वसनीय प्लेटफ़ॉर्म मॉड्यूल के साथ भी इस तरह के अटैक के विपरीत अप्रभावी होते हैं।[2] ऐसा इसलिए है, क्योंकि समस्या मूल रूप से एक हार्डवेयर असुरक्षित भंडारण है और सॉफ़्टवेयर समस्या नहीं होती है। हालांकि, रैंडम-एक्सेस मेमोरी में संवेदनशील आँकड़ा को संग्रहीत करने से बचने के लिए भौतिक पहुंच को सीमित करके और आधुनिक तकनीकों का उपयोग करके दुर्भावनापूर्ण पहुंच को रोका जा सकता है।

तकनीकी विवरण

तरल नाइट्रोजन, फ्रीज स्प्रे या संपीड़ित हवा के डिब्बे को मेमोरी मॉड्यूल को ठंडा करने के लिए सुधारा जा सकता है, और इस तरह वाष्पशील मेमोरी के क्षरण को धीमा कर सकता है।

DIMM मेमोरी मॉड्यूल धीरे-धीरे समय के साथ डेटा खो देते हैं, क्योंकि वे बिजली खो देते हैं, लेकिन बिजली खो जाने पर तुरंत सभी डेटा नहीं खोते हैं।[2][9] तापमान और पर्यावरण की स्थिति के आधार पर मेमोरी मॉड्यूल संभावित रूप से कम से कम कुछ डेटा को शक्ति खोने के बाद 90 मिनट तक बनाए रख सकते हैं।[9] कुछ मेमोरी मॉड्यूल के साथ एक अटैक के लिए समय खिड़की को फ्रीज स्प्रे से ठंडा करके घंटों या हफ्तों तक बढ़ाया जा सकता है। इसके अतिरिक्त चूंकि बिट समय के साथ मेमोरी में गायब हो जाते हैं, तथा उनका पुनर्निर्माण किया जा सकता है, क्योंकि वे पूर्वानुमेय तरीके से मिट जाते हैं।[2] इसके परिणाम स्वरूप एक आक्रमण करने वाला कोल्ड बूट अटैक को अंजाम देकर अपनी सामग्री का मेमोरी खराब कर सकता है। कोल्ड बूट अटैक को सफलतापूर्वक निष्पादित करने की क्षमता अलग-अलग प्रणालियों, मेमोरी के प्रकारों, मेमोरी निर्माताओं और मदरबोर्ड के गुणों में लगभग भिन्न होती है, और सॉफ्टवेयर-आधारित तरीकों या DMA अटैक से अधिक जटिल हो सकती है।[10] जबकि वर्तमान शोध का ध्यान डिस्क कूटलेखन पर होता है, मेमोरी में रखा गया कोई भी संवेदनशील आँकड़ा अटैक के प्रति संवेदनशील होता है।[2]

आक्रमण करने वाला कोल्ड बूट आक्रमणों को बलपूर्वक और अचानक नियोजित यंत्र को पुनः प्रारम्भ करके और पुनः USB फ्लैश ड्राइव, CD-ROM या नेटवर्क बूट पर पहले से स्थापित ऑपरेटिंग सिस्टम को बूट करके करते हैं।[3] ऐसे परिस्थितियों में जहां नियोजित यंत्र को हार्ड रीसेट करना प्रयोगात्मक नहीं होता है, एक आक्रमण करने वाला वैकल्पिक रूप से मूल सिस्टम से मेमोरी मॉड्यूल को भौतिक रूप से हटा सकता है और जल्दी से आक्रामक के नियंत्रण में एक संगत यंत्र में रख सकता है, जिसे मेमोरी तक पहुंचने के लिए बूट किया जाता है।[2] इसके बाद रैम से खराब किए गए डेटा के खिलाफ आगे का विश्लेषण किया जा सकता है।

मेमोरी से आँकड़ा निकालने के लिए भी इसी तरह के अटैक का उपयोग किया जा सकता है, जैसे कि DMA अटैक, जो फायरवायर जैसे उच्च गति विस्तार द्वार के माध्यम से भौतिक मेमोरी तक पहुंचने की अनुमति देता है।[3] कुछ स्थितियों में कोल्ड बूट अटैक को प्राथमिकता दी जा सकती है, जैसे कि जब हार्डवेयर क्षति का उच्च जोखिम हो। उच्च गति विस्तार द्वार का उपयोग कुछ स्थितियों में लघु परिपथ या भौतिक रूप से हार्डवेयर को नुकसान पहुंचा सकता है।[3]

उपयोग

कोल्ड बूट हमलों का इस्तेमाल आमतौर पर डिजिटल फोरेंसिक जांच, चोरी जैसे दुर्भावनापूर्ण उद्देश्यों और डेटा रिकवरी के लिए किया जाता है।[3]

डिजिटल फोरेंसिक

कुछ मामलों में, एक कोल्ड बूट हमले का उपयोग डिजिटल फोरेंसिक के अनुशासन में आपराधिक सबूत के रूप में मेमोरी में निहित डेटा को फोरेंसिक रूप से संरक्षित करने के लिए किया जाता है।[3] उदाहरण के लिए, जब अन्य माध्यमों से स्मृति में डेटा को संरक्षित करना व्यावहारिक नहीं होता है, तो रैंडम-एक्सेस मेमोरी में निहित डेटा को डंप करने के लिए कोल्ड बूट अटैक का उपयोग किया जा सकता है। उदाहरण के लिए, कोल्ड बूट अटैक का उपयोग उन स्थितियों में किया जाता है जहां एक सिस्टम सुरक्षित है और कंप्यूटर तक पहुंचना संभव नहीं है।[3] जब हार्ड डिस्क को पूर्ण डिस्क एन्क्रिप्शन के साथ एन्क्रिप्ट किया जाता है और डिस्क में संभावित रूप से आपराधिक गतिविधि के सबूत होते हैं, तो कोल्ड बूट अटैक भी आवश्यक हो सकता है। कोल्ड बूट अटैक मेमोरी तक पहुंच प्रदान करता है, जो उस समय सिस्टम की स्थिति के बारे में जानकारी प्रदान कर सकता है जैसे कि कौन से प्रोग्राम चल रहे हैं।[3]

