घन समतल वक्र: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 151: Line 151:
* [http://bernard-gibert.pagesperso-orange.fr/index.html त्रिकोण तल में घन]
* [http://bernard-gibert.pagesperso-orange.fr/index.html त्रिकोण तल में घन]
* [http://bernard-gibert.pagesperso-orange.fr/files/isocubics.html Special Isocubics in the Triangle Plane (pdf), by Jean-Pierre Ehrmann and Bernard Gibert]
* [http://bernard-gibert.pagesperso-orange.fr/files/isocubics.html Special Isocubics in the Triangle Plane (pdf), by Jean-Pierre Ehrmann and Bernard Gibert]
{{Algebraic curves navbox}}[[Category: बीजगणितीय वक्र]]
{{Algebraic curves navbox}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:Articles with short description]]
[[Category:Collapse templates]]
[[Category:Created On 24/11/2022]]
[[Category:Created On 24/11/2022]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Missing redirects]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:बीजगणितीय वक्र]]

Latest revision as of 09:33, 13 December 2022

File:CubicCurve.svg
घनीय वक्र का चयन। विवरण के लिए सूचना पृष्ठ देखने के लिए छवि पर क्लिक करें।

गणित में, एक घनीय समीकरण द्वारा परिभाषित, एक घनीय समतल वक्र एक समतल बीजगणितीय वक्र C होता है।

प्रक्षेप्य गति के लिए सजातीय निर्देशांक पर लागू होता है। या z = 1 निर्धारित करके सेटिंग द्वारा affine स्थान के लिए विषम संस्करण ऐसे समीकरण में यहाँ F तृतीय कोटि के एकपदीयों का शून्येतर रैखिक संयोजन है।

ये संख्या में दस हैं। इसलिए किसी दिए गए क्षेत्र K पर, घनीय वक्र आयाम 9 का एक प्रक्षेपी स्थान बनाते हैं। यदि हम यह कहे कि C, P से होकर गुजरता है, तो P का प्रत्येक बिंदु F पर एक एकल रेखीय शर्त आरोपित करता है। इसलिए, हम किन्ही दिए हुए नौ बिंदुओं से होकर जाने वाले कुछ घनीय वक्र प्राप्त कर सकते हैं, जो पतित हो सकते हैं, और अद्वितीय नहीं हो सकते हैं, लेकिन यदि बिंदु सामान्य स्थिति में हैं, तो वे अद्वितीय और गैर-पतित होंगे; एक रेखा का निर्धारण करने वाले दो बिंदुओं की तुलना करें और कैसे पांच बिंदु एक वक्र का निर्धारण करते हैं। यदि दो घन, नौ बिंदुओं के एक दिए गए समूह से होकर गुजरते हैं, तो वास्तव में घन की एक पेंसिल करती है, और अंक अतिरिक्त गुणों को संतुष्ट करते हैं। ( केली-बछराच प्रमेय देखें )

विलक्षण घन y2 = x2 ⋅ (x + 1). एक पैरामीट्रिजेशन दिया जाता है t ↦ (t2 – 1, t ⋅ (t2 – 1)).

एक घन वक्र में एक विलक्षण बिंदु हो सकता है, इस स्थिति में प्रक्षेपी रेखा के संदर्भ में एक पैरामीट्रिक समीकरण होता है। इसके अतिरिक्त, एक बीजगणितीय रूप से बंद क्षेत्र जैसे कि जटिल संख्या के ऊपर, एक गैर-विलक्षण घनीय वक्र को, विभक्ति बिंदु के नौ बिंदुओं के रूप में जाना जाता है। यह हेसियन आव्यूह के सजातीय संस्करण को लेकर दिखाया जा सकता है, जो फिर से एक घन को परिभाषित करता है, और इसे C के साथ प्रतिच्छेद करता है ;तब प्रतिच्छेद बिन्दुओ की गणना बेजाउट के प्रमेय द्वारा की जाती है। हालाँकि, इनमें से केवल तीन बिंदु ही वास्तविक हो सकते हैं, जिससे कि अन्य को वास्तविक प्रक्षेप्य तल में वक्र बनाकर न देखा जा सके। एक गैर-विलक्षण घन के नौ मोड़ बिंदुओं में यह गुण होता है कि उनमें से किन्ही दो से गुजरने वाली प्रत्येक रेखा में, ठीक तीन मोड़ बिंदु होते हैं।

