त्वरक भौतिकी: Difference between revisions

From Vigyanwiki
Line 1: Line 1:
{{Short description|Physics related to the study, design, building and operation of particle accelerators}}
{{Short description|Physics related to the study, design, building and operation of particle accelerators}}
{{more footnotes|date=January 2020}}
'''त्वरक भौतिकी''' [[:hi:अनुप्रयुक्त भौतिकी|अनुप्रयुक्त भौतिकी]] की एक शाखा है, जो [[:hi:कण त्वरक|कण त्वरक]] के डिजाइन, निर्माण और संचालन से संबंधित है। जैसे, इसे गति, हेरफेर और [[:hi:विशिष्ट आपेक्षिकता|सापेक्षतावादी]] [[:hi:आवेशित कण-पुंज|आवेशित कण बीम]] के अवलोकन और [[:hi:विद्युतचुम्बकीय क्षेत्र|विद्युत चुम्बकीय क्षेत्रों]] द्वारा त्वरक संरचनाओं के साथ उनकी बातचीत के अध्ययन के रूप में वर्णित किया जा सकता है।
'''त्वरक भौतिकी''' [[:hi:अनुप्रयुक्त भौतिकी|अनुप्रयुक्त भौतिकी]] की एक शाखा है, जो [[:hi:कण त्वरक|कण त्वरक]] के डिजाइन, निर्माण और संचालन से संबंधित है। जैसे, इसे गति, हेरफेर और [[:hi:विशिष्ट आपेक्षिकता|सापेक्षतावादी]] [[:hi:आवेशित कण-पुंज|आवेशित कण बीम]] के अवलोकन और [[:hi:विद्युतचुम्बकीय क्षेत्र|विद्युत चुम्बकीय क्षेत्रों]] द्वारा त्वरक संरचनाओं के साथ उनकी बातचीत के अध्ययन के रूप में वर्णित किया जा सकता है।


Line 13: Line 12:


== आर एफ (RF) संरचनाओं के साथ कणों का त्वरण और अंतःक्रिया ==
== आर एफ (RF) संरचनाओं के साथ कणों का त्वरण और अंतःक्रिया ==
[[File:Desy tesla cavity01.jpg|thumb|नाइओबियम गुहा ]] हालांकि इलेक्ट्रोस्टैटिक क्षेत्रों का उपयोग करके चार्ज कणों को तेज करना संभव है, जैसे कि [[:hi:कॉकरॉफ्ट-वाल्टन जनित्र|कॉक्रॉफ्ट-वाल्टन वोल्टेज गुणक]] में, इस विधि में उच्च वोल्टेज पर [[:hi:विद्युत टूटना|विद्युत टूटने]] द्वारा दी गई सीमाएं हैं। इसके अलावा, इलेक्ट्रोस्टैटिक क्षेत्र रूढ़िवादी होने के कारण, अधिकतम वोल्टेज कणों पर लागू होने वाली गतिज ऊर्जा को सीमित करता है।
[[File:A 1.3 GHz nine-cell superconducting radio frequency.JPG|thumb|नाइओबियम गुहा]]
हालांकि इलेक्ट्रोस्टैटिक क्षेत्रों का उपयोग करके चार्ज कणों को तेज करना संभव है, जैसे कि [[:hi:कॉकरॉफ्ट-वाल्टन जनित्र|कॉक्रॉफ्ट-वाल्टन वोल्टेज गुणक]] में, इस विधि में उच्च वोल्टेज पर [[:hi:विद्युत टूटना|विद्युत टूटने]] द्वारा दी गई सीमाएं हैं। इसके अलावा, इलेक्ट्रोस्टैटिक क्षेत्र रूढ़िवादी होने के कारण, अधिकतम वोल्टेज कणों पर लागू होने वाली गतिज ऊर्जा को सीमित करता है।