दुर्भावनापूर्ण इरादा

कोल्ड बूट हमले का उपयोग हमलावरों द्वारा एन्क्रिप्टेड जानकारी जैसे कि वित्तीय जानकारी या दुर्भावनापूर्ण मंशा के लिए व्यापार रहस्य तक पहुंच प्राप्त करने के लिए किया जा सकता है।[11]

पूर्ण डिस्क एन्क्रिप्शन को परिचालित करना

कोल्ड बूट हमलों का एक सामान्य उद्देश्य सॉफ़्टवेयर-आधारित डिस्क एन्क्रिप्शन को दरकिनार करना है। कोल्ड बूट हमलों को जब प्रमुख खोज हमलों के साथ संयोजन में उपयोग किया जाता है, तो विभिन्न विक्रेताओं और ऑपरेटिंग सिस्टमों की पूर्ण डिस्क एन्क्रिप्शन योजनाओं को दरकिनार करने का एक प्रभावी साधन साबित हुआ है, यहां तक ​​कि जहां एक विश्वसनीय प्लेटफॉर्म मॉड्यूल (टीपीएम) सुरक्षित क्रिप्टोप्रोसेसर का उपयोग किया जाता है।[2]

डिस्क एन्क्रिप्शन अनुप्रयोगों के मामले में जिन्हें प्री-बूटिंग व्यक्तिगत पहचान संख्या दर्ज किए बिना या हार्डवेयर कुंजी मौजूद होने के बिना ऑपरेटिंग सिस्टम को बूट करने की अनुमति देने के लिए कॉन्फ़िगर किया जा सकता है (उदाहरण के लिए BitLocker एक साधारण कॉन्फ़िगरेशन में जो दो-कारक प्रमाणीकरण पिन के बिना टीपीएम का उपयोग करता है) या USB की), हमले की समय सीमा बिल्कुल भी सीमित नहीं है।[2]

बिटलॉकर

BitLocker अपने डिफ़ॉल्ट कॉन्फ़िगरेशन में एक विश्वसनीय प्लेटफ़ॉर्म मॉड्यूल का उपयोग करता है जिसे डिस्क को डिक्रिप्ट करने के लिए न तो पिन की आवश्यकता होती है और न ही बाहरी कुंजी की। जब ऑपरेटिंग सिस्टम बूट होता है, तो BitLocker बिना किसी उपयोगकर्ता सहभागिता के, TPM से कुंजी प्राप्त करता है। नतीजतन, एक हमलावर बस मशीन को चालू कर सकता है, ऑपरेटिंग सिस्टम को बूट करने के लिए प्रतीक्षा करें और फिर कुंजी को पुनः प्राप्त करने के लिए मशीन के खिलाफ एक ठंडे बूट हमले को अंजाम दें। इसके कारण, द्वि-कारक प्रमाणीकरण, जैसे प्री-बूट पिन या एक टीपीएम के साथ एक स्टार्टअप कुंजी युक्त एक हटाने योग्य यूएसबी डिवाइस का उपयोग डिफ़ॉल्ट BitLocker कार्यान्वयन में इस भेद्यता के आसपास काम करने के लिए किया जाना चाहिए।।[12][5] हालाँकि, यह वर्कअराउंड किसी हमलावर को मेमोरी से संवेदनशील डेटा प्राप्त करने से नहीं रोकता है, न ही मेमोरी में कैश की गई एन्क्रिप्शन कुंजियों को पुनर्प्राप्त करने से रोकता है।

अल्पीकरण

चूंकि कोल्ड बूट हमले को अंजाम देकर मेमोरी डंप आसानी से किया जा सकता है, रैम में संवेदनशील डेटा का भंडारण, जैसे पूर्ण डिस्क एन्क्रिप्शन के लिए एन्क्रिप्शन कुंजी असुरक्षित है। रैंडम-एक्सेस मेमोरी के अलावा अन्य क्षेत्रों में एन्क्रिप्शन कुंजियों को संग्रहीत करने के लिए कई समाधान प्रस्तावित किए गए हैं। जबकि ये समाधान पूर्ण डिस्क एन्क्रिप्शन को तोड़ने की संभावना को कम कर सकते हैं, वे स्मृति में संग्रहीत अन्य संवेदनशील डेटा की कोई सुरक्षा प्रदान नहीं करते हैं।

रजिस्टर-आधारित कुंजी भंडारण

एन्क्रिप्शन कुंजियों को स्मृति से बाहर रखने का एक समाधान रजिस्टर-आधारित कुंजी संग्रहण है। इस समाधान के कार्यान्वयन हैं TRESOR[13] और Loop-Amnesia.[14] ये दोनों कार्यान्वयन एक ऑपरेटिंग सिस्टम के कर्नेल (ऑपरेटिंग सिस्टम) को संशोधित करते हैं ताकि CPU रजिस्टर (TRESOR के मामले में x86 डिबग रजिस्टर और लूप-एम्नेसिया के मामले में AMD64 या EMT64 प्रोफाइलिंग रजिस्टर) का उपयोग रैम के बजाय एन्क्रिप्शन कुंजियों को स्टोर करने के लिए किया जा सके। इस स्तर पर संग्रहीत कुंजियों को आसानी से यूजरस्पेस से पढ़ा नहीं जा सकता[citation needed] और किसी भी कारण से कंप्यूटर के पुनरारंभ होने पर खो जाते हैं। TRESOR और लूप-एम्नेसिया दोनों को इस तरीके से क्रिप्टोग्राफ़िक टोकन स्टोर करने के लिए उपलब्ध सीमित स्थान के कारण ऑन-द-फ्लाई राउंड मुख्य कार्यक्रम की जनरेशन का उपयोग करना चाहिए। सुरक्षा के लिए, एन्क्रिप्शन या डिक्रिप्शन करते समय सीपीयू रजिस्टरों से मेमोरी में लीक होने से महत्वपूर्ण जानकारी को रोकने के लिए दोनों अक्षम करते हैं, और दोनों डीबग या प्रोफाइल रजिस्टरों तक पहुंच को अवरुद्ध करते हैं।