घनीय वक्र के वास्तविक बिंदुओं का अध्ययन आइजैक न्यूटन ने किया था। एक गैर-विलक्षण प्रक्षेप्य घन के वास्तविक बिंदु एक या दो 'अण्डवक्र' में प्राप्त होते हैं। इन अण्डवक्र में से एक, प्रत्येक वास्तविक प्रक्षेपी रेखा को पार करता है और इस प्रकार यूक्लिडियन क्षेत्र में घन खींचा जाने पर कभी भी बाध्यता नहीं होती है; तीन वास्तविक विभक्ति बिंदुओ को सम्मलित किए हुए यह एक या तीन अनंत शाखाओं के रूप में प्रकट होती हैं। अन्य अण्डवक्र, यदि वह उपस्थित है, में कोई वास्तविक विभक्ति बिंदु नहीं होता है और वह या तो एक अण्डवक्र या दो अनंत शाखाओं के रूप में दिखाई देता है। शंक्वाकार वर्गों की तरह, एक रेखा इस अण्डवक्र को अधिकतम दो बिंदुओं पर काटती है।

एक गैर-विलक्षण समतल घन किसी भी क्षेत्र K पर एक अण्डाकार वक्र को परिभाषित करता है जिसके लिए इसमें एक बिंदु परिभाषित है। अण्डाकार वक्रों का अब सामान्य रूप से वीयरस्ट्रैस के अण्डाकार फलनो के कुछ प्रकारों में अध्ययन किया जाता है, जो घन के वर्गमूल को निकालकर बनाए गए परिमेय फलनों के क्षेत्र के द्विघात विस्तार को परिभाषित करता है। यह K-परिमेय बिंदुओ पर निर्भर करता है, जो वीयरस्ट्रैस रूप में अनंत के बिंदु के रूप में कार्य करता है। ऐसे अनेक घन वक्र हैं जिनमें ऐसा कोई बिंदु नहीं होता है, उदाहरण के लिए जब परिमेय संख्या क्षेत्र K है।

एक अलघुकरणीय समतल घन वक्र के विलक्षण बिंदु बहुत सीमित हैं: एक दोहरा बिंदु, या एक अंतराल। एक लघुकरणीय समतल घनीय वक्र या तो एक शंकु और एक रेखा या तीन रेखाएँ होती हैं, और उसके अनुसार दो दोहरे बिंदु या एक टेकनोद (यदि एक शंकु और एक रेखा), या तीन पंक्तियाँ हो तो तीन दोहरे बिंदु या एकल तिहरा बिंदु (समवर्ती रेखाएँ) तक होते हैं।

त्रिभुज के तल में घनीय वक्र

मान लीजिए कि ABC , a भुजा वाला एक त्रिभुज है जहाँ a = |BC|, b = |CA|, c = |AB|.

ABC के सापेक्ष, अनेक नामित घन भली- भांति पहचाने हुए बिंदुओं से गुजरते हैं। नीचे दिखाए गए उदाहरण दो प्रकार के सजातीय निर्देशांकों का उपयोग करते हैं: त्रिरेखीय निर्देशांक और बैरीसेंट्रिक निर्देशांक

घनीय समीकरण में, त्रिरेखीय निर्देशांक को बैरीसेंट्रिक निर्देशांक में बदलने के लिए, निम्न प्रतिस्थापन का प्रयोग करें:

xbcx, ycay, zabz;

बैरीसेंट्रिक निर्देशांक से त्रिरेखीय निर्देशांक मे बदलने के लिए, निम्न प्रतिस्थापन का प्रयोग करें :

x ↦ ax, y ↦ by, z ↦ cz.

घन के लिए अनेक समीकरणों का रूप इस प्रकार है

f(a, b, c, x, y, z) + f(b, c, a, y, z, x) + f(c, a, b, z, x, y) = 0.

नीचे दिए गए उदाहरणों में, ऐसे समीकरणों को अधिक संक्षेप में "चक्रीय योग अंकन " में लिखा गया है, जैसे:

.

नीचे सूचीबद्ध घनों को समकोणीय संयुग्म के रूप में परिभाषित किया जा सकता है, जिसे X*, X का एक बिंदु जो ABC के किनारे पर नहीं है, द्वारा निरूपित किया जाता है। X* की रचना इस प्रकार है। माना LA कोण A के आंतरिक कोण द्विभाजक के सापेक्ष रेखा XA का प्रतिबिंब है, LB और LC भी उसी प्रकार से परिभाषित है। तब तीन परावर्तित रेखाएँ X* में मिलती हैं। त्रिरेखीय निर्देशांक में, यदि X = x:y:z, तो X* = 1/x:1/y:1/z.