इस समस्या को दूर करने के लिए, [[:hi:रैखिक कण त्वरक|रैखिक कण त्वरक]] समय-भिन्न क्षेत्रों का उपयोग करके काम करते हैं। खोखले मैक्रोस्कोपिक संरचनाओं का उपयोग करके इस क्षेत्र को नियंत्रित करने के लिए जिसके माध्यम से कण गुजर रहे हैं (तरंग दैर्ध्य प्रतिबंध), ऐसे त्वरण क्षेत्रों की आवृत्ति विद्युत चुम्बकीय स्पेक्ट्रम के [[:hi:रेडियो आवृत्ति|रेडियो आवृत्ति]] क्षेत्र में स्थित है।
इस समस्या को दूर करने के लिए, [[:hi:रैखिक कण त्वरक|रैखिक कण त्वरक]] समय-भिन्न क्षेत्रों का उपयोग करके काम करते हैं। खोखले मैक्रोस्कोपिक संरचनाओं का उपयोग करके इस क्षेत्र को नियंत्रित करने के लिए जिसके माध्यम से कण गुजर रहे हैं (तरंग दैर्ध्य प्रतिबंध), ऐसे त्वरण क्षेत्रों की आवृत्ति विद्युत चुम्बकीय स्पेक्ट्रम के [[:hi:रेडियो आवृत्ति|रेडियो आवृत्ति]] क्षेत्र में स्थित है।
Line 42: Line 42:
किसी भी त्वरक का एक महत्वपूर्ण घटक नैदानिक उपकरण हैं जो कण गुच्छों के विभिन्न गुणों को मापने की अनुमति देते हैं।
किसी भी त्वरक का एक महत्वपूर्ण घटक नैदानिक उपकरण हैं जो कण गुच्छों के विभिन्न गुणों को मापने की अनुमति देते हैं।


एक विशिष्ट मशीन विभिन्न गुणों को मापने के लिए कई अलग -अलग प्रकार के माप उपकरण का उपयोग कर सकती है। इनमें शामिल हैं (लेकिन सीमित नहीं हैं) बीम स्थिति मॉनिटर (बीपीएम) को गुच्छा, स्क्रीन (फ्लोरोसेंट स्क्रीन, ऑप्टिकल संक्रमण विकिरण (ओटीआर) उपकरणों) की स्थिति को मापने के लिए गुच्छा, वायर-स्कैनर की प्रोफाइल को मापने के लिए इसे मापने के लिए शामिल करें। क्रॉस-सेक्शन, और टोरॉइड या आईसीटी को गुच्छा चार्ज को मापने के लिए (यानी, प्रति गुच्छा कणों की संख्या)।
विभिन्न गुणों को मापने के लिए एक विशिष्ट मशीन कई अलग-अलग प्रकार के माप उपकरणों का उपयोग कर सकती है। इनमें गुच्छा की स्थिति को मापने के लिए बीम स्थिति मॉनिटर (बीपीएम), स्क्रीन (फ्लोरोसेंट स्क्रीन, ऑप्टिकल ट्रांजिशन रेडिएशन (ओटीआर) डिवाइस) शामिल हैं जो गुच्छा की प्रोफाइल की छवि बनाते हैं, इसके मापने के लिए वायर-स्कैनर बंच चार्ज (यानी, प्रति गुच्छा कणों की संख्या) को मापने के लिए क्रॉस-सेक्शन, और टॉरोइड्स या आईसीटी।