भंडारण कुंजी के लिए आधुनिक x86 प्रोसेसर में दो संभावित क्षेत्र हैं। स्ट्रीमिंग SIMD एक्सटेंशन जो प्रभावी रूप से सभी एसएसई निर्देशों को अक्षम करके विशेषाधिकार प्राप्त किए जा सकते हैं (और आवश्यक रूप से, उन पर भरोसा करने वाले किसी भी कार्यक्रम), और डीबग रजिस्टर जो बहुत छोटे थे लेकिन नहीं थे ऐसे मुद्दे।

एसएसई रजिस्टर विधि के आधार पर 'पैरानोइक्स' नामक अवधारणा वितरण का एक प्रमाण विकसित किया गया है।[15] डेवलपर्स का दावा है कि AES-NI का समर्थन करने वाले 64-बिट सीपीयू पर टीआरईएसओआर चलाना, एईएस के सामान्य कार्यान्वयन की तुलना में कोई प्रदर्शन दंड नहीं है।[16] और कुंजी पुनर्गणना की आवश्यकता के बावजूद मानक एन्क्रिप्शन से थोड़ा तेज चलता है।[13] TRESOR की तुलना में लूप-एम्नेसिया का प्राथमिक लाभ यह है कि यह कई एन्क्रिप्टेड ड्राइव के उपयोग का समर्थन करता है; प्राथमिक नुकसान 32-बिट x86 के लिए समर्थन की कमी और एईएस-एनआई का समर्थन नहीं करने वाले सीपीयू पर खराब प्रदर्शन हैं।

कैश-आधारित कुंजी भंडारण

जमे हुए कैश (कभी-कभी कैश के रूप में रैम के रूप में जाना जाता है),[17] एन्क्रिप्शन कुंजियों को सुरक्षित रूप से संग्रहीत करने के लिए उपयोग किया जा सकता है। यह CPU के L1 कैश को अक्षम करके काम करता है और इसे कुंजी भंडारण के लिए उपयोग करता है, हालांकि, यह अधिकांश उद्देश्यों के लिए बहुत धीमी होने के बिंदु पर समग्र सिस्टम प्रदर्शन को महत्वपूर्ण रूप से कम कर सकता है।[18][better source needed]

गुआन एट अल द्वारा एक समान कैश-आधारित समाधान प्रस्तावित किया गया था। (2015)[19] डेटा को कैश में रखने के लिए डब्ल्यूबी (राइट-बैक) कैश मोड को नियोजित करके, सार्वजनिक कुंजी एल्गोरिदम के संगणना समय को कम करता है।

छुई मुई[20] IEEE S&P 2015 में कोल्ड-बूट अटैक और DMA अटैक के विरुद्ध सार्वजनिक-कुंजी क्रिप्टोग्राफ़िक संगणनाओं के लिए अधिक व्यावहारिक समाधान प्रस्तुत किया। यह हार्डवेयर ट्रांसेक्शनल मेमोरी (HTM) को नियोजित करता है जिसे मूल रूप से बहु-थ्रेडेड अनुप्रयोगों के प्रदर्शन को बढ़ावा देने के लिए सट्टा मेमोरी एक्सेस तंत्र के रूप में प्रस्तावित किया गया था। एचटीएम द्वारा प्रदान की गई मजबूत परमाणु गारंटी का उपयोग संवेदनशील डेटा वाले मेमोरी स्पेस में अवैध समवर्ती पहुंच को हराने के लिए किया जाता है। RSA निजी कुंजी को AES कुंजी द्वारा स्मृति में एन्क्रिप्ट किया गया है जो TRESOR द्वारा सुरक्षित है। अनुरोध पर, एक एचटीएम लेनदेन के भीतर एक आरएसए निजी-कुंजी गणना की जाती है: निजी कुंजी को पहले स्मृति में डिक्रिप्ट किया जाता है, और फिर आरएसए डिक्रिप्शन या हस्ताक्षर किया जाता है। क्योंकि एक सादा-पाठ RSA निजी कुंजी केवल HTM लेनदेन में संशोधित डेटा के रूप में दिखाई देती है, इन डेटा के लिए कोई भी रीड ऑपरेशन लेनदेन को रद्द कर देगा - लेनदेन अपनी प्रारंभिक स्थिति में वापस आ जाएगा। ध्यान दें कि, आरएसए निजी कुंजी प्रारंभिक अवस्था में एन्क्रिप्ट की गई है, और यह राइट ऑपरेशंस (या एईएस डिक्रिप्शन) का परिणाम है। वर्तमान में एचटीएम को कैश या स्टोर-बफर में लागू किया गया है, जो दोनों सीपीयू में स्थित हैं, बाहरी रैम चिप्स में नहीं। इसलिए कोल्ड-बूट अटैक को रोका जाता है। मिमोसा उन अटैक के खिलाफ हारता है जो मेमोरी से संवेदनशील डेटा (कोल्ड-बूट अटैक, डीएमए अटैक और अन्य सॉफ़्टवेयर अटैक सहित) को पढ़ने का प्रयास करते हैं, और यह केवल एक छोटे से प्रदर्शन ओवरहेड का परिचय देता है।