न्यूबर्ग घन

File:NeubergCurve.png
त्रिभुज ABC का न्युबर्ग घन: X का बिंदुपथ ऐसा है जिसमे A, B, C के किनारे BC, CA, AB फिर रेखाओं में प्रतिबिंब हैं समवर्ती हैं।

त्रिरेखीय समीकरण:

बेरसेंट्रिक समीकरण: न्युबर्ग घन ( जोसेफ जीन-बैप्टिस्ट न्यूबर्ग के नाम पर रखा गया ) बिंदु X का इस प्रकार का बिन्दुपथ जिसमे X* रेखा EX पर गति करता है, जहाँ E यूलर इन्फिनिटी बिन्दु है ( त्रिभुज केंद्रों के विश्वकोश में X(30) )। साथ ही, घनाकार X का बिन्दुपथ इस प्रकार है कि त्रिभुज XAXBXC , ABC का परिप्रेक्ष्य है, जहाँ XAXBXC क्रमशः BC, CA, AB रेखाओं में X का प्रतिबिंब है।

न्यूबर्ग घन निम्नलिखित बिंदुओं से होकर गुजरता है: अंत:केंद्र, परिकेन्द्र, लंबकेन्द्र, दोनों फर्मेट बिंदु, दोनों समगतिकी बिंदु, यूलर अनंत बिंदु, अन्य त्रिभुज केंद्र, बाह्ययकेंद्र, ABC के किनारे A, B, C के प्रतिबिंब, और ABC की भुजाओं पर बनाए गए छह समबाहु त्रिभुजों के शीर्ष।

एक आलेखनीय प्रतिनिधित्व और न्यूबर्ग घन के गुणों की विस्तृत सूची के लिए, त्रिभुज तल में बर्नहार्ड गिल्बर्ट के घन' को 'K001' में देखें।

थॉमसन घन

File:Thomson cubic.svg
थॉमसन घन (काला वक्र) का उदाहरण। X घन पर है, जैसे कि X (X') का समकोणीय संयुग्मी रेखा X(2) - X पर है।

त्रिरेखीय समीकरण:

बेरसेंट्रिक समीकरण: थॉमसन घन बिंदु X का बिंदुपथ इस प्रकार है कि X* रेखा GX पर है, जहाँ G केंद्रक है।

थॉमसन घन निम्नलिखित बिंदुओं से होकर गुजरता है: अंत:केंद्र, केन्द्रक, परिकेन्द्र, लंबकेन्द्र, सममध्य बिंदु, अन्य त्रिभुज केंद्र, शीर्ष A, B, C, बाह्ययकेंद्र, भुजाओं BC, CA, AB के मध्य बिंदु ,और ABC की ऊँचाई के मध्य बिंदु। घन पर स्थित प्रत्येक बिंदु P के लिए लेकिन घन के किनारे पर नहीं, P का समकोणीय संयुग्मी भी घन पर है।

आलेख और गुणों के लिए, 'K002' को 'त्रिभुजीय तल में घन में' पर देखें

डार्बौक्स घन

File:DarbouxCubic.png
त्रिभुज ABC का डार्बौक्स घन: X का बिन्दुपथ इस तरह है कि यदि D, E, F, X से किनारे BC, CA, AB के लंबवत के पैर हैं तो AD, BE,CF समवर्ती हैं।

त्रिरेखीय समीकरण:

बेरसेंट्रिक समीकरण: डार्बौक्स घन एक बिंदु X का बिन्दुपथ है जिसमे X* रेखा LX पर है, जहाँ L डी लॉन्गचैम्प्स बिंदु है। इसके अतिरिक्त, यह घन X का लोकस इस प्रकार है कि X का पेडल त्रिभुज, किसी बिंदु का सीवियन त्रिभुज है (जो लुकास घन पर स्थित है)। साथ ही, यह घन एक बिंदु X का बिन्दुपथ है जैसे कि X का पेडल त्रिभुज और X का एंटीसेवियन त्रिभुज परिप्रेक्ष्य हैं; परिप्रेक्ष्य थॉमसन घन पर स्थित है।

डार्बौक्स घन अंत:केंद्र, परिकेन्द्र, लंबकेन्द्र, लॉन्गचैम्प्स बिंदु से, अन्य त्रिभुज केंद्रों, शीर्ष A, B, C, बाह्ययकेंद्र और परिवृत्त पर A, B, C, के एंटीपोड्स से होकर गुजरता है। घन पर प्रत्येक बिंदु P के लिए लेकिन घन के किनारे पर नहीं, P का समकोणीय संयुग्मी भी घन पर है।