जबकि इनमें से कई उपकरण अच्छी तरह से समझी जाने वाली तकनीक पर भरोसा करते हैं, एक विशेष मशीन के लिए बीम को मापने में सक्षम उपकरण को डिजाइन करना एक जटिल कार्य है जिसमें बहुत अधिक विशेषज्ञता की आवश्यकता होती है। न केवल डिवाइस के संचालन के भौतिकी की पूरी समझ है, बल्कि यह सुनिश्चित करना भी आवश्यक है कि डिवाइस विचाराधीन मशीन के अपेक्षित मापदंडों को मापने में सक्षम है।
जबकि इनमें से कई उपकरण अच्छी तरह से समझी जाने वाली तकनीक पर भरोसा करते हैं, किसी विशेष मशीन के लिए बीम को मापने में सक्षम उपकरण को डिजाइन करना एक जटिल कार्य है जिसके लिए बहुत विशेषज्ञता की आवश्यकता होती है। न केवल उपकरण के संचालन की भौतिकी की पूरी समझ आवश्यक है, बल्कि यह सुनिश्चित करना भी आवश्यक है कि उपकरण विचाराधीन मशीन के अपेक्षित मापदंडों को मापने में सक्षम है।


बीम डायग्नोस्टिक्स की पूरी श्रृंखला की सफलता अक्सर मशीन की सफलता को समग्र रूप से कम करती है।
बीम डायग्नोस्टिक्स की पूरी श्रृंखला की सफलता अक्सर पूरी मशीन की सफलता को कम करती है।


== मशीन सहिष्णुता ==
== मशीन सहिष्णुता ==
घटकों, क्षेत्र की ताकत आदि के संरेखण में त्रुटियां, इस पैमाने की मशीनों में अपरिहार्य हैं, इसलिए उन सहिष्णुता पर विचार करना महत्वपूर्ण है जिनके तहत एक मशीन संचालित हो सकती है।
इस पैमाने की मशीनों में घटकों, क्षेत्र की ताकत आदि के संरेखण में त्रुटियां अपरिहार्य हैं, इसलिए उन सहनशीलता पर विचार करना महत्वपूर्ण है जिसके तहत मशीन संचालित हो सकती है।


इंजीनियर इन शर्तों के तहत मशीन के अपेक्षित व्यवहार के पूर्ण भौतिकी सिमुलेशन की अनुमति देने के लिए प्रत्येक घटक के संरेखण और निर्माण के लिए अपेक्षित सहिष्णुता के साथ भौतिकविदों को प्रदान करेंगे।कई मामलों में यह पाया जाएगा कि प्रदर्शन को एक अस्वीकार्य स्तर तक गिराया जाता है, या तो घटकों की पुन: इंजीनियरिंग की आवश्यकता होती है, या एल्गोरिदम का आविष्कार होता है जो मशीन के प्रदर्शन को डिजाइन स्तर पर वापस 'ट्यून' करने की अनुमति देता है।
इंजीनियर भौतिकविदों को इन परिस्थितियों में मशीन के अपेक्षित व्यवहार के पूर्ण भौतिकी सिमुलेशन की अनुमति देने के लिए प्रत्येक घटक के संरेखण और निर्माण के लिए अपेक्षित सहनशीलता प्रदान करेंगे। कई मामलों में यह पाया जाएगा कि प्रदर्शन को अस्वीकार्य स्तर तक नीचा दिखाया गया है, जिसके लिए या तो घटकों की पुन: इंजीनियरिंग की आवश्यकता होती है, या एल्गोरिदम का आविष्कार होता है जो मशीन के प्रदर्शन को डिजाइन स्तर पर वापस 'ट्यून' करने की अनुमति देता है।


प्रत्येक ट्यूनिंग एल्गोरिथ्म की सापेक्ष सफलता को निर्धारित करने के लिए, और वास्तविक मशीन पर तैनात किए जाने वाले एल्गोरिदम के संग्रह के लिए सिफारिशों की अनुमति देने के लिए विभिन्न त्रुटि स्थितियों के कई सिमुलेशन की आवश्यकता हो सकती है।
प्रत्येक ट्यूनिंग एल्गोरिदम की सापेक्ष सफलता निर्धारित करने के लिए और वास्तविक मशीन पर एल्गोरिदम के संग्रह के लिए अनुशंसाओं की अनुमति देने के लिए विभिन्न त्रुटि स्थितियों के कई सिमुलेशन की आवश्यकता हो सकती है।