एन्क्रिप्टेड डिस्क को हटाना

सर्वोत्तम अभ्यास किसी भी एन्क्रिप्टेड, गैर-सिस्टम डिस्क का उपयोग नहीं होने पर डिस्माउंट करने की सिफारिश करता है, क्योंकि अधिकांश डिस्क एन्क्रिप्शन सॉफ़्टवेयर को उपयोग के बाद मेमोरी में कैश की गई कुंजियों को सुरक्षित रूप से मिटाने के लिए डिज़ाइन किया गया है।[21] यह एक अटैक करने वाला के जोखिम को कम करता है जो कोल्ड बूट हमले को अंजाम देकर मेमोरी से एन्क्रिप्शन कुंजियों को बचाने में सक्षम होता है। ऑपरेटिंग सिस्टम हार्ड डिस्क पर एन्क्रिप्टेड जानकारी तक पहुंच को कम करने के लिए, एक सफल कोल्ड बूट हमले की संभावना को कम करने के लिए उपयोग में नहीं होने पर मशीन को पूरी तरह से बंद कर देना चाहिए।[2][22] हालांकि, मशीन में भौतिक रैम डिवाइस के आधार पर दस सेकंड से लेकर कई मिनट तक डेटा अवशेष, संभावित रूप से कुछ डेटा को एक अटैक करने वाला द्वारा मेमोरी से पुनर्प्राप्त करने की अनुमति देता है। स्लीप मोड का उपयोग करने के बजाय अप्रयुक्त होने पर ऑपरेटिंग सिस्टम को बंद या हाइबरनेट करने के लिए कॉन्फ़िगर करना, एक सफल कोल्ड बूट हमले के जोखिम को कम करने में मदद कर सकता है।

प्रभावी प्रतिकार

भौतिक पहुंच को रोकना

आमतौर पर, एक अटैक करने वाला की कंप्यूटर तक भौतिक पहुंच को सीमित करके या हमले को करने के लिए इसे तेजी से कठिन बनाकर एक कोल्ड बूट हमले को रोका जा सकता है। एक विधि में मदरबोर्ड पर डीआईएमएम में टांकने की क्रिया या ग्लूइंग शामिल है, इसलिए उन्हें आसानी से अपने सॉकेट्स से हटाया नहीं जा सकता है और एक अटैक करने वाला के नियंत्रण में दूसरी मशीन में डाला जा सकता है।[2]हालांकि, यह अटैक करने वाला को पीड़ित की मशीन को बूट करने और हटाने योग्य USB फ्लैश ड्राइव का उपयोग करके मेमोरी डंप करने से नहीं रोकता है। यूनिफाइड एक्स्टेंसिबल फ़र्मवेयर इंटरफ़ेस # सिक्योर बूट या समान बूट सत्यापन दृष्टिकोण जैसे एक भेद्यता प्रबंधन एक अटैक करने वाला को एक कस्टम सॉफ़्टवेयर वातावरण को बूट करने से रोकने में प्रभावी हो सकता है ताकि सोल्डर-ऑन ​​मुख्य मेमोरी की सामग्री को डंप किया जा सके।[23]


पूर्ण स्मृति एन्क्रिप्शन

रैंडम-एक्सेस मेमोरी (रैम) को एन्क्रिप्ट करने से एक अटैक करने वाला को कोल्ड बूट हमले के माध्यम से मेमोरी से कुंजी (क्रिप्टोग्राफी) या अन्य सामग्री प्राप्त करने में सक्षम होने की संभावना कम हो जाती है। इस दृष्टिकोण के लिए ऑपरेटिंग सिस्टम, एप्लिकेशन या हार्डवेयर में बदलाव की आवश्यकता हो सकती है। Microsoft Xbox (कंसोल) में हार्डवेयर-आधारित मेमोरी एन्क्रिप्शन का एक उदाहरण लागू किया गया था।[24] एएमडी से नए x86-64 हार्डवेयर पर कार्यान्वयन उपलब्ध हैं और विलो कोव में इंटेल से समर्थन आने वाला है।

सॉफ़्टवेयर-आधारित पूर्ण मेमोरी एन्क्रिप्शन CPU-आधारित कुंजी संग्रहण के समान है क्योंकि कुंजी सामग्री कभी भी मेमोरी के संपर्क में नहीं आती है, लेकिन अधिक व्यापक है क्योंकि सभी मेमोरी सामग्री एन्क्रिप्ट की जाती हैं। सामान्य तौर पर, ऑपरेटिंग सिस्टम द्वारा केवल तत्काल पृष्ठों को डिक्रिप्ट किया जाता है और फ्लाई पर पढ़ा जाता है।[25] सॉफ़्टवेयर-आधारित मेमोरी एन्क्रिप्शन समाधानों के कार्यान्वयन में शामिल हैं: PrivateCore का एक व्यावसायिक उत्पाद।[26][27][28] और RamCrypt, Linux कर्नेल के लिए एक कर्नेल-पैच जो मेमोरी में डेटा को एन्क्रिप्ट करता है और CPU रजिस्टरों में एन्क्रिप्शन कुंजी को TRESOR के समान तरीके से संग्रहीत करता है।[13][25]