आलेख और गुणों के लिए, 'K004' को 'त्रिकोण तल में घन' पर देखें

नेपोलियन–फायरबैक घन

त्रिरेखीय समीकरण:

बेरसेंट्रिक समीकरण:

नेपोलियन-फायरबैक घन एक बिंदु X का बिन्दुपथ है जिसमे X* रेखा NX पर है, जहाँ N नौ-बिंदु केंद्र है ( त्रिभुज केंद्रों के विश्वकोश में N = X (5) )।

नेपोलियन-फायरबैक घन, अंत:केंद्र, परिकेन्द्र, लंबकेन्द्र, पहला और दूसरा नेपोलियन बिन्दु, अन्य त्रिभुज केंद्रों, A, B, C, बाह्ययकेंद्र, ऊंचाई पर केन्द्रक के प्रक्षेप और ABC की भुजाओं पर बने 6 समबाहु त्रिभुजो के केंद्रों से होकर गुजरता है। ।

आलेख और गुणों के लिए, देखें 'K005' पर 'त्रिकोण तल में घन'।

लुकास घन

File:LucasCubic.png
त्रिभुज ABC का लुकास घन: एक बिंदु X का बिन्दुपथ इस प्रकार है कि X का सीवियन त्रिभुज किसी बिंदु X' का पैडल त्रिभुज है; बिंदु X' डार्बौक्स घन पर स्थित है।

त्रिरेखीय समीकरण:

बेरसेंट्रिक समीकरण:

लुकास घन एक बिंदु X का बिन्दुपथ है जिसमे X का सीवियन त्रिभुज, किसी दूसरे बिंदु का पेडल त्रिभुज है और बिंदु डार्बौक्स घन पर स्थित है।

लुकास घन केन्द्रक, लंबकेन्द्र, गेर्गोन बिन्दु, नागल बिन्दु, डी लॉन्गचैम्प्स बिन्दु, अन्य त्रिभुज केंद्रों, प्रतिपूरक त्रिभुज त्रिभुज के शीर्ष और स्टाइनर सर्कमलिप्स के फोकस से होकर गुजरता है।

आलेख और गुणों के लिए, देखें 'K007' को 'त्रिकोण तल में घन'

पहला ब्रोकेड घन

File:FirstBrocardCubic.png
पहला ब्रोकार्ड घन: यह X का बिन्दुपथ है जिसमे XA′, XB′, XC′ का BC, CA, AB के साथ प्रतिच्छेदन बिन्दु क्रमशः XA, XB, XC, जहाँ ABC′ त्रिभुज ABC का पहला ब्रोकार्ड त्रिभुज है, संरेख हैं। चित्र में Ω और Ω' पहले और दूसरे ब्रोकार्ड बिंदु हैं।

त्रिरेखीय समीकरण:

बेरसेंट्रिक समीकरण:

माना कि ABC′ पहला ब्रोकार्ड त्रिभुज है। किसी बिंदु X के लिए, माना XA, XB, XC क्रमशः रेखाओं XA′, XB′, XC′ की भुजाओं BC, CA, AB के साथ प्रतिच्छेदन बिन्दु है। पहला ब्रोकार्ड घन, X का बिंदुपथ है जिसके लिए बिंदु XA, XB, XC संरेख हैं।

पहला ब्रोकार्ड घन केन्द्रक, सिम्मेडियन बिन्दु, स्टेनर बिन्दु, अन्य त्रिभुज केंद्रों और पहले और तीसरे ब्रोकार्ड त्रिभुज के शीर्ष से होकर गुजरता है।

आलेख और गुणों के लिए, 'K017' को 'त्रिकोण तल में घन' पर देखें।

दूसरा ब्रोकार्ड घन

त्रिरेखीय समीकरण:

बेरसेंट्रिक समीकरण:

दूसरा ब्रोकार्ड घन एक बिंदु X का बिन्दुपथ है जिसके लिए X और X* के माध्यम से सर्कमोनिक में रेखा XX* का ध्रुव परिकेन्द्र और सिम्मेडियन बिंदु (मतलब, ब्रोकार्ड अक्ष ) की रेखा पर स्थित है। घन केन्द्रक, सिम्मेडियन बिन्दु, दोनों फ़र्मेट बिन्दु, दोनों आइसोडायनामिक बिन्दु, पैरी बिन्दु, अन्य त्रिभुज केंद्रों और दूसरे और चौथे ब्रोकार्ड त्रिभुज के शीर्षों से होकर गुजरता है।