==See also==
==यह सभी देखें==
{{portal|Physics}}
{{portal|Physics}}
* [[Particle accelerator]]
* [[list of publications in physics#Accelerator physics|Significant publications for accelerator physics]]
*[[:Category:Accelerator physics|Category:Accelerator physics]]
*[[:Category:Accelerator physicists|Category:Accelerator physicists]]
*[[:Category:Particle accelerators|Category:Particle accelerators]]


==References==
* [[:hi:कण त्वरक|पार्टिकल एक्सेलेटर]]
{{More footnotes|date=March 2012}}
* [[:hi:भौतिकी में प्रकाशनों की सूची|त्वरक भौतिकी के लिए महत्वपूर्ण प्रकाशन]]
* [[:hi:श्रेणी:त्वरक भौतिकी|श्रेणी:त्वरक भौतिकी]]
* [[:hi:श्रेणी:त्वरक भौतिक विज्ञानी|श्रेणी:त्वरक भौतिक विज्ञानी]]
* [[:hi:श्रेणी:कण त्वरक|श्रेणी:कण त्वरक]]
 
==संदर्भ==
{{Reflist}}
{{Reflist}}
* {{cite book | url=https://books.google.com/books?id=v9SoaCWFgigC&q=Accelerator+physics | title=Advances of accelerator physics and technologies | publisher=World Scientific | year=1993 | access-date=March 9, 2012 | last1 = Schopper | first1 = Herwig F. | isbn = 978-981-02-0957-5 }}
* {{cite book | url=https://books.google.com/books?id=v9SoaCWFgigC&q=Accelerator+physics | title=Advances of accelerator physics and technologies | publisher=World Scientific | year=1993 | access-date=March 9, 2012 | last1 = Schopper | first1 = Herwig F. | isbn = 978-981-02-0957-5 }}
Line 84: Line 84:
* {{cite book | title=Reviews of Accelerator Science and Technology Volume 4 | publisher=World Scientific | year=2012 | last1 = Chao | first1 = Alex W. | last2 = Chou | first2 = Weiren | isbn = 978-981-438-398-1| doi=10.1142/8380 }}
* {{cite book | title=Reviews of Accelerator Science and Technology Volume 4 | publisher=World Scientific | year=2012 | last1 = Chao | first1 = Alex W. | last2 = Chou | first2 = Weiren | isbn = 978-981-438-398-1| doi=10.1142/8380 }}


==External links==
==बाहरी संबंध==
{{Commonscat}}
*[https://uspas.fnal.gov United States Particle Accelerator School]
*[http://cbp.lbl.gov/ UCB/LBL Beam Physics site]
*[http://www.bnl.gov/bnlweb/history/focusing.asp BNL page on The Alternating Gradient Concept]


* [https://uspas.fnal.gov/ यूनाइटेड स्टेट्स पार्टिकल एक्सेलेरेटर स्कूल]
* [http://cbp.lbl.gov/ यूसीबी/एलबीएल बीम भौतिकी साइट]
* [http://www.bnl.gov/bnlweb/history/focusing.asp अल्टरनेटिंग ग्रैडिएंट कॉन्सेप्ट पर बीएनएल पेज]
{{Physics-footer}}
{{Physics-footer}}



Revision as of 11:56, 25 May 2022

त्वरक भौतिकी अनुप्रयुक्त भौतिकी की एक शाखा है, जो कण त्वरक के डिजाइन, निर्माण और संचालन से संबंधित है। जैसे, इसे गति, हेरफेर और सापेक्षतावादी आवेशित कण बीम के अवलोकन और विद्युत चुम्बकीय क्षेत्रों द्वारा त्वरक संरचनाओं के साथ उनकी बातचीत के अध्ययन के रूप में वर्णित किया जा सकता है।

यह अन्य क्षेत्रों से भी संबंधित है:

कण त्वरक के साथ किए गए प्रयोगों को त्वरक भौतिकी के भाग के रूप में नहीं माना जाता है, लेकिन वे (प्रयोगों के उद्देश्यों के अनुसार) से संबंधित हैं, उदाहरण के लिए, कण भौतिकी, परमाणु भौतिकी, संघनित पदार्थ भौतिकी या सामग्री भौतिकी । किसी विशेष त्वरक सुविधा में किए गए प्रयोगों के प्रकार उत्पन्न कण बीम की विशेषताओं जैसे औसत ऊर्जा, कण प्रकार, तीव्रता और आयामों द्वारा निर्धारित किए जाते हैं।

आर एफ (RF) संरचनाओं के साथ कणों का त्वरण और अंतःक्रिया

नाइओबियम गुहा
हालांकि इलेक्ट्रोस्टैटिक क्षेत्रों का उपयोग करके चार्ज कणों को तेज करना संभव है, जैसे कि कॉक्रॉफ्ट-वाल्टन वोल्टेज गुणक में, इस विधि में उच्च वोल्टेज पर विद्युत टूटने द्वारा दी गई सीमाएं हैं। इसके अलावा, इलेक्ट्रोस्टैटिक क्षेत्र रूढ़िवादी होने के कारण, अधिकतम वोल्टेज कणों पर लागू होने वाली गतिज ऊर्जा को सीमित करता है।

इस समस्या को दूर करने के लिए, रैखिक कण त्वरक समय-भिन्न क्षेत्रों का उपयोग करके काम करते हैं। खोखले मैक्रोस्कोपिक संरचनाओं का उपयोग करके इस क्षेत्र को नियंत्रित करने के लिए जिसके माध्यम से कण गुजर रहे हैं (तरंग दैर्ध्य प्रतिबंध), ऐसे त्वरण क्षेत्रों की आवृत्ति विद्युत चुम्बकीय स्पेक्ट्रम के रेडियो आवृत्ति क्षेत्र में स्थित है।

एक कण बीम के चारों ओर की जगह को गैस परमाणुओं के साथ बिखरने से रोकने के लिए खाली कर दिया जाता है, जिसके लिए इसे एक निर्वात कक्ष (या बीम पाइप ) में संलग्न करने की आवश्यकता होती है। बीम का अनुसरण करने वाले मजबूत विद्युत चुम्बकीय क्षेत्रों के कारण, इसके लिए बीम पाइप की दीवारों में किसी भी विद्युत प्रतिबाधा के साथ बातचीत करना संभव है। यह एक प्रतिरोधक प्रतिबाधा (यानी, बीम पाइप सामग्री की सीमित प्रतिरोधकता) या एक आगमनात्मक/कैपेसिटिव प्रतिबाधा (बीम पाइप के क्रॉस सेक्शन में ज्यामितीय परिवर्तनों के कारण) के रूप में हो सकता है।

एक कण बीम के आसपास के स्थान को गैस परमाणुओं के साथ बिखरने को रोकने के लिए निकाला जाता है, जिसके लिए इसे एक वैक्यूम चैम्बर (या बीम पाइप ) में संलग्न करने की आवश्यकता होती है। बीम का पालन करने वाले मजबूत विद्युत चुम्बकीय क्षेत्र एस के कारण, बीम पाइप की दीवारों में किसी भी विद्युत प्रतिबाधा के साथ बातचीत करना संभव है। यह एक प्रतिरोधक प्रतिबाधा (यानी, बीम पाइप सामग्री की परिमित प्रतिरोधकता) या एक आगमनात्मक/कैपेसिटिव प्रतिबाधा (बीम पाइप के क्रॉस सेक्शन में ज्यामितीय परिवर्तनों के कारण) के रूप में हो सकता है।

ये प्रतिबाधा वेकफील्ड्स (बीम के विद्युत चुम्बकीय क्षेत्र का एक मजबूत युद्ध) को प्रेरित करेंगे जो बाद के कणों के साथ बातचीत कर सकते हैं। चूंकि इस बातचीत का नकारात्मक प्रभाव पड़ सकता है, इसलिए इसका परिमाण निर्धारित करने के लिए, और इसे कम करने के लिए किए जा सकने वाले किसी भी कार्य को निर्धारित करने के लिए अध्ययन किया जाता है।