संस्करण 1.24 के बाद से, VeraCrypt कुंजी और पासवर्ड के लिए RAM एन्क्रिप्शन का समर्थन करता है।[29] हाल ही में, सुरक्षा-संवर्धित x86 और ARM कमोडिटी प्रोसेसर की उपलब्धता पर प्रकाश डालते हुए कई पेपर प्रकाशित किए गए हैं।[30][31] उस कार्य में, ARM Cortex A8 प्रोसेसर का उपयोग सब्सट्रेट के रूप में किया जाता है, जिस पर एक पूर्ण मेमोरी एन्क्रिप्शन समाधान बनाया जाता है। प्रोसेस सेगमेंट (उदाहरण के लिए, स्टैक, कोड या हीप) को व्यक्तिगत रूप से या संरचना में एन्क्रिप्ट किया जा सकता है। यह कार्य सामान्य-उद्देश्य वाले कमोडिटी प्रोसेसर पर पहले पूर्ण मेमोरी एन्क्रिप्शन कार्यान्वयन को चिन्हित करता है। सिस्टम कोड और डेटा की गोपनीयता और अखंडता दोनों सुरक्षा प्रदान करता है जो सीपीयू सीमा के बाहर हर जगह एन्क्रिप्ट किए जाते हैं।

स्मृति का सुरक्षित विलोपन

चूंकि कोल्ड बूट हमले अनएन्क्रिप्टेड रैंडम-एक्सेस मेमोरी को लक्षित करते हैं, एक समाधान स्मृति से संवेदनशील डेटा को मिटाना है जब यह अब उपयोग में नहीं है। टीसीजी प्लेटफॉर्म रीसेट अटैक मिटिगेशन स्पेसिफिकेशंस,[32] इस विशिष्ट हमले के लिए उद्योग की प्रतिक्रिया, BIOS को पावर ऑन सेल्फ टेस्ट के दौरान मेमोरी को अधिलेखित करने के लिए मजबूर करती है यदि ऑपरेटिंग सिस्टम को सफाई से बंद नहीं किया गया था। हालाँकि, इस उपाय को अभी भी सिस्टम से मेमोरी मॉड्यूल को हटाकर अटैक करने वाला के नियंत्रण में किसी अन्य सिस्टम पर वापस पढ़ने से रोका जा सकता है जो इन उपायों का समर्थन नहीं करता है।[2]

एक प्रभावी सुरक्षित मिटाने की सुविधा यह होगी कि यदि बिजली बाधित होती है, तो सुरक्षित BIOS और हार्ड ड्राइव/एसएसडी नियंत्रक के संयोजन के साथ बिजली खो जाने से पहले रैम को 300 एमएस से कम समय में मिटा दिया जाता है जो एम -2 और एसएटीएएक्स बंदरगाहों पर डेटा को एन्क्रिप्ट करता है। . यदि RAM में स्वयं कोई सीरियल उपस्थिति या अन्य डेटा नहीं होता है और समय BIOS में किसी प्रकार की विफलता के साथ संग्रहीत किया जाता है, जिसमें उन्हें बदलने के लिए हार्डवेयर कुंजी की आवश्यकता होती है, तो किसी भी डेटा को पुनर्प्राप्त करना लगभग असंभव होगा और टेम्पेस्ट (कोडनेम) के लिए भी प्रतिरक्षा होगी। ) हमले, मैन-इन-द-रैम और अन्य संभावित घुसपैठ के तरीके।[citation needed][33] कुछ ऑपरेटिंग सिस्टम जैसे टेल्स (ऑपरेटिंग सिस्टम) एक सुविधा प्रदान करते हैं जो ऑपरेटिंग सिस्टम को ठंडे बूट हमले के खिलाफ कम करने के लिए बंद होने पर सिस्टम मेमोरी में यादृच्छिक डेटा को सुरक्षित रूप से लिखता है।[34] हालाँकि, वीडियो मेमोरी मिटाना अभी भी संभव नहीं है और 2022 तक यह अभी भी टेल्स फोरम पर एक खुला टिकट है।[35] संभावित हमले जो इस दोष का फायदा उठा सकते हैं:

  • जीएनयू प्राइवेसी गार्ड की उत्पत्ति और पाठ संपादक पर निजी कुंजी देखने से कुंजी को पुनर्प्राप्त किया जा सकता है।[36]
  • एक cryptocurrency बीज देखा जा सकता है, इसलिए बटुए को दरकिनार करते हुए (भले ही एन्क्रिप्ट किया गया हो) धन तक पहुंच की अनुमति देता है।[37]
  • दृश्यता सक्षम के साथ पासवर्ड टाइप करने से इसके कुछ हिस्से या यहां तक ​​कि पूरी कुंजी भी दिखाई दे सकती है। यदि कीफाइल का उपयोग किया जाता है, तो इसे पासवर्ड हमले के लिए आवश्यक समय कम करने के लिए दिखाया जा सकता है।
  • माउंट किए गए या खोले गए एन्क्रिप्टेड वॉल्यूम के निशान संभावित खंडन के साथ दिखाए जा सकते हैं, जिससे उनकी खोज हो सकती है।
  • यदि .onion सेवा से जुड़ा है, तो URL दिखाया जा सकता है और इसकी खोज हो सकती है, जबकि अन्यथा यह अत्यंत कठिन होगा।[38][39]
  • किसी विशेष प्रोग्राम का उपयोग उपयोगकर्ता के पैटर्न दिखा सकता है। उदाहरण के लिए, यदि एक स्टेग्नोग्राफ़ी प्रोग्राम का उपयोग किया जाता है और खोला जाता है, तो यह अनुमान लगाया जा सकता है कि उपयोगकर्ता डेटा छिपा रहा है। इसी तरह, अगर एक इंस्टैंट मेसेंजर का उपयोग किया जा रहा है, तो संपर्कों या संदेशों की एक सूची दिखाई जा सकती है।

बाहरी कुंजी भंडारण

कोल्ड बूट अटैक को यह सुनिश्चित करके रोका जा सकता है कि हमले के तहत हार्डवेयर द्वारा कोई कुंजी संग्रहीत नहीं की जाती है।

  • उपयोगकर्ता डिस्क एन्क्रिप्शन कुंजी मैन्युअल रूप से दर्ज करता है
  • हार्डवेयर-आधारित पूर्ण डिस्क एन्क्रिप्शन का उपयोग करना # हार्ड डिस्क ड्राइव FDE संलग्न करें जहां कुंजी (क्रिप्टोग्राफी) हार्ड डिस्क ड्राइव से अलग हार्डवेयर में रखी जाती है।

अप्रभावी प्रति उपाय

आधुनिक इण्टेल कोर प्रोसेसर की एक विशेषता के रूप में अर्धचालकों के अवांछनीय परजीवी प्रभावों को कम करने के लिए स्मृति पांव मारना का उपयोग किया जा सकता है।[40][41][42][43] हालाँकि, क्योंकि पांव मारना केवल स्मृति सामग्री के भीतर किसी भी पैटर्न को अलंकृत करने के लिए उपयोग किया जाता है, स्मृति को अवरोही हमले के माध्यम से उतारा जा सकता है।[44][45] इसलिए, कोल्ड बूट अटैक के खिलाफ मेमोरी स्क्रैचिंग एक व्यवहार्य शमन नहीं है।

हाइबरनेट (OS फीचर) कोल्ड बूट हमले के खिलाफ कोई अतिरिक्त सुरक्षा प्रदान नहीं करता है क्योंकि इस अवस्था में डेटा आमतौर पर अभी भी मेमोरी में रहता है। इस प्रकार, पूर्ण डिस्क एन्क्रिप्शन उत्पाद अभी भी हमले के लिए असुरक्षित हैं क्योंकि कुंजी स्मृति में रहती है और मशीन को कम पावर स्थिति से फिर से शुरू करने के बाद फिर से दर्ज करने की आवश्यकता नहीं होती है।

हालांकि BIOS में बूट डिवाइस विकल्पों को सीमित करने से दूसरे ऑपरेटिंग सिस्टम को बूट करना थोड़ा कम आसान हो सकता है, आधुनिक चिपसेट में फर्मवेयर उपयोगकर्ता को एक निर्दिष्ट हॉट कुंजी दबाकर पावर ऑन सेल्फ टेस्ट के दौरान बूट डिवाइस को ओवरराइड करने की अनुमति देता है।[5][46][47] बूट डिवाइस विकल्पों को सीमित करने से मेमोरी मॉड्यूल को सिस्टम से हटाए जाने और वैकल्पिक सिस्टम पर वापस पढ़ने से नहीं रोका जा सकेगा। इसके अलावा, अधिकांश चिपसेट एक पुनर्प्राप्ति तंत्र प्रदान करते हैं जो BIOS सेटिंग्स को डिफ़ॉल्ट रूप से रीसेट करने की अनुमति देता है, भले ही वे पासवर्ड से सुरक्षित हों।[11][48] BIOS को तब भी संशोधित किया जा सकता है जब सिस्टम इसके द्वारा लागू किसी भी सुरक्षा को दरकिनार करने के लिए चल रहा हो, जैसे कि मेमोरी को पोंछना या बूट डिवाइस को लॉक करना।[49][50][51]


स्मार्टफोन

कोल्ड बूट अटैक को एंड्रॉइड स्मार्टफोन पर समान तरीके से अनुकूलित और कार्यान्वित किया जा सकता है।[9]चूंकि स्मार्टफ़ोन में रीसेट बटन की कमी होती है, इसलिए हार्ड रीसेट को बाध्य करने के लिए फ़ोन की बैटरी को डिस्कनेक्ट करके एक कोल्ड बूट किया जा सकता है।[9]इसके बाद स्मार्टफोन्स को एक ऑपरेटिंग सिस्टम इमेज के साथ फ्लैश किया जाता है जो मेमोरी डंप कर सकता है। आमतौर पर, स्मार्टफोन यूनिवर्सल सीरियल बस पोर्ट का उपयोग करके अटैक करने वाला की मशीन से जुड़ा होता है।

आमतौर पर, एंड्रॉइड स्मार्टफोन फोन लॉक होने पर रैंडम-एक्सेस मेमोरी से एन्क्रिप्शन कुंजियों को सुरक्षित रूप से मिटा देते हैं।[9]यह एक अटैक करने वाला के मेमोरी से चाबियों को पुनः प्राप्त करने में सक्षम होने के जोखिम को कम करता है, भले ही वे फोन के खिलाफ कोल्ड बूट हमले को अंजाम देने में सफल रहे हों।

संदर्भ

  1. MacIver, Douglas (2006-09-21). प्रवेश परीक्षण Windows Vista BitLocker ड्राइव एन्क्रिप्शन (PDF). HITBSecConf2006, Malaysia. Microsoft. Retrieved 2008-09-23.
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 Halderman, J. Alex; Schoen, Seth D.; Heninger, Nadia; Clarkson, William; Paul, William; Calandrino, Joseph A.; Feldman, Ariel J.; Appelbaum, Jacob; Felten, Edward W. (2009-05-01). "ऐसा न हो कि हम याद रखें: एन्क्रिप्शन कुंजियों पर कोल्ड-बूट हमले" (PDF). Communications of the ACM. 52 (5): 91–98. doi:10.1145/1506409.1506429. ISSN 0001-0782. S2CID 7770695.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Carbone, Richard; Bean, C; Salois, M (January 2011). कोल्ड बूट हमले का गहन विश्लेषण (PDF). Defence Research and Development Canada.
  4. Skorobogatov, Sergei (June 2002). स्थैतिक रैम में कम तापमान डेटा अवशेष (PDF). University of Cambridge.
  5. 5.0 5.1 5.2 MacIver, Douglas (2008-02-25). "सिस्टम इंटीग्रिटी टीम ब्लॉग: बिटलॉकर को कोल्ड अटैक (और अन्य खतरों) से बचाना". Microsoft. Retrieved 2020-06-24.
  6. "मेमोरी रिसर्च प्रोजेक्ट सोर्स कोड". Center for Information Technology Policy. 2008-06-16. Archived from the original on 2013-06-05. Retrieved 2018-11-06.
  7. "पासवेयर सॉफ़्टवेयर ने बिटलॉकर एन्क्रिप्शन को खोल दिया है" (Press release). PR Newswire. 2009-12-01.
  8. Hargreaves, C.; Chivers, H. (March 2008). "एक रेखीय स्कैन का उपयोग करके मेमोरी से एन्क्रिप्शन कुंजियों की पुनर्प्राप्ति". 2008 Third International Conference on Availability, Reliability and Security. 2008 Third International Conference on Availability, Reliability and Security. pp. 1369–1376. doi:10.1109/ARES.2008.109. ISBN 978-0-7695-3102-1.
  9. 9.0 9.1 9.2 9.3 9.4 Bali, Ranbir Singh (July 2018). सेल फोन पर कोल्ड बूट अटैक. Concordia University of Edmonton.{{cite book}}: CS1 maint: location missing publisher (link)
  10. Carbone, R.; Bean, C; Salois, M. (January 2011). "कोल्ड बूट अटैक का गहन विश्लेषण: क्या इसका उपयोग ध्वनि फोरेंसिक मेमोरी अधिग्रहण के लिए किया जा सकता है?". Defense Technical Information Center. Archived from the original (pdf) on April 8, 2013.
  11. 11.0 11.1 Gruhn, Michael (2016-11-24). "फोरेंसिक रूप से ध्वनि डेटा अधिग्रहण एंटी-फोरेंसिक इनोसेंस के युग में". Erlangen, Germany: Friedrich-Alexander-Universität Erlangen-Nürnberg.
  12. "बिटलॉकर ड्राइव एन्क्रिप्शन तकनीकी अवलोकन". Microsoft. 2008. Retrieved 2008-11-19.
  13. 13.0 13.1 13.2 TRESOR USENIX paper, 2011 Archived 2012-01-13 at the Wayback Machine
  14. Simmons, Patrick (2011-12-05). भूलने की बीमारी के माध्यम से सुरक्षा: डिस्क एन्क्रिप्शन पर कोल्ड बूट हमले के लिए एक सॉफ्टवेयर-आधारित समाधान (PDF). Proceedings of the 27th Annual Computer Security Applications Conference. ACM. pp. 73–82. doi:10.1145/2076732.2076743. ISBN 978-1-4503-0672-0. Retrieved 2018-11-06.
  15. Müller, Tilo (2010-05-31). "लिनक्स कर्नेल में एईएस का कोल्ड-बूट प्रतिरोधी कार्यान्वयन" (PDF). Aachen, Germany: RWTH Aachen University.
  16. Friedrich-Alexander-Universität Erlangen-Nürnberg. "Tresor / Trevisor / Armored: TRESOR सुरक्षित रूप से RAM के बाहर एन्क्रिप्शन चलाता है / TRESOR Hypervisor / Android-संचालित उपकरणों के लिए". Retrieved 2018-11-06.
  17. Tews, Erik (December 2010). FrozenCache - फुल-डिस्क-एन्क्रिप्शन सॉफ़्टवेयर के लिए कोल्ड-बूट हमलों को कम करना. 27th Chaos Communication.
  18. Frozen Cache Blog
  19. Guan, Le; Lin, Jingqiang; Luo, Bo; Jing, Jiwu (February 2014). कॉपकर: रैम के बिना निजी कुंजी के साथ कम्प्यूटिंग (PDF). 21st ISOC Network and Distributed System Security Symposium (NDSS). Archived from the original (PDF) on 2016-08-03. Retrieved 2016-03-01.
  20. Guan, L.; Lin, J.; Luo, B.; Jing, J.; Wang, J. (May 2015). "हार्डवेयर लेन-देन मेमोरी का उपयोग करके मेमोरी प्रकटीकरण हमलों के विरुद्ध निजी कुंजी की सुरक्षा करना" (PDF). 2015 IEEE Symposium on Security and Privacy. 2015 IEEE Symposium on Security and Privacy. pp. 3–19. doi:10.1109/SP.2015.8. ISBN 978-1-4673-6949-7.
  21. Dean, Sarah (2009-11-11). "एन्क्रिप्शन कुंजी पर कोल्ड बूट अटैक (उर्फ "DRAM अटैक")". Archived from the original on 2012-09-15. Retrieved 2008-11-11.
  22. "एन्क्रिप्शन अभी भी अच्छा है; स्लीपिंग मोड इतना नहीं, पीजीपी कहता है". Wired. 2008-02-21. Retrieved 2008-02-22.
  23. Weis S, PrivateCore (2014-06-25). फ़र्मवेयर और भौतिक हमलों से उपयोग में आने वाले डेटा की सुरक्षा करना। (PDF). Black Hat USA 2014 (in English). Palo Alto, California, U. S. A. p. 2.
  24. B. Huang "Keeping Secrets in Hardware: The Microsoft Xbox Case Study", "CHES 2002 Lecture Notes in Notes in Computer Science Volume 2523", 2003
  25. 25.0 25.1 Götzfried, Johannes; Müller, Tilo; Drescher, Gabor; Nürnberger, Stefan; Backes, Michael (2016). "RamCrypt: उपयोगकर्ता-मोड प्रक्रियाओं के लिए कर्नेल-आधारित पता स्थान एन्क्रिप्शन" (PDF). Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. ASIA CCS '16. New York, NY, USA: ACM. pp. 919–924. doi:10.1145/2897845.2897924. ISBN 978-1-4503-4233-9. Retrieved 2018-11-07.
  26. Y. Hu, G. Hammouri, and B. Sunar "A fast real-time memory authentication protocol", "STC '08 Proceedings of the 3rd ACM workshop on Scalable trusted computing", 2008
  27. G. Duc and R. Keryell, "CryptoPage: an efficient secure architecture with memory encryption, integrity and information leakage protection", Dec. 2006
  28. X. Chen, R. P. Dick, and A. Choudhary "Operating system controlled processor-memory bus encryption", "Proceedings of the conference on Design, automation and test in Europe", 2008
  29. "VeraCrypt रिलीज नोट्स".
  30. M. Henson and S. Taylor "Beyond full disk encryption:protection on security-enhanced commodity processors", "Proceedings of the 11th international conference on applied cryptography and network security", 2013
  31. M. Henson and S. Taylor "Memory encryption: a survey of existing techniques", "ACM Computing Surveys volume 46 issue 4", 2014
  32. "टीसीजी प्लेटफॉर्म रीसेट अटैक मिटिगेशन स्पेसिफिकेशंस". Trusted Computing Group. May 28, 2008. Retrieved June 10, 2009.
  33. Teague, Ryne (2017). "सॉलिड-स्टेट ड्राइव के साथ साक्ष्य सत्यापन जटिलताएं". Association of Digital Forensics, Security and Law. 12: 75–85 – via ProQuest.
  34. "टेल्स - कोल्ड बूट अटैक से सुरक्षा". Retrieved 7 November 2018.
  35. "शटडाउन पर वीडियो मेमोरी मिटाएं (#5356) · मुद्दे · पुच्छ / पट · GitLab".
  36. "पलिनोप्सिया बग". hsmr.cc. 2022-04-17. Archived from the original on 2022-02-24. Retrieved 2022-04-17.
  37. "बीज वाक्यांश - बिटकॉइन विकी". en.bitcoin.it. 2022-04-17. Archived from the original on 2022-04-06. Retrieved 2022-04-17.
  38. "टो: प्याज सेवा प्रोटोकॉल". 2019.www.torproject.org. 2022-04-17. Archived from the original on 2022-04-05. Retrieved 2022-04-17.
  39. https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf[bare URL PDF]
  40. Igor Skochinsky (2014-03-12). "इंटेल प्रबंधन इंजन का रहस्य". SlideShare. pp. 26–29. Retrieved 2014-07-13.
  41. "दूसरी पीढ़ी का इंटेल कोर प्रोसेसर फैमिली डेस्कटॉप, इंटेल पेंटियम प्रोसेसर फैमिली डेस्कटॉप और इंटेल सेलेरॉन प्रोसेसर फैमिली डेस्कटॉप" (PDF). June 2013. p. 23. Retrieved 2015-11-03.
  42. "दूसरी पीढ़ी का इंटेल कोर प्रोसेसर फैमिली मोबाइल और इंटेल सेलेरॉन प्रोसेसर फैमिली मोबाइल" (PDF). September 2012. p. 24. Retrieved 2015-11-03.
  43. Michael Gruhn, Tilo Muller. "कोल्ड बूट अटैक की व्यावहारिकता पर" (PDF). Retrieved 2018-07-28.
  44. Johannes Bauer; Michael Gruhn; Felix C. Freiling (2016). "ऐसा न हो कि हम भूल जाएं: तले हुए DDR3 मेमोरी पर कोल्ड-बूट हमले". Digital Investigation. 16: S65–S74. doi:10.1016/j.diin.2016.01.009.
  45. Salessawi Ferede; Yitbarek Misiker; Tadesse Aga. "कोल्ड बूट अटैक अभी भी गर्म हैं: आधुनिक प्रोसेसर में मेमोरी स्क्रैम्बलर का सुरक्षा विश्लेषण" (PDF). Retrieved 2018-07-28.
  46. kpacquer (2018-05-14). "यूईएफआई मोड या लीगेसी BIOS मोड में बूट करें". Microsoft. Retrieved 2018-11-06.
  47. S, Ray (2015-12-08), Booting to the Boot Menu and BIOS, University of Wisconsin-Madison, retrieved 2018-11-06
  48. Dell Inc. (2018-10-09). "अपने Dell सिस्टम | Dell Australia पर BIOS या CMOS रीसेट कैसे करें और/या NVRAM को कैसे साफ़ करें". Dell Support.
  49. Ruud, Schramp (2014-06-13), OHM2013: RAM Memory acquisition using live-BIOS modification, archived from the original on 2021-12-21, retrieved 2018-07-28
  50. Michael, Gruhn (2016). फोरेंसिक रूप से ध्वनि डेटा अधिग्रहण विरोधी फोरेंसिक मासूमियत के युग में (Thesis) (in English). Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). p. 67.
  51. Schramp, R. (March 2017). "लाइव परिवहन और रैम अधिग्रहण प्रवीणता परीक्षण". Digital Investigation. 20: 44–53. doi:10.1016/j.diin.2017.02.006. ISSN 1742-2876.


इस पेज में लापता आंतरिक लिंक की सूची

  • भौतिक पहुँच
  • ड्रम डेटा अवशेष
  • कुंजी खोज हमले
  • डीएमए अटैक
  • विश्वसनीय प्लेटफ़ॉर्म मॉड्यूल
  • दो तरीकों से प्रमाणीकरण
  • सीपीयू रजिस्टर
  • x86 डीबग रजिस्टर
  • उपयोक्ता स्थान
  • अवधारणा का सबूत
  • उच्च एन्क्रिप्शन मानक
  • एक्सबॉक्स (कंसोल)
  • पूंछ (ऑपरेटिंग सिस्टम)
  • प्रशंसनीय खंडन
  • decorrelation
  • हाइबरनेट (OS सुविधा)

बाहरी संबंध