आलेख और गुणों के लिए, 'K018' को 'त्रिकोण तल में घन' पर देखें।

पहला बराबर क्षेत्रफल घन

Error creating thumbnail:
त्रिभुज ABC का पहला बराबर क्षेत्रफल घन: एक बिंदु X का बिन्दुपथ इस प्रकार है कि X के केवियन त्रिभुज का क्षेत्रफल X* के केवियन त्रिभुज के क्षेत्रफल के बराबर है।

त्रिरेखीय समीकरण:

बेरसेंट्रिक समीकरण:

पहला बराबर क्षेत्रफल घन एक बिंदु X का स्थान है जैसे कि X के केवियन त्रिभुज का क्षेत्रफल X* के केवियन त्रिभुज के क्षेत्रफल के बराबर है। इसके अतिरिक्त, यह घन X का बिन्दुपथ है जिसके लिए X* रेखा S*X पर है, जहाँ S स्टेनर बिन्दु है। ( त्रिभुज केंद्रों के विश्वकोश में S = X (99) )

पहला बराबर क्षेत्र घन अंत:केंद्र, स्टेनर बिन्दु, अन्य त्रिभुज केंद्र, पहला और दूसरा ब्रोकार्ड बिन्दु और बाह्ययकेंद्र से होकर गुजरता है।

आलेख और गुणों के लिए, देखें 'K021' को 'त्रिकोण तल में घन'

दूसरा बराबर क्षेत्र घन

त्रिरेखीय समीकरण :

बेरसेंट्रिक समीकरण :

किसी बिंदु X = x:y:z (त्रिरेखीय) के लिए, मान लीजिए XY = y:z:x और XZ = z:x:y। दूसरा बराबर क्षेत्र घन X का बिन्दुपथ है जिसमे XY के सेवियन त्रिभुज का क्षेत्रफल XZ के सीवियन त्रिभुज के क्षेत्रफल के बराबर है।

दूसरा समान क्षेत्र घन अंत:केंद्र, केन्द्रक, सिम्मेडियन बिन्दु और त्रिभुज केंद्रों के विश्वकोश में बिन्दु X(31), X(105), X(238), X(292), X(365), X(672), X(1453), X(1931), X(2053) और अन्य बिन्दु से होकर गुजरता है।

आलेख और गुणों के लिए, देखें 'K155' को 'त्रिकोण तल में घन'

यह भी देखें

संदर्भ

  • Bix, Robert (1998), Conics and Cubics: A Concrete Introduction to Algebraic Curves, New York: Springer, ISBN 0-387-98401-1.
  • Cerin, Zvonko (1998), "Locus properties of the Neuberg cubic", Journal of Geometry, 63 (1–2): 39–56, doi:10.1007/BF01221237, S2CID 116778499.
  • Cerin, Zvonko (1999), "On the cubic of Napoleon", Journal of Geometry, 66 (1–2): 55–71, doi:10.1007/BF01225672, S2CID 120174967.
  • Cundy, H. M. & Parry, Cyril F. (1995), "Some cubic curves associated with a triangle", Journal of Geometry, 53 (1–2): 41–66, doi:10.1007/BF01224039, S2CID 122633134.
  • Cundy, H. M. & Parry, Cyril F. (1999), "Geometrical properties of some Euler and circular cubics (part 1)", Journal of Geometry, 66 (1–2): 72–103, doi:10.1007/BF01225673, S2CID 119886462.
  • Cundy, H. M. & Parry, Cyril F. (2000), "Geometrical properties of some Euler and circular cubics (part 2)", Journal of Geometry, 68 (1–2): 58–75, doi:10.1007/BF01221061, S2CID 126542269.
  • Ehrmann, Jean-Pierre & Gibert, Bernard (2001), "A Morley configuration", Forum Geometricorum, 1: 51–58.
  • Ehrmann, Jean-Pierre & Gibert, Bernard (2001), "The Simson cubic", Forum Geometricorum, 1: 107–114.
  • Gibert, Bernard (2003), "Orthocorrespondence and orthopivotal cubics", Forum Geometricorum, 3: 1–27.
  • Kimberling, Clark (1998), "Triangle Centers and Central Triangles", Congressus Numerantium, 129: 1–295. See Chapter 8 for cubics.
  • Kimberling, Clark (2001), "Cubics associated with triangles of equal areas", Forum Geometricorum, 1: 161–171.
  • Lang, Fred (2002), "Geometry and group structures of some cubics", Forum Geometricorum, 2: 135–146.
  • Pinkernell, Guido M. (1996), "Cubic curves in the triangle plane", Journal of Geometry, 55 (1–2): 142–161, doi:10.1007/BF01223040, S2CID 123411561

बाहरी संबंध