बीम डायनेमिक्स

कणों के उच्च वेग और चुंबकीय क्षेत्रों के लिए परिणामी लोरेंत्ज़ बल के कारण, बीम दिशा में समायोजन मुख्य रूप से मैग्नेटोस्टैटिक क्षेत्रों द्वारा नियंत्रित होते हैं जो कणों को विक्षेपित करते हैं। अधिकांश त्वरक अवधारणाओं ( साइक्लोट्रॉन या बीटाट्रॉन जैसी कॉम्पैक्ट संरचनाओं को छोड़कर) में, इन्हें विभिन्न गुणों और कार्यों के साथ समर्पित विद्युत चुम्बकों द्वारा लागू किया जाता है। इस प्रकार के त्वरक के विकास में एक महत्वपूर्ण कदम मजबूत ध्यान केंद्रित करने की समझ थी। [1] संरचना के माध्यम से बीम का मार्गदर्शन करने के लिए द्विध्रुवीय चुम्बकों का उपयोग किया जाता है, जबकि चौगुनी चुम्बकों का उपयोग बीम पर ध्यान केंद्रित करने के लिए किया जाता है, और सेक्स्टुपोल चुम्बकों का उपयोग फैलाव प्रभावों के सुधार के लिए किया जाता है।

त्वरक के सटीक डिजाइन प्रक्षेपवक्र (या डिजाइन कक्षा ) पर एक कण केवल द्विध्रुवीय क्षेत्र घटकों का अनुभव करता है, जबकि अनुप्रस्थ स्थिति विचलन वाले कण डिजाइन कक्षा में फिर से केंद्रित हैं। प्रारंभिक गणना के लिए, चौगुनी से अधिक सभी क्षेत्रों के घटकों की उपेक्षा करना, एक अमानवीय पहाड़ी अंतर समीकरण

एक गैर-स्थिर फ़ोकसिंग बल , मजबूत फोकसिंग और कमजोर फोकसिंग प्रभाव सहित डिजाइन बीम आवेग से सापेक्ष विचलन वक्रता का प्रक्षेपवक्र त्रिज्या , औरडिजाइन पथ की लंबाई ,

इस प्रकार प्रणाली को एक पैरामीट्रिक थरथरानवाला के रूप में पहचानना। त्वरक के लिए बीम मापदंडों की गणना रे ट्रांसफर मैट्रिक्स विश्लेषण का उपयोग करके की जा सकती है; उदाहरण के लिए, एक चतुर्भुज क्षेत्र ज्यामितीय प्रकाशिकी में एक लेंस के समान होता है, जिसमें बीम फोकस करने के समान गुण होते हैं (लेकिन अर्नशॉ के प्रमेय का पालन करना)।

गति के सामान्य समीकरण सापेक्षवादी हैमिल्टनियन यांत्रिकी से उत्पन्न होते हैं, लगभग सभी मामलों में पैराएक्सियल सन्निकटन का उपयोग करते हैं। यहां तक कि दृढ़ता से अरेखीय चुंबकीय क्षेत्रों के मामलों में, और पैराएक्सियल सन्निकटन के बिना, एक उच्च स्तर की सटीकता के साथ एक इंटीग्रेटर के निर्माण के लिए एक झूठ परिवर्तन का उपयोग किया जा सकता है।Template:उद्धरण आवश्यक

मॉडलिंग कोड

एक्सेलेरेटर भौतिकी के विभिन्न पहलुओं की मॉडलिंग के लिए कई अलग-अलग सॉफ्टवेयर पैकेज उपलब्ध हैं। उन तत्वों को मॉडल करना चाहिए जो विद्युत और चुंबकीय क्षेत्र बनाते हैं, और फिर उन क्षेत्रों के भीतर आवेशित कण विकास को मॉडल करना चाहिए। सर्न द्वारा डिज़ाइन किया गया बीम डायनेमिक्स के लिए एक लोकप्रिय कोड MAD, या मेथोडिकल एक्सेलेरेटर डिज़ाइन है।

किरणपुंज डायग्नोस्टिक्स

किसी भी त्वरक का एक महत्वपूर्ण घटक नैदानिक उपकरण हैं जो कण गुच्छों के विभिन्न गुणों को मापने की अनुमति देते हैं।

विभिन्न गुणों को मापने के लिए एक विशिष्ट मशीन कई अलग-अलग प्रकार के माप उपकरणों का उपयोग कर सकती है। इनमें गुच्छा की स्थिति को मापने के लिए बीम स्थिति मॉनिटर (बीपीएम), स्क्रीन (फ्लोरोसेंट स्क्रीन, ऑप्टिकल ट्रांजिशन रेडिएशन (ओटीआर) डिवाइस) शामिल हैं जो गुच्छा की प्रोफाइल की छवि बनाते हैं, इसके मापने के लिए वायर-स्कैनर बंच चार्ज (यानी, प्रति गुच्छा कणों की संख्या) को मापने के लिए क्रॉस-सेक्शन, और टॉरोइड्स या आईसीटी।

जबकि इनमें से कई उपकरण अच्छी तरह से समझी जाने वाली तकनीक पर भरोसा करते हैं, किसी विशेष मशीन के लिए बीम को मापने में सक्षम उपकरण को डिजाइन करना एक जटिल कार्य है जिसके लिए बहुत विशेषज्ञता की आवश्यकता होती है। न केवल उपकरण के संचालन की भौतिकी की पूरी समझ आवश्यक है, बल्कि यह सुनिश्चित करना भी आवश्यक है कि उपकरण विचाराधीन मशीन के अपेक्षित मापदंडों को मापने में सक्षम है।

बीम डायग्नोस्टिक्स की पूरी श्रृंखला की सफलता अक्सर पूरी मशीन की सफलता को कम करती है।

मशीन सहिष्णुता

इस पैमाने की मशीनों में घटकों, क्षेत्र की ताकत आदि के संरेखण में त्रुटियां अपरिहार्य हैं, इसलिए उन सहनशीलता पर विचार करना महत्वपूर्ण है जिसके तहत मशीन संचालित हो सकती है।

इंजीनियर भौतिकविदों को इन परिस्थितियों में मशीन के अपेक्षित व्यवहार के पूर्ण भौतिकी सिमुलेशन की अनुमति देने के लिए प्रत्येक घटक के संरेखण और निर्माण के लिए अपेक्षित सहनशीलता प्रदान करेंगे। कई मामलों में यह पाया जाएगा कि प्रदर्शन को अस्वीकार्य स्तर तक नीचा दिखाया गया है, जिसके लिए या तो घटकों की पुन: इंजीनियरिंग की आवश्यकता होती है, या एल्गोरिदम का आविष्कार होता है जो मशीन के प्रदर्शन को डिजाइन स्तर पर वापस 'ट्यून' करने की अनुमति देता है।

प्रत्येक ट्यूनिंग एल्गोरिदम की सापेक्ष सफलता निर्धारित करने के लिए और वास्तविक मशीन पर एल्गोरिदम के संग्रह के लिए अनुशंसाओं की अनुमति देने के लिए विभिन्न त्रुटि स्थितियों के कई सिमुलेशन की आवश्यकता हो सकती है।

यह सभी देखें

संदर्भ

  1. Courant, E. D.; Snyder, H. S. (Jan 1958). "Theory of the alternating-gradient synchrotron" (PDF). Annals of Physics. 3 (1): 360–408. Bibcode:2000AnPhy.281..360C. doi:10.1006/aphy.2000.6012.

बाहरी संबंध